

RF MEASUREMENT REPORT

FCC ID: DD4SLXD1EG57
Applicant: Shure Incorporated
Product: Digital Wireless Bodypack Transmitter
Regulatory Model SLXD1+
Number (RMN):
Product Number: SLXD1+ G57
Trade Mark:
FCC Classification: Licensed LPAS Device (TLD)
FCC Rule Part(s): Part 74 Subpart H (Section 74.861)
Result: Complies
Received Date: 2025-07-04
Test Date: 2025-07-07 ~ 2025-07-22

Reviewed By:

Jame Yuan

Approved By:

Robin Wu

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
R25S1005076-U203	V01	Initial Report	2025-08-04	Valid

CONTENTS

Description	Page
1. General Information	5
1.1. Applicant	5
1.2. Manufacturer	5
1.3. Testing Facility	5
1.4. Product Information.....	6
1.5. Radio Specification under Test	6
1.6. Working Frequencies	6
2. Test Configuration	7
2.1. Test Mode	7
2.2. Test System Connection Diagram.....	7
2.3. Test Software	7
2.4. Applied Standards.....	7
2.5. Test Environment Condition.....	7
3. Measuring Instrument	8
4. Decision Rules and Measurement Uncertainty	9
4.1. Decision Rules	9
4.2. Measurement Uncertainty.....	9
5. Test Result	10
5.1. Summary.....	10
5.2. RF Output Power Measurement	11
5.2.1. Test Limit.....	11
5.2.2. Test Procedure.....	11
5.2.3. Test Setting	11
5.2.4. Test Setup	11
5.2.5. Test Result	11
5.3. Frequency Tolerance Measurement.....	12
5.3.1. Test Limit.....	12
5.3.2. Test Procedure.....	12
5.3.3. Test Setting	12
5.3.4. Test Setup	13
5.3.5. Test Result	13
5.4. 99% Occupied Bandwidth Measurement.....	14
5.4.1. Test Limit.....	14
5.4.2. Test Procedure.....	14
5.4.3. Test Setting	14

5.4.4. Test Setup	14
5.4.5. Test Result	14
5.5. Modulation Measurement	15
5.5.1. Test Limit	15
5.5.2. Test Procedure	15
5.5.3. Test Setting	15
5.5.4. Test Setup	15
5.5.5. Test Result	15
5.6. Out of Band Emission Measurement	16
5.6.1. Test Limit	16
5.6.2. Test Procedure	16
5.6.3. Test Setting	16
5.6.4. Test Setup	17
5.6.5. Test Result	17
5.7. Emission Mask Measurement	18
5.7.1. Test Limit	18
5.7.2. Test Procedure	20
5.7.3. Test Setting	20
5.7.4. Test Setup	20
5.7.5. Test Result	20
5.8. Radiated Spurious Emissions Measurement	21
5.8.1. Test Limit	21
5.8.2. Test Procedure	22
5.8.3. Test Setting	22
5.8.4. Test Setup	23
5.8.5. Test Result	24
Appendix A – Test Result.....	25
A.1 RF Output Power Test Result	25
A.2 Frequency Tolerance Test Result	26
A.3 99% Occupied Bandwidth Test Result	27
A.4 Out of Band Emission Test Result	28
A.5 Emission Mask Test Result	30
A.6 Radiated Spurious Emissions Test Result	32
Appendix B – Test Setup Photograph	33
Appendix C – EUT Photograph	34

1. General Information

1.1. Applicant

Shure Incorporated

5800 West Touhy Avenue, Niles, IL 60714-4608, USA

1.2. Manufacturer

Shure Incorporated

5800 West Touhy Avenue, Niles, IL 60714-4608, USA

1.3. Testing Facility

<input checked="" type="checkbox"/>	Test Site – MRT Suzhou Laboratory
	Laboratory Location (Suzhou - Wuzhong)
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
	Laboratory Location (Suzhou - SIP)
	4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China
	Laboratory Location (Suzhou - Wujiang)
	Building 1, No.1 Xingdong Road, Wujiang, Suzhou, Jiangsu, People's Republic of China
	Laboratory Accreditations
	A2LA: 3628.01 CNAS: L10551
	FCC: CN1166 ISED: CN0001
	VCCI: <input type="checkbox"/> R-20025 <input type="checkbox"/> G-20034 <input type="checkbox"/> C-20020 <input type="checkbox"/> T-20020
	<input type="checkbox"/> R-20141 <input type="checkbox"/> G-20134 <input type="checkbox"/> C-20103 <input type="checkbox"/> T-20104
<input type="checkbox"/>	Test Site – MRT Shenzhen Laboratory
	Laboratory Location (Shenzhen)
	1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, China
	Laboratory Accreditations
	A2LA: 3628.02 CNAS: L10551
	FCC: CN1284 ISED: CN0105
<input type="checkbox"/>	Test Site – MRT Taiwan Laboratory
	Laboratory Location (Taiwan)
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)
	Laboratory Accreditations
	TAF: 3261
	FCC: 291082, TW3261 ISED: TW3261

1.4. Product Information

Product Name	Digital Wireless Bodypack Transmitter
Regulatory Model Number (RMN)	SLXD1+
Product Number	SLXD1+ G57
EUT Identification No.	20250704Sample#10 (Conducted) 20250704Sample#11 (Radiated)
Bluetooth Specification	BLE Only
Microphone Specification	Wireless Microphone, UHF band, 470.125 MHz ~ 551.850 MHz & 552.150 MHz ~ 607.875 MHz
Antenna Specification	Refer to clause 1.5
Operating Temp.	-18 ~ 50 °C
Power Type	By 2pcs * AA: 3Vdc or Rechargeable Li-ion Battery Pack or SBC203 Charger
Accessory	
Li-ion Battery	Model: SB903 Output: 3.6V = 1200mAh, 4.32Wh
Note: The information of the EUT (Equipment Under Test) was provided by the manufacturer. The accuracy, completeness, and validity of the information are solely the responsibility of the manufacturer.	

1.5. Radio Specification under Test

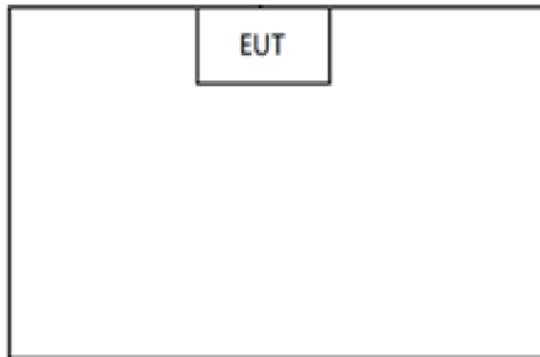
Frequency Range	470.125 ~ 551.850 MHz & 552.150 ~ 607.875 MHz
Declared Power Level	1mW & 10mW
Declared Occupied Bandwidth	200 kHz
Type of Modulation	4-GFSK
Channel Spacing	25 kHz
Antenna Type	Dipole Antenna
Antenna Gain	1.5 dBi

1.6. Working Frequencies

Bottom Channel (MHz)	Middle Channel (MHz)	Top Channel (MHz)
470.125	539.000	607.875

2. Test Configuration

2.1. Test Mode


Mode 1: Transmit at G57 Band (10mW)

Note: The EUT supports two power levels (1mW, 10mW), with 10mW being the highest. Therefore, 10mW was selected as the worst-case mode for all tests. For the other power level, output power and out of band emission were verified.

2.2. Test System Connection Diagram

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate EUT setup for radiated emissions testing.

Connection Diagram – Radiated Emission Testing

2.3. Test Software

The test utility software used during testing was “Tera Term” and the version was 4.103.

2.4. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 74.861
- KDB 206256 D01v03
- ANSI C63.26-2015
- ETSI EN 300 422 - 1 V 2.2.1

2.5. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
Thermohygrometer	testo	608-H1	MRTSUE06402	1 year	2026-04-24	WZ-SR5
Shielding Room	HUAMING	WZ-SR5	MRTSUE06442	N/A	N/A	WZ-SR5
Signal Analyzer	Keysight	N9010B	MRTSUE06558	1 year	2026-05-17	WZ-SR5/WZ-TR3
USB Power Sensor	Keysight	U2021XA	MRTSUE06447	1 year	2026-06-17	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11088	1 year	2026-06-02	WZ-SR5
Cable	UCwave	UCE500	2411001	Note	Note	WZ-SR5
Temperature Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2025-09-02	WZ-TR3
Thermohygrometer	testo	608-H1	MRTSUE11268	1 year	2025-12-10	WZ-TR3
TRILOG Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2026-03-22	WZ-AC2
Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06171	1 year	2025-09-23	WZ-AC2
Loop Antenna	Schwarzbeck	FMZB 1519 B	MRTSUE06937	1 year	2026-01-04	WZ-AC2
Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2026-03-18	WZ-AC2
Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2025-11-03	WZ-AC2
Preamplifier	EMCI	EMC184045SE	MRTSUE06640	1 year	2026-01-09	WZ-AC2
Anechoic Chamber	RIKEN	WZ-AC2	MRTSUE06213	1 year	2026-04-17	WZ-AC2
Thermohygrometer	testo	608-H1	MRTSUE11263	1 year	2025-10-16	WZ-AC2
Signal Analyzer	Keysight	N9010B	MRTSUE06607	1 year	2025-10-13	WZ-AC2

Note: The loss of the RF cable will be measured before testing.

Software	Version	Function
e3	230711	RE & CE
Agilent Power Panel	V R03.09.00	Power
Controller_MF 7802	1.02	RE Antenna & Turntable

4. Decision Rules and Measurement Uncertainty

4.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2.

(Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
<p>The maximum measurement uncertainty is evaluated as:</p> <p>9kHz~150kHz: 3.58dB</p> <p>150kHz~30MHz: 3.20dB</p>
Radiated Emission Measurement
<p>The maximum measurement uncertainty is evaluated as:</p> <p>Coaxial: 9kHz~30MHz: 2.35dB</p> <p>Coplanar: 9kHz~30MHz: 2.37dB</p> <p>Horizontal: 30MHz~200MHz: 3.47dB</p> <p>200MHz~1GHz: 4.17dB</p> <p>1GHz~40GHz: 4.97dB</p> <p>Vertical: 30MHz~200MHz: 4.07dB</p> <p>200MHz~1GHz: 5.28dB</p> <p>1GHz~40GHz: 4.84dB</p>
Spurious Emissions, Conducted
<p>Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$):</p> <p>2.5dB</p>
Output Power
<p>Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$):</p> <p>1.5dB</p>
Occupied Bandwidth
<p>Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$):</p> <p>3.2%</p>

5. Test Result

5.1. Summary

FCC Part Section(s)	Test Description	Test Condition	Test Result
74.861(e)(1)(ii)	RF Output Power	Conducted	Pass
74.861(e)(3)	Modulation		N/A
74.861(e)(4)	Frequency Tolerance		Pass
74.861(e)(5)	99% Occupied Bandwidth		Pass
74.861(e)(6)	Out of Band Emission		Pass
74.861(e)(7)(ii)	Emission Mask		Pass
74.861(e)(7)(iv)	Radiated Spurious Emission	Radiated	Pass

Notes:

- 1) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) "N/A" means that this item is not applicable, and the detail information refer to relevant section.

5.2. RF Output Power Measurement

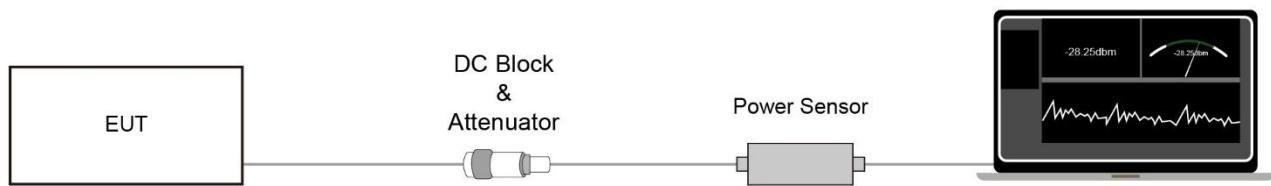
5.2.1. Test Limit

(ii) 470-608 MHz band: 250 mW conducted power.

(iii) 653-657 MHz band: 20 mW EIRP

5.2.2. Test Procedure

ANSI C63.26-2015 - Section 5.2.4.2


5.2.3. Test Setting

The output of the EUT was connected to an RF average power meter through fixed attenuation.

The EUT was set to transmit on the low, middle, and high frequencies in each power level.

Measure the average power of the transmitter.

5.2.4. Test Setup

5.2.5. Test Result

Refer to Appendix A.1.

5.3. Frequency Tolerance Measurement

5.3.1. Test Limit

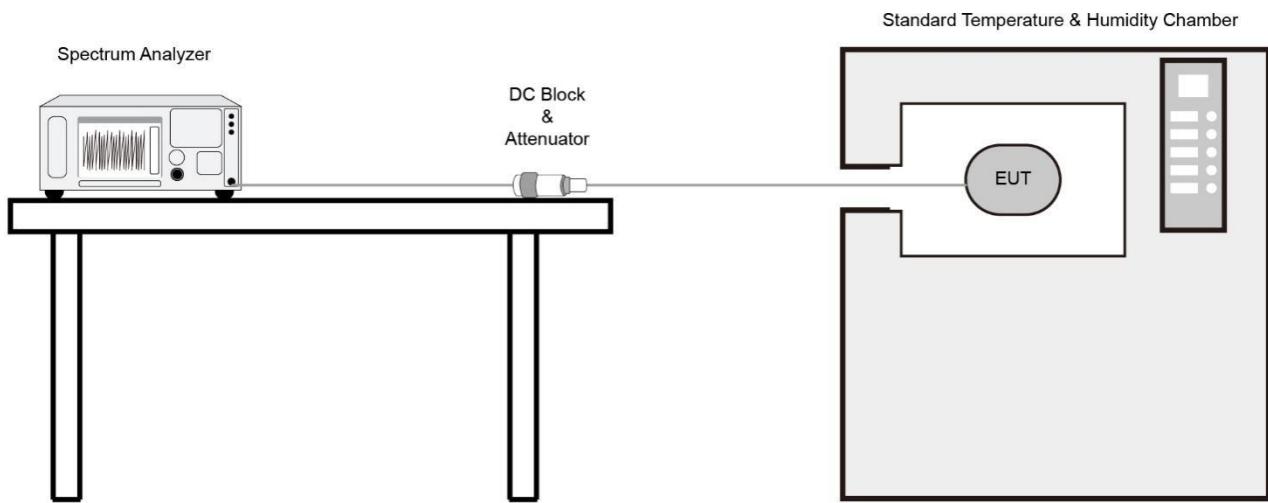
The frequency tolerance of the transmitter shall be 0.005 percent.

5.3.2. Test Procedure

ANSI C63.26 - Section 5.6.3

5.3.3. Test Setting

Frequency Stability Under Temperature Variations:


The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint (If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the $+15\%$ is applied to the uppermost voltage), record the maximum frequency change.

5.3.4. Test Setup

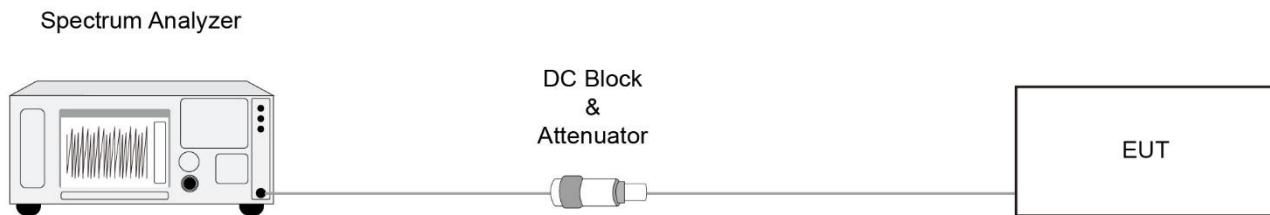
5.3.5. Test Result

Refer to Appendix A.2.

5.4. 99% Occupied Bandwidth Measurement

5.4.1. Test Limit

The operating bandwidth shall not exceed 200 kilohertz, except that a wireless multichannel audio system must have an operating bandwidth not exceeding 6 megahertz in the TV bands or 4 megahertz in the 653–657 MHz band.


5.4.2. Test Procedure

ANSI C63.26-2015 - Section 5.4.4

5.4.3. Test Setting

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 - 5% of the expected OBW
3. VBW \geq 3 x RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize
8. Reported the measured 99% occupied bandwidth

5.4.4. Test Setup

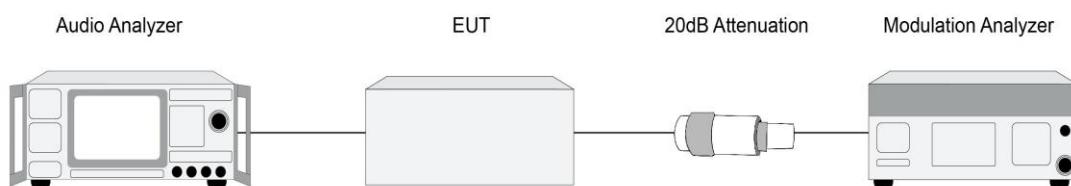
5.4.5. Test Result

Refer to Appendix A.3.

5.5. Modulation Measurement

5.5.1. Test Limit

A maximum deviation of ± 75 kHz is permitted when frequency modulation is employed.


5.5.2. Test Procedure

ANSI C63.26-2013 - Section 5.3.2

5.5.3. Test Setting

1. Connect the equipment following the below figure
2. Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation. This is the 0 dB reference level.
3. Increase the level from the audio generator by 20 dB in 5 dB increments recording the deviation as measured from the test receiver in each step. Verify that the audio level used to make the OBW measurement is included in the sweep.
4. Repeat for step 3) at 300 Hz, 2500 Hz and 3000 Hz at a minimum using the 0 dB reference level obtained in step 2).
5. Set the test receiver to measure peak negative deviation and repeat step 2) through step 4).
6. The values recorded in step 4) and step 5) are the modulation limiting

5.5.4. Test Setup

5.5.5. Test Result

This applies only to FM modulation.

5.6. Out of Band Emission Measurement

5.6.1. Test Limit

The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB;
- (ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB;
- (iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least $43 + 10\log_{10}$ (mean output power in watts) dB.

5.6.2. Test Procedure

ANSI C63.26 - Section 5.7

5.6.3. Test Setting

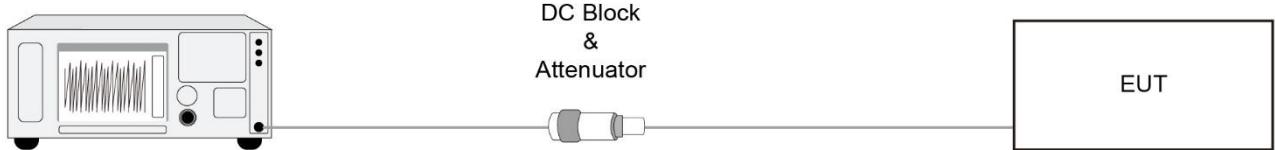
- a) The EUT was connected to a spectrum analyzer.
- b) The EUT was modulated with typical digital modulation.
- c) Set span to $2 \times$ to $3 \times$ the OBW

Set RBW \geq OBW;

Set VBW $\geq 3 \times$ RBW;

sweep time set to Auto,

Detector = power averaging (rms)


Use the peak marker function to determine the maximum amplitude level

- d) The RMS output power was recorded and used to set the reference level on the spectrum analyzer.
- e) The spectrum analyzer span was then set to $5 \times$ the OBW;

RBW set to 1% of the OBW, VBW set to $3 \times$ RBW, sweep time to Auto.

5.6.4. Test Setup

Spectrum Analyzer

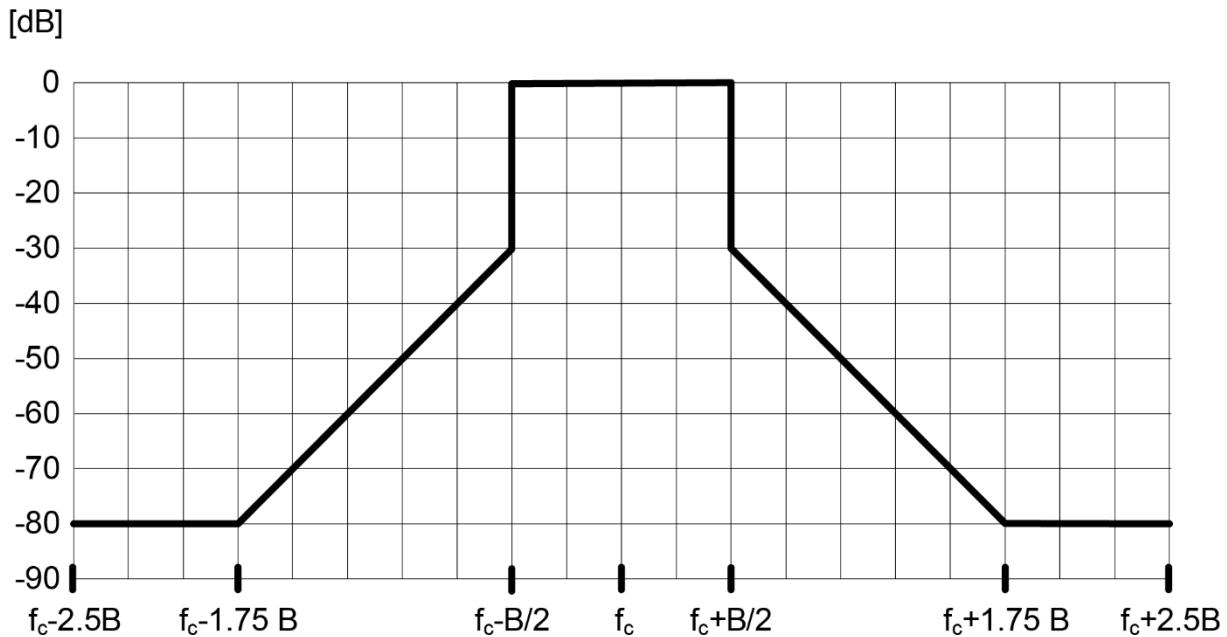
5.6.5. Test Result

Refer to Appendix A.4.

5.7. Emission Mask Measurement

5.7.1. Test Limit

(i) Analog systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the Out of Band Emission in Figure 1 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 74.35).


(ii) Digital systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the Out of Band Emission in Figure 2 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 74.35).

(iii) Wireless Multichannel Audio Systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the Out of Band Emission in Figure 3 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11), (incorporated by reference, see § 74.35).

The mean Power Density, measured with 1 kHz measurement bandwidth and RMS detector, of the transmitter unwanted emissions shall not exceed the limits of the masks provided in figure 1 for equipment employing analogue modulation and figure 2 for equipment employing digital modulation, but excluding WMAS. B is the Declared Channel Bandwidth

Figure 1: Transmit spectral power mask for equipment employing analogue modulation, RBW = 1 kHz

Figure 2: Transmit spectral power mask for equipment employing digital modulation, except WMAS, RBW = 1 kHz

The limits in figure 3 are applicable for WMAS, where B is the Declared Channel Bandwidth.

The mean Power Density, measured with 100 kHz measurement bandwidth and PEAK detector, of the transmitter unwanted emissions shall not exceed the limits of the mask provided in figure 3.

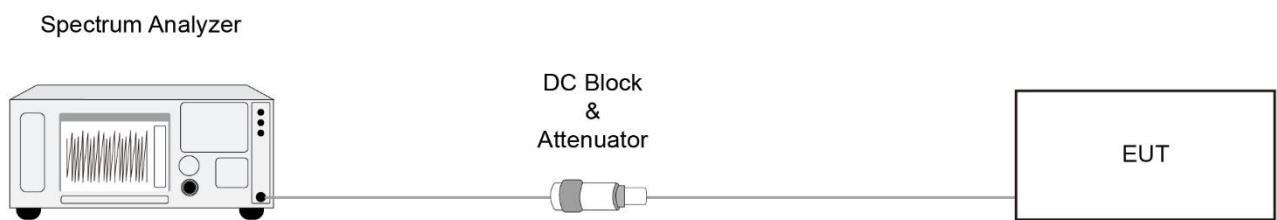
Figure 3: Transmit spectral power mask for WMAS, RBW = 100 kHz

The limits in figure 3 are provided with RBW = 100 kHz. The relevant measurements can also be performed with other RBW for certain ranges of B, accounting that the relevant limit given under RBW = 100 kHz needs to be converted appropriately by adding $c = 10 \times \log_{10} (\text{RBW}/100 \text{ kHz})$ for correction.

Correction Factor for different B and applicable RBW

B	RBW, VBW	c = correction factor
B < 2 MHz	10 kHz	-10dB
2 MHz ≤ B < 5 MHz	25 kHz	-7dB
5 Hz ≤ B ≤ 20 MHz	100 kHz	0dB

5.7.2. Test Procedure


EN 300 422-1 V2.2.1 clause 5.4.3.2.

5.7.3. Test Setting

The EUT was powered up and the transmit frequency & power output of the EUT were selected.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.

5.7.4. Test Setup

5.7.5. Test Result

Refer to Appendix A.5.

5.8. Radiated Spurious Emissions Measurement

5.8.1. Test Limit

Spurious emission limits. Emissions outside of the Out of Band Emissions listed in paragraphs (e)(7)(i) through (e)(7)(iii) shall comply with the limits specified in section 4.2.4.1.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 74.35).

The level of transmitter unwanted emissions in the spurious domain shall not exceed the limits given in table Transmitter unwanted emission limits.

Frequency Range	Maximum power	RBW
9kHz – 150kHz	-36dBm	1kHz
150kHz – 30MHz	-36dBm	10kHz
30MHz – 1GHz	-36dBm	$F_c + 2.5B \leq f \leq F_c + 4B$: 1kHz $F_c + 4B < f \leq F_c + 10B$: 10kHz $f > F_c + 10B$: 100kHz $f < F_c - 10B$: 100kHz $F_c - 10B \leq f < F_c - 4B$: 10kHz $F_c - 4B \leq f \leq F_c - 2.5B$: 1kHz
Except:		
47MHz to 74MHz 87.5MHz to 118MHz	-54dBm	100kHz
174MHz to 230MHz 470MHz to 862MHz	-54dBm	$F_c + 2.5B \leq f \leq F_c + 4B$: 1kHz $F_c + 4B < f \leq F_c + 10B$: 10kHz $f > F_c + 10B$: 100kHz $f < F_c - 10B$: 100kHz $F_c - 10B \leq f < F_c - 4B$: 10kHz $F_c - 4B \leq f \leq F_c - 2.5B$: 1kHz
1GHz < f ≤ F_{upper}	-30dBm	$F_c + 2.5B \leq f \leq F_c + 10B$: 30kHz $F_c + 10B < f \leq F_c + 12B$: 300kHz $f > F_c + 12B$: 1MHz $f < F_c - 12B$: 1MHz $F_c - 12B \leq f < F_c - 10B$: 300kHz $F_c - 10B \leq f \leq F_c - 2.5B$: 30kHz
With B being the Declared Channel Bandwidth. F_{upper} is defined in table 5.		

Table 5: Frequency range for measurement of unwanted emissions

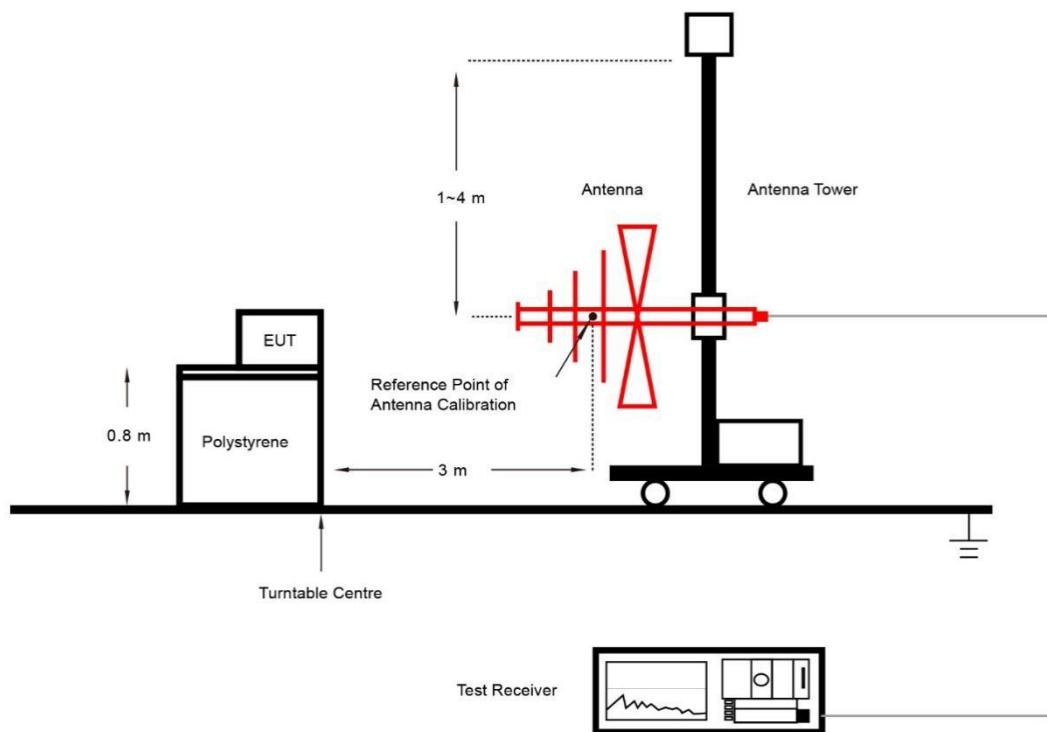
Applicable fundamental frequency range	Frequency range for measurements	
	Lower frequency	Upper frequency
9 kHz - 100 MHz	9 kHz	1 GHz
100 MHz - 300 MHz	9 kHz	10th harmonic of the operating frequency
300 MHz - 600 MHz	30 MHz	3 GHz
600 MHz - 3 GHz	30 MHz	5th harmonic of the operating frequency

5.8.2. Test Procedure

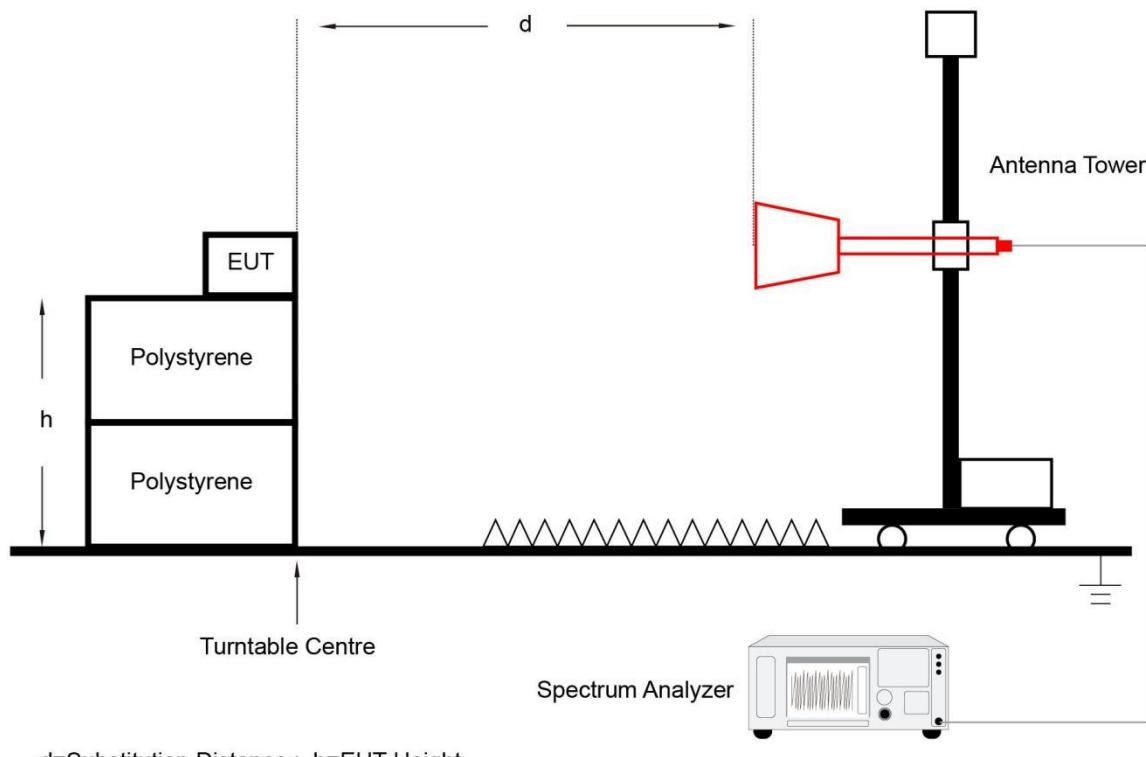
ETSI EN 300 422-1 V2.2.1 clause 5.4.4

5.8.3. Test Setting

Emissions shall be investigated up to the 10th harmonic of the fundamental.


Compliance with the emission limits shall be demonstrated using an RMS Average detector.

All significant broadband and narrowband signals found in the preliminary sweeps were measured using a peak detector at a test distance of 3 meters.


At each frequency at which a component is detected, the sample shall be rotated to obtain maximum response and the effective radiated power of that component determined by a substitution measurement.

5.8.4. Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

d =Substitution Distance ; h =EUT Height

5.8.5. Test Result

Refer to Appendix A.6.

Appendix A – Test Result

A.1 RF Output Power Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-07		

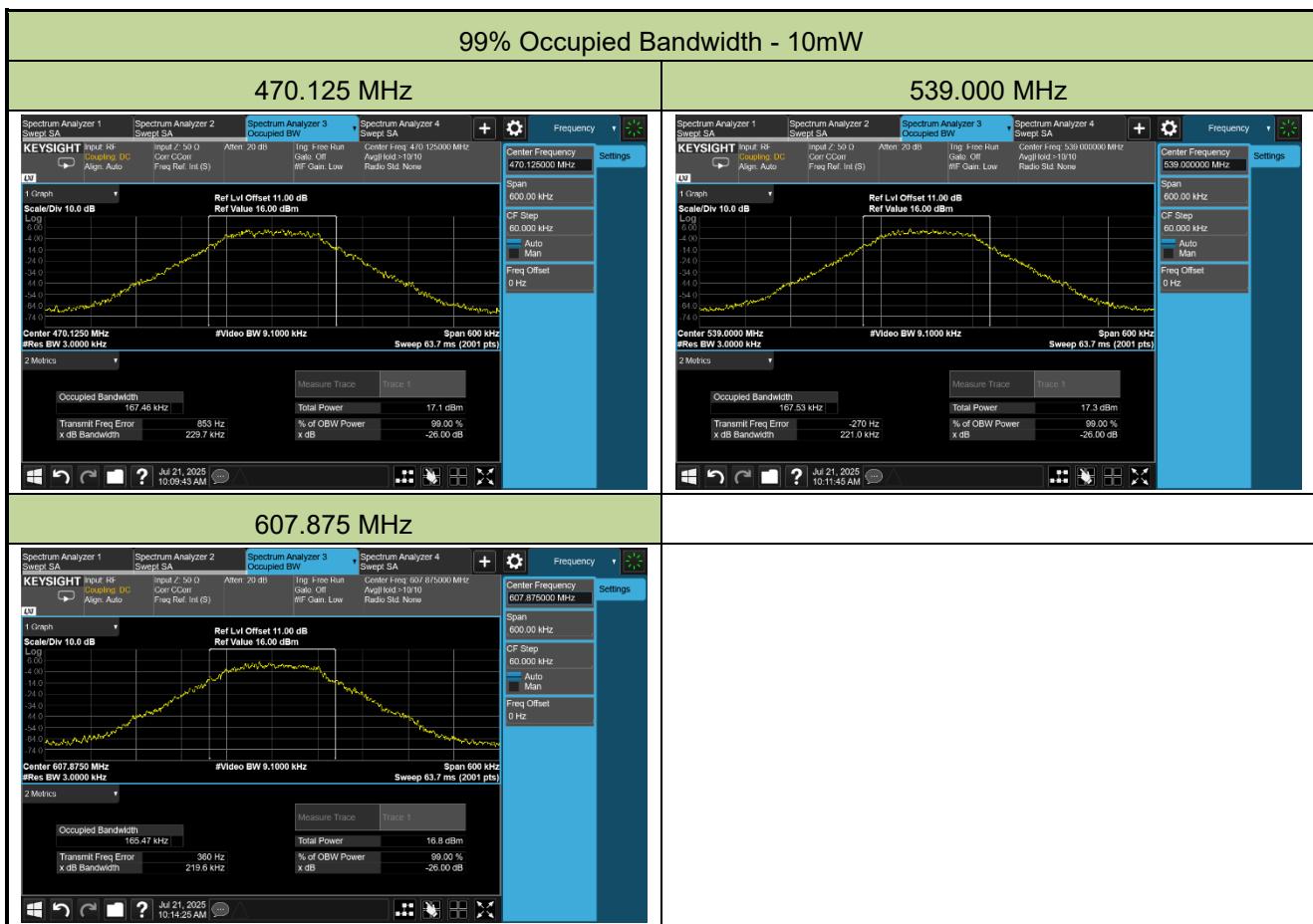
Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Test Result
10mW Power Level			
470.125	10.22	≤ 23.98	Pass
493.000	10.28	≤ 23.98	Pass
516.000	10.05	≤ 23.98	Pass
539.000	9.88	≤ 23.98	Pass
562.000	9.42	≤ 23.98	Pass
585.000	9.68	≤ 23.98	Pass
607.875	9.90	≤ 23.98	Pass
1mW Power Level			
470.125	0.86	≤ 23.98	Pass
539.000	0.51	≤ 23.98	Pass
607.875	0.37	≤ 23.98	Pass

Note: Limit = $10 \times \log (250\text{mW}) = 23.98 \text{ dBm}$.

A.2 Frequency Tolerance Test Result

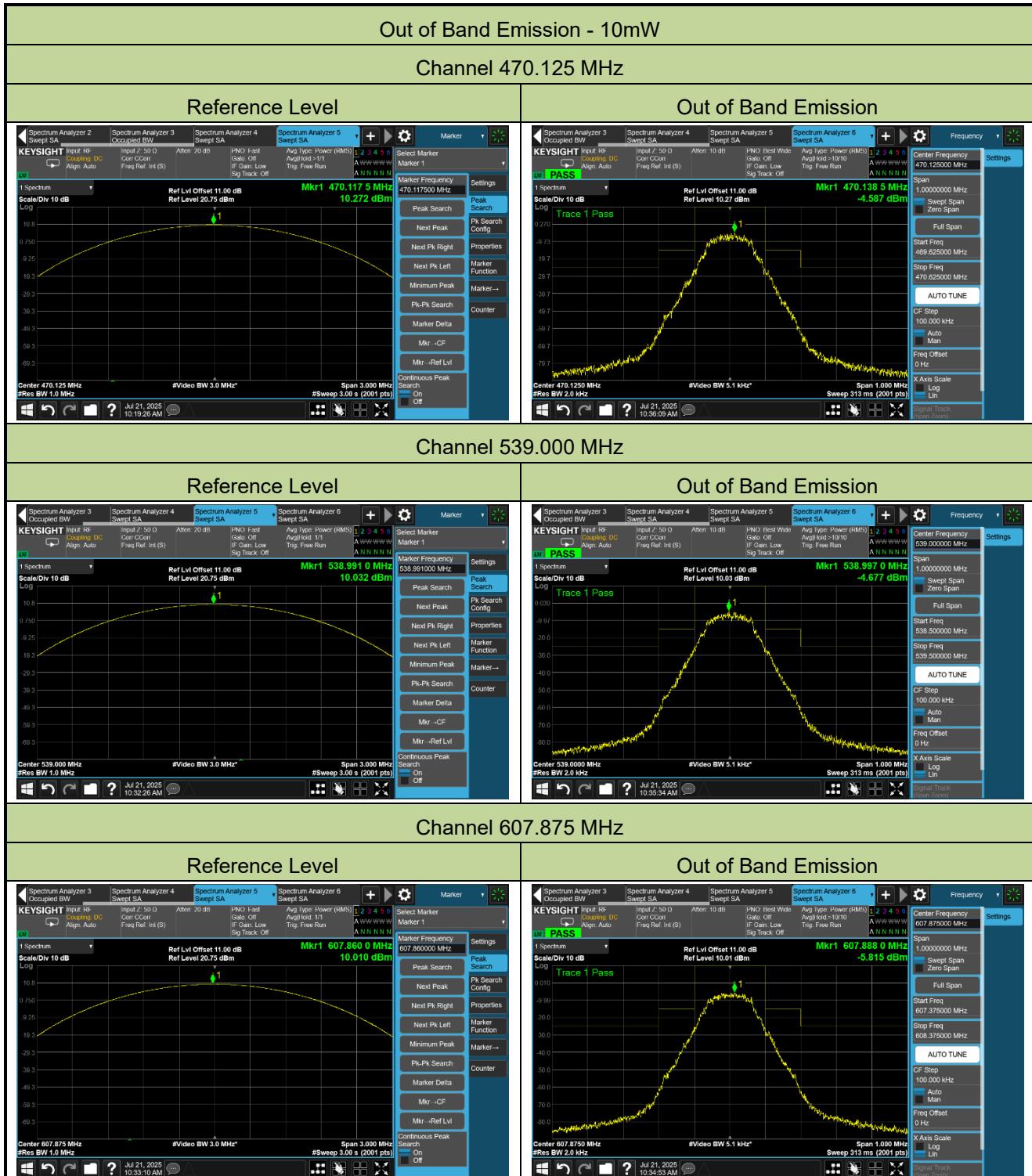
Test Site	WZ-TR3	Test Engineer	Lynn Yang
Test Date	2025-07-22	Test Mode	470.125 MHz

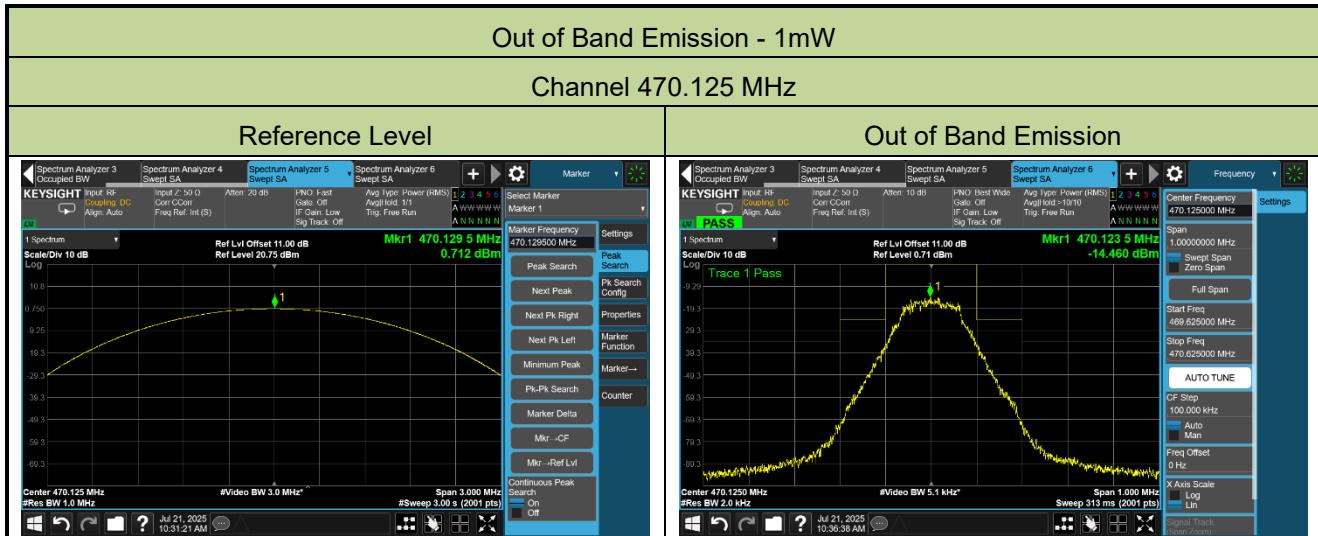
Voltage (%)	Power (DC)	Temp (°C)	Frequency Tolerance (ppm)			
			0 minutes	2 minutes	5 minutes	10 minutes
100	3.6	- 20	-0.83	-0.85	-0.88	-0.91
		-10	-0.58	-0.77	-0.78	-0.81
		0	-0.39	-0.40	-0.41	-0.46
		+ 10	-0.35	-0.36	-0.36	-0.37
		+ 20	-0.31	-0.31	-0.31	-0.31
		+ 30	-0.31	-0.31	-0.31	-0.31
		+ 40	-0.23	-0.22	-0.21	-0.21
		+ 50	-0.20	-0.19	-0.19	-0.19
115	4.14	+ 20	-0.16	-0.15	-0.16	-0.16
85	3.06	+ 20	-0.16	-0.16	-0.16	-0.15
Limit	±50ppm					
Result	Pass					


Note 1: Frequency Tolerance (%) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} * 10⁶.

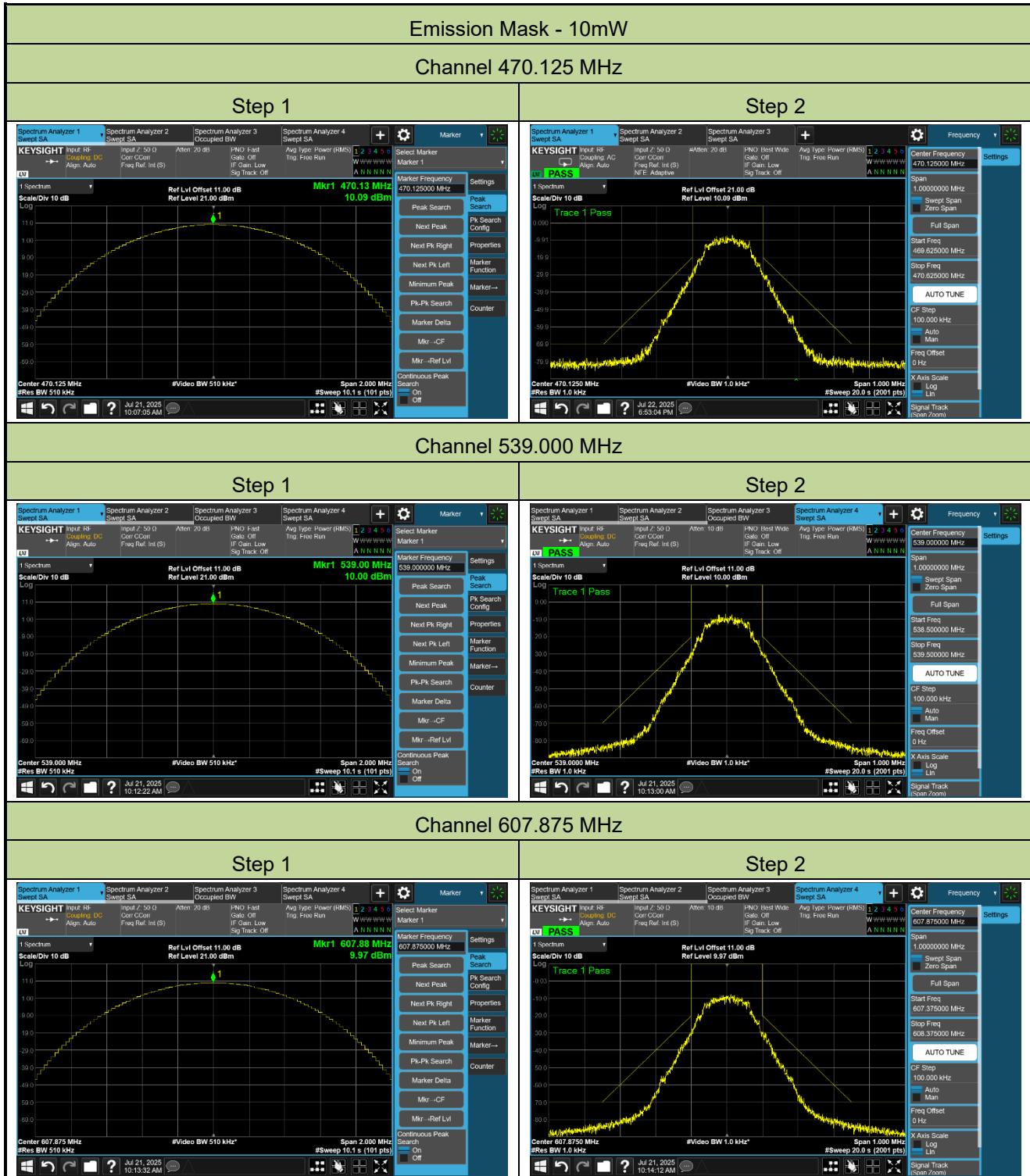
Note 2: 0.005% is equivalent to 50ppm.

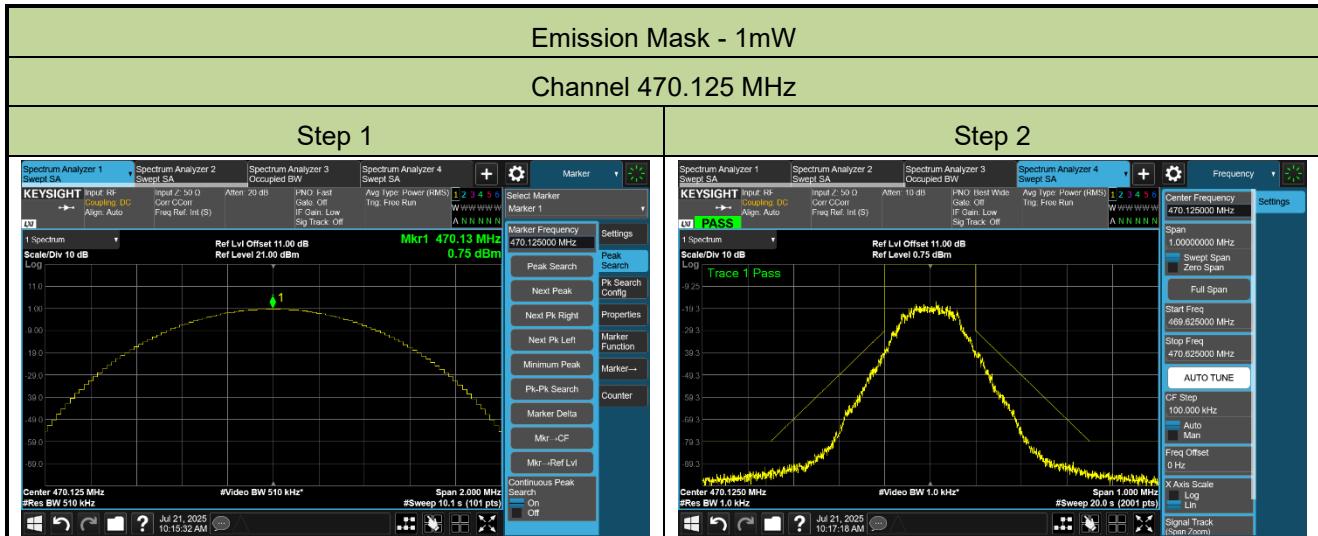
A.3 99% Occupied Bandwidth Test Result


Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-21		


Frequency (MHz)	99% Bandwidth (kHz)	Limit (kHz)	Result
470.125	167.46	< 200	Pass
539.000	167.53	< 200	Pass
607.875	165.47	< 200	Pass

A.4 Out of Band Emission Test Result


Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-21		



A.5 Emission Mask Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-07-21 ~ 2025-07-22		

A.6 Radiated Spurious Emissions Test Result

Test Site	WZ-AC2	Test Engineer	Dick Shen
Test Date	2025-07-16		

Test Channel (MHz)	Frequency (MHz)	Reading Level (dBm)	Substitution Factor (dB)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Polarization
470.125	52.41	-105.34	28.24	-77.10	-54.00	-23.10	Peak	Horizontal
	679.03	-103.49	34.06	-69.43	-54.00	-15.43	Peak	Horizontal
	55.03	-96.81	30.89	-65.92	-54.00	-11.92	Peak	Vertical
	796.40	-103.02	36.74	-66.28	-54.00	-12.28	Peak	Vertical
	1920.40	-64.47	7.78	-56.69	-30.00	-26.69	Peak	Horizontal
	6533.20	-72.24	19.25	-52.99	-30.00	-22.99	Peak	Horizontal
	2127.40	-69.81	8.57	-61.24	-30.00	-31.24	Peak	Vertical
	5760.40	-71.49	15.84	-55.65	-30.00	-25.65	Peak	Vertical
539.000	50.76	-104.39	28.80	-75.59	-54.00	-21.59	Peak	Horizontal
	822.59	-103.53	35.51	-68.02	-54.00	-14.02	Peak	Horizontal
	55.03	-99.53	30.89	-68.64	-54.00	-14.64	Peak	Vertical
	745.76	-102.04	35.95	-66.09	-54.00	-12.09	Peak	Vertical
	1078.00	-50.96	6.48	-44.49	-30.00	-14.49	Peak	Horizontal
	1920.40	-64.02	7.78	-56.24	-30.00	-26.24	Peak	Horizontal
	1078.60	-57.96	6.61	-51.35	-30.00	-21.35	Peak	Vertical
	1920.40	-65.21	7.20	-58.01	-30.00	-28.01	Peak	Vertical
607.875	49.11	-102.57	29.28	-73.29	-54.00	-19.29	Peak	Horizontal
	821.42	-102.29	35.47	-66.82	-54.00	-12.82	Peak	Horizontal
	99.36	-103.64	31.87	-71.77	-54.00	-17.77	Peak	Vertical
	722.00	-103.73	36.61	-67.13	-54.00	-13.13	Peak	Vertical
	1920.40	-64.47	7.78	-56.69	-30.00	-26.69	Peak	Horizontal
	6575.80	-72.57	19.74	-52.84	-30.00	-22.84	Peak	Horizontal
	1920.40	-65.92	7.20	-58.72	-30.00	-28.72	Peak	Vertical
	6809.80	-72.90	19.55	-53.35	-30.00	-23.35	Peak	Vertical

Note 1: Measure Level (dBm) = Reading Level (dBm) + Substitution Factor (dB)

Note 2: Substitution Factor (dB) = Cable Loss (dB) + Space Attenuation (dB) - Antenna Gain (dBi) - 2.15 (dB)

Note 3: RMS measurement was not performed when peak measure level was lower than the RMS limit.

Appendix B – Test Setup Photograph

Refer to “R25S1005076-UT” file.

Appendix C – EUT Photograph

Refer to “R25S1005076-UE” file.

The End