

RF MEASUREMENT REPORT

FCC ID: DD4ADTDK54
Applicant: Shure Incorporated
Product: Wireless Dual Transmitter
Model No.: ADTD K54, ADTD DC K54

Trade Mark:

FCC Classification: Part 15 Wireless Microphone (DWM)

FCC Rule Part(s): Part 15 Subpart C (Section 15.236)

Application Type: Class II Permissive Change

Result: Complies

Received Date: 2025-05-16

Test Date: 2025-06-06 ~ 2025-06-19

Reviewed By:

Jame Yuan

Approved By:

Robin Wu

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
R25S1019045-U204	V01	Initial Report	2025-06-23	Valid

Note: This product has obtained FCC approval (FCC ID: DD4ADTDK54), original RF report no. is 2406RSU021-U15. Now the product has been modified via software, detail as follows. Therefore, we performed some testing to address these changes.

- Change the frequency range for partial original test mode (Mode 1 and 2).

CONTENTS

Description	Page
1. General Information	5
1.1. Applicant	5
1.2. Manufacturer	5
1.3. Testing Facility	5
1.4. Product Information.....	6
1.5. Radio Specification under Test	6
1.6. Working Frequencies	7
1.7. Antenna Details.....	7
2. Test Configuration	8
2.1. Test Mode	8
2.2. Test Software	8
2.3. Applied Standards.....	8
2.4. Test Environment Condition.....	8
3. Measuring Instrument	9
4. Decision Rules and Measurement Uncertainty	10
4.1. Decision Rules	10
4.2. Measurement Uncertainty.....	10
5. Test Result	11
5.1. Summary.....	11
5.2. 99% Occupied Bandwidth Measurement.....	12
5.2.1. Test Limit.....	12
5.2.2. Test Procedure.....	12
5.2.3. Test Setting	12
5.2.4. Test Setup	12
5.2.5. Test Result	12
5.3. Emission Mask Measurement.....	13
5.3.1. Test Limit.....	13
5.3.2. Test Procedure.....	15
5.3.3. Test Setting	15
5.3.4. Test Setup	15
5.3.5. Test Result	15
5.4. Output Power Measurement.....	16
5.4.1. Test Limit.....	16
5.4.2. Test Procedure.....	16

5.4.3. Test Setting	16
5.4.4. Test Setup	16
5.4.5. Test Result	16
5.5. Radiated Spurious Emission Measurement.....	17
5.5.1. Test Limit.....	17
5.5.2. Test Procedure.....	18
5.5.3. Test Setting	18
5.5.4. Test Setup	19
5.5.5. Test Result	20
Appendix A - Test Result.....	21
A.1 99% Occupied Bandwidth Test Result.....	21
A.2 Emission Mask Test Result.....	22
A.3 Output Power Test Result	24
A.4 Radiated Spurious Emission Test Result.....	25
Appendix B - Test Setup Photograph.....	29
Appendix C - EUT Photograph	30

1. General Information

1.1. Applicant

Shure Incorporated

5800 West Touhy Avenue, Niles, IL 60714-4608, USA

1.2. Manufacturer

Shure Incorporated

5800 West Touhy Avenue, Niles, IL 60714-4608, USA

1.3. Testing Facility

<input checked="" type="checkbox"/>	Test Site – MRT Suzhou Laboratory
	Laboratory Location (Suzhou - Wuzhong)
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
	Laboratory Location (Suzhou - SIP)
4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China	
Laboratory Location (Suzhou - Wujiang)	
Building 1, No.1 Xingdong Road, Wujiang, Suzhou, Jiangsu, People's Republic of China	
Laboratory Accreditations	
A2LA: 3628.01 CNAS: L10551	
FCC: CN1166 ISED: CN0001	
VCCI: <input type="checkbox"/> R-20025 <input type="checkbox"/> G-20034 <input type="checkbox"/> C-20020 <input type="checkbox"/> T-20020	
<input type="checkbox"/> R-20141 <input type="checkbox"/> G-20134 <input type="checkbox"/> C-20103 <input type="checkbox"/> T-20104	
<input type="checkbox"/>	Test Site – MRT Shenzhen Laboratory
	Laboratory Location (Shenzhen)
	1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, China
	Laboratory Accreditations
A2LA: 3628.02 CNAS: L10551	
FCC: CN1284 ISED: CN0105	
<input type="checkbox"/>	Test Site – MRT Taiwan Laboratory
	Laboratory Location (Taiwan)
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)
	Laboratory Accreditations
TAF: 3261	
FCC: 291082, TW3261 ISED: TW3261	

1.4. Product Information

Product Name	Wireless Dual Transmitter
Model No.	ADTD K54, ADTD DC K54
Serial No.	2DE31787870
Radio Specification	UHF Microphone Transmitter
Antenna Information	Refer to section 1.7
Operating Temperature	-18 ~ 50 °C
Network Interface	10/100/1000 Mbps, Dante Digital Audio
Power Type	AC Power Input (100~240V AC) & DC Power Input (12~48V) AC Power Output (100~240V AC)
Accessory	
8 Port Antenna Combiner	Model: AD8C, AD8C DC AC Ver.: 100-240V~, 50/60Hz, 0.76A max (5.76A max outlet loaded), DC Ver.: 12-48VDC, 4A max
<p>Note 1: The information of the EUT (Equipment Under Test) was provided by the manufacturer. The accuracy, completeness, and validity of the information are solely the responsibility of the manufacturer.</p> <p>Note 2: ADTD K54 and ADTD DC K54 are completely same except power supply difference, ADTD K54 supports AC power supply, while ADTD DC K54 supports both AC and DC power supply.</p> <p>Note 3: AD8C and AD8C DC are completely same except power supply difference, AD8C supports AC power supply, while AD8C DC supports both AC and DC power supply.</p>	

1.5. Radio Specification under Test

Transmission Mode	2-channel Wideband (WMAS)
Frequency Range	606 ~ 608 MHz & 657 ~ 663 MHz
Declared Power Level	Low & Mid & High
Type of Modulation	2-channel Wideband: OFDM
Declared Occupied Bandwidth	2-channel Wideband (WMAS): 440 kHz
Channel Spacing	25 kHz
RF Connector Type	BNC

1.6. Working Frequencies

Bottom Channel (MHz)	Middle Channel (MHz)	Top Channel (MHz)
2-channel wideband		
606 ~ 608 MHz Frequency Band		
606.000	N/A	607.800
657 ~ 663 MHz Frequency Band		
657.000	N/A	662.800

1.7. Antenna Details

Antenna Type	Frequency Band (MHz)	Manufacturer	Peak Gain (dBi)
Dipole	606 ~ 663	Shure	0.30

2. Test Configuration

2.1. Test Mode

Mode 1: Transmit at K54 Band by 2-Channel wideband (Power Level = 40 & 20mW)

Mode 2: Transmit at K54 Band by 2-Channel wideband, spatial diversity (Power Level = 20 & 8mW)

Note: Modes 1 and 2 have been updated based on Modes 6 and 7, respectively, from the original report (Report No.: 2406RSU021-U15), with modifications to naming, frequency range, and power level. Therefore, the power has been verified, and other items refer to the original report.

2.2. Test Software

Power level and transmit frequency can be selected using the front panel controls.

2.3. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.236
- KDB 206256 D01v03
- ANSI C63.10-2013
- ETSI EN 300 422 - 1 V 2.2.1

2.4. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
Thermohygrometer	testo	608-H1	MRTSUE06402	1 year	2026-04-24	WZ-SR5
Shielding Room	HUAMING	WZ-SR5	MRTSUE06442	N/A	N/A	WZ-SR5
Signal Analyzer	Keysight	N9010B	MRTSUE06457	1 year	2026-04-26	WZ-SR5
Signal Analyzer	Keysight	N9010B	MRTSUE06558	1 year	2026-05-17	WZ-SR5
USB Power Sensor	Keysight	U2021XA	MRTSUE06446	1 year	2026-04-26	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11075	1 year	2025-06-03	WZ-SR5
				1 year	2026-06-02	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11076	1 year	2025-06-03	WZ-SR5
				1 year	2026-06-02	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11077	1 year	2025-06-03	WZ-SR5
				1 year	2026-06-02	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11078	1 year	2025-06-03	WZ-SR5
				1 year	2026-06-02	WZ-SR5
Cable	UCwave	UCE500	24060015	Note	Note	WZ-SR5
TRILOG Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2026-03-22	WZ-AC2
EMI Test Receiver	Agilent	N9038A	MRTSUE06125	1 year	2026-04-26	WZ-AC2
Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06171	1 year	2025-09-23	WZ-AC2
Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2026-03-18	WZ-AC2
Anechoic Chamber	RIKEN	WZ-AC2	MRTSUE06213	1 year	2026-04-17	WZ-AC2
Thermohygrometer	testo	608-H1	MRTSUE11263	1 year	2025-10-16	WZ-AC2

Note: The loss of the RF cable will be measured before testing.

Software	Version	Function
e3	230711	RE & CE
Controller_MF 7802	1.02	RE Antenna & Turntable
BenchVue Power Meter	2018.1	Power

4. Decision Rules and Measurement Uncertainty

4.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2.

(Measurement uncertainty is not taken into account when stating conformity with a specified requirement.

4.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

Radiated Emission Measurement
<p>The maximum measurement uncertainty is evaluated as:</p> <p>Coaxial: 9kHz~30MHz: 2.35dB</p> <p>Coplanar: 9kHz~30MHz: 2.37dB</p> <p>Horizontal: 30MHz~200MHz: 3.47dB 200MHz~1GHz: 4.17dB 1GHz~40GHz: 4.97dB</p> <p>Vertical: 30MHz~200MHz: 4.07dB 200MHz~1GHz: 5.28dB 1GHz~40GHz: 4.84dB</p>
Spurious Emissions, Conducted
<p>Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$):</p> <p>2.5dB</p>
Output Power
<p>Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$):</p> <p>1.5dB</p>
Occupied Bandwidth
<p>Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$):</p> <p>3.2%</p>

5. Test Result

5.1. Summary

FCC Part Section(s)	Test Description	Test Condition	Test Result
15.236(f) (1&2)	Occupied Bandwidth	Conducted	Pass
15.236(g) (1&2&3)	Emission Mask		Pass
15.236(d)(1)	RF Output Power		Pass
15.236(g)(4)	Radiated Spurious Emission	Radiated	Pass

Note: The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.

The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

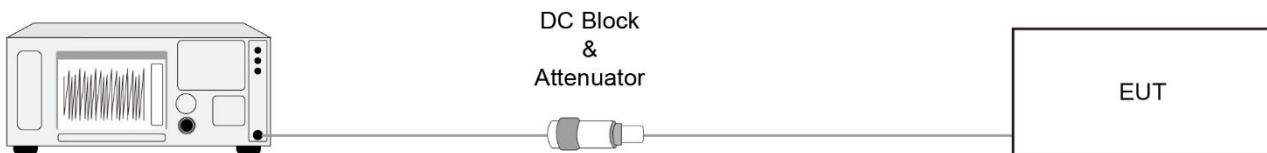
5.2. 99% Occupied Bandwidth Measurement

5.2.1. Test Limit

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

A wireless multichannel audio system may have an operating bandwidth not exceeding 6 megahertz and must have a mode of operation in which it is capable of operating with at least three audio channels per megahertz. For wireless multichannel audio systems operating in the TV bands (channels 2-36), the 6 megahertz (or less) channel must fall entirely within a single TV channel.

5.2.2. Test Procedure


ANSI C63.10-2013 - Section 6.9.3

5.2.3. Test Setting

1. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
2. Set RBW \geq 1% to 5% of the OBW
3. VBW = Approximately three times RBW
4. Detector = Peak
5. Trace mode = Max hold
6. Sweep = Auto couple
7. Allow the trace to stabilize
8. Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

5.2.4. Test Setup

Spectrum Analyzer

5.2.5. Test Result

Refer to Appendix A.1.

5.3. Emission Mask Measurement

5.3.1. Test Limit

(1) Analog systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 1 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 15.38).

(2) Digital systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 2 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 15.38).

(3) Wireless Multichannel Audio Systems. Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 3 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11), (incorporated by reference, see § 15.38).

The mean Power Density, measured with 1 kHz measurement bandwidth and RMS detector, of the transmitter unwanted emissions shall not exceed the limits of the masks provided in figure 1 for equipment employing analogue modulation and figure 2 for equipment employing digital modulation, but excluding WMAS. B is the Declared Channel Bandwidth.

Figure 1: Transmit spectral power mask for equipment employing analogue modulation, RBW = 1 kHz

Figure 2: Transmit spectral power mask for equipment employing digital modulation, except WMAS, RBW = 1 kHz

The limits in figure 3 are applicable for WMAS, where B is the Declared Channel Bandwidth.

The mean Power Density, measured with 100 kHz measurement bandwidth and PEAK detector, of the transmitter unwanted emissions shall not exceed the limits of the mask provided in figure 3.

Figure 3: Transmit spectral power mask for WMAS, RBW = 100 kHz

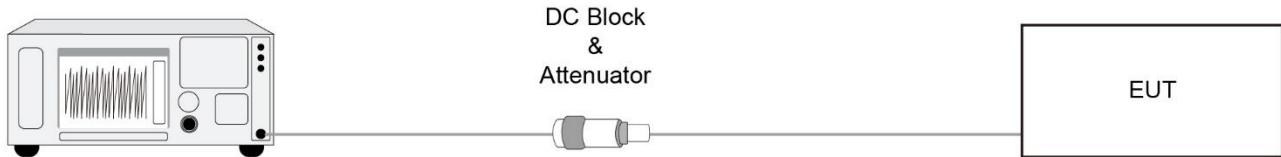
The limits in figure 3 are provided with RBW = 100 kHz. The relevant measurements can also be performed with other RBW for certain ranges of B, accounting that the relevant limit given under RBW = 100 kHz needs to be converted appropriately by adding $c = 10 \times \log_{10} (\text{RBW}/100 \text{ kHz})$ for correction.

Correction Factor for different B and applicable RBW

B	RBW, VBW	c = correction factor
B < 2 MHz	10 kHz	-10dB
2 MHz ≤ B < 5 MHz	25 kHz	-7dB
5 Hz ≤ B ≤ 20 MHz	100 kHz	0dB

5.3.2. Test Procedure

EN 300 422-1 V2.2.1 clause 5.4.3.2.


5.3.3. Test Setting

The EUT was powered up and the transmit frequency & power output of the EUT were selected.

The spectrum analyzer center frequency is set to the nominal EUT channel frequency.

5.3.4. Test Setup

Spectrum Analyzer

5.3.5. Test Result

Refer to Appendix A.2.

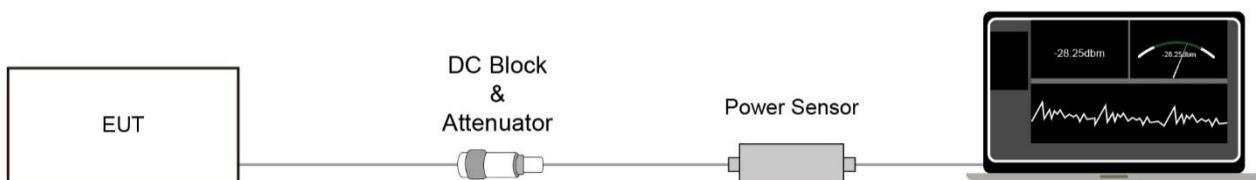
5.4. Output Power Measurement

5.4.1. Test Limit

(1) In the bands allocated and assigned for broadcast television:

- (i) Wireless microphones: 50 mW EIRP.
- (ii) Wireless multichannel audio systems with a bandwidth up to 1 MHz: 50 mW EIRP.
- (iii) Wireless multichannel audio systems with a bandwidth greater than 1 MHz: 100 mW EIRP.

(2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.


5.4.2. Test Procedure

ANSI C63.10 - 2013 - Section 11.9.2.3.2

5.4.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

5.4.4. Test Setup

5.4.5. Test Result

Refer to Appendix A.3.

5.5. Radiated Spurious Emission Measurement

5.5.1. Test Limit

Spurious emission limits. Emissions outside of the emission masks listed in paragraphs (g)(1) through (g)(3) shall comply with the limits specified in section 4.2.4.1.2 of ETSI EN 300 422-1 V2.2.1 (2021-11), (incorporated by reference, see § 15.38).

The level of transmitter unwanted emissions in the spurious domain shall not exceed the limits given in table. Transmitter unwanted emission limits

Frequency Range	Maximum power	RBW
9kHz – 150kHz	-36dBm	1kHz
150kHz – 30MHz	-36dBm	10kHz
30MHz – 1GHz	-36dBm	$F_c + 2.5B \leq f \leq F_c + 4B$: 1kHz $F_c + 4B < f \leq F_c + 10B$: 10kHz $f > F_c + 10B$: 100kHz $f < F_c - 10B$: 100kHz $F_c - 10B \leq f < F_c - 4B$: 10kHz $F_c - 4B \leq f \leq F_c - 2.5B$: 1kHz
Except:		
47MHz to 74MHz 87.5MHz to 118MHz	-54dBm	100kHz
174MHz to 230MHz 470MHz to 862MHz	-36dBm	$F_c + 2.5B \leq f \leq F_c + 4B$: 1kHz $F_c + 4B < f \leq F_c + 10B$: 10kHz $f > F_c + 10B$: 100kHz $f < F_c - 10B$: 100kHz $F_c - 10B \leq f < F_c - 4B$: 10kHz $F_c - 4B \leq f \leq F_c - 2.5B$: 1kHz
1GHz < f ≤ F _{upper}	-30dBm	$F_c + 2.5B \leq f \leq F_c + 10B$: 30kHz $F_c + 10B < f \leq F_c + 12B$: 300kHz $f > F_c + 12B$: 1MHz $f < F_c - 12B$: 1MHz $F_c - 12B \leq f < F_c - 10B$: 300kHz $F_c - 10B \leq f \leq F_c - 2.5B$: 30kHz
With B being the Declared Channel Bandwidth. F _{upper} is defined in table 5.		

Table 5: Frequency range for measurement of unwanted emissions

Applicable fundamental frequency range	Frequency range for measurements	
	Lower frequency	Upper frequency
9 kHz - 100 MHz	9 kHz	1GHz
100 MHz - 300 MHz	9 kHz	10th harmonic of the operating frequency
300 MHz - 600 MHz	30 MHz	3GHz
600 MHz - 3 GHz	30 MHz	5th harmonic of the operating frequency

5.5.2. Test Procedure

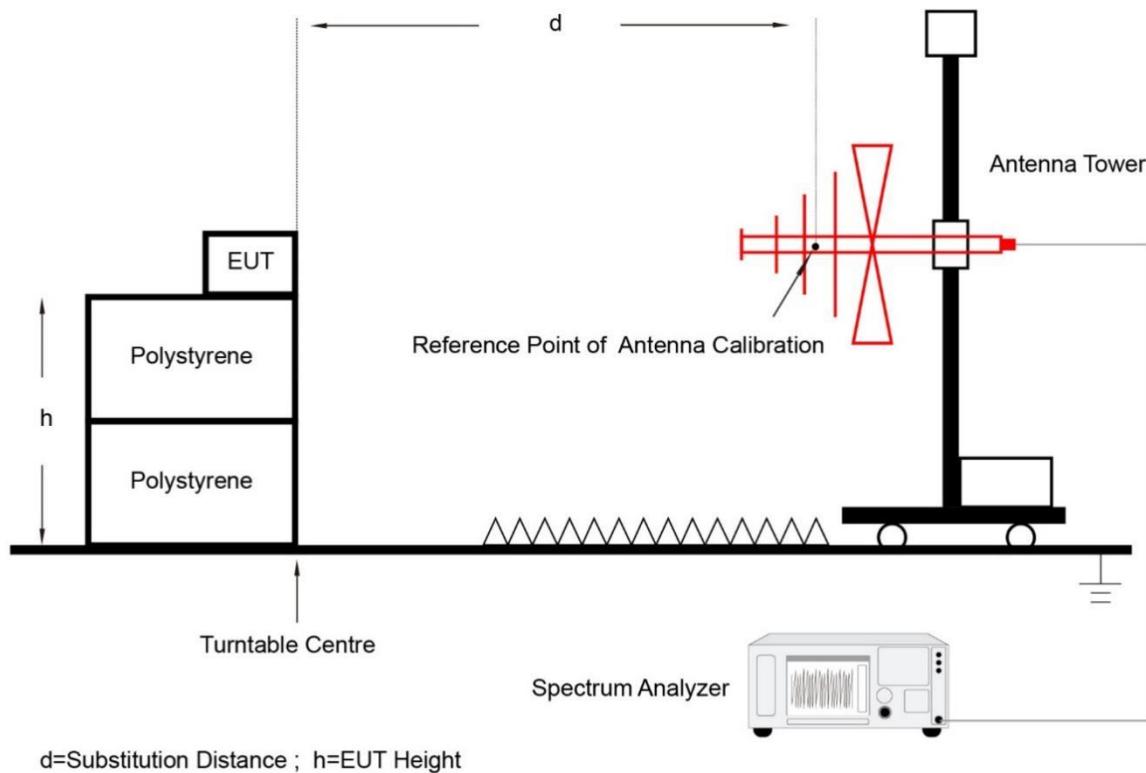
ETSI EN 300 422-1 V2.2.1 clause 5.

5.5.3. Test Setting

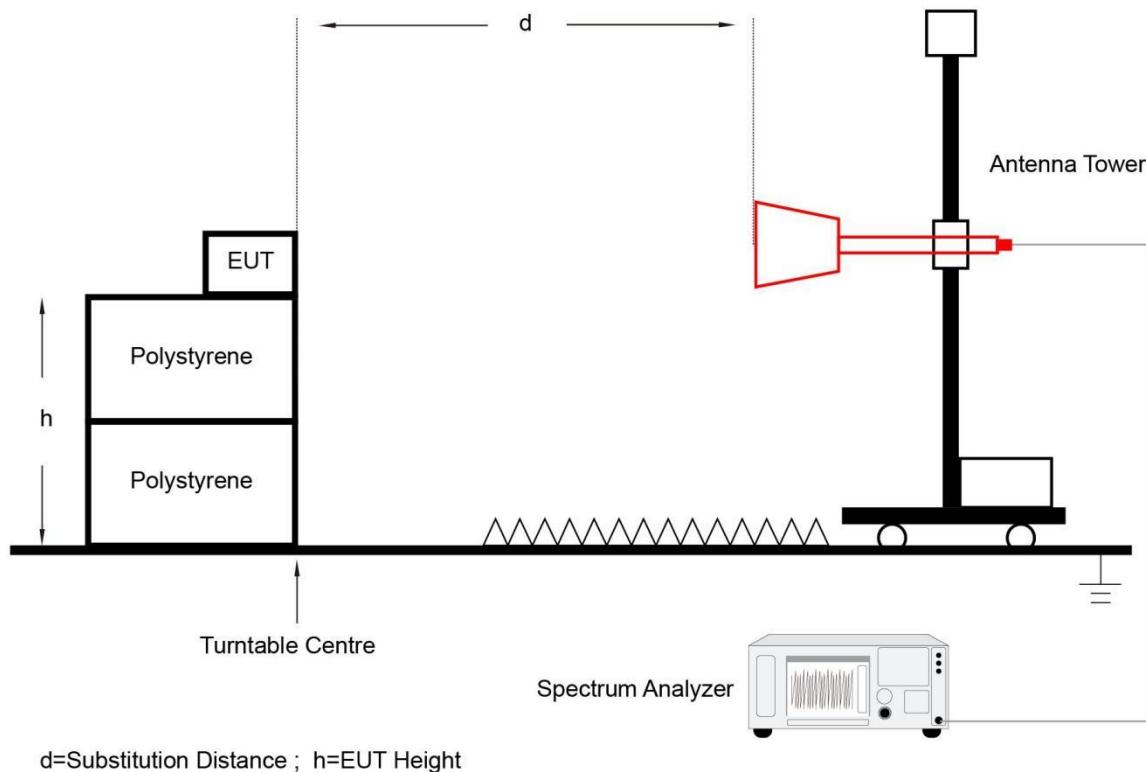
Table 1 - RBW as a function of frequency

Frequency	RBW
30 ~ 1000 MHz	100 kHz
1000 ~ 7000 MHz	1 MHz

Emissions shall be investigated up to the 10th harmonic of the fundamental.


All the emissions shall be demonstrated using a QP detector below 1 GHz and an RMS Average detector above 1 GHz.

All significant broadband and narrowband signals found in the preliminary sweeps were measured using a peak detector at a test distance of 3 meters.

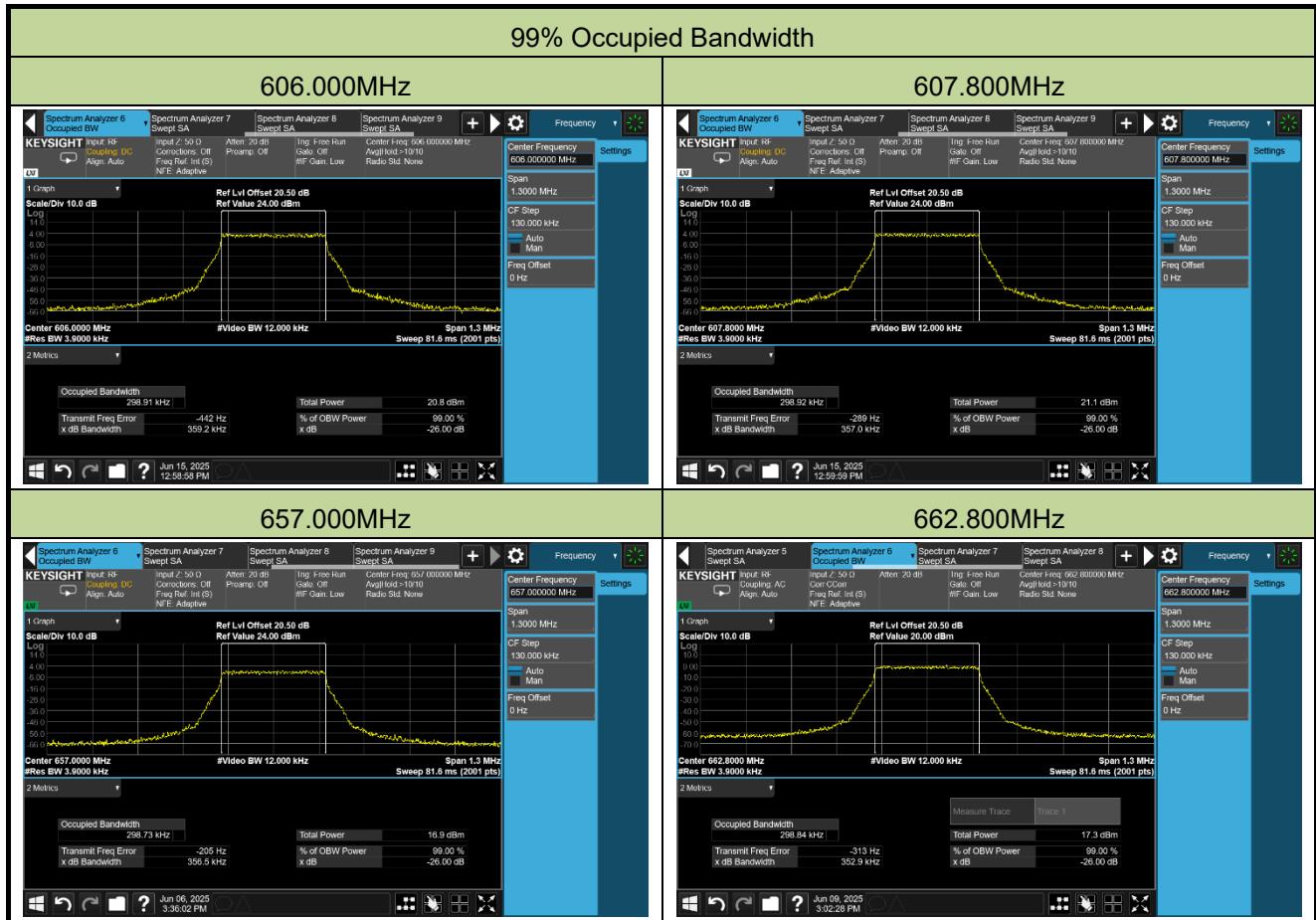

at each frequency at which a component is detected, the sample shall be rotated to obtain maximum response and the effective radiated power of that component determined by a substitution measurement.

5.5.4. Test Setup

Below 1GHz Test Setup:

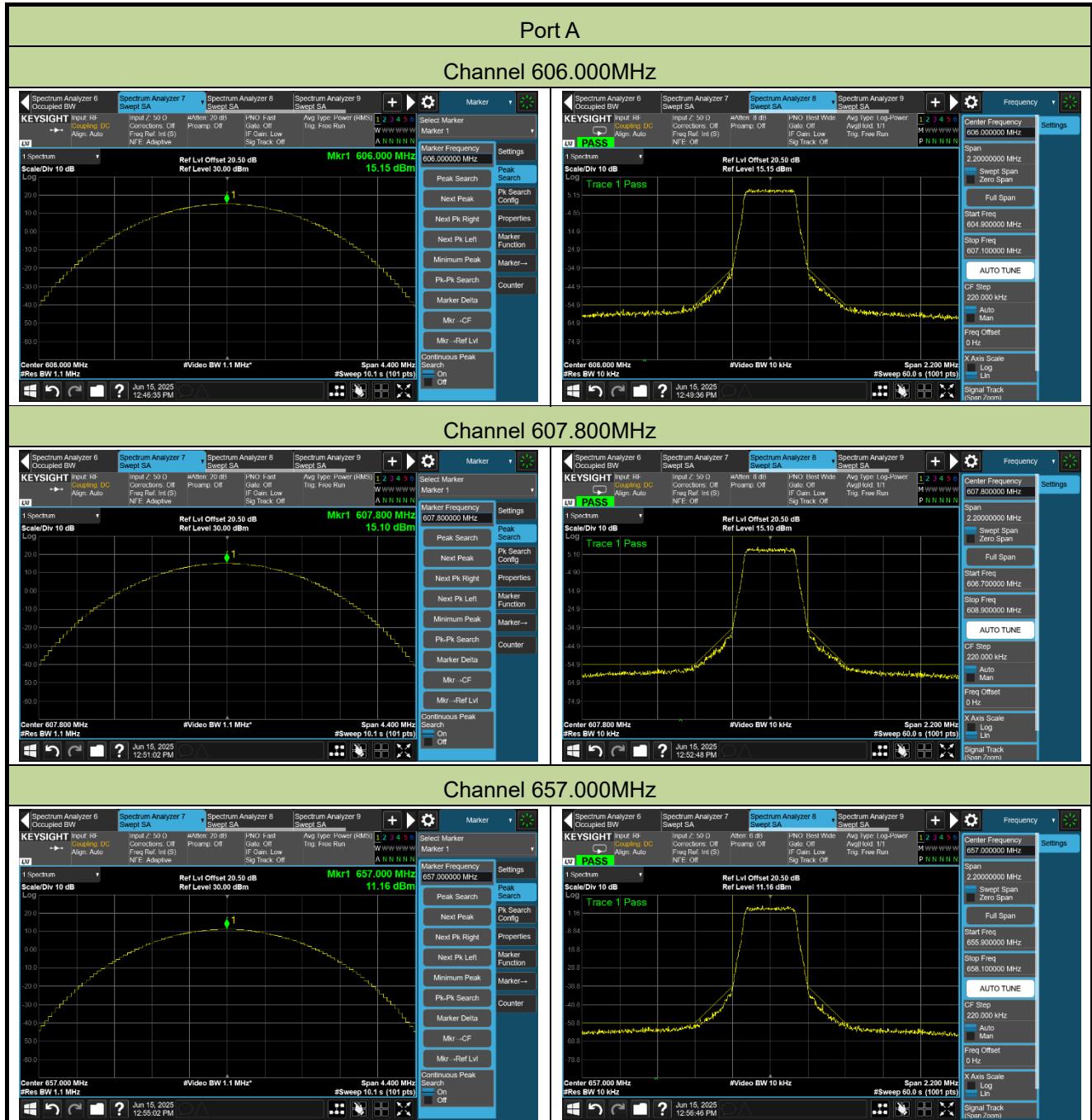
Above 1GHz Test Setup:

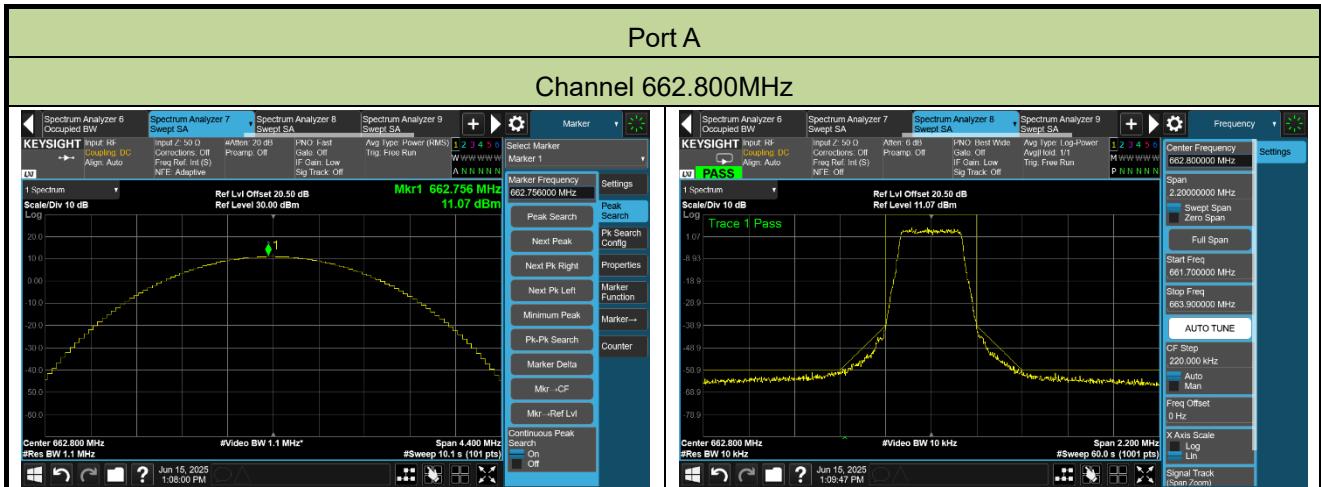
5.5.5. Test Result


Refer to Appendix A.4.

Appendix A – Test Result

A.1 99% Occupied Bandwidth Test Result


Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-06-06 ~ 2025-06-15	Test Mode	Mode 1


Frequency (MHz)	99% Occupied Bandwidth (kHz)	Limit (kHz)	Result
606.000	298.91	< 6000	Pass
607.800	298.92	< 6000	Pass
657.000	298.73	< 6000	Pass
662.800	298.84	< 6000	Pass

A.2 Emission Mask Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-06-15	Test Mode	Mode 1

A.3 Output Power Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-06-09 ~ 2025-06-16	Test Mode	Mode 1

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Test Result
	Port A				
40mW Power Level					
606.000	15.02	0.30	15.32	≤ 16.99	Pass
607.800	14.97	0.30	15.27	≤ 16.99	Pass
20mW Power Level					
657.000	11.13	0.30	11.43	≤ 13.01	Pass
662.800	11.01	0.30	11.31	≤ 13.01	Pass

Note 1: Limit = $10 \times \log(50\text{mW}) = 16.99 \text{ dBm}$.

Note 2: Limit = $10 \times \log(20\text{mW}) = 13.01 \text{ dBm}$.

Note 3: EIRP (dBm) = Conducted Power (dBm) + Antenna Gain (dBi).

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2025-06-09 ~ 2025-06-16	Test Mode	Mode 2

Frequency (MHz)	Conducted Power (dBm)		Total Conducted Power (dBm)	Antenna Gain (dBi)	Total EIRP (dBm)	Limit (dBm)	Test Result
	Port A	Port B					
20mW Power Level							
606.000	13.53	13.69	16.62	0.30	16.92	≤ 16.99	Pass
607.800	13.42	13.62	16.53	0.30	16.83	≤ 16.99	Pass
8mW Power Level							
657.000	9.15	8.67	11.93	0.30	12.23	≤ 13.01	Pass
662.800	8.98	8.41	11.71	0.30	12.01	≤ 13.01	Pass

Note 1: Limit = $10 \times \log(50\text{mW}) = 16.99 \text{ dBm}$.

Note 2: Limit = $10 \times \log(20\text{mW}) = 13.01 \text{ dBm}$.

Note 3: Total Conducted Power (dBm) = $10 \times \log[10^{(\text{Port A}/10)} + 10^{(\text{Port B}/10)}]$ (dBm).

Note 4: Total EIRP (dBm) = Total Conducted Power (dBm) + Antenna Gain (dBi).

A.4 Radiated Spurious Emission Test Result

Test Site	WZ-AC2	Test Engineer	Dick Shen & Lucas Wang
Test Date	2025-06-13 ~ 2025-06-19	Test Mode	Mode 1

Test Channel (MHz)	Frequency (MHz)	Reading Level (dBm)	Substitution Factor (dB)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Polarization
606.000	53.770	-104.2	27.9	-76.3	-54.0	-22.3	Peak	Horizontal
	745.960	-99.7	33.9	-65.8	-54.0	-11.8	Peak	Horizontal
	97.800	-104.2	31.9	-72.3	-54.0	-18.3	Peak	Vertical
	589.790	-94.9	34.6	-60.3	-54.0	-6.3	Peak	Vertical
	2014.600	-56.0	7.9	-48.1	-30.0	-18.1	Peak	Horizontal
	5881.000	-71.8	16.5	-55.3	-30.0	-25.3	Peak	Horizontal
	1817.800	-60.6	6.7	-53.9	-30.0	-23.9	Peak	Vertical
	6651.400	-71.5	20.0	-51.5	-30.0	-21.5	Peak	Vertical
607.800	51.050	-104.8	28.7	-76.1	-54.0	-22.1	Peak	Horizontal
	746.730	-98.9	33.9	-65.0	-54.0	-11.0	Peak	Horizontal
	53.280	-104.1	30.7	-73.4	-54.0	-19.4	Peak	Vertical
	588.720	-94.2	34.6	-59.6	-54.0	-5.6	Peak	Vertical
	1215.400	-61.0	5.8	-55.2	-30.0	-25.2	Peak	Horizontal
	1823.200	-56.3	7.6	-48.7	-30.0	-18.7	Peak	Horizontal
	1823.200	-53.4	6.8	-46.6	-30.0	-16.6	Peak	Vertical
	6613.000	-73.1	19.7	-53.4	-30.0	-23.4	Peak	Vertical
657.000	48.720	-104.8	29.4	-75.4	-54.0	-21.4	Peak	Horizontal
	748.670	-99.5	33.8	-65.7	-54.0	-11.7	Peak	Horizontal
	198.000	-101.0	29.7	-71.3	-54.0	-17.3	Peak	Vertical
	580.380	-94.7	34.5	-60.2	-54.0	-6.2	Peak	Vertical
	2202.400	-69.5	10.4	-59.1	-30.0	-29.1	Peak	Horizontal
	6652.600	-72.0	19.6	-52.4	-30.0	-22.4	Peak	Horizontal
	2189.800	-70.0	10.4	-59.6	-30.0	-29.6	Peak	Vertical
	6906.400	-73.0	20.5	-52.5	-30.0	-22.5	Peak	Vertical

Note 1: Measure Level (dBm) = Reading Level (dBm) + Substitution Factor (dB)

Note 2: Substitution Factor (dB) = Cable Loss (dB) + Space Attenuation (dB) - Antenna Gain (dBi) - 2.15 (dB)

Note 3: QP measurement was not performed when peak measure level was lower than the QP limit.

RMS measurement was not performed when peak measure level was lower than the RMS limit.

Test Channel (MHz)	Frequency (MHz)	Reading Level (dBm)	Substitution Factor (dB)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Polarization
662.800	735.380	-100.3	34.1	-66.2	-54.0	-12.2	Peak	Horizontal
	807.650	-100.5	35.3	-65.2	-54.0	-11.2	Peak	Horizontal
	496.670	-94.8	33.6	-61.2	-54.0	-7.2	Peak	Vertical
	596.000	-96.5	34.5	-62.0	-54.0	-8.0	QP	Vertical
	3031.000	-67.8	9.4	-58.4	-30.0	-28.4	Peak	Horizontal
	6661.000	-72.5	19.6	-52.9	-30.0	-22.9	Peak	Horizontal
	2206.000	-68.4	9.9	-58.5	-30.0	-28.5	Peak	Vertical
	5217.400	-70.5	14.7	-55.8	-30.0	-25.8	Peak	Vertical

Note 1: Measure Level (dBm) = Reading Level (dBm) + Substitution Factor (dB)

Note 2: Substitution Factor (dB) = Cable Loss (dB) + Space Attenuation (dB) - Antenna Gain (dBi) - 2.15 (dB)

Note 3: QP measurement was not performed when peak measure level was lower than the QP limit.

RMS measurement was not performed when peak measure level was lower than the RMS limit.

Test Site	WZ-AC2	Test Engineer	Dick Shen & Lucas Wang
Test Date	2025-06-13 ~ 2025-06-19	Test Mode	Mode 2

Test Channel (MHz)	Frequency (MHz)	Reading Level (dBm)	Substitution Factor (dB)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Polarization
606.000	52.500	-104.1	28.2	-75.9	-54.0	-21.9	Peak	Horizontal
	716.370	-93.5	33.4	-60.1	-54.0	-6.1	Peak	Horizontal
	525.860	-90.8	33.4	-57.4	-54.0	-3.4	Peak	Vertical
	570.780	-90.5	34.4	-56.1	-54.0	-2.1	Peak	Vertical
	1211.200	-61.7	5.9	-55.8	-30.0	-25.8	Peak	Horizontal
	5113.600	-71.2	15.2	-56.0	-30.0	-26.0	Peak	Horizontal
	2199.400	-68.7	10.1	-58.6	-30.0	-28.6	Peak	Vertical
	6659.800	-72.5	20.1	-52.4	-30.0	-22.4	Peak	Vertical
607.800	51.050	-104.6	28.7	-75.9	-54.0	-21.9	Peak	Horizontal
	725.590	-92.9	33.7	-59.2	-54.0	-5.2	Peak	Horizontal
	486.580	-91.8	33.5	-58.3	-54.0	-4.3	Peak	Vertical
	567.190	-90.6	34.3	-56.3	-54.0	-2.3	Peak	Vertical
	1215.400	-62.5	5.8	-56.7	-30.0	-26.7	Peak	Horizontal
	6940.600	-73.0	21.1	-51.9	-30.0	-21.9	Peak	Horizontal
	1215.400	-63.4	5.2	-58.2	-30.0	-28.2	Peak	Vertical
	6658.600	-72.3	20.0	-52.3	-30.0	-22.3	Peak	Vertical
657.000	48.820	-105.0	29.3	-75.7	-54.0	-21.7	Peak	Horizontal
	742.660	-93.9	33.9	-60.0	-54.0	-6.0	Peak	Horizontal
	530.330	-91.1	33.5	-57.6	-54.0	-3.6	Peak	Vertical
	577.370	-90.5	34.4	-56.1	-54.0	-2.1	Peak	Vertical
	1440.400	-68.5	8.8	-59.7	-30.0	-29.7	Peak	Horizontal
	6560.800	-72.9	20.1	-52.8	-30.0	-22.8	Peak	Horizontal
	2455.000	-63.0	9.0	-54.0	-30.0	-24.0	Peak	Vertical
	6640.600	-72.8	19.8	-53.0	-30.0	-23.0	Peak	Vertical

Note 1: Measure Level (dBm) = Reading Level (dBm) + Substitution Factor (dB)

Note 2: Substitution Factor (dB) = Cable Loss (dB) + Space Attenuation (dB) - Antenna Gain (dBi) - 2.15 (dB)

Note 3: QP measurement was not performed when peak measure level was lower than the QP limit.

RMS measurement was not performed when peak measure level was lower than the RMS limit.

Test Channel (MHz)	Frequency (MHz)	Reading Level (dBm)	Substitution Factor (dB)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Polarization
662.800	552.930	-102.9	31.8	-71.1	-54.0	-17.1	Peak	Horizontal
	777.090	-102.0	34.5	-67.5	-54.0	-13.5	Peak	Horizontal
	528.100	-97.7	33.5	-64.2	-54.0	-10.2	Peak	Vertical
	573.690	-99.0	34.3	-64.7	-54.0	-10.7	Peak	Vertical
	2265.400	-69.7	10.7	-59.0	-30.0	-29.0	Peak	Horizontal
	6581.800	-72.0	19.7	-52.3	-30.0	-22.3	Peak	Horizontal
	2201.800	-69.9	10.0	-59.9	-30.0	-29.9	Peak	Vertical
	6655.600	-73.0	20.0	-53.0	-30.0	-23.0	Peak	Vertical

Note 1: Measure Level (dBm) = Reading Level (dBm) + Substitution Factor (dB)

Note 2: Substitution Factor (dB) = Cable Loss (dB) + Space Attenuation (dB) - Antenna Gain (dBi) - 2.15 (dB)

Note 3: QP measurement was not performed when peak measure level was lower than the QP limit.

RMS measurement was not performed when peak measure level was lower than the RMS limit.

Appendix B - Test Setup Photograph

Refer to "R25S1019045-UT" file.

Appendix C - EUT Photograph

Refer to "R25S1019045-UE" file.

The End