

RF MEASUREMENT REPORT

FCC ID: DD4SLXD2EG57

Applicant: Shure Incorporated

Product: Digital Wireless Handheld Transmitter

Regulatory Model

Number (RMN): SLXD2+

Product Number: SLXD2+ G57

Trade Mark:

FCC Classification: Part 15 Wireless Microphone (DWM)

FCC Rule Part(s): Part 15 Subpart C (Section 15.236)

Result: Complies

Received Date: 2025-07-07

Test Date: 2025-07-07 ~ 2025-07-22

Reviewed By:

Jame Yuan

Approved By:

Robin Wu

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
R25S1006074-U202	V01	Initial Report	2025-08-06	Valid

CONTENTS

Description	Page
1. General Information	5
1.1. Applicant	5
1.2. Manufacturer	5
1.3. Testing Facility	5
1.4. Product Information	6
1.5. Radio Specification under Test	6
1.6. Working Frequencies	6
2. Test Configuration	7
2.1. Test Mode	7
2.2. Test System Connection Diagram	7
2.3. Test Software	7
2.4. Applied Standards	7
2.5. Test Environment Condition	7
3. Measuring Instrument	8
4. Decision Rules and Measurement Uncertainty	9
4.1. Decision Rules	9
4.2. Measurement Uncertainty	9
5. Test Result	10
5.1. Summary	10
5.2. 99% Occupied Bandwidth Measurement	11
5.2.1. Test Limit	11
5.2.2. Test Procedure	11
5.2.3. Test Setting	11
5.2.4. Test Setup	11
5.2.5. Test Result	11
5.3. Frequency Tolerance Measurement	12
5.3.1. Test Limit	12
5.3.2. Test Procedure	12
5.3.3. Test Setting	12
5.3.4. Test Setup	13
5.3.5. Test Result	13
5.4. Emission Mask Measurement	14
5.4.1. Test Limit	14
5.4.2. Test Procedure	16

5.4.3. Test Setting	16
5.4.4. Test Setup	16
5.4.5. Test Result	16
5.5. Output Power Measurement.....	17
5.5.1. Test Limit.....	17
5.5.2. Test Procedure.....	17
5.5.3. Test Setting	17
5.5.4. Test Setup	17
5.5.5. Test Result	17
5.6. Radiated Spurious Emission Measurement.....	18
5.6.1. Test Limit.....	18
5.6.2. Test Procedure.....	19
5.6.3. Test Setting	19
5.6.4. Test Setup	20
5.6.5. Test Result	21
5.7. AC Conducted Emissions Measurement.....	22
5.7.1. Test Limit.....	22
5.7.2. Test Setup	22
5.7.3. Test Result	22
Appendix A - Test Result.....	23
A.1 99% Occupied Bandwidth Test Result.....	23
A.2 Frequency Tolerance Test Result.....	24
A.3 Emission Mask Test Result	25
A.4 Output Power Test Result	27
A.5 Radiated Spurious Emission Test Result	28
A.6 AC Conducted Emissions Test Result	29
Appendix B - Test Setup Photograph	30
Appendix C - EUT Photograph	31

1. General Information

1.1. Applicant

Shure Incorporated

5800 West Touhy Avenue, Niles, IL 60714-4608, USA

1.2. Manufacturer

Shure Incorporated

5800 West Touhy Avenue, Niles, IL 60714-4608, USA

1.3. Testing Facility

<input checked="" type="checkbox"/>	Test Site – MRT Suzhou Laboratory
	Laboratory Location (Suzhou - Wuzhong)
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
	Laboratory Location (Suzhou - SIP)
	4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China
	Laboratory Location (Suzhou - Wujiang)
	Building 1, No.1 Xingdong Road, Wujiang, Suzhou, Jiangsu, People's Republic of China
	Laboratory Accreditations
	A2LA: 3628.01 CNAS: L10551
	FCC: CN1166 ISED: CN0001
	VCCI: <input type="checkbox"/> R-20025 <input type="checkbox"/> G-20034 <input type="checkbox"/> C-20020 <input type="checkbox"/> T-20020
	<input type="checkbox"/> R-20141 <input type="checkbox"/> G-20134 <input type="checkbox"/> C-20103 <input type="checkbox"/> T-20104
<input type="checkbox"/>	Test Site – MRT Shenzhen Laboratory
	Laboratory Location (Shenzhen)
	1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, China
	Laboratory Accreditations
	A2LA: 3628.02 CNAS: L10551
	FCC: CN1284 ISED: CN0105
<input type="checkbox"/>	Test Site – MRT Taiwan Laboratory
	Laboratory Location (Taiwan)
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)
	Laboratory Accreditations
	TAF: 3261
	FCC: 291082, TW3261 ISED: TW3261

1.4. Product Information

Product Name	Digital Wireless Handheld Transmitter
Regulatory Model Number (RMN)	SLXD2+
Product Number	SLXD2+ G57
EUT Identification No.	20250707Sample#06 (Conducted) 20250707Sample#05 (Radiated)
Bluetooth Specification	BLE Only
Microphone Specification	Wireless Microphone, UHF band, 470.125 MHz ~ 551.850 MHz & 552.150 MHz ~ 607.875 MHz
Antenna Specification	Refer to clause 1.5
Operating Temp.	-18 ~ 50 °C
Power Type	By 2pcs * AA: 3Vdc or Rechargeable Li-ion Battery Pack or SBC203 Charger
Accessory	
Li-ion Battery	Model: SB903 Output: 3.6V = 1200mAh, 4.32Wh
Note: The information of the EUT (Equipment Under Test) was provided by the manufacturer. The accuracy, completeness, and validity of the information are solely the responsibility of the manufacturer.	

1.5. Radio Specification under Test

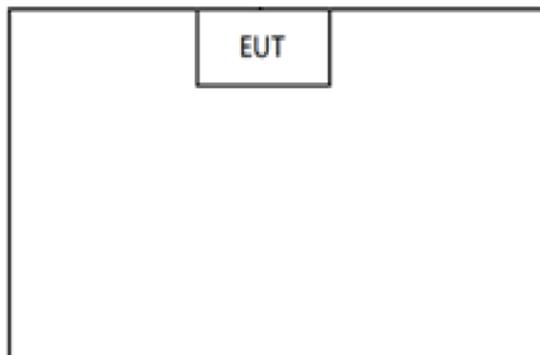
Frequency Range	470.125 ~ 551.850 MHz & 552.150 ~ 607.875 MHz
Declared Power Level	1mW & 10mW
Declared Occupied Bandwidth	200 kHz
Type of Modulation	4-GFSK
Channel Spacing	25 kHz
Antenna Type	Helical Antenna
Antenna Gain	-0.4 dBi

1.6. Working Frequencies

Bottom Channel (MHz)	Middle Channel (MHz)	Top Channel (MHz)
470.125	539.000	607.875

2. Test Configuration

2.1. Test Mode


Mode 1: Transmit at G57 Band (10mW)

Note: The EUT supports two power levels (1mW, 10mW), with 10mW being the highest. Therefore, 10mW was selected as the worst-case mode for all tests. For the other power level, output power and out of band emission were verified.

2.2. Test System Connection Diagram

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate EUT setup for radiated emissions testing.

Connection Diagram – Radiated Emission testing

2.3. Test Software

The test utility software used during testing was “Tera Term” and the version was 4.103.

2.4. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.236
- KDB 206256 D01v03
- ANSI C63.10-2013
- ETSI EN 300 422 - 1 V 2.2.1

2.5. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
Thermohygrometer	testo	608-H1	MRTSUE06402	1 year	2026-04-24	WZ-SR5
Shielding Room	HUAMING	WZ-SR5	MRTSUE06442	N/A	N/A	WZ-SR5
Signal Analyzer	Keysight	N9010B	MRTSUE06558	1 year	2026-05-17	WZ-SR5/WZ-TR3
USB Power Sensor	Keysight	U2021XA	MRTSUE06447	1 year	2026-06-17	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11088	1 year	2026-06-02	WZ-SR5
Cable	UCwave	UCE500	2411001	Note	Note	WZ-SR5
Temperature Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2025-09-02	WZ-TR3
Thermohygrometer	testo	608-H1	MRTSUE11268	1 year	2025-12-10	WZ-TR3
TRILOG Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2026-03-22	WZ-AC2
Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06171	1 year	2025-09-23	WZ-AC2
Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2026-03-18	WZ-AC2
Anechoic Chamber	RIKEN	WZ-AC2	MRTSUE06213	1 year	2026-04-17	WZ-AC2
Thermohygrometer	testo	608-H1	MRTSUE11263	1 year	2025-10-16	WZ-AC2
Signal Analyzer	Keysight	N9010B	MRTSUE06607	1 year	2025-10-13	WZ-AC2

Note: The loss of the RF cable will be measured before testing.

Software	Version	Function
e3	230711	RE & CE
Agilent Power Panel	V R03.09.00	Power
Controller_MF 7802	1.02	RE Antenna & Turntable

4. Decision Rules and Measurement Uncertainty

4.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2.

(Measurement uncertainty is not taken into account when stating conformity with a specified requirement.

4.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
The maximum measurement uncertainty is evaluated as: 9kHz~150kHz: 3.58dB 150kHz~30MHz: 3.20dB
Radiated Emission Measurement
The maximum measurement uncertainty is evaluated as: Coaxial: 9kHz~30MHz: 2.35dB Coplanar: 9kHz~30MHz: 2.37dB Horizontal: 30MHz~200MHz: 3.47dB 200MHz~1GHz: 4.17dB 1GHz~40GHz: 4.97dB Vertical: 30MHz~200MHz: 4.07dB 200MHz~1GHz: 5.28dB 1GHz~40GHz: 4.84dB
Spurious Emissions, Conducted
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 2.5dB
Output Power
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 1.5dB
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 3.2%

5. Test Result

5.1. Summary

FCC Part Section(s)	Test Description	Test Condition	Test Result
15.236(f)(1)	99% Occupied Bandwidth	Conducted	Pass
15.236(f)(1)(iii)	Frequency Tolerance		Pass
15.236(g)(2)	Emission Mask		Pass
15.236(d)(1)	Output Power		Pass
15.236(g)(4)	Radiated Spurious Emission	Radiated	Pass
15.207	AC Conducted Emissions 150kHz - 30MHz	Line Conducted	N/A

Notes:

- 1) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) "N/A" means that this item is not applicable, and the detail information refer to relevant section.

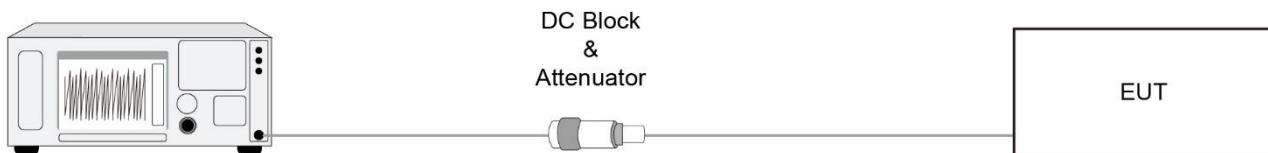
5.2. 99% Occupied Bandwidth Measurement

5.2.1. Test Limit

(1)(ii) One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

(2) A wireless multichannel audio system may have an operating bandwidth not exceeding 6 megahertz and must have a mode of operation in which it is capable of operating with at least three audio channels per megahertz. For wireless multichannel audio systems operating in the TV bands (channels 2-36), the 6 megahertz (or less) channel must fall entirely within a single TV channel.

5.2.2. Test Procedure


ANSI C63.10-2013 - Section 6.9.3

5.2.3. Test Setting

1. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
2. Set RBW \geq 1% to 5% of the OBW
3. VBW = Approximately three times RBW
4. Detector = Peak
5. Trace mode = Max hold
6. Sweep = Auto couple
7. Allow the trace to stabilize
8. Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

5.2.4. Test Setup

Spectrum Analyzer

5.2.5. Test Result

Refer to Appendix A.1.

5.3. Frequency Tolerance Measurement

5.3.1. Test Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

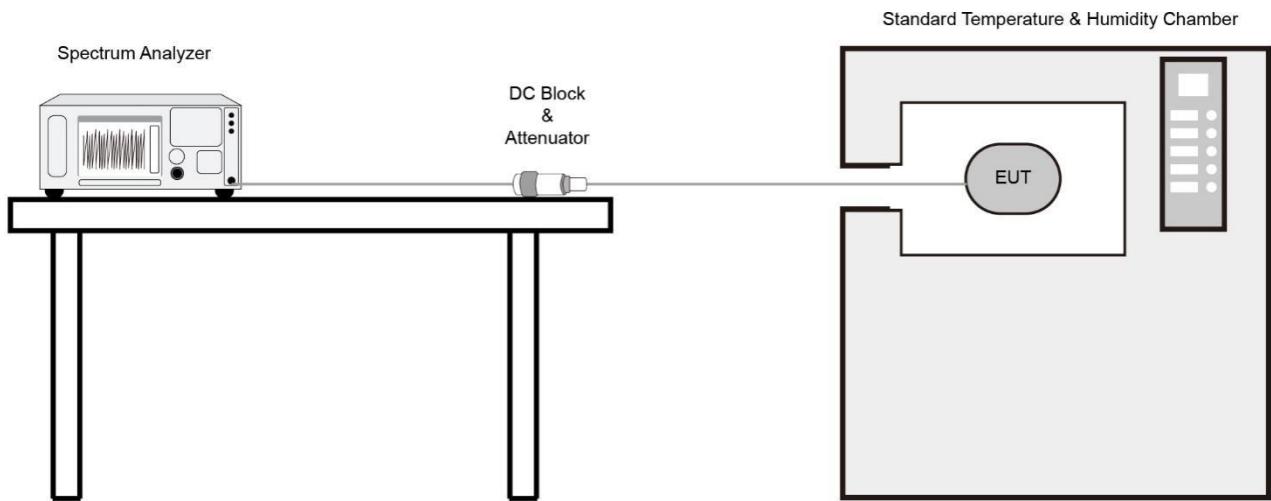
5.3.2. Test Procedure

ANSI C63.10-2013 - Section 6.8

5.3.3. Test Setting

The EUT was programmed to transmit with an unmodulated carrier.

Frequency Stability Under Temperature Variations:


The equipment under test was connected to an external DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum frequency change.

5.3.4. Test Setup

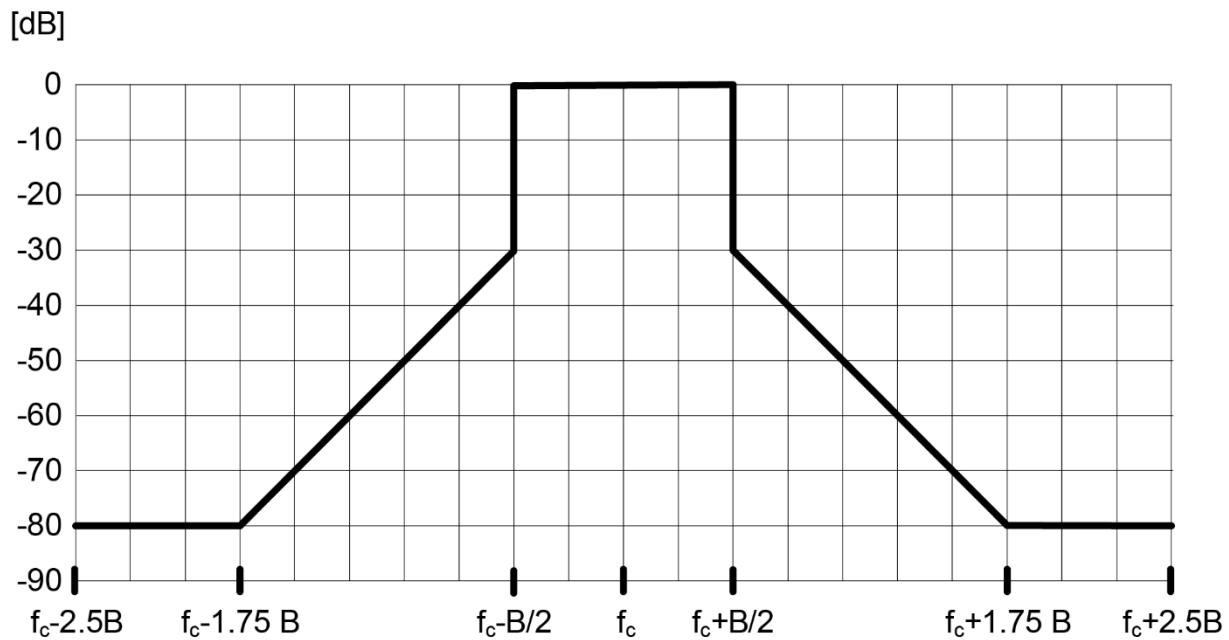
5.3.5. Test Result

Refer to Appendix A.2.

5.4. Emission Mask Measurement

5.4.1. Test Limit

(1) Analog systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 1 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 15.38).


(2) Digital systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 2 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 15.38).

(3) Wireless Multichannel Audio Systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 3 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11), (incorporated by reference, see § 15.38).

The mean Power Density, measured with 1 kHz measurement bandwidth and RMS detector, of the transmitter unwanted emissions shall not exceed the limits of the masks provided in figure 1 for equipment employing analogue modulation and figure 2 for equipment employing digital modulation, but excluding WMAS. B is the Declared Channel Bandwidth.

Figure 1: Transmit spectral power mask for equipment employing analogue modulation, RBW = 1 kHz

Figure 2: Transmit spectral power mask for equipment employing digital modulation, except WMAS, RBW = 1 kHz

The limits in figure 3 are applicable for WMAS, where B is the Declared Channel Bandwidth.

The mean Power Density, measured with 100 kHz measurement bandwidth and PEAK detector, of the transmitter unwanted emissions shall not exceed the limits of the mask provided in figure 3.

Figure 3: Transmit spectral power mask for WMAS, RBW = 100 kHz

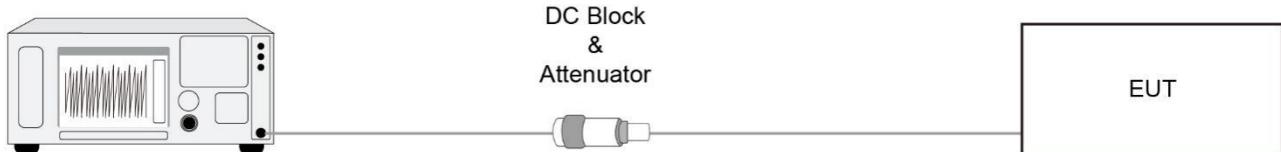
The limits in figure 3 are provided with RBW = 100 kHz. The relevant measurements can also be performed with other RBW for certain ranges of B, accounting that the relevant limit given under RBW = 100 kHz needs to be converted appropriately by adding $c = 10 \times \log_{10} (\text{RBW}/100 \text{ kHz})$ for correction.

Correction Factor for different B and applicable RBW

B	RBW, VBW	c = correction factor
$B < 2 \text{ MHz}$	10 kHz	-10dB
$2 \text{ MHz} \leq B < 5 \text{ MHz}$	25 kHz	-7dB
$5 \text{ Hz} \leq B \leq 20 \text{ MHz}$	100 kHz	0dB

5.4.2. Test Procedure

EN 300 422-1 V2.2.1 clause 5.4.3.2.


5.4.3. Test Setting

The EUT was powered up and the transmit frequency & power output of the EUT were selected.

The spectrum analyzer center frequency is set to the nominal EUT channel frequency.

5.4.4. Test Setup

Spectrum Analyzer

5.4.5. Test Result

Refer to Appendix A.3.

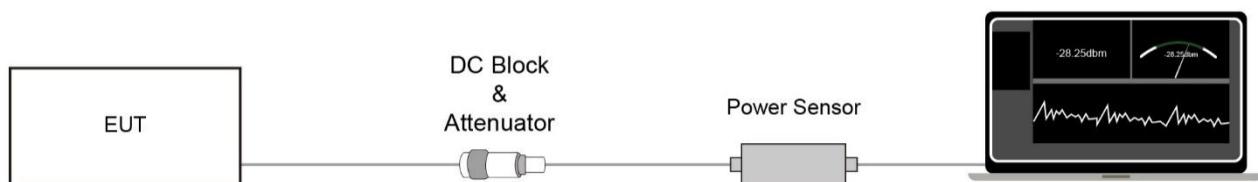
5.5. Output Power Measurement

5.5.1. Test Limit

(1) In the bands allocated and assigned for broadcast television:

- (i) Wireless microphones: 50 mW EIRP.
- (ii) Wireless multichannel audio systems with a bandwidth up to 1 MHz: 50 mW EIRP.
- (iii) Wireless multichannel audio systems with a bandwidth greater than 1 MHz: 100 mW EIRP.

(2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.


5.5.2. Test Procedure

ANSI C63.10 - 2013 - Section 11.9.2.3.2

5.5.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

5.5.4. Test Setup

5.5.5. Test Result

Refer to Appendix A.4.

5.6. Radiated Spurious Emission Measurement

5.6.1. Test Limit

Spurious emission limits. Emissions outside of the emission masks listed in paragraphs (g)(1) through (g)(3) shall comply with the limits specified in section 4.2.4.1.2 of ETSI EN 300 422-1 V2.2.1 (2021-11), (incorporated by reference, see § 15.38).

The level of transmitter unwanted emissions in the spurious domain shall not exceed the limits given in table. Transmitter unwanted emission limits.

Frequency Range	Maximum power	RBW
9kHz – 150kHz	-36dBm	1kHz
150kHz – 30MHz	-36dBm	10kHz
30MHz – 1GHz	-36dBm	$F_c + 2.5B \leq f \leq F_c + 4B$: 1kHz $F_c + 4B < f \leq F_c + 10B$: 10kHz $f > F_c + 10B$: 100kHz $f < F_c - 10B$: 100kHz $F_c - 10B \leq f < F_c - 4B$: 10kHz $F_c - 4B \leq f \leq F_c - 2.5B$: 1kHz
Except:		
47MHz to 74MHz	-54dBm	100kHz
87.5MHz to 118MHz		
174MHz to 230MHz	-54dBm	$F_c + 2.5B \leq f \leq F_c + 4B$: 1kHz $F_c + 4B < f \leq F_c + 10B$: 10kHz $f > F_c + 10B$: 100kHz $f < F_c - 10B$: 100kHz $F_c - 10B \leq f < F_c - 4B$: 10kHz $F_c - 4B \leq f \leq F_c - 2.5B$: 1kHz
470MHz to 862MHz		
1GHz < f ≤ F _{upper}	-30dBm	$F_c + 2.5B \leq f \leq F_c + 10B$: 30kHz $F_c + 10B < f \leq F_c + 12B$: 300kHz $f > F_c + 12B$: 1MHz $f < F_c - 12B$: 1MHz $F_c - 12B \leq f < F_c - 10B$: 300kHz $F_c - 10B \leq f \leq F_c - 2.5B$: 30kHz
With B being the Declared Channel Bandwidth. F _{upper} is defined in table 5.		

Table 5: Frequency range for measurement of unwanted emissions

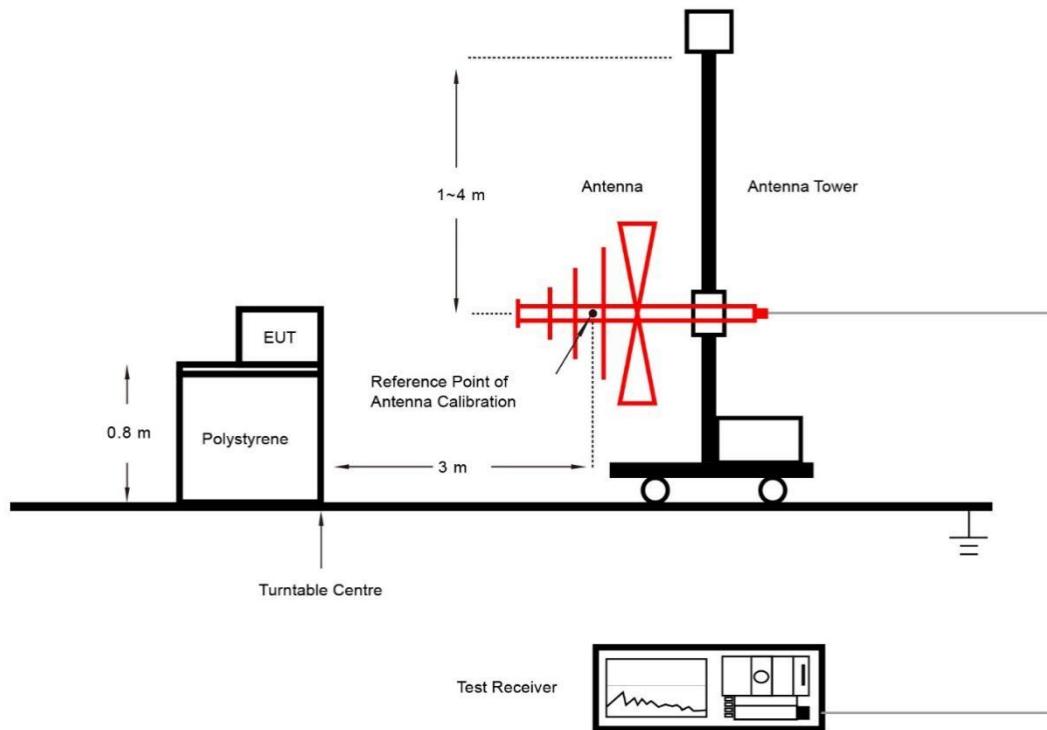
Applicable fundamental frequency range	Frequency range for measurements	
	Lower frequency	Upper frequency
9 kHz - 100 MHz	9 kHz	1 GHz
100 MHz - 300 MHz	9 kHz	10th harmonic of the operating frequency
300 MHz - 600 MHz	30 MHz	3 GHz
600 MHz - 3 GHz	30 MHz	5th harmonic of the operating frequency

5.6.2. Test Procedure

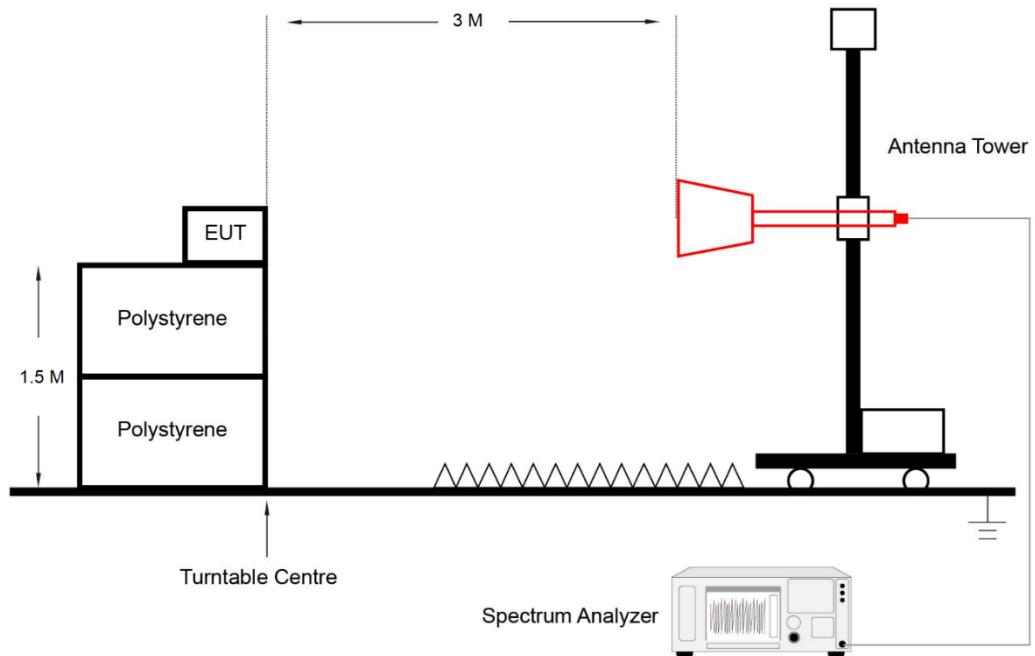
ETSI EN 300 422-1 V2.2.1 clause 5.4.4

5.6.3. Test Setting

Emissions shall be investigated up to the 10th harmonic of the fundamental.


All the emissions shall be demonstrated using a QP detector below 1 GHz and an RMS Average detector above 1 GHz.

All significant broadband and narrowband signals found in the preliminary sweeps were measured using a peak detector at a test distance of 3 meters.


at each frequency at which a component is detected, the sample shall be rotated to obtain maximum response and the effective radiated power of that component determined by a substitution measurement.

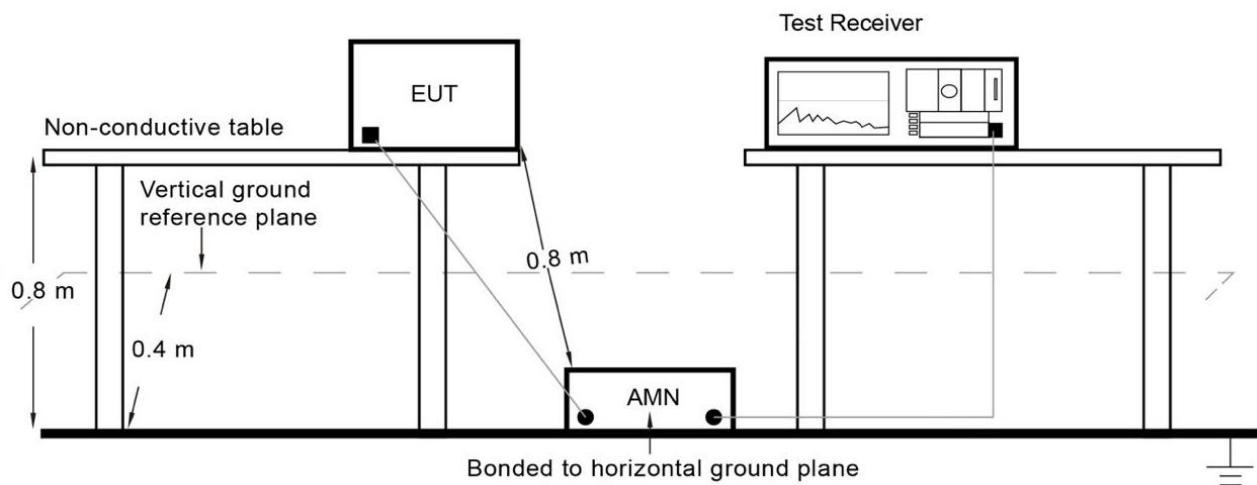
5.6.4. Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

5.6.5. Test Result

Refer to Appendix A.5.


5.7. AC Conducted Emissions Measurement

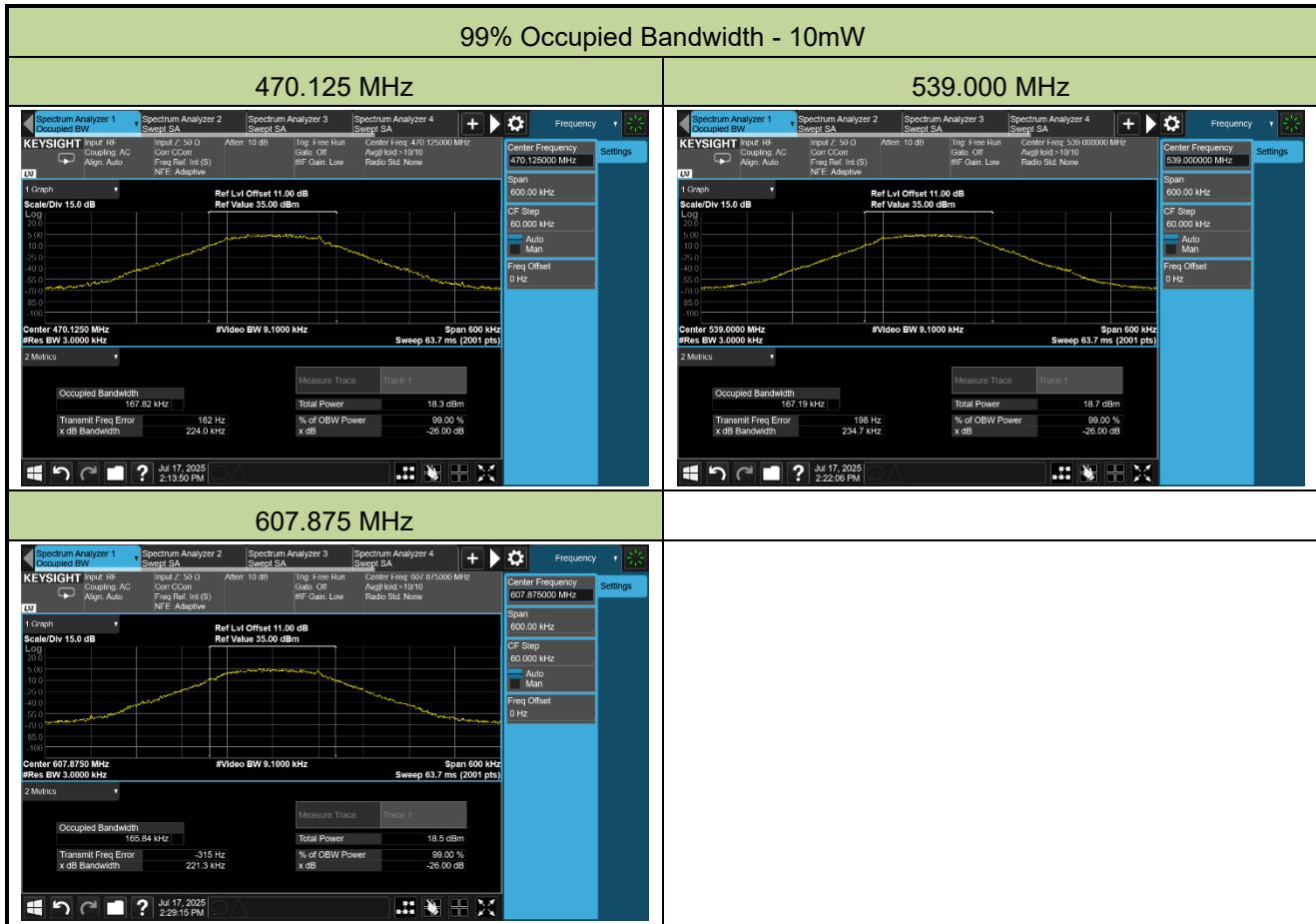
5.7.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits		
Frequency (MHz)	QP (dB μ V)	Average (dB μ V)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.
Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

5.7.2. Test Setup

5.7.3. Test Result


Refer to Appendix A.6.

Appendix A – Test Result

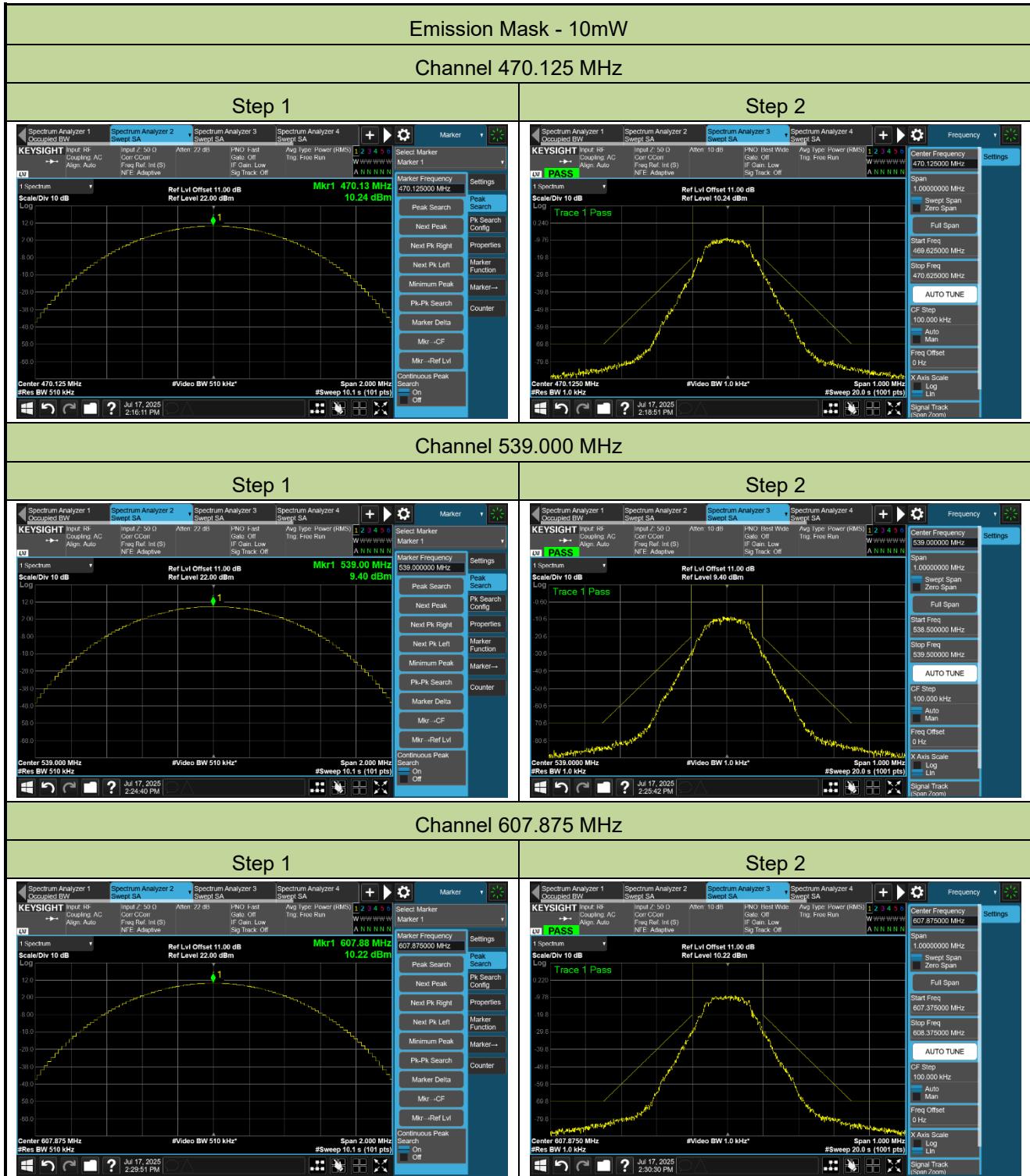
A.1 99% Occupied Bandwidth Test Result

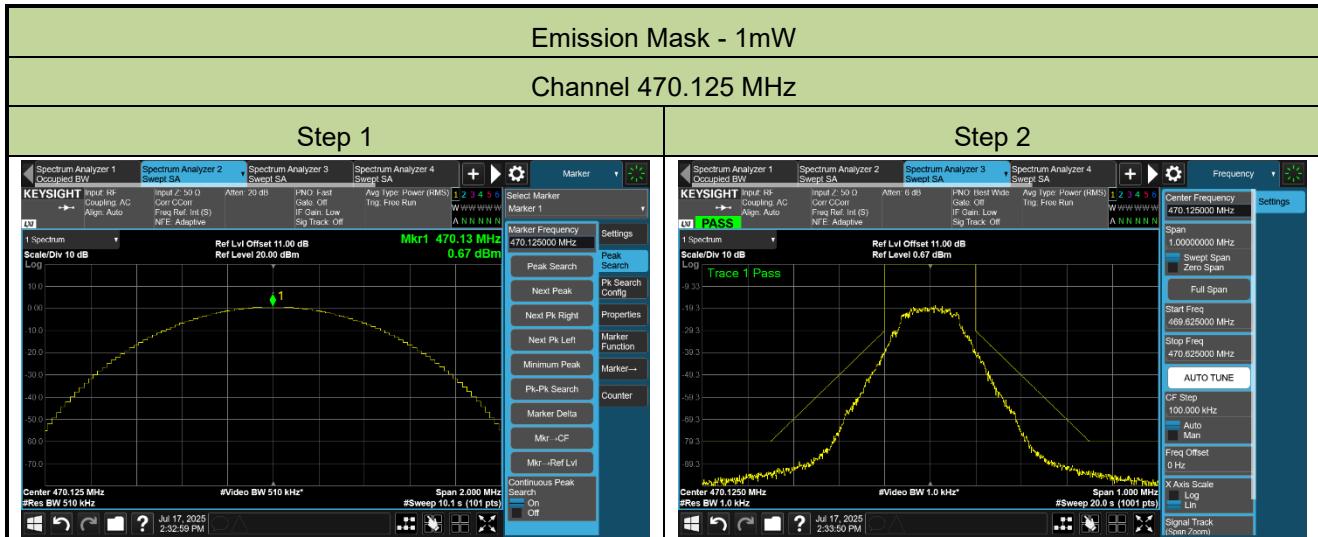
Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-17		

Frequency (MHz)	99% Bandwidth (kHz)	Limit (kHz)	Result
470.125	167.82	< 200	Pass
539.000	167.19	< 200	Pass
607.875	165.84	< 200	Pass

A.2 Frequency Tolerance Test Result

Test Site	WZ-TR3	Test Engineer	Lynn Yang
Test Date	2025-07-22	Test Mode	470.125 MHz


Voltage (%)	Power (DC)	Temp (°C)	Frequency Tolerance (ppm)			
			0 minutes	2 minutes	5 minutes	10 minutes
100	3	- 20	-0.81	-0.82	-0.85	-0.86
		-10	-0.81	-0.81	-0.81	-0.81
		0	-0.51	-0.53	-0.82	-0.83
		+ 10	-0.52	-0.44	-0.46	-0.47
		+ 20	-0.30	-0.36	-0.38	-0.40
		+ 30	-0.15	-0.18	-0.22	-0.27
		+ 40	-0.13	-0.13	-0.14	-0.14
		+ 50	-0.03	-0.03	-0.03	-0.03
115	3.45	+ 20	-0.16	-0.15	-0.14	-0.13
85	2.55	+ 20	-0.16	-0.14	-0.14	-0.25
Limit	±50ppm					
Result	Pass					


Note 1: Frequency Tolerance (%) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} * 10⁶.

Note 2: 0.005% is equivalent to 50ppm.

A.3 Emission Mask Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-17		

A.4 Output Power Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-07		

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Test Result
10mW Power Level					
470.125	10.49	-0.40	10.09	16.99	Pass
539.000	9.73	-0.40	9.33	16.99	Pass
607.875	10.51	-0.40	10.11	16.99	Pass
1mW Power Level					
470.125	1.22	-0.40	0.82	16.99	Pass
539.000	0.42	-0.40	0.02	16.99	Pass
607.875	1.01	-0.40	0.61	16.99	Pass

Note 1: Limit = $10 \times \log(50\text{mW}) = 16.99 \text{ dBm}$.

Note 2: EIRP (dBm) = Conducted Power (dBm) + Antenna Gain (dBi).

A.5 Radiated Spurious Emission Test Result

Test Site	WZ-AC2	Test Engineer	Dick Shen
Test Date	2025-07-08 ~ 2025-07-09		

Test Channel (MHz)	Frequency (MHz)	Reading Level (dBm)	Substitution Factor (dB)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Polarization
470.125	49.79	-103.93	29.10	-74.83	-54.00	-20.83	Peak	Horizontal
	698.82	-102.70	34.08	-68.61	-54.00	-14.61	Peak	Horizontal
	94.41	-104.80	31.82	-72.98	-54.00	-18.98	Peak	Vertical
	663.60	-103.08	35.19	-67.89	-54.00	-13.89	Peak	Vertical
	4231.60	-65.30	13.19	-52.11	-30.00	-22.11	Peak	Horizontal
	4702.00	-61.33	15.09	-46.24	-30.00	-16.24	Peak	Horizontal
	2825.20	-67.61	10.09	-57.52	-30.00	-27.52	Peak	Vertical
	6656.80	-71.57	20.03	-51.54	-30.00	-21.54	Peak	Vertical
539.000	51.63	-104.95	28.51	-76.45	-54.00	-22.45	Peak	Horizontal
	774.86	-103.47	34.52	-68.96	-54.00	-14.96	Peak	Horizontal
	101.97	-103.98	31.50	-72.48	-54.00	-18.48	Peak	Vertical
	703.28	-103.88	36.42	-67.46	-54.00	-13.46	Peak	Vertical
	1508.20	-68.04	8.96	-59.08	-30.00	-29.08	Peak	Horizontal
	4312.00	-58.02	13.79	-44.23	-30.00	-14.23	Peak	Horizontal
	1904.20	-59.31	6.87	-52.44	-30.00	-22.44	Peak	Vertical
	5389.60	-69.23	14.98	-54.24	-30.00	-24.24	Peak	Vertical
607.875	50.27	-105.08	28.96	-76.12	-54.00	-22.12	Peak	Horizontal
	797.85	-103.47	35.16	-68.31	-54.00	-14.31	Peak	Horizontal
	98.29	-105.12	31.92	-73.20	-54.00	-19.20	Peak	Vertical
	719.19	-103.81	36.59	-67.23	-54.00	-13.23	Peak	Vertical
	4862.80	-59.12	14.52	-44.60	-30.00	-14.60	Peak	Horizontal
	6686.80	-67.53	19.39	-48.14	-30.00	-18.14	Peak	Horizontal
	4863.40	-67.86	14.32	-53.54	-30.00	-23.54	Peak	Vertical
	6687.40	-70.63	19.14	-51.49	-30.00	-21.49	Peak	Vertical

Note 1: Measure Level (dBm) = Reading Level (dBm) + Substitution Factor (dB)

Note 2: Substitution Factor (dB) = Cable Loss (dB) + Space Attenuation (dB) - Antenna Gain (dBi) - 2.15 (dB)

Note 3: RMS measurement was not performed when peak measure level was lower than the RMS limit.

A.6 AC Conducted Emissions Test Result

This product does not operate while charging. Therefore, this test item is not applicable.

Appendix B - Test Setup Photograph

Refer to "R25S1006074-UT" file.

Appendix C - EUT Photograph

Refer to "R25S1006074-UE" file.

The End