

**FCC CFR47 PART 15 SUBPART C
CERTIFICATION**

TEST REPORT

FOR

MINI PCI 802.11 A/B/G TRANSCEIVER

MODEL NUMBER: PA3374U-1MPC

FCC ID: CJ6UPA3374WL

REPORT NUMBER: 04U2470-1

ISSUE DATE: APRIL 12, 2004

Prepared for
TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY
2-9 SUEHIRO-CHO, OME
TOKYO, 198-8710, JAPAN

Prepared by
COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD,
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	3
2. EUT DESCRIPTION	4
3. TEST METHODOLOGY	5
4. FACILITIES AND ACCREDITATION	5
5. CALIBRATION AND UNCERTAINTY	6
5.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	6
5.2. <i>MEASUREMENT UNCERTAINTY</i>	6
5.3. <i>TEST AND MEASUREMENT EQUIPMENT</i>	7
6. SETUP OF EQUIPMENT UNDER TEST	8
7. APPLICABLE LIMITS AND TEST RESULTS	10
7.1. <i>6 dB BANDWIDTH</i>	10
7.2. <i>99% BANDWIDTH</i>	24
7.3. <i>PEAK OUTPUT POWER</i>	38
7.4. <i>AVERAGE POWER</i>	53
7.5. <i>PEAK POWER SPECTRAL DENSITY</i>	55
7.6. <i>CONDUCTED SPURIOUS EMISSIONS</i>	69
7.7. <i>RADIATED EMISSIONS</i>	94
7.7.1. <i>TRANSMITTER RADIATED SPURIOUS EMISSIONS</i>	94
7.7.2. <i>TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ (LAPTOP CONFIGURATION)</i>	97
7.7.3. <i>TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ (PORTABLE CONFIGURATION)</i>	118
7.7.4. <i>CO-LOCATED TRANSMITTER RADIATED EMISSIONS</i>	139
7.7.5. <i>WORST-CASE RADIATED EMISSIONS BELOW 1 GHz</i>	149
7.8. <i>POWERLINE CONDUCTED EMISSIONS</i>	153
8. SETUP PHOTOS	156

1. TEST RESULT CERTIFICATION

COMPANY NAME: TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY
2-9 SUEHIRO-CHO, OME
TOKYO, 198-8710, JAPAN

EUT DESCRIPTION: Mini PCI 802.11 a/b/g transceiver

MODEL: PA3374U-1MPC

DATE TESTED: FEBRUARY 24 – MARCH 19, 2004

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Note: The 2.4 and 5.8 GHz bands are applicable to this report; other bands of operation (5.2 and 5.5 GHz) are documented in a separate report.

Approved & Released For CCS By:

MIKE HECKROTTE
ENGINEERING MANAGER
COMPLIANCE CERTIFICATION SERVICES

Tested By:

YAN ZHENG
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g transceiver Mini PCI card installed in Toshiba Tablet, including co-location with the Toshiba PA3232U-1BTM Bluetooth radio card.

The transmitter has a maximum peak conducted output power as follows:

Frequency Band (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	20.85	121.62
2412 - 2462	802.11g	24.45	278.61
2437	802.11g Turbo	24.43	277.33
5785 - 5825	802.11a	25.74	374.97
5760 - 5800	802.11a Turbo	24.38	274.16

The radio utilizes two film antennas for diversity (main and auxiliary), Hitachi model HTL017. Each antenna has a maximum gain of 4.24 dBi in the 2.4 GHz band and 4.12 dBi in the 5.8 GHz band.

The module alternately utilizes two other film antennas: Hitachi model HTL008 and Tyco model TIAN001 antennas. These have lower gains in the 2.4 and 5.8 GHz bands compared to the HTL017.

Two HTL017 antennas were utilized during final compliance tests.

The Bluetooth radio card has a modular approval, FCC ID: CJ6UPA3232BT. The Bluetooth radio utilizes a film antenna with a maximum gain of 1.22 dBi.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccssemc.com>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

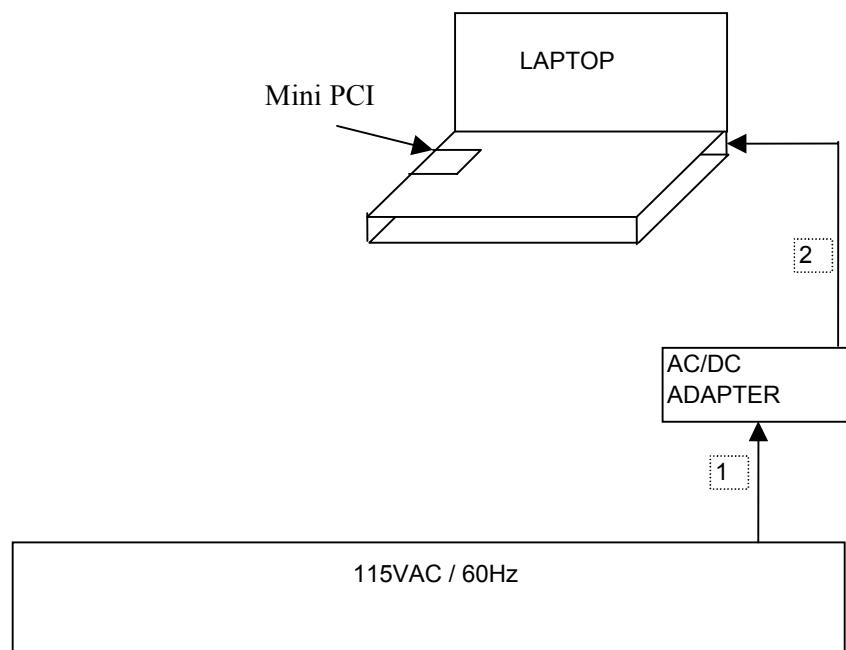
The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/2004
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2005
Antenna, Horn 18 ~ 26 GHz	ARA	SWH-28	1007	2/24/2005
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	12/3/2004
PreAmplifier 1-26GHz	MITEQ	NSP2600-SP	924341	4/25/2004
PreAmplifier 26-40 GHz	MITEQ	NSP4000-SP2	924343	6/1/2004
7.6GHz High Pass Filter	Micro-tronics	HPM13195	SN-002	N/A
4.0GHz High Pass Filter	Micro-tronics	HPM13351	SN-001	N/A
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/2004
RF Filter Section	HP	85420E	3705A00256	11/20/2004
Antenna, Bicon/Log, 30 ~ 2000 MHz	Sunol Sciences	JB1	A121003	12/22/2004
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/2004
Line Filter	Lindgren	LMF-3489	497	CNR
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/2004

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
LAPTOP	TOSHIBA	PPM20U-AAAAA8	Z3044588JU	DOC
AC ADAPTER	TOSHIBA	ADP-60RHA	G71C0002S110	DOC


I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	2	US115	UNSHIELDED	2m	NO
2	DC	1	DC	UNSHIELDED	2m	NO

TEST SETUP

The EUT is installed in a host laptop computer via a cardbus-to-miniPCI adapter / extension board during conducted antenna port tests. The EUT is installed in a host laptop computer for radiated emission tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	12070	500	11570
Middle	2437	12070	500	11570
High	2462	11970	500	11470

802.11g Mode

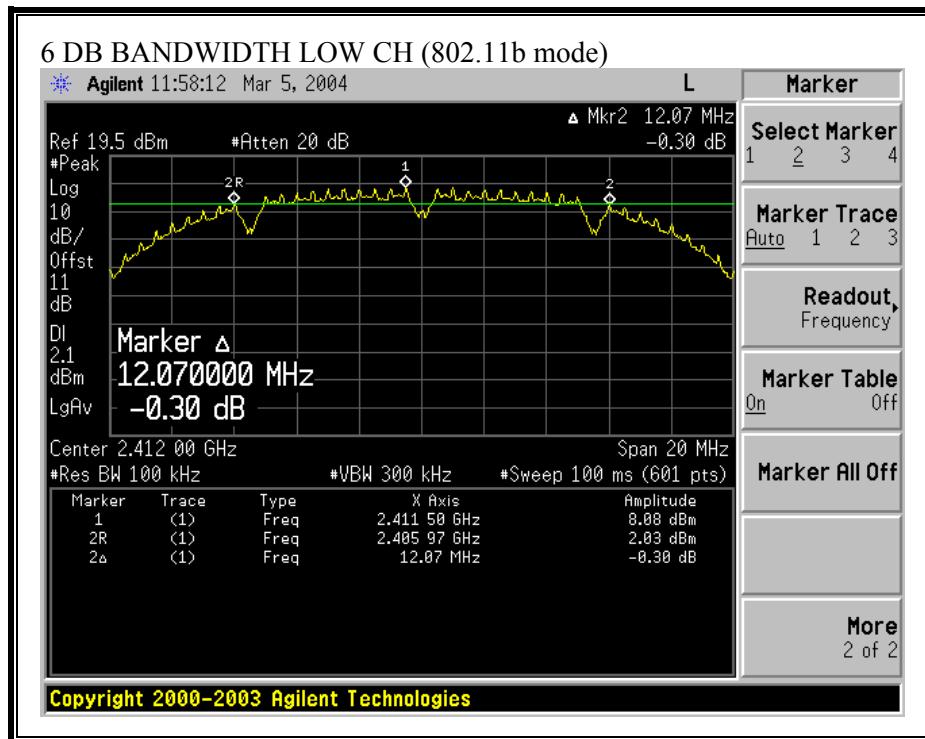
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	16400	500	15900
Middle	2437	16330	500	15830
High	2462	16400	500	15900

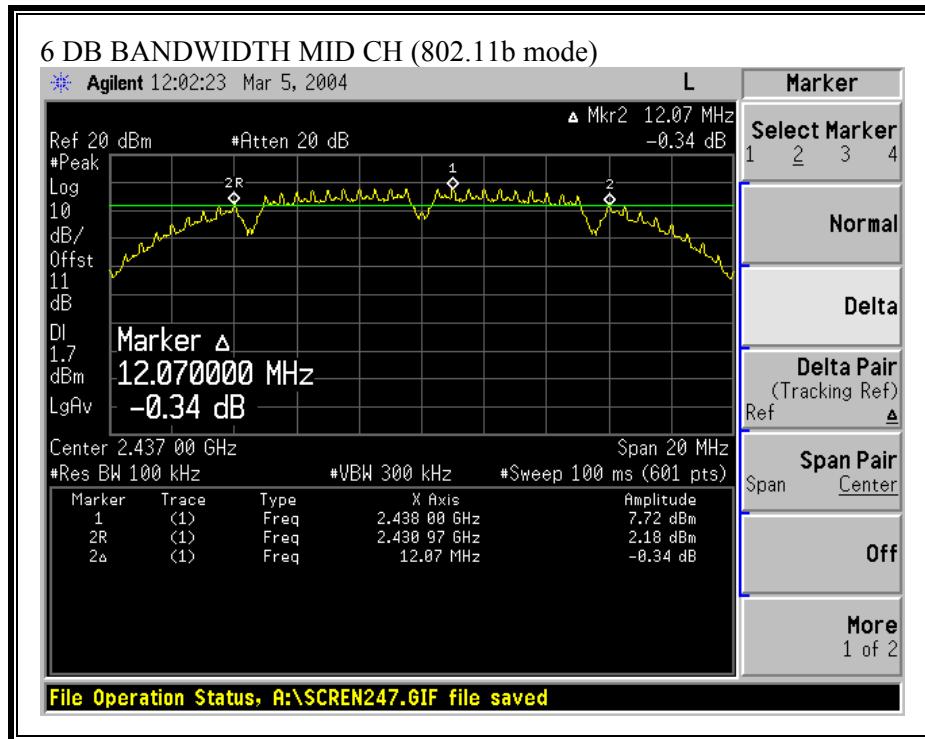
802.11g Turbo Mode

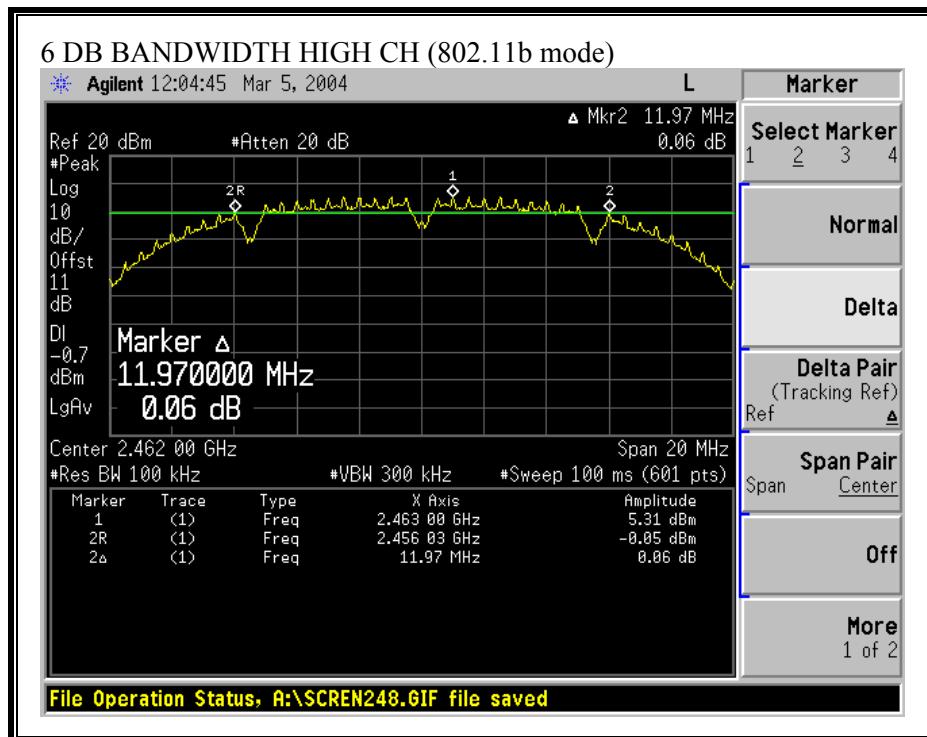
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Middle	2437	32530	500	32030

5.8 GHz BAND RESULTS

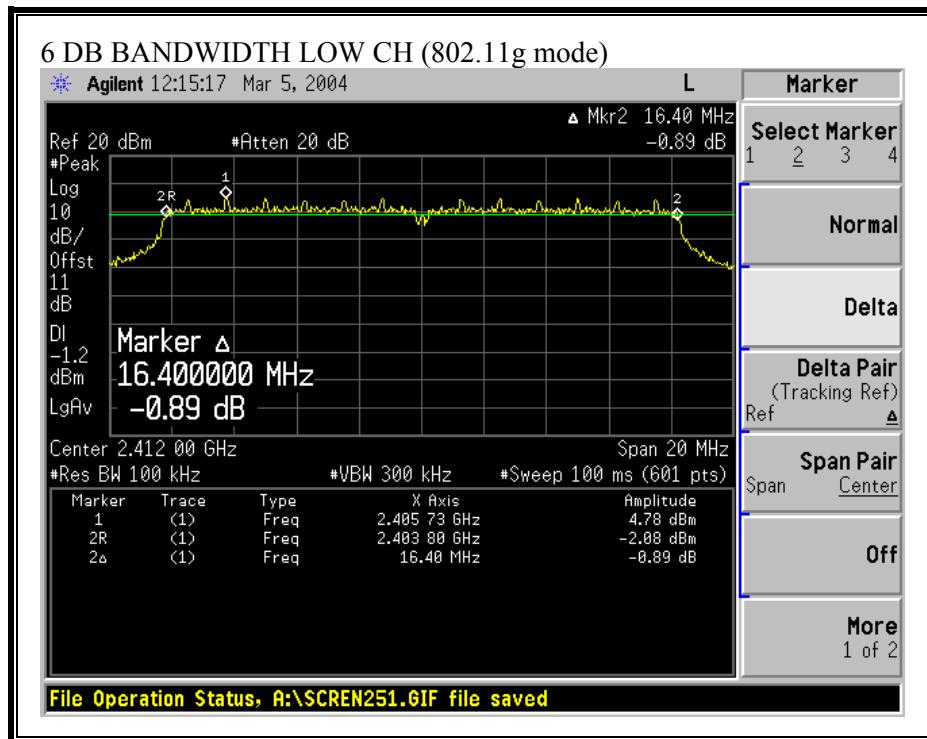
No non-compliance noted:

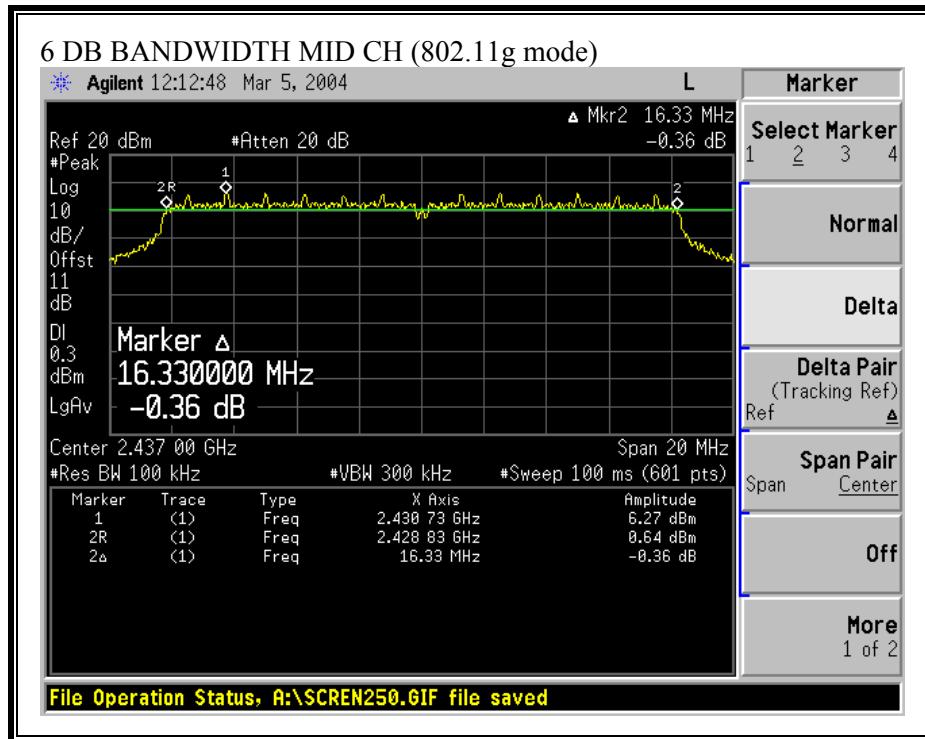

802.11a Mode

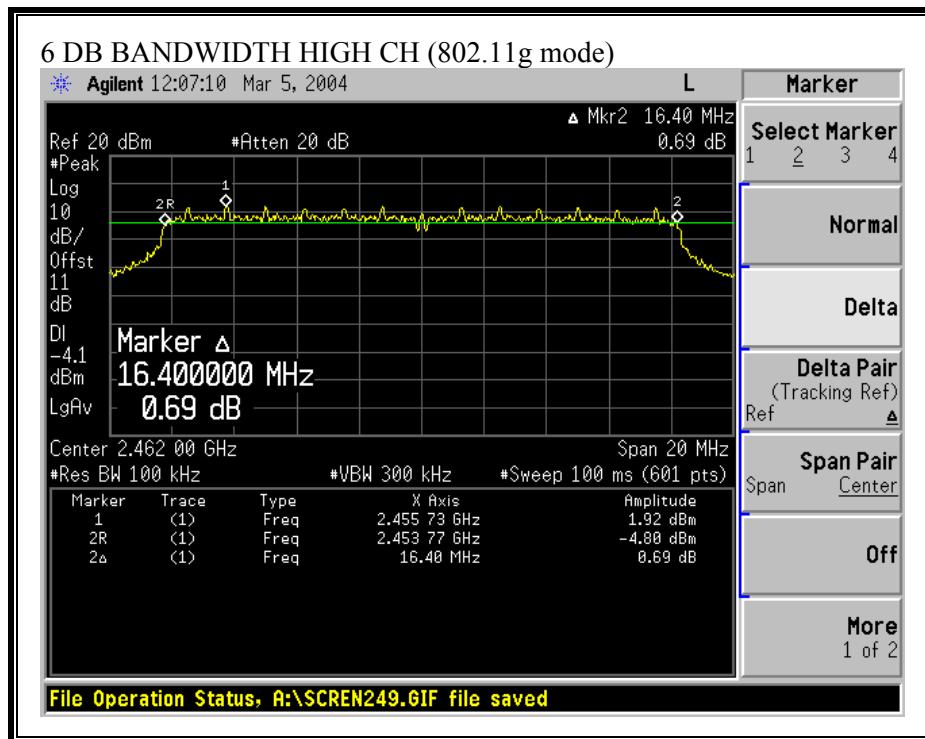

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	5745	16500	500	16000
Middle	5785	16500	500	16000
High	5825	16500	500	16000

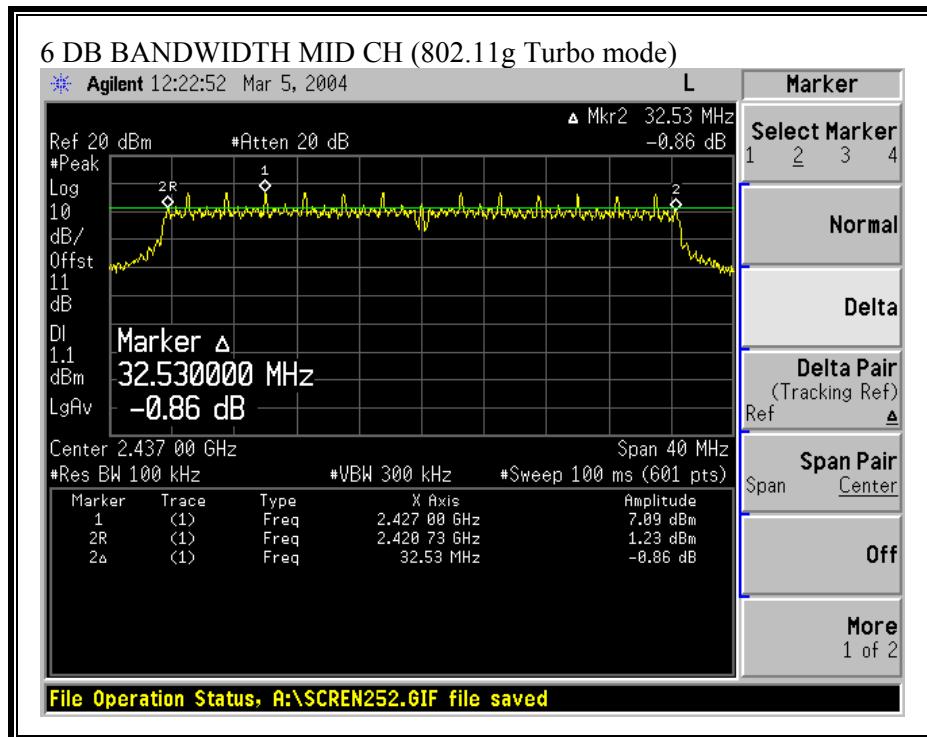

802.11a Turbo Mode

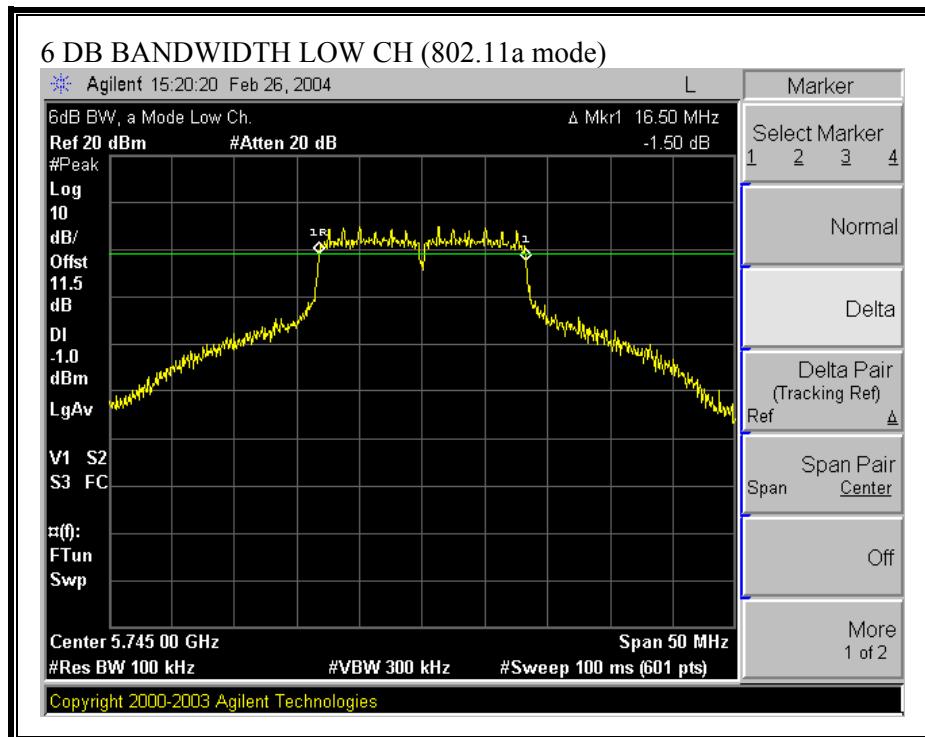
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	5760	31417	500	30917
High	5800	31417	500	30917

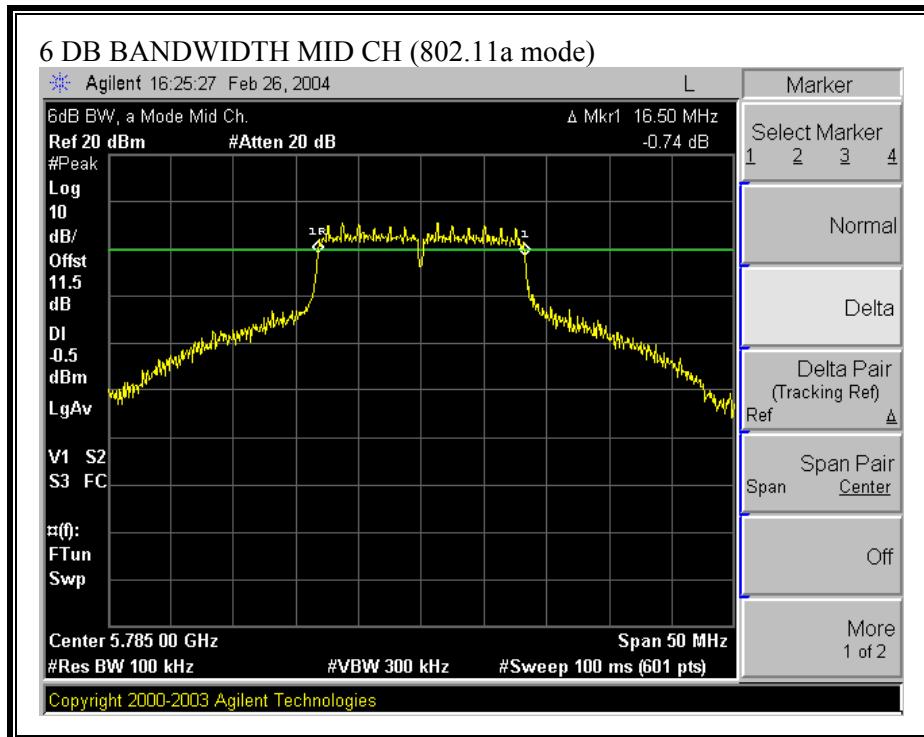

6 DB BANDWIDTH (802.11b MODE)

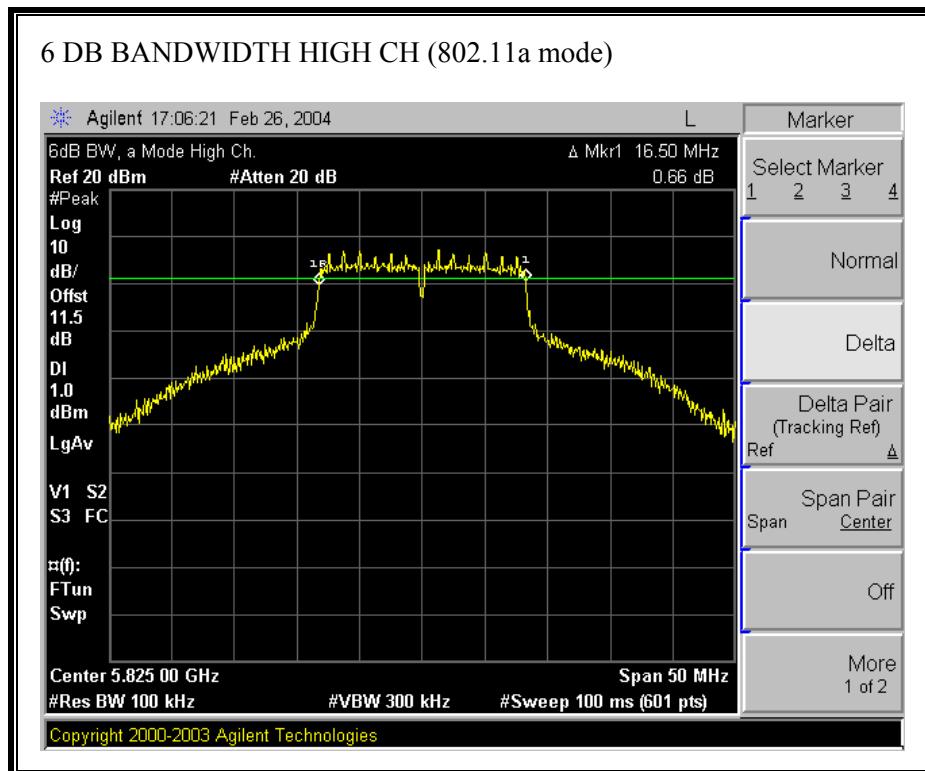


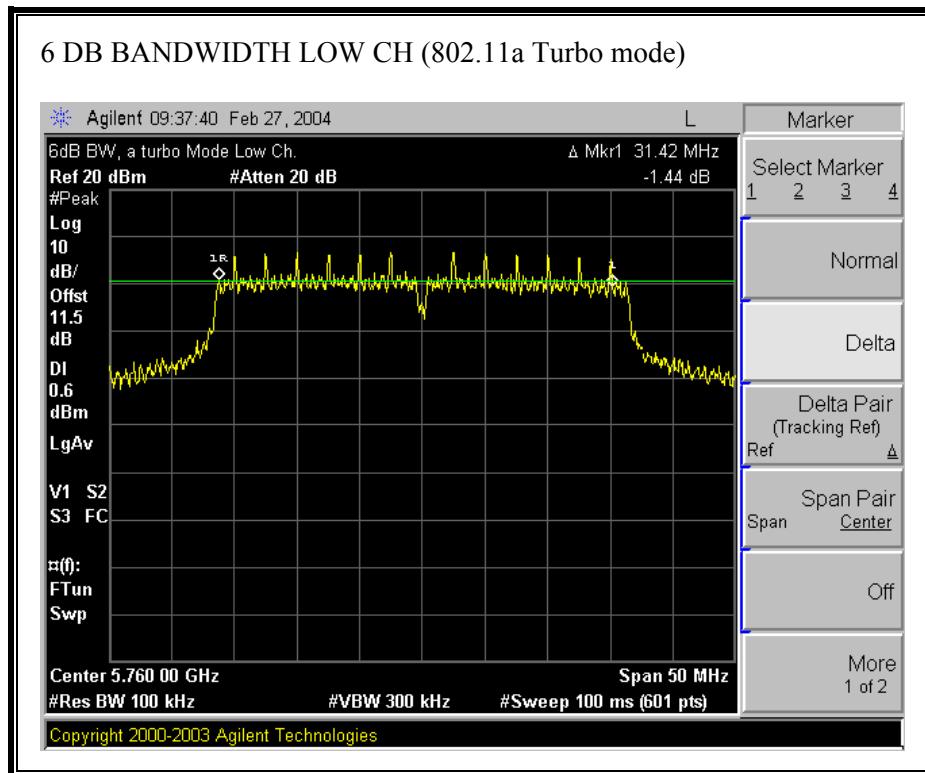


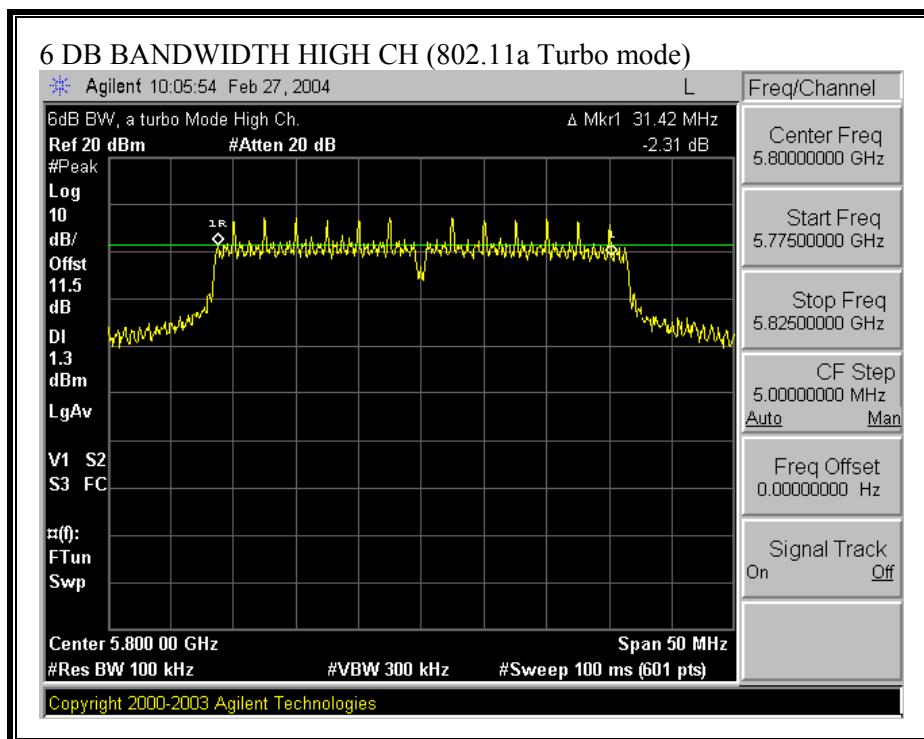

6 DB BANDWIDTH (802.11g MODE)






6 DB BANDWIDTH (802.11g TURBO MODE)


6 DB BANDWIDTH (802.11a MODE)



6 DB BANDWIDTH (802.11a TURBO MODE)

7.2. 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	15.5621
Middle	2437	15.6073
High	2462	15.4983

802.11g Mode

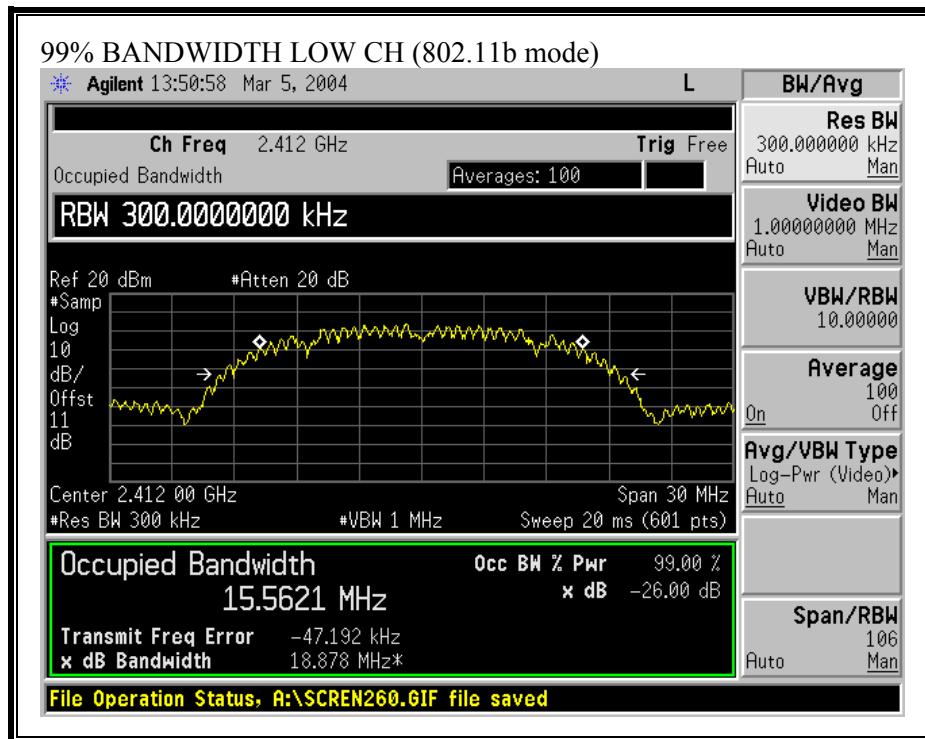
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	16.4833
Middle	2437	16.5017
High	2462	16.4644

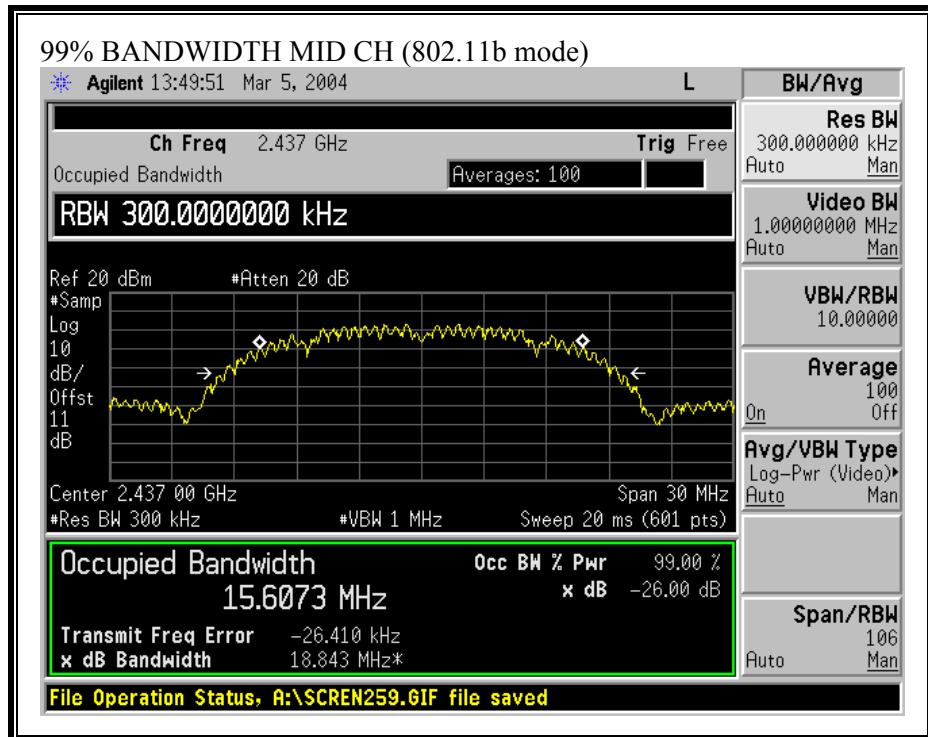
802.11g Turbo Mode

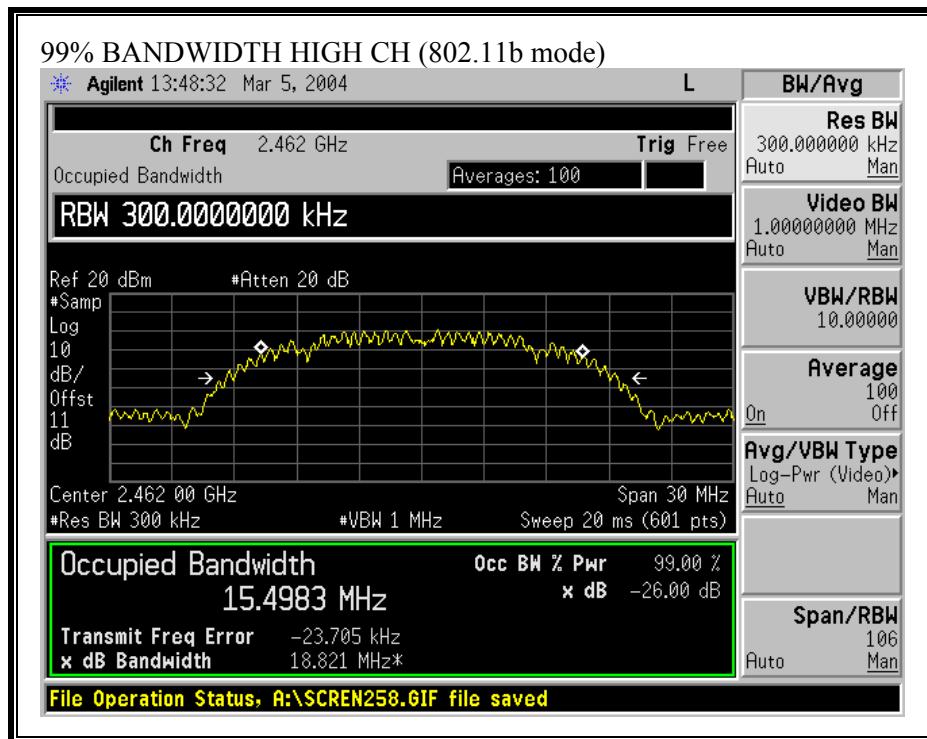
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Middle	2437	32.8648

5.8 GHz BAND RESULTS

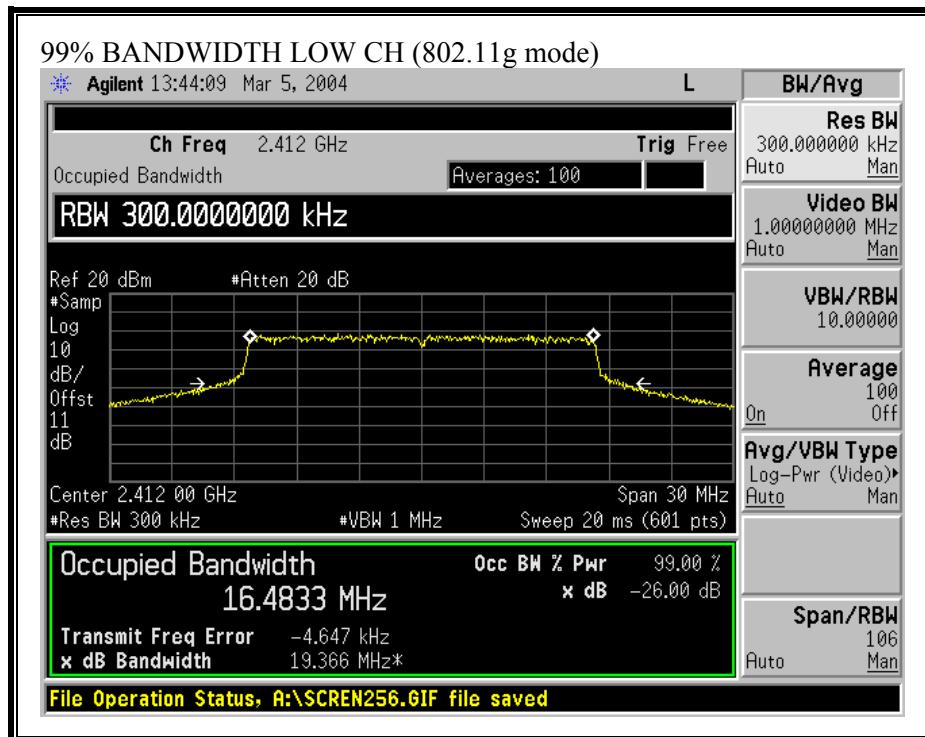
No non-compliance noted:

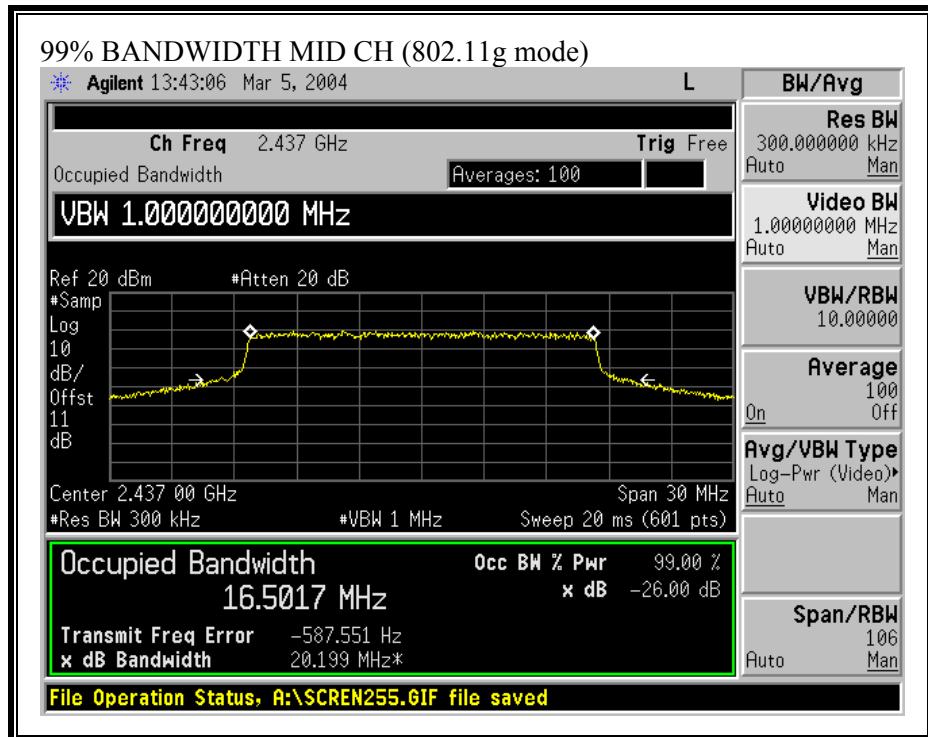

802.11a Mode

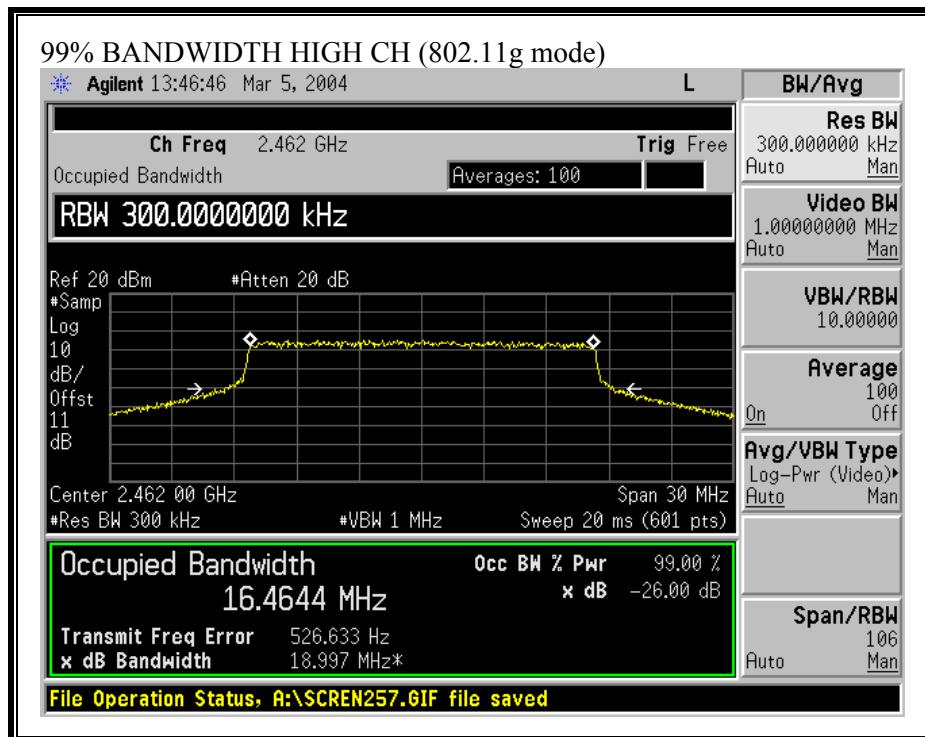

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5745	16.693
Middle	5785	16.918
High	5825	17.633

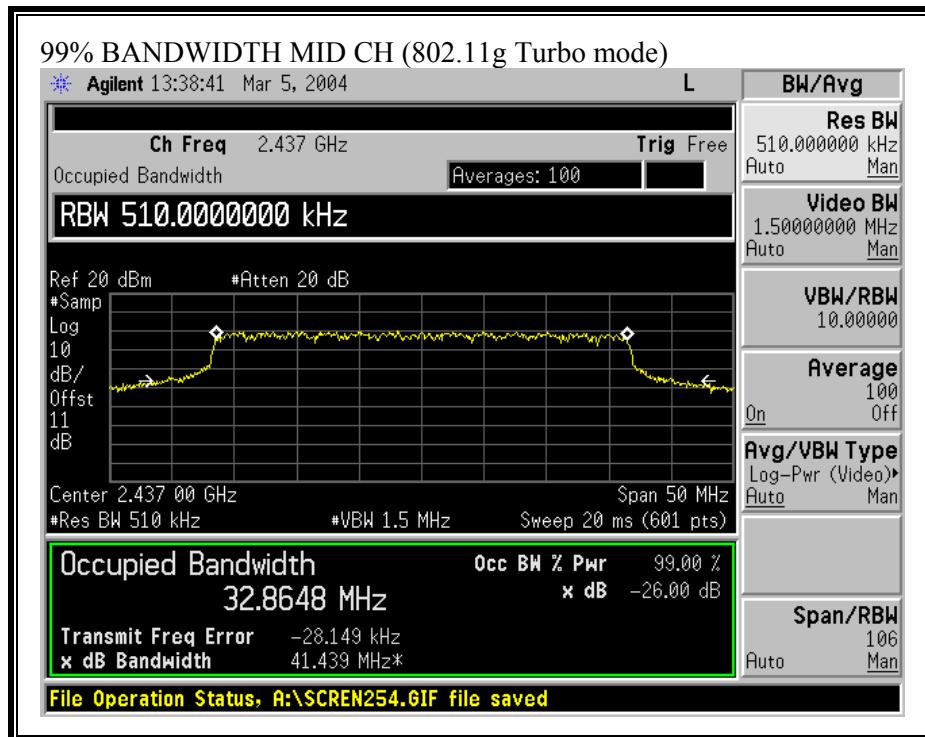

802.11a Turbo Mode

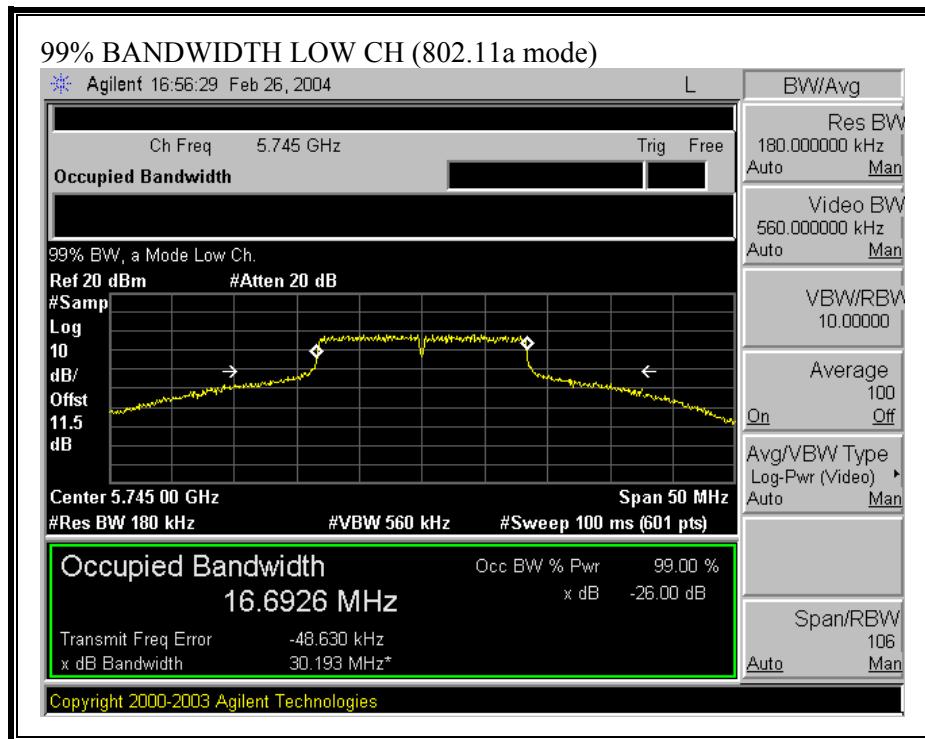
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	5760	32.919
High	5800	33.179

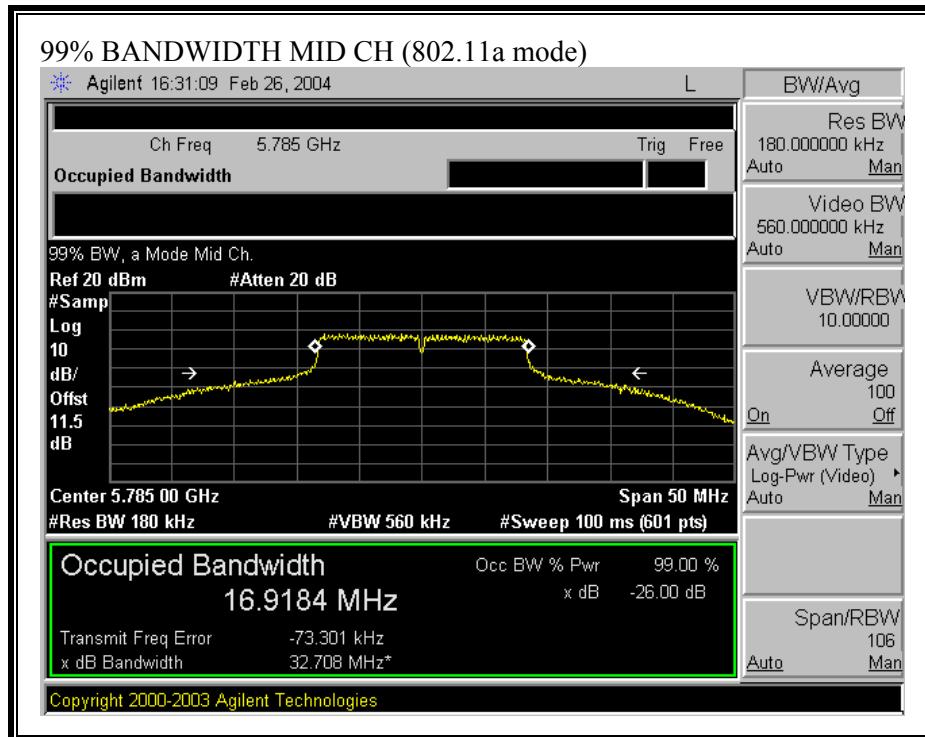

99% BANDWIDTH (802.11b MODE)

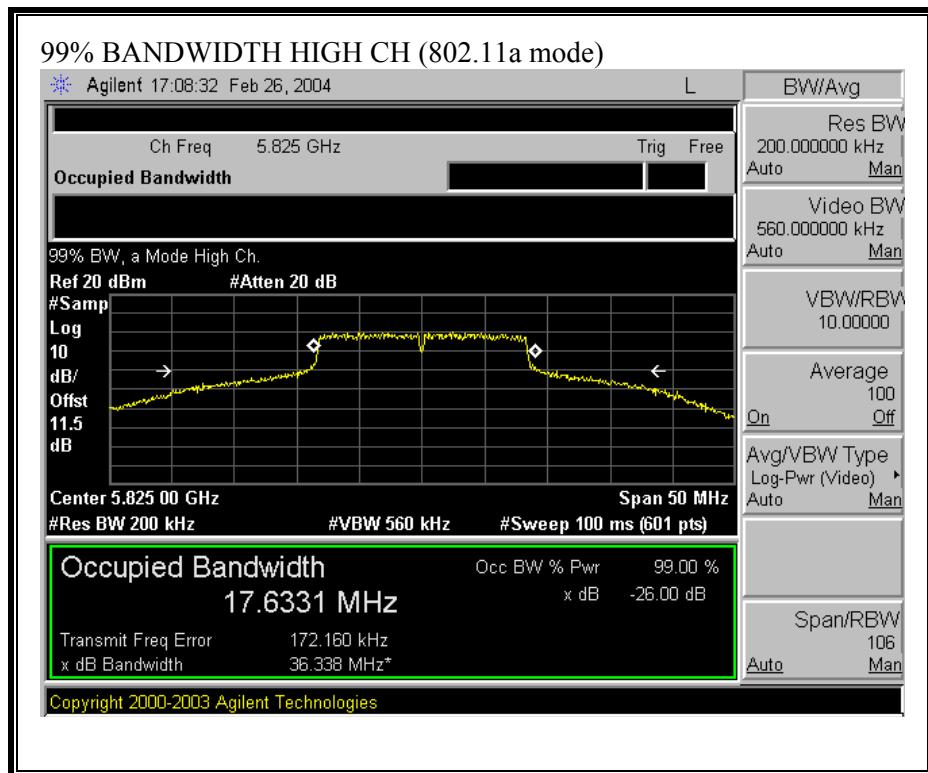


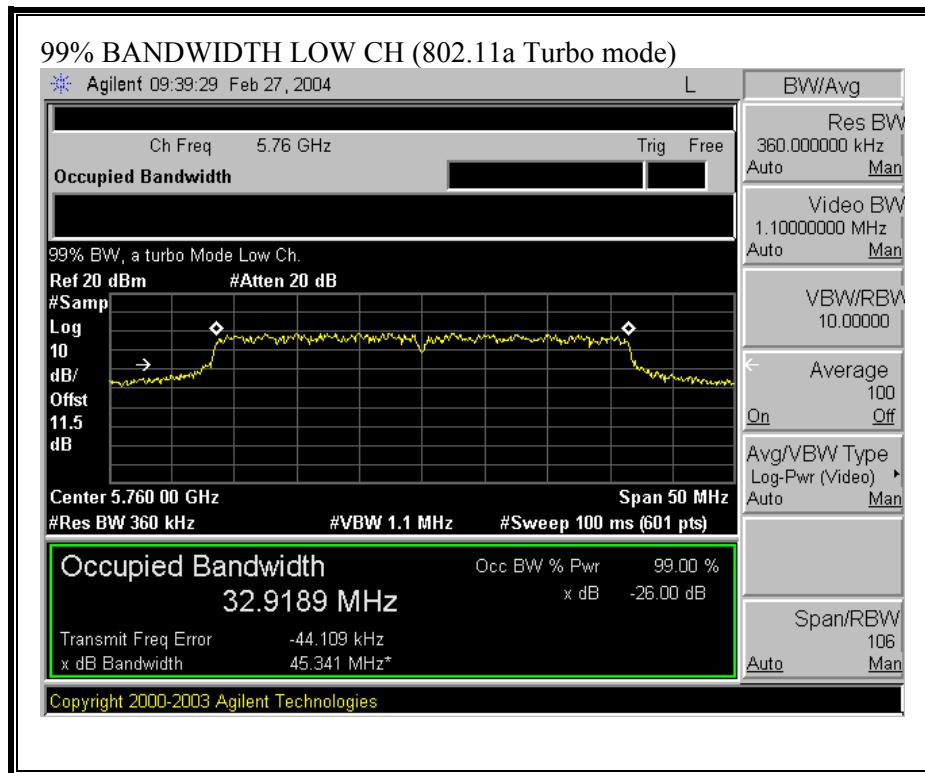


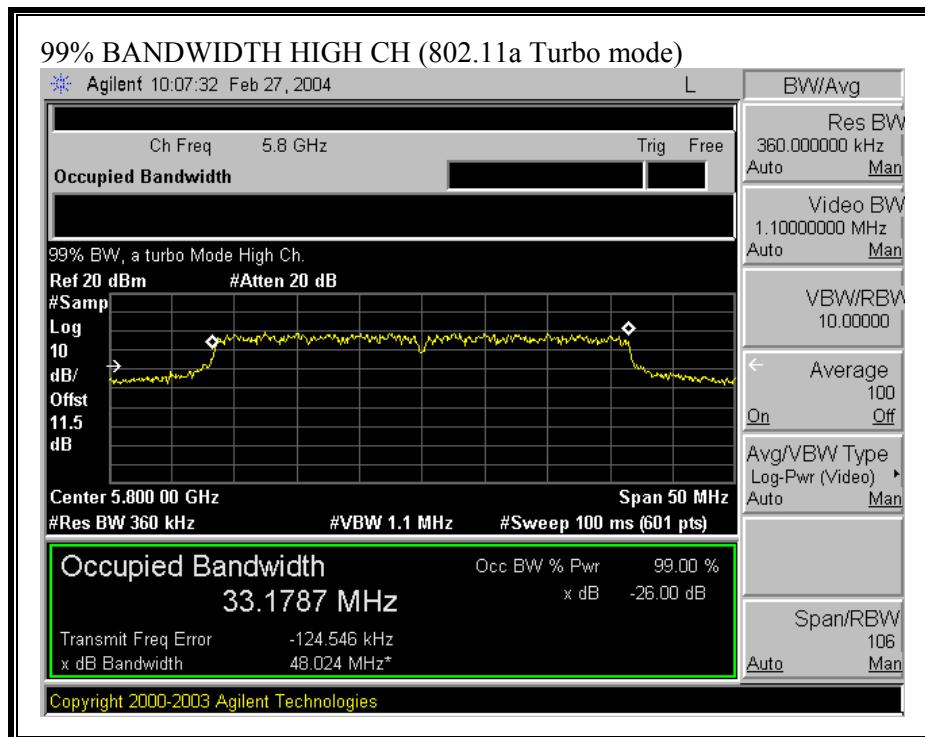

99% BANDWIDTH (802.11g MODE)






99% BANDWIDTH (802.11g TURBO MODE)


99% BANDWIDTH (802.11a MODE)



99% BANDWIDTH (802.11a TURBO MODE)

7.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 4.24 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

2.4 GHZ BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	20.64	30	-9.36
Middle	2437	20.85	30	-9.15
High	2462	17.96	30	-12.04

802.11g Mode

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	23.15	30	-6.85
Middle	2437	24.45	30	-5.55
High	2462	20.20	30	-9.80

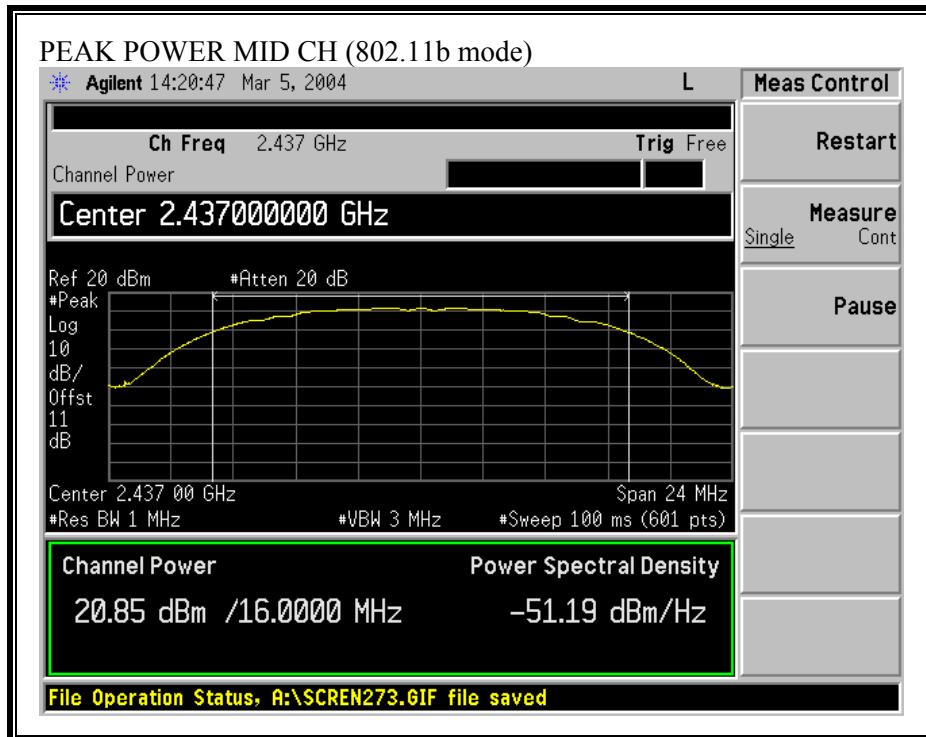
802.11g Turbo Mode

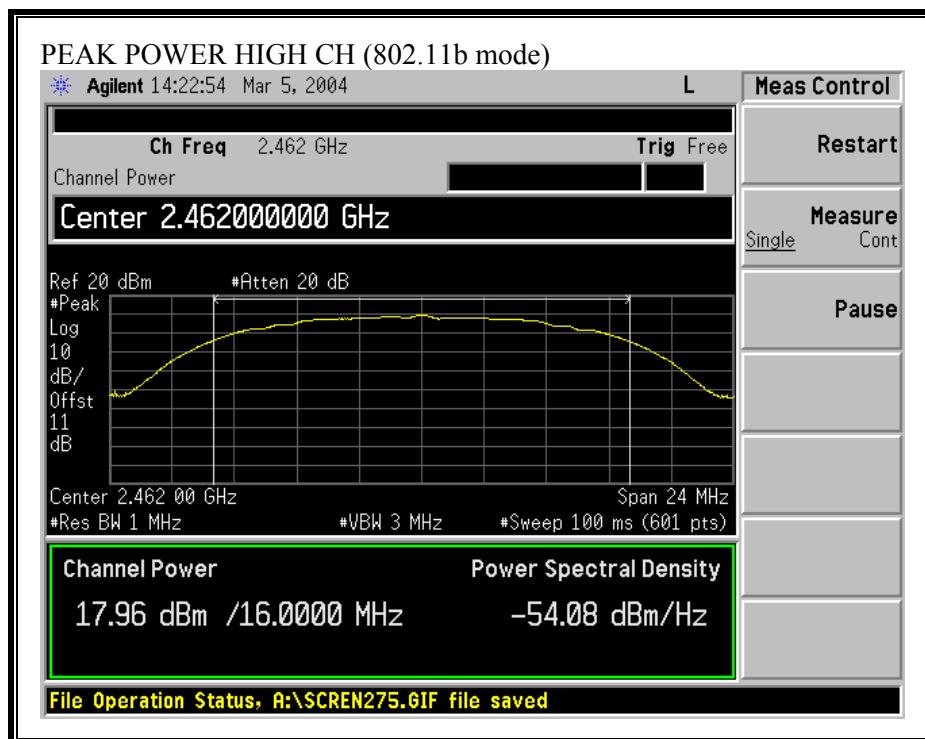
Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Middle	2437	24.34	30	-5.66

5.8 GHZ BAND RESULTS

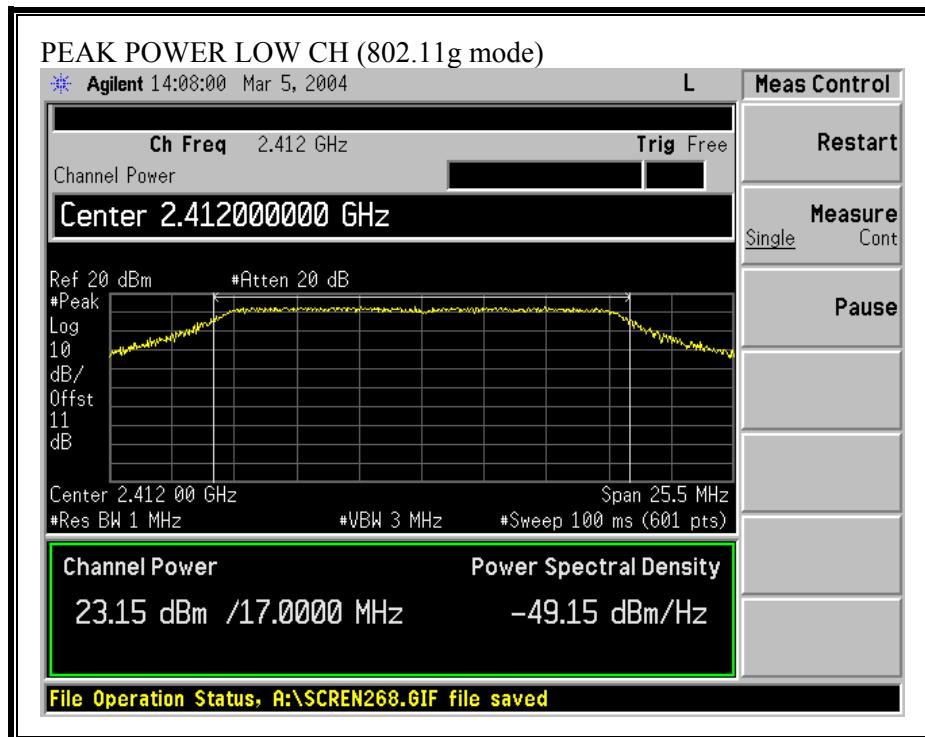
No non-compliance noted:

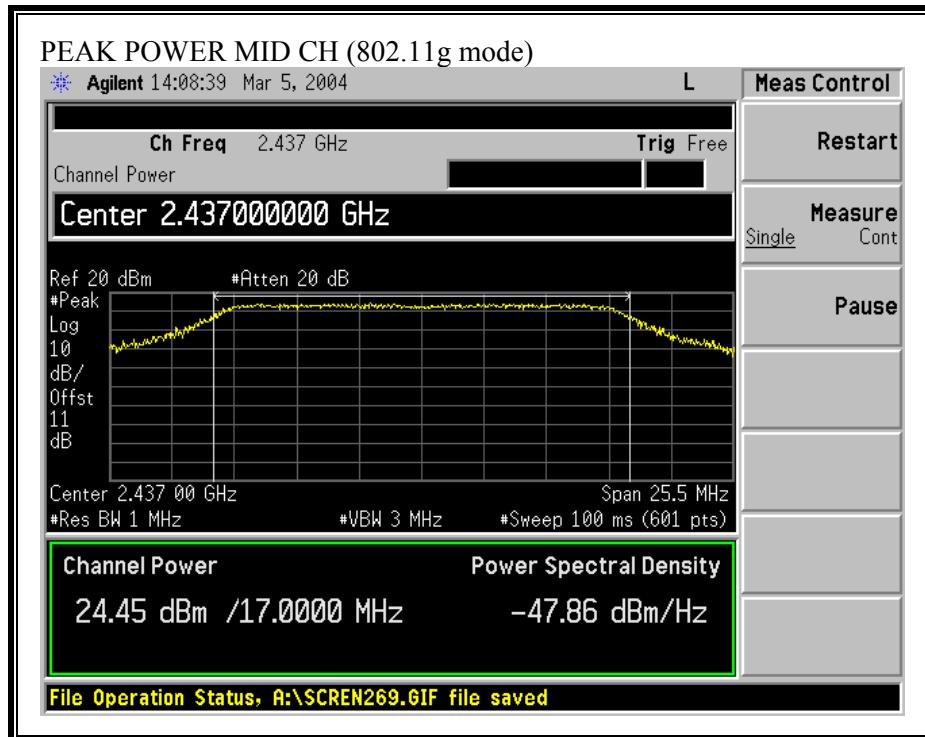
802.11a Mode

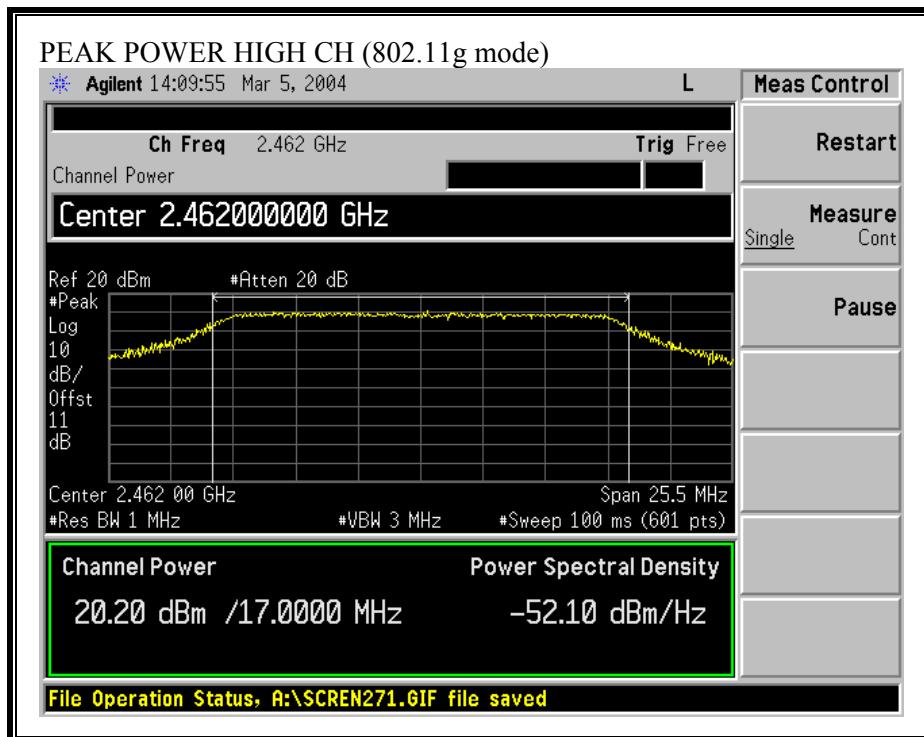

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	5745	24.35	30	-5.65
Middle	5785	24.38	30	-5.62
High	5825	25.74	30	-4.26

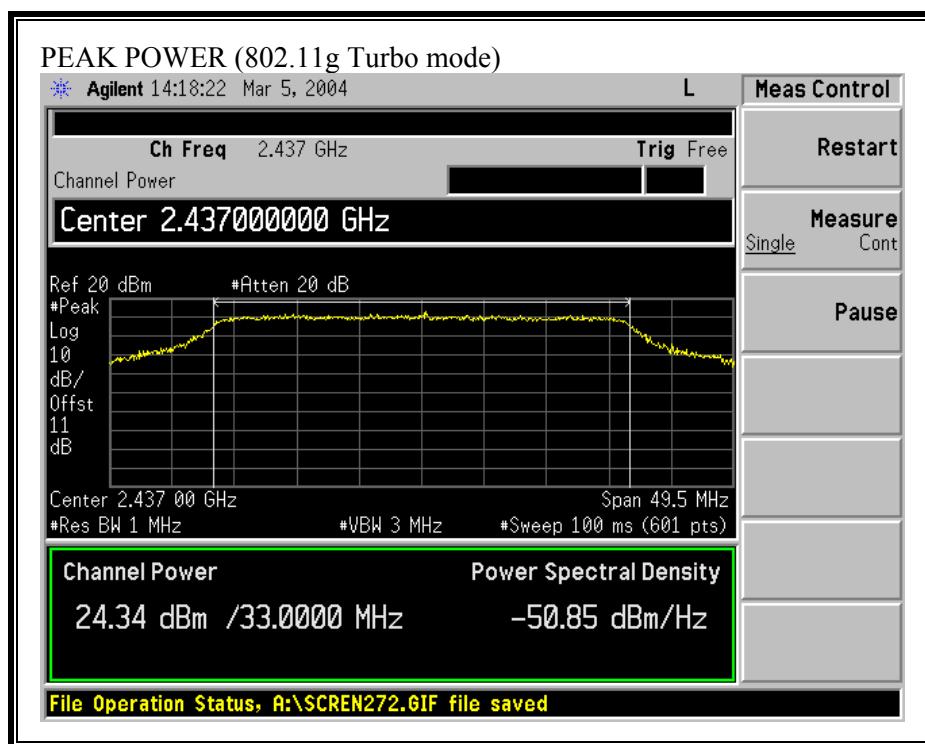

802.11a Turbo Mode

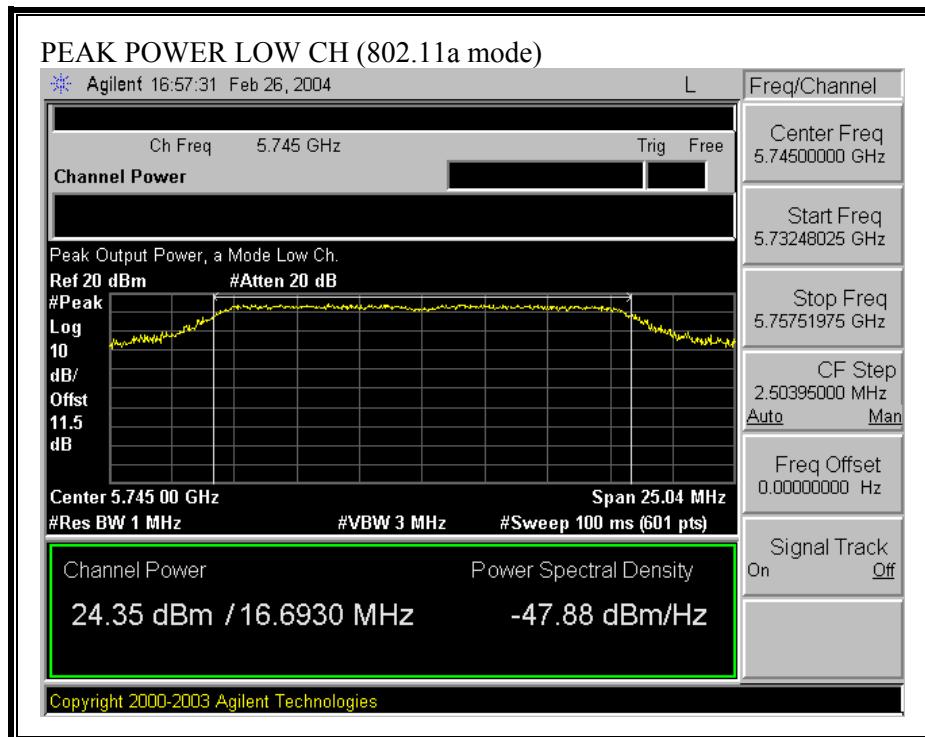
Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	5760	24.32	30	-5.68
High	5800	24.38	30	-5.62

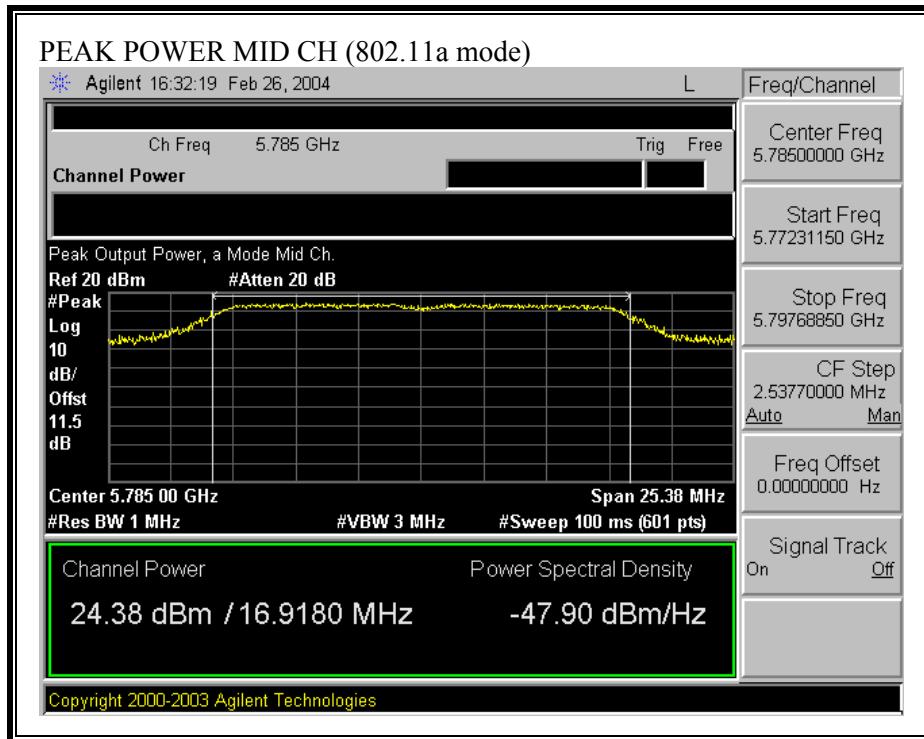

OUTPUT POWER (802.11b MODE)

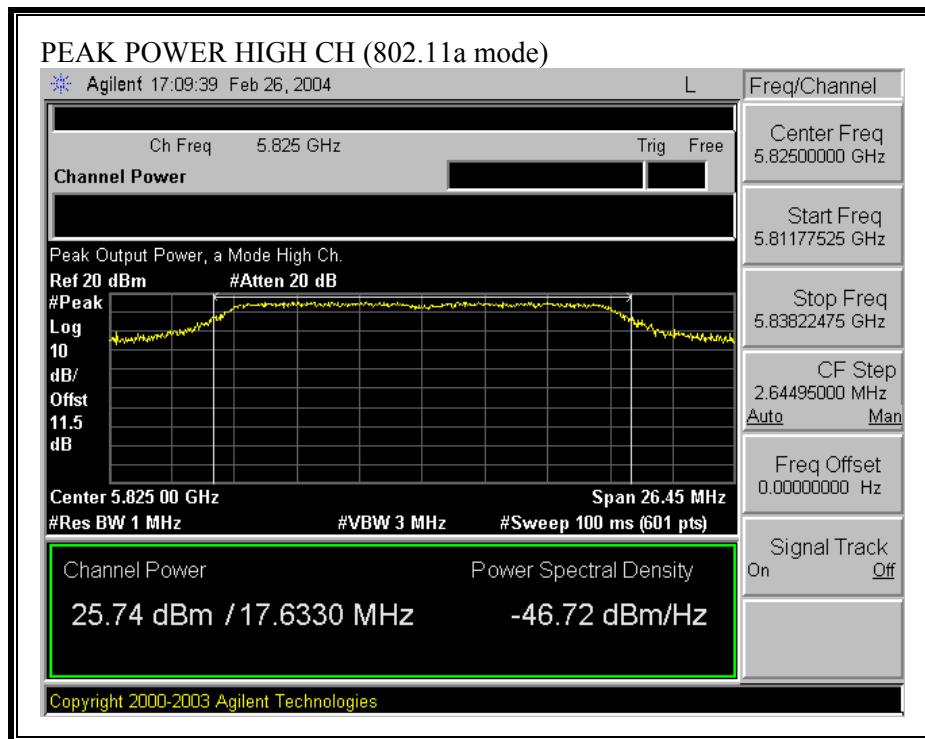


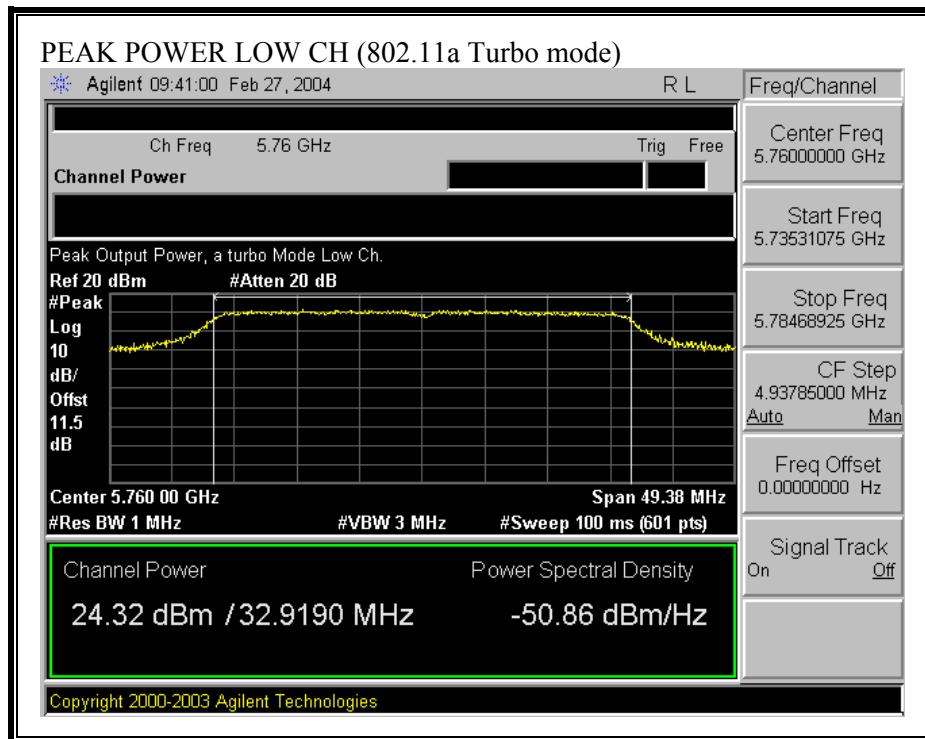


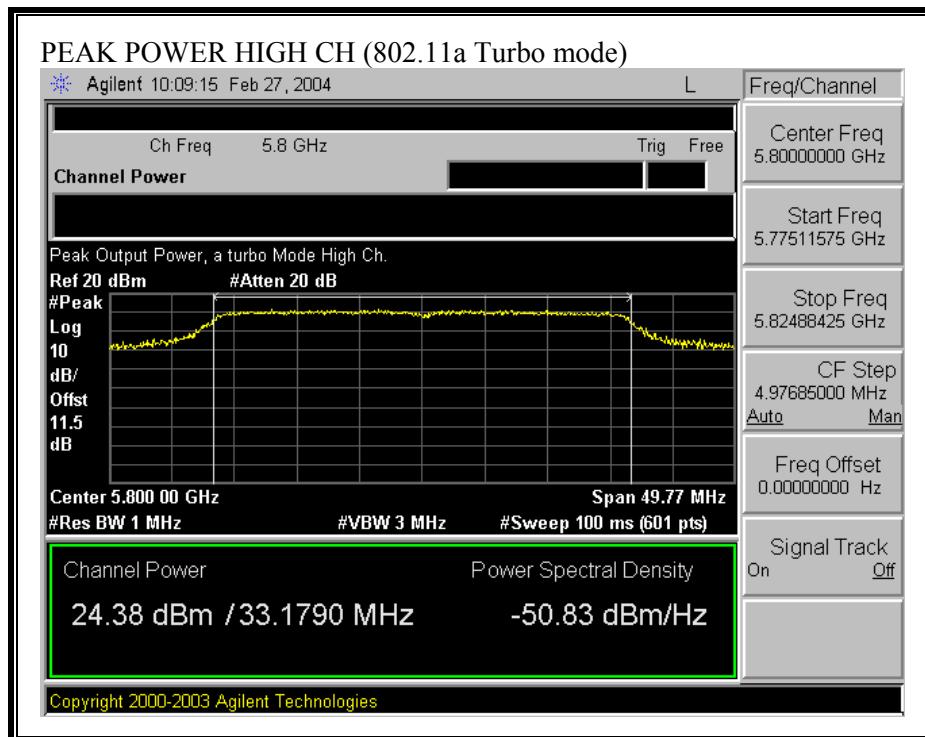

OUTPUT POWER (802.11g MODE)






OUTPUT POWER (802.11g TURBO MODE)


OUTPUT POWER (802.11a MODE)



OUTPUT POWER (802.11a TURBO MODE)

7.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

2.4 GHZ BAND RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.03 dB (including 10 dB pad and 1.03 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	19.50
Middle	2437	19.80
High	2462	16.90

802.11g Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	16.80
Middle	2437	16.50
High	2462	14.90

802.11g Turbo Mode

Channel	Frequency (MHz)	Average Power (dBm)
Middle	2437	19.00

5.8 GHZ BAND RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.6 dB (including 10 dB pad and 1.6 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	5745	17.60
Middle	5785	17.10
High	5825	17.20

802.11a Turbo Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	5760	17.30
High	5800	17.00

7.5. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-7.06	8	-15.06
Middle	2437	-8.02	8	-16.02
High	2462	-4.94	8	-12.94

802.11g Mode

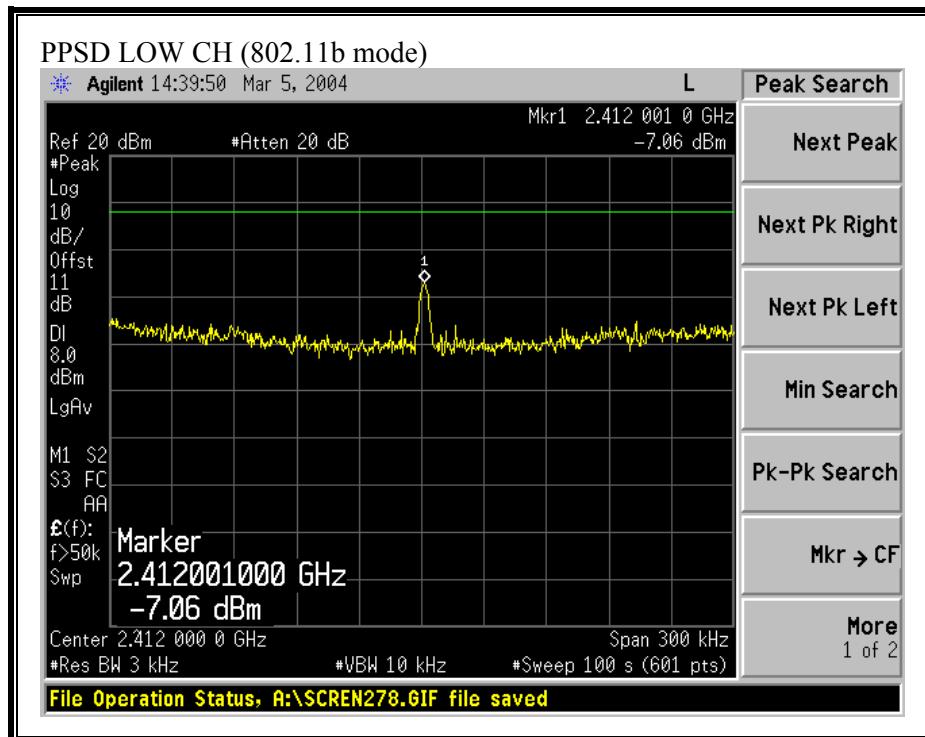
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-6.04	8	-14.04
Middle	2437	-0.50	8	-8.50
High	2462	-4.38	8	-12.38

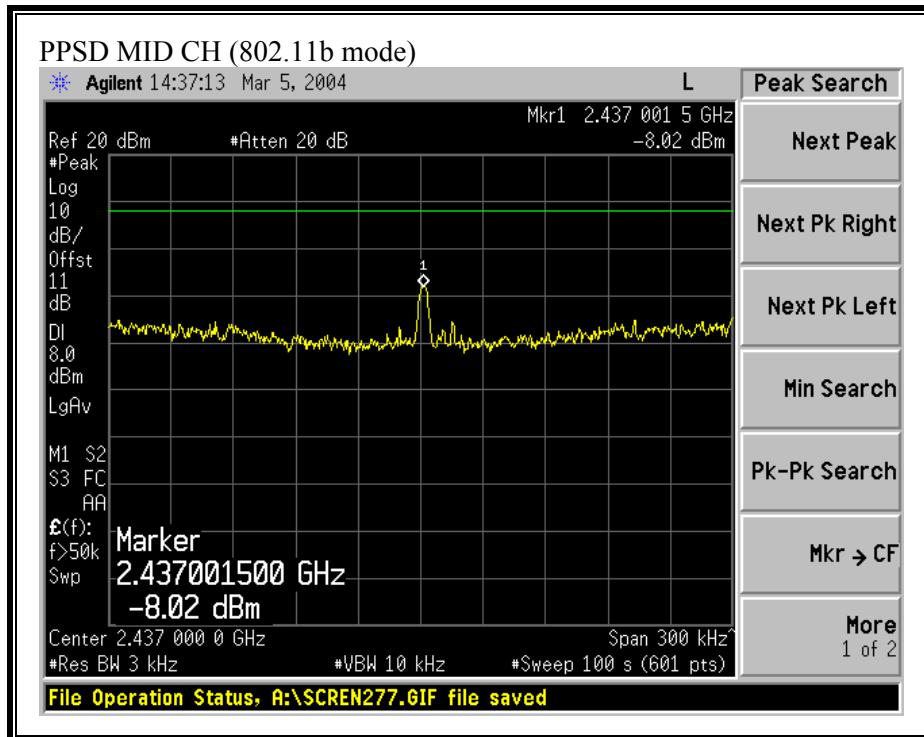
802.11g Turbo Mode

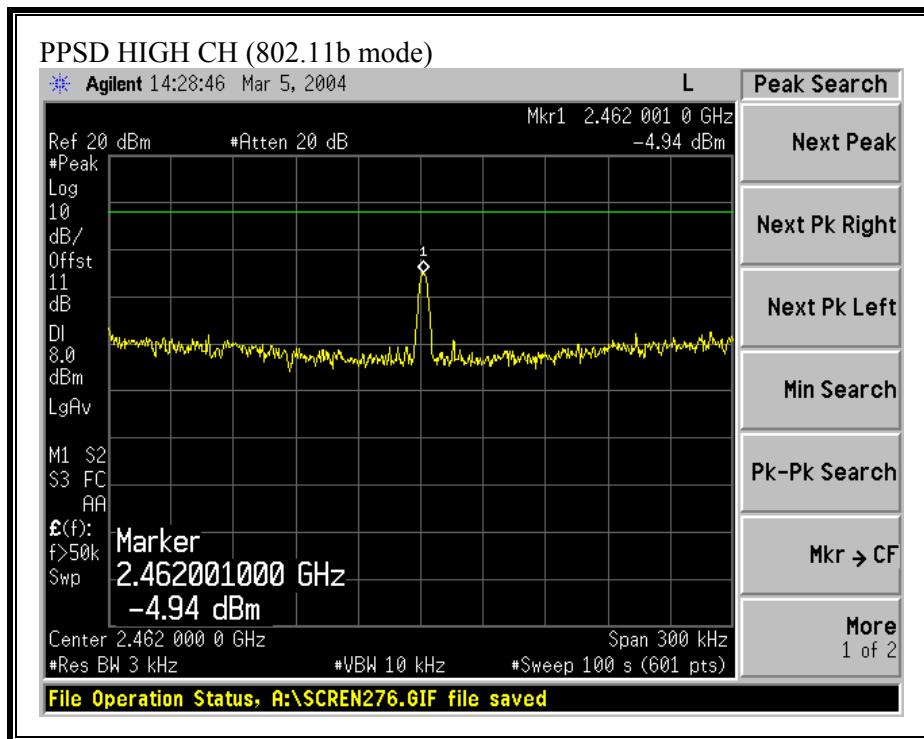
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Middle	2437	-0.51	8	-8.51

5.8 GHz BAND RESULTS

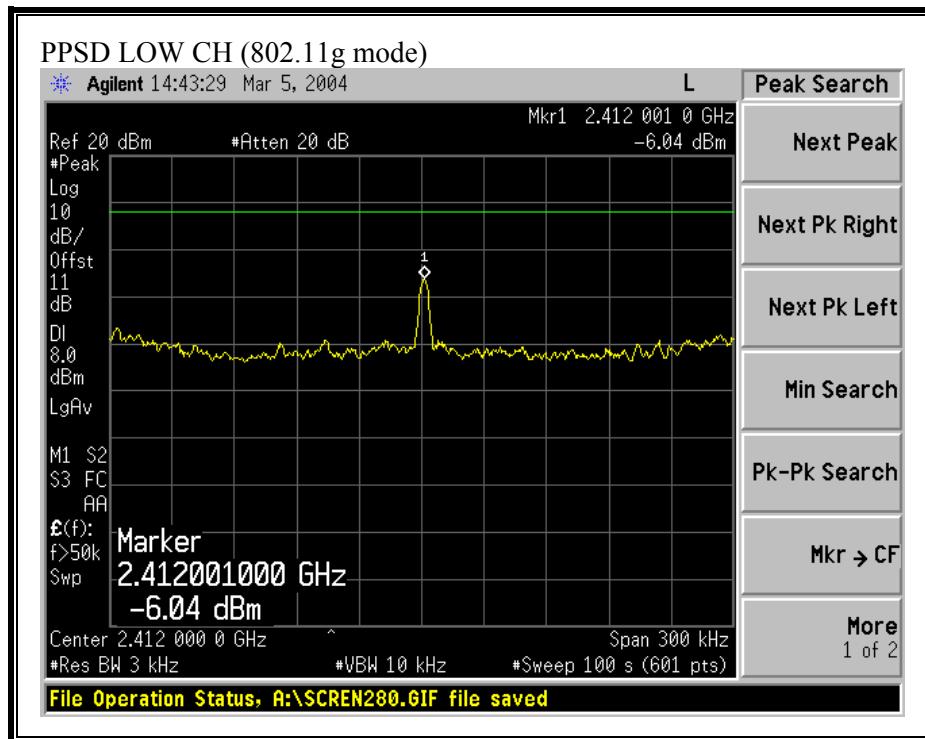
No non-compliance noted:

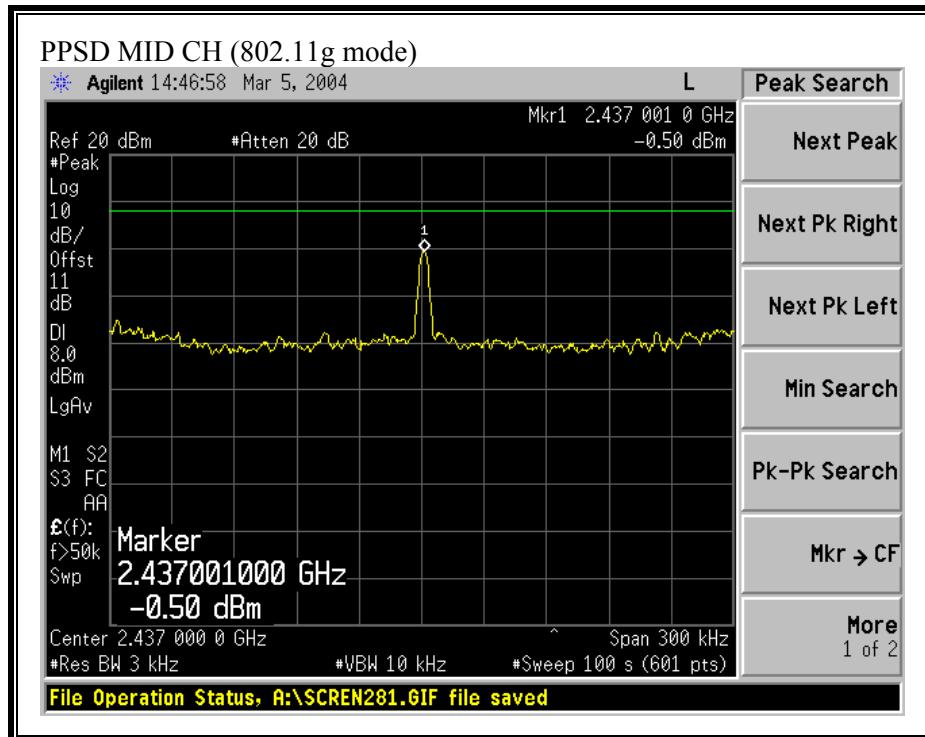

802.11a Mode

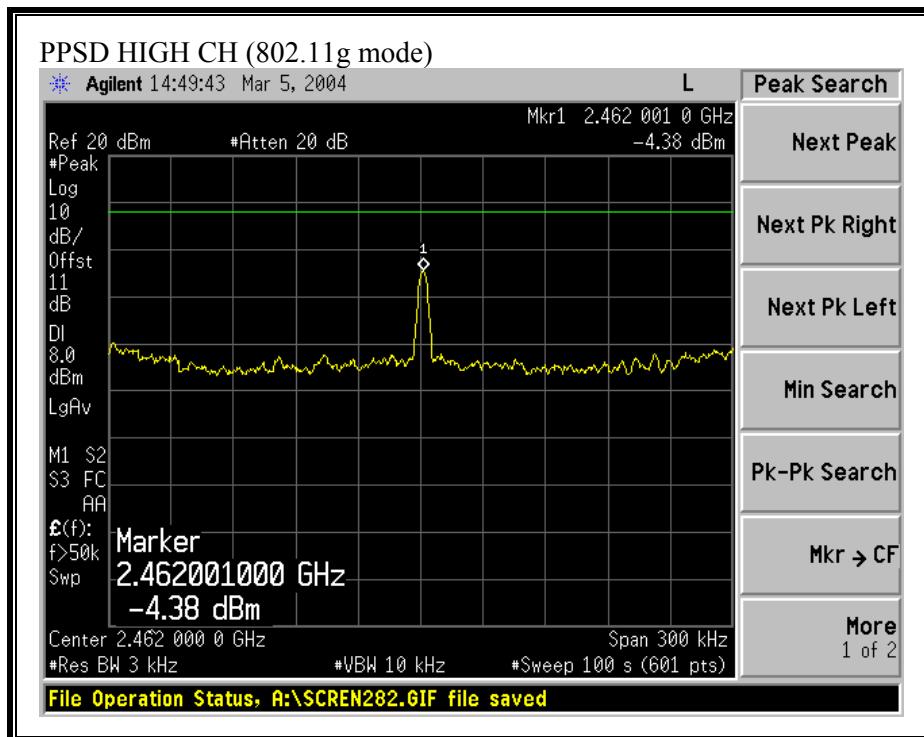

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	5745	-8.34	8	-16.34
Middle	5785	-8.18	8	-16.18
High	5825	-5.29	8	-13.29

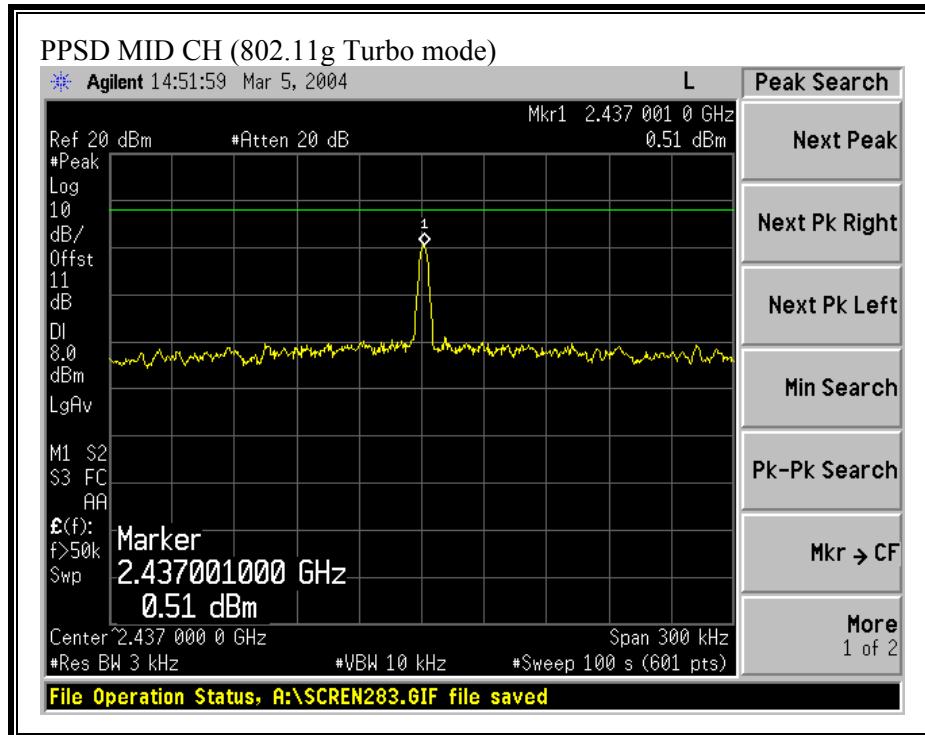

802.11a Turbo Mode

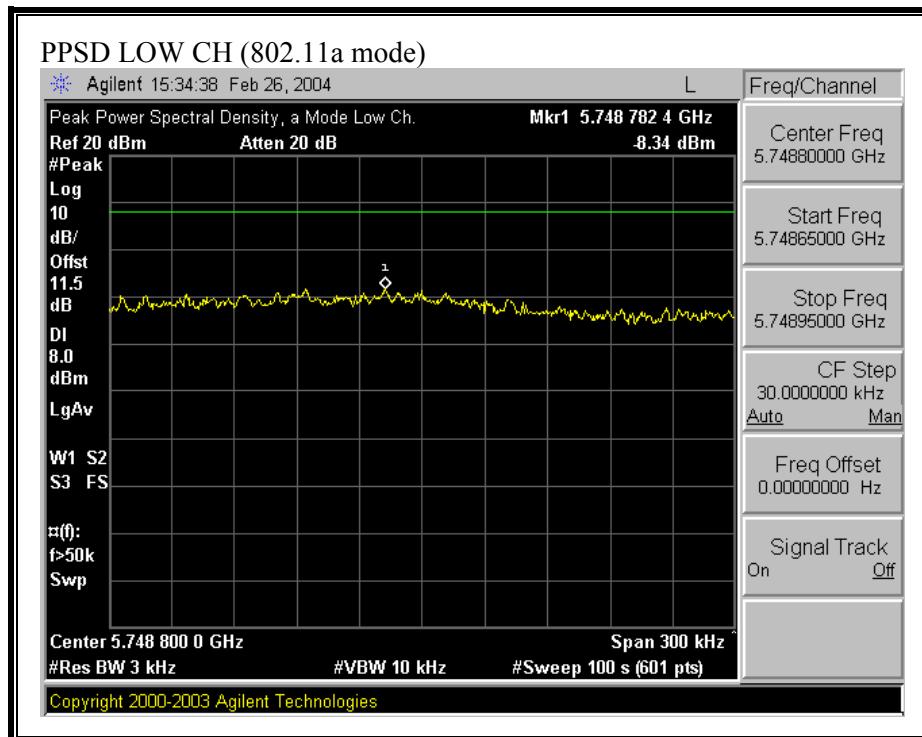
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	5760	-8.04	8	-16.04
High	5800	-9.28	8	-17.28

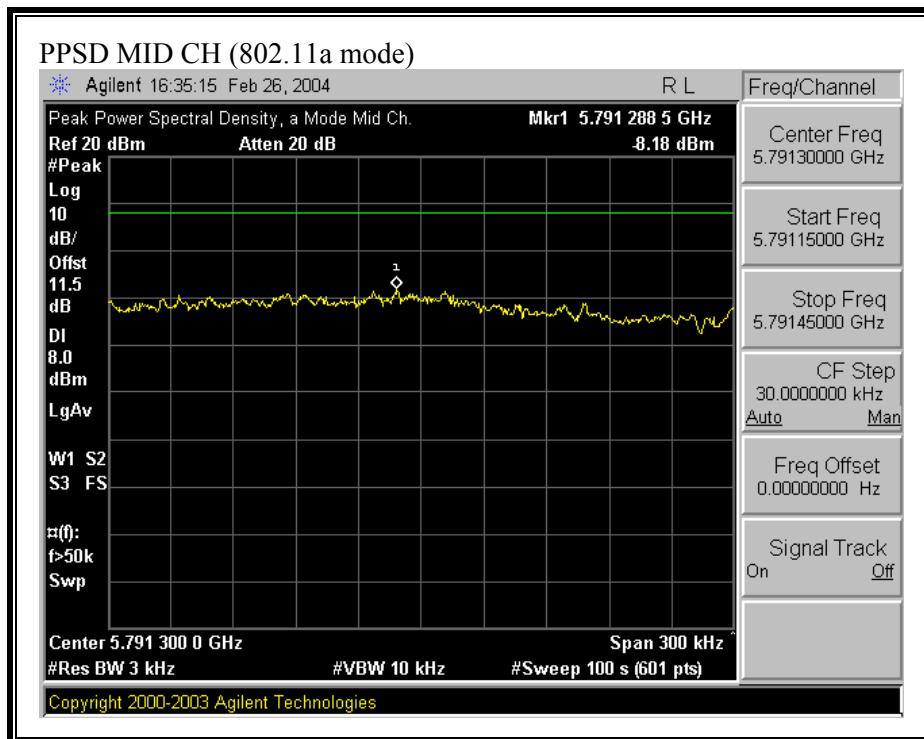

PEAK POWER SPECTRAL DENSITY (802.11b MODE)

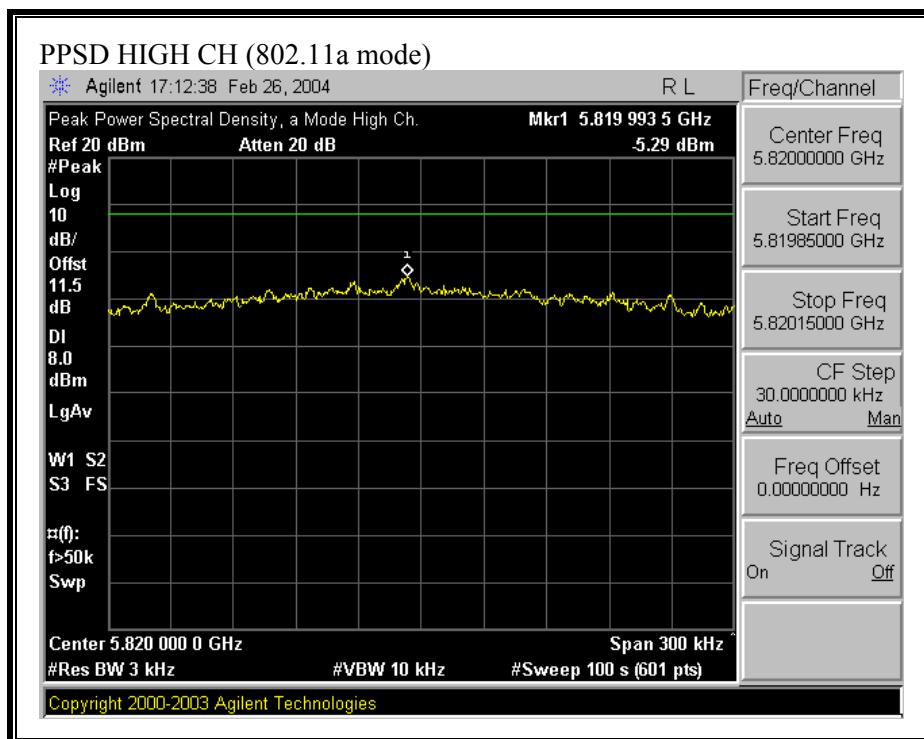


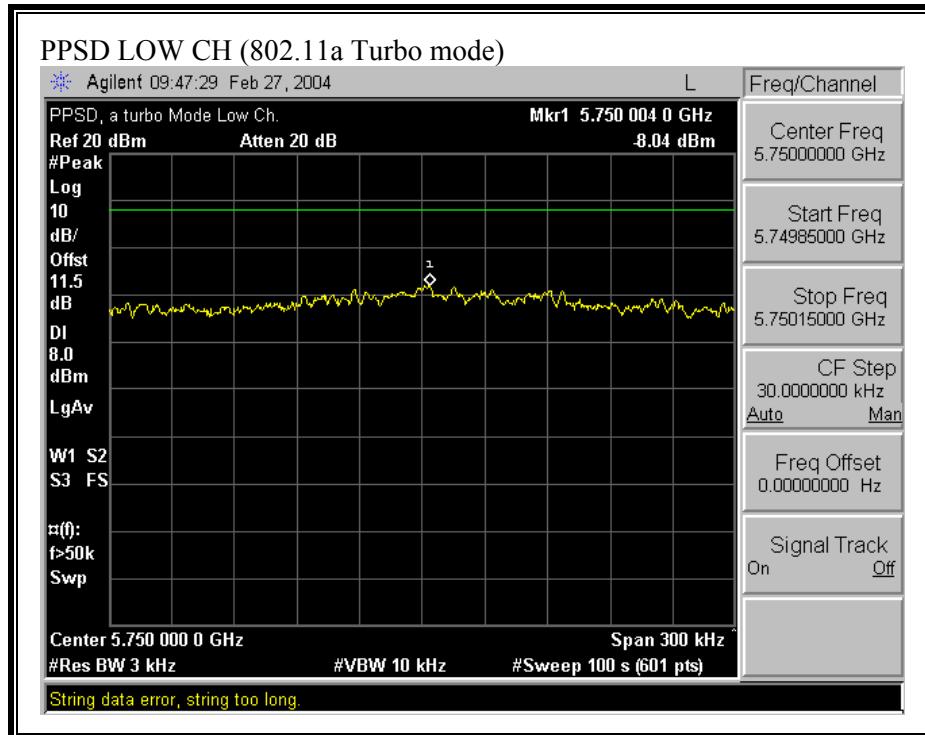


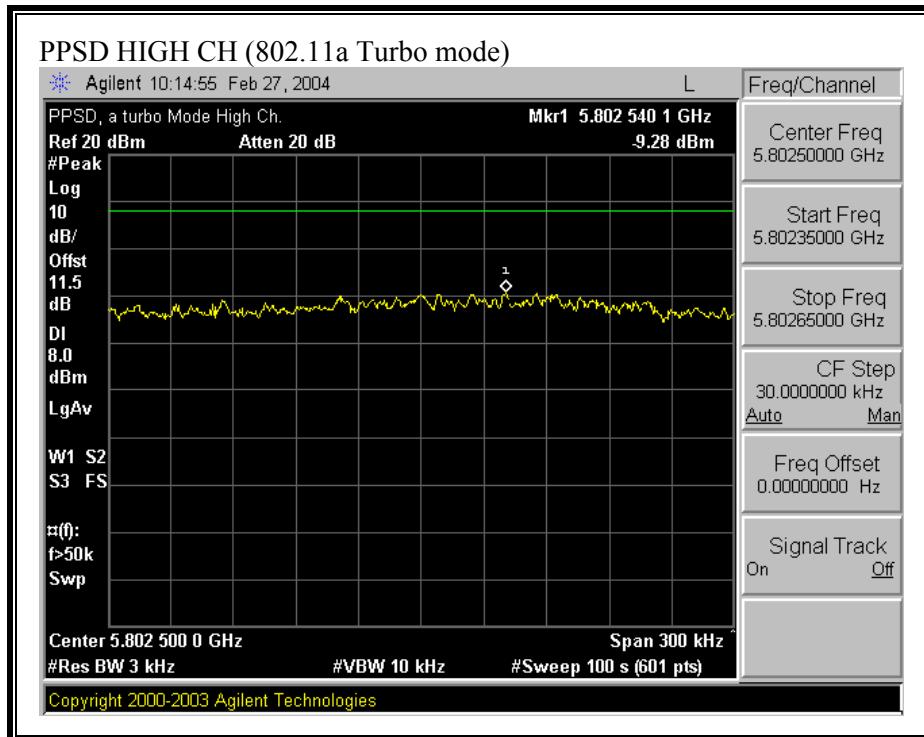

PEAK POWER SPECTRAL DENSITY (802.11g MODE)






PEAK POWER SPECTRAL DENSITY (802.11g TURBO MODE)


PEAK POWER SPECTRAL DENSITY (802.11a MODE)



PEAK POWER SPECTRAL DENSITY (802.11a TURBO MODE)

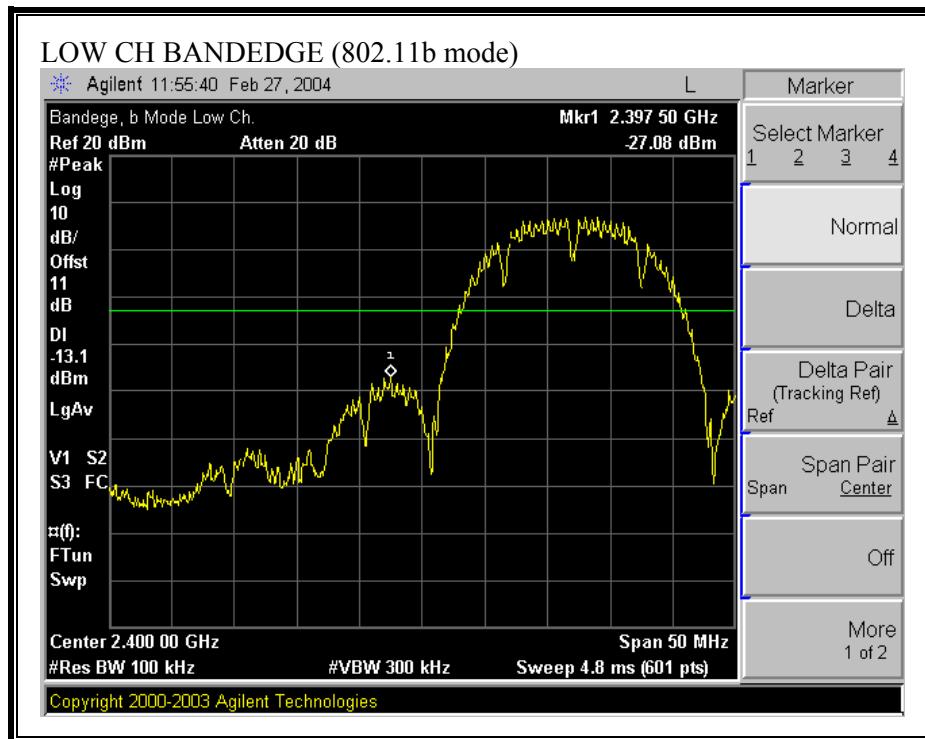
7.6. CONDUCTED SPURIOUS EMISSIONS

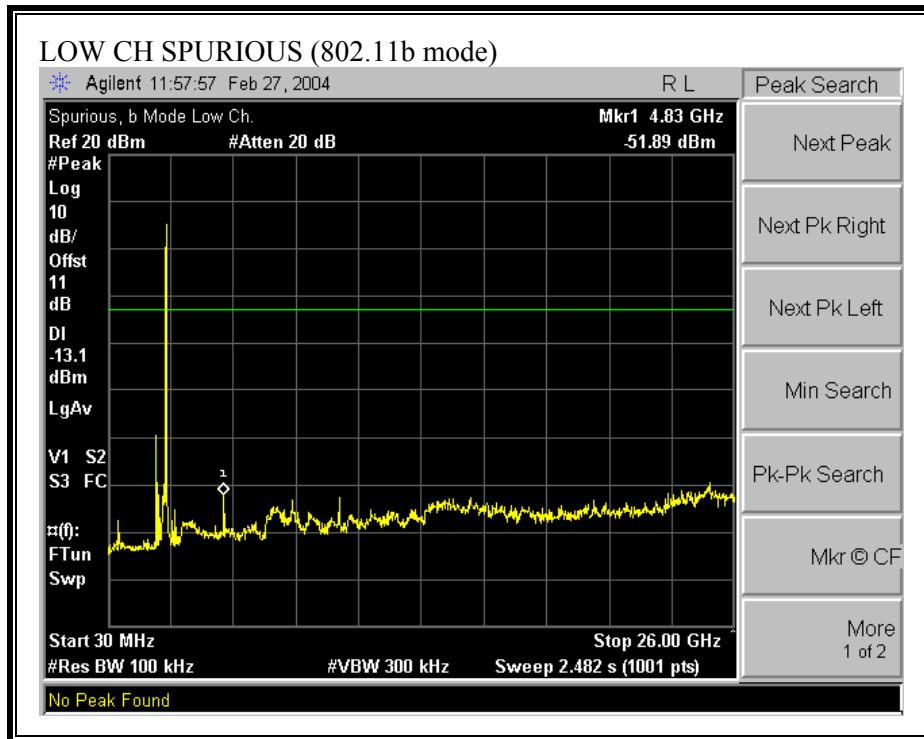
LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

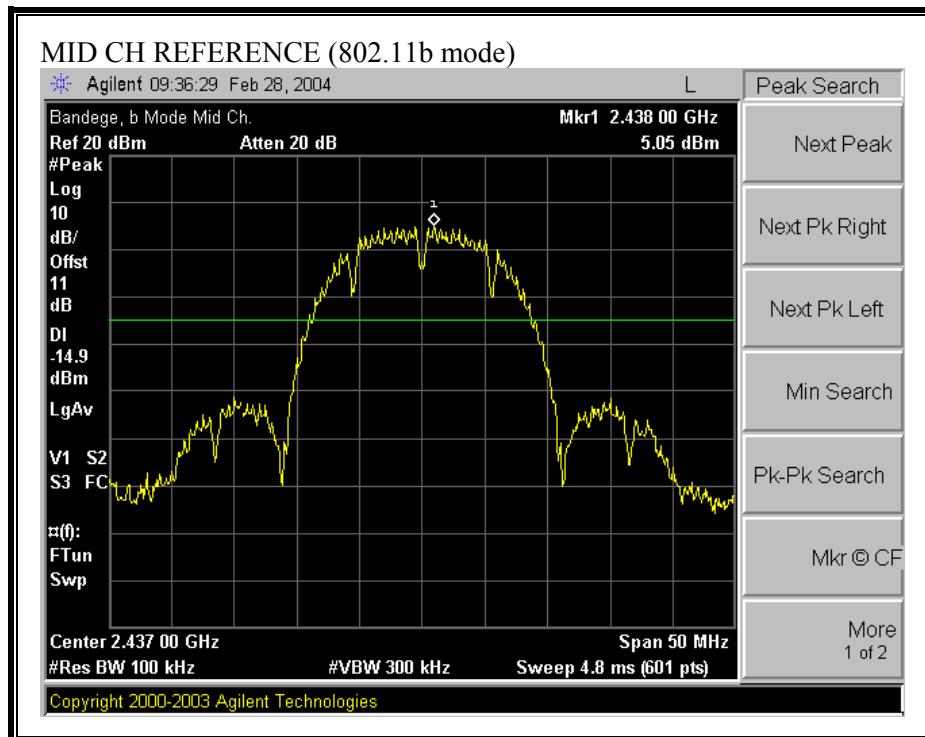
TEST PROCEDURE

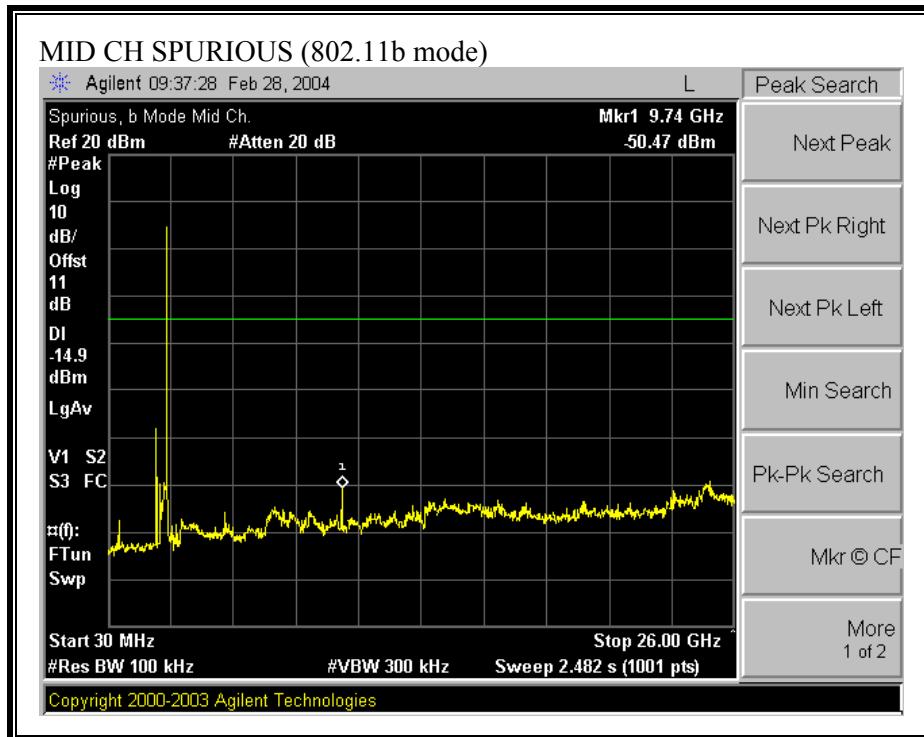
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

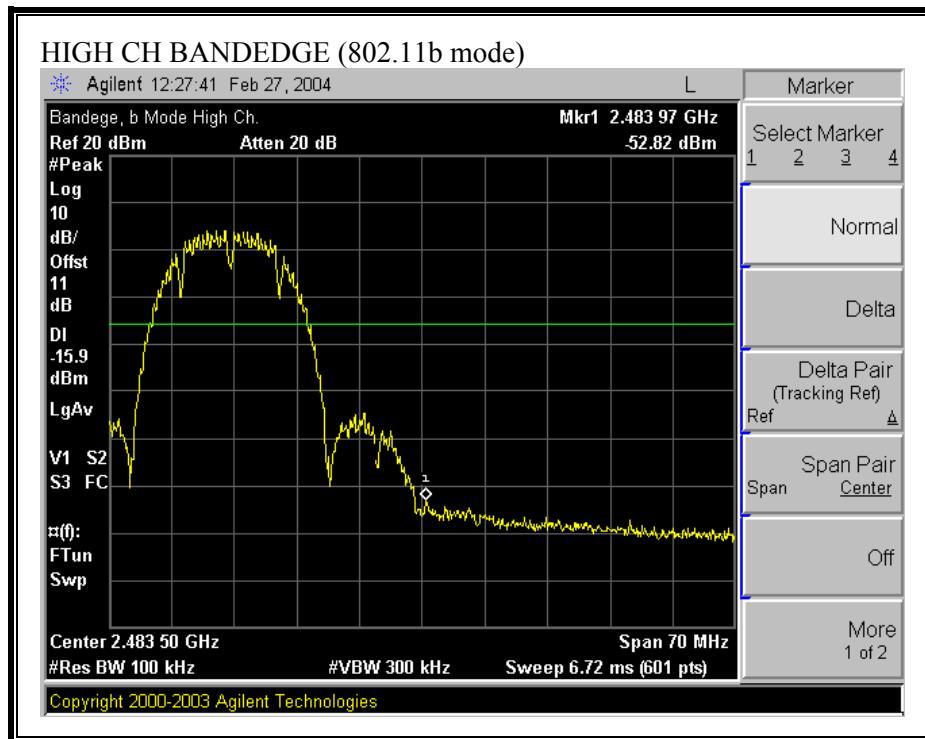

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

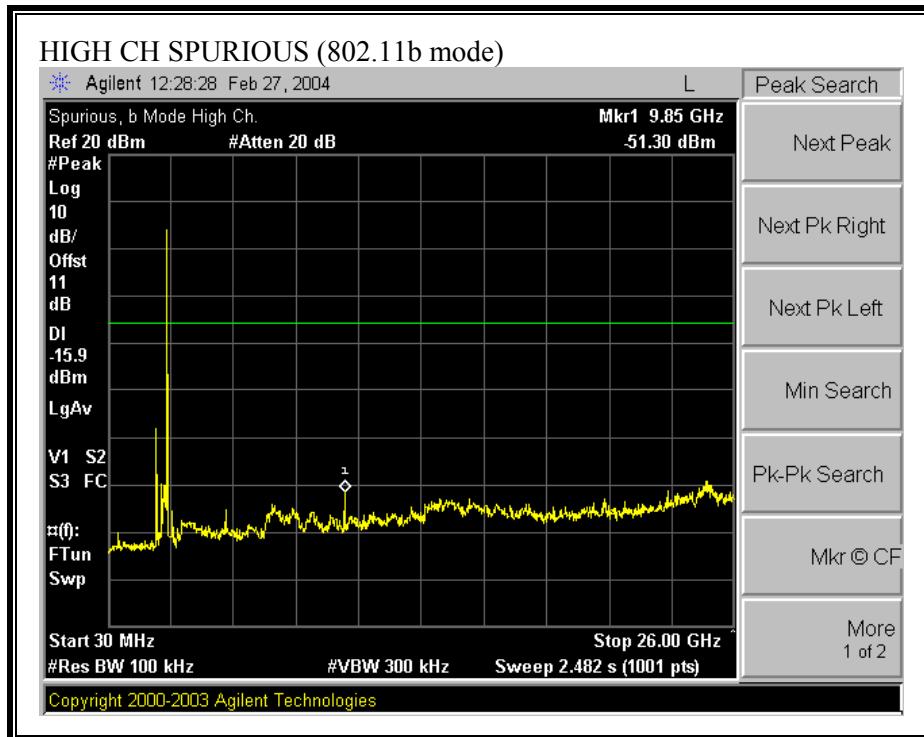

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 5.8 GHz band.

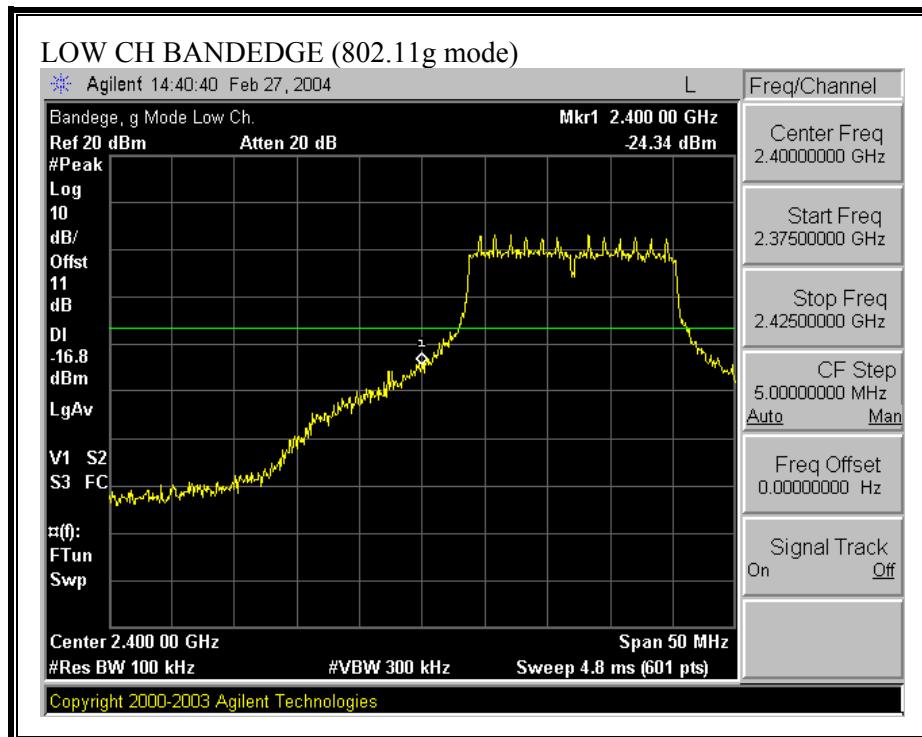
RESULTS

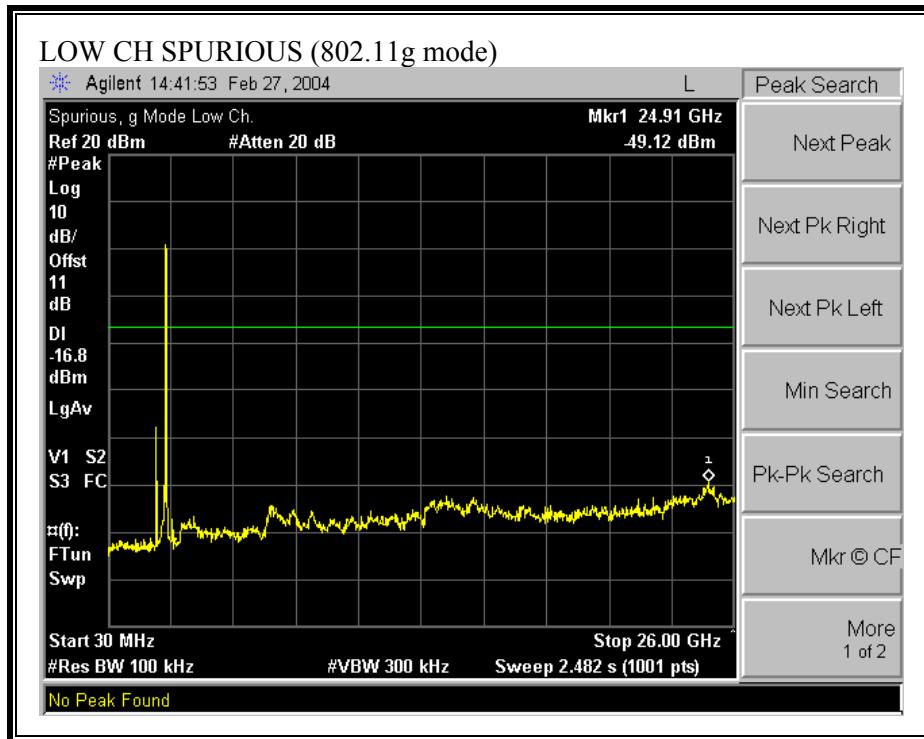

No non-compliance noted:

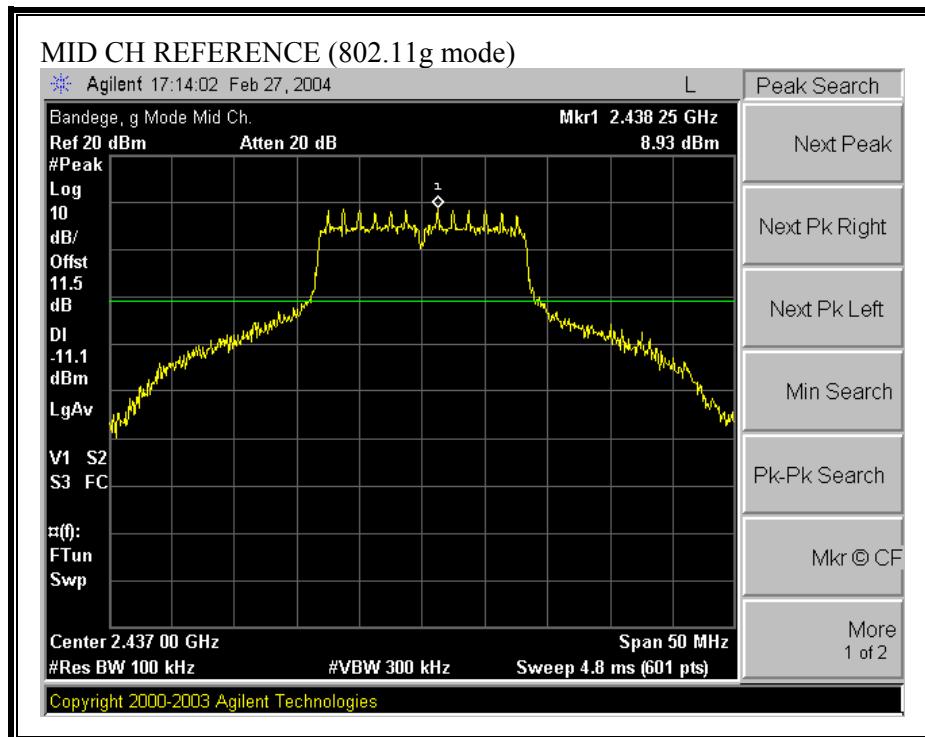

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

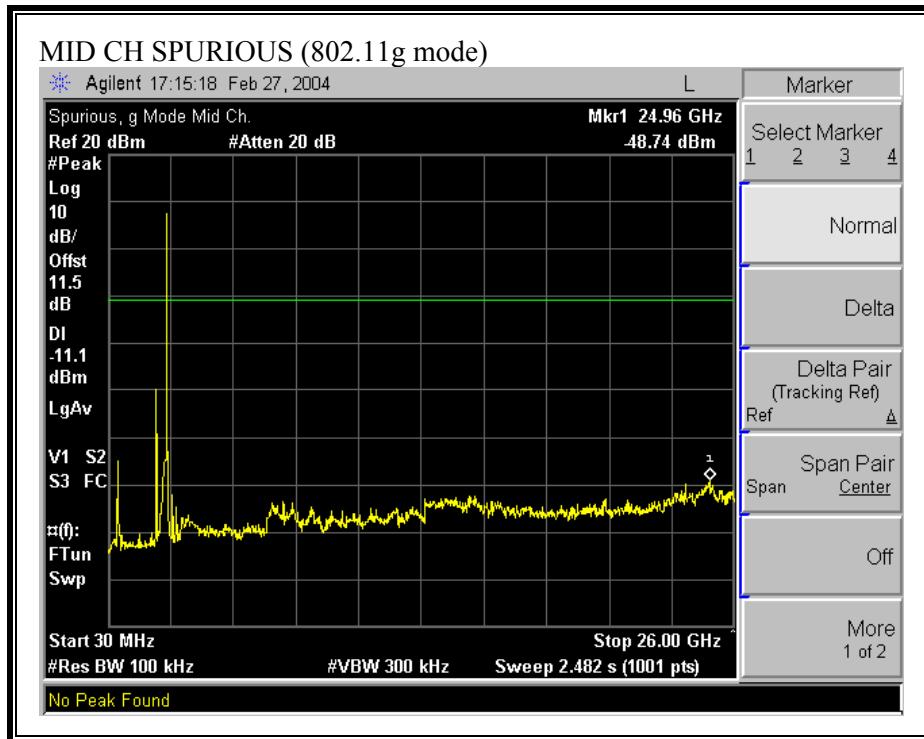


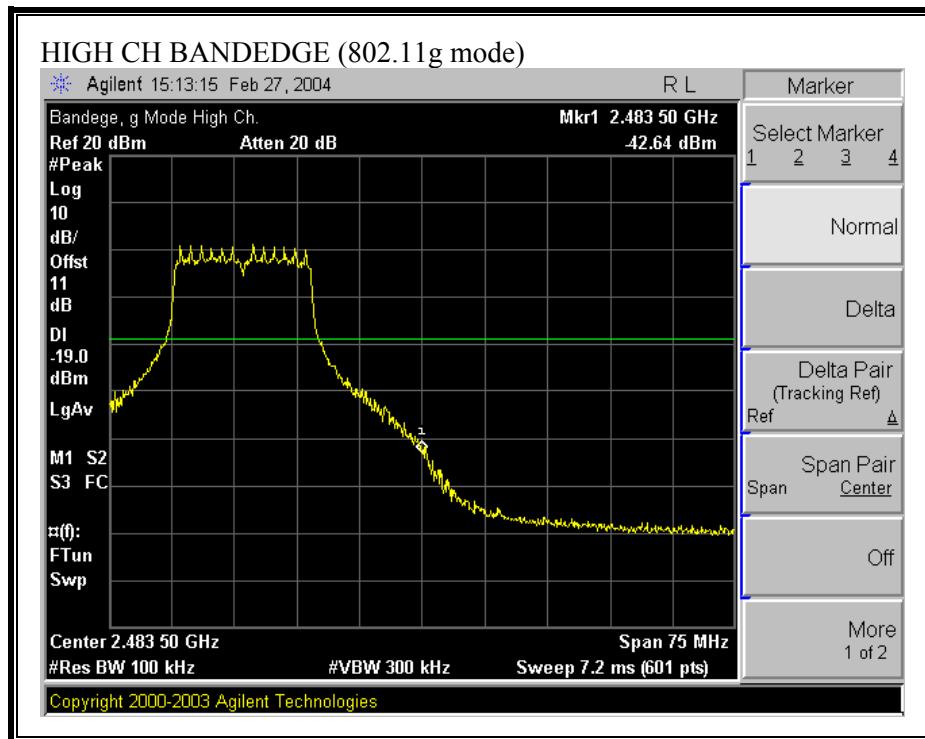

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

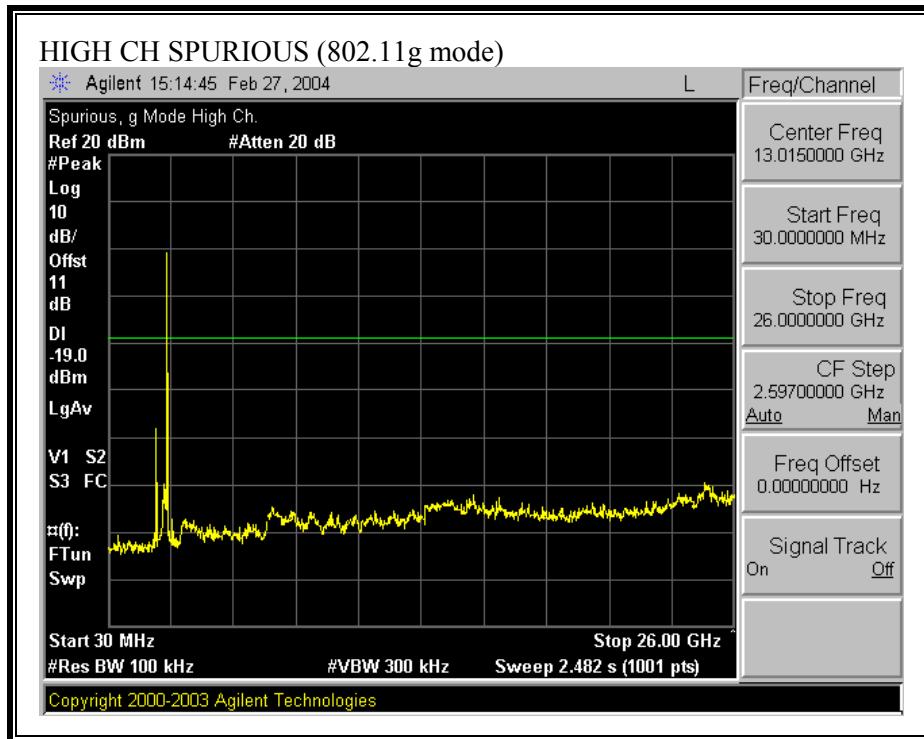


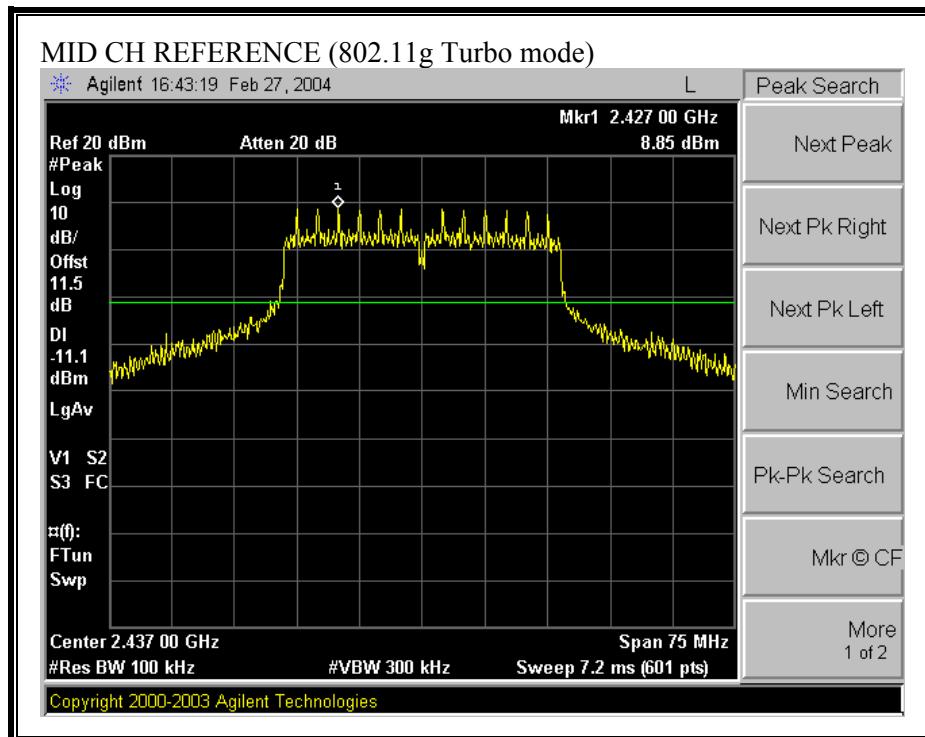

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

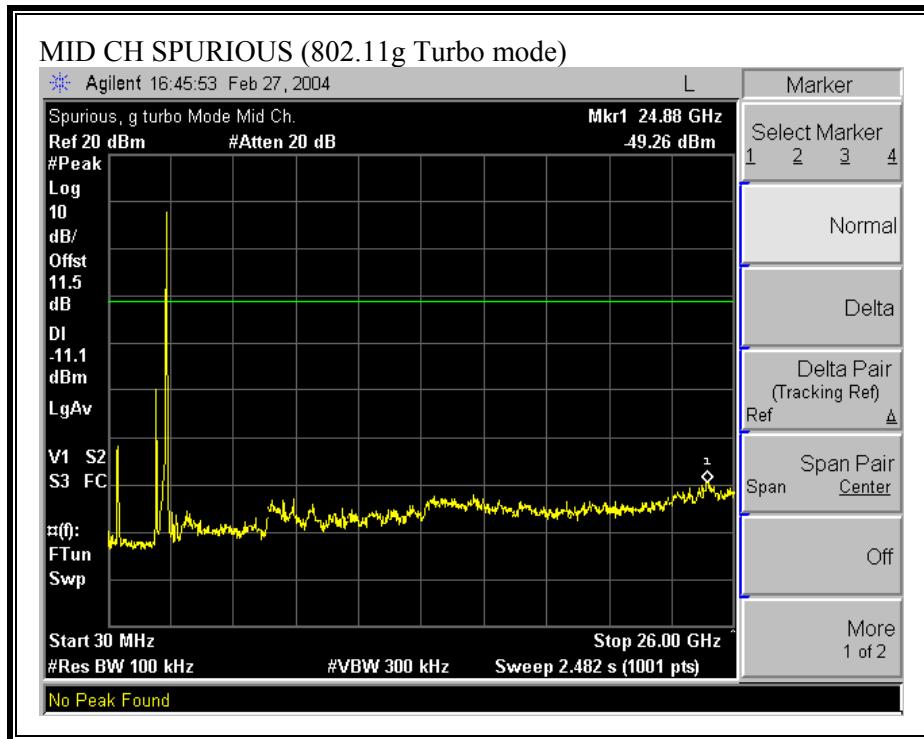


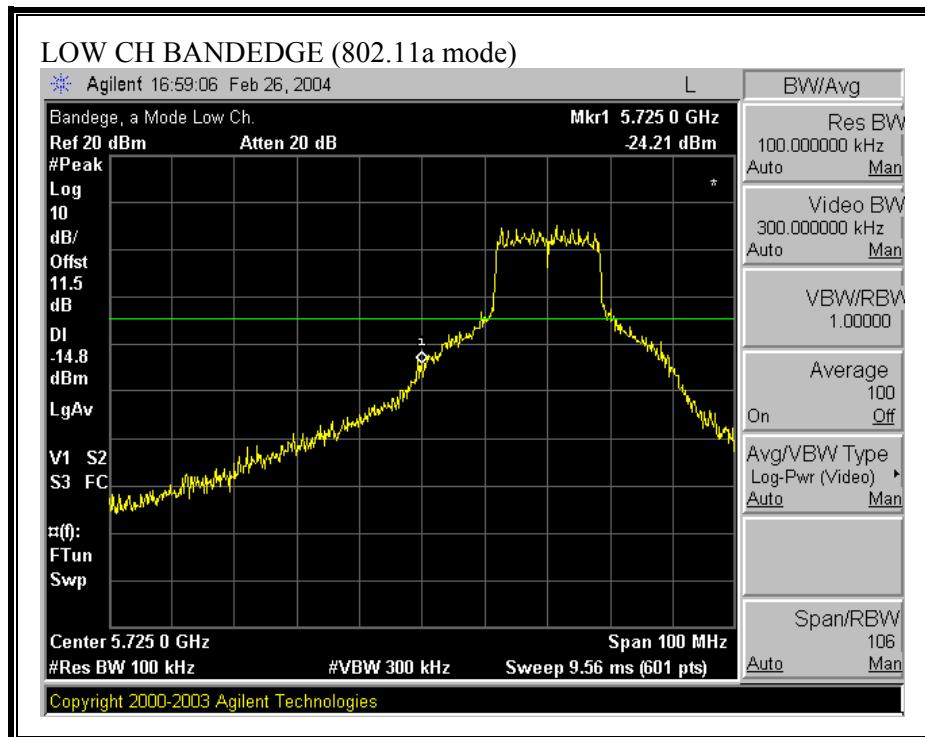

SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)

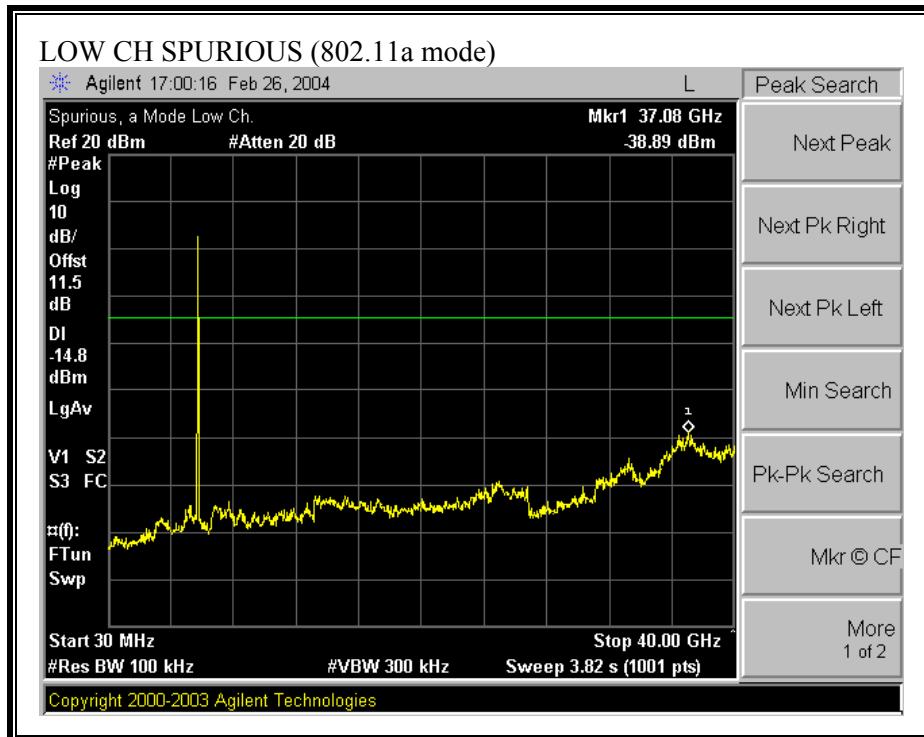


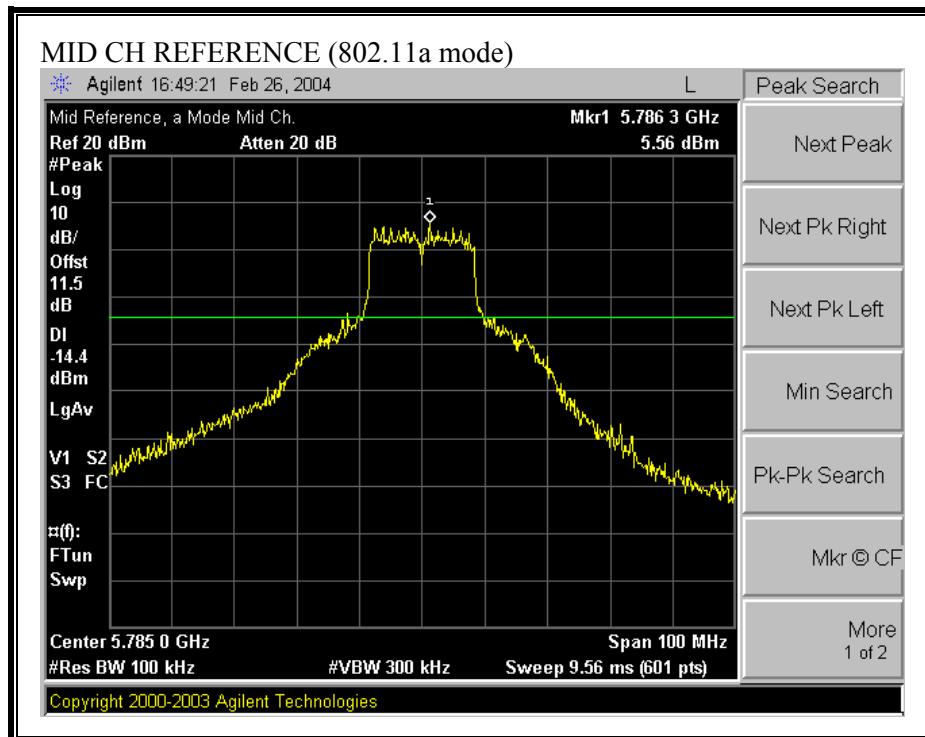

SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)

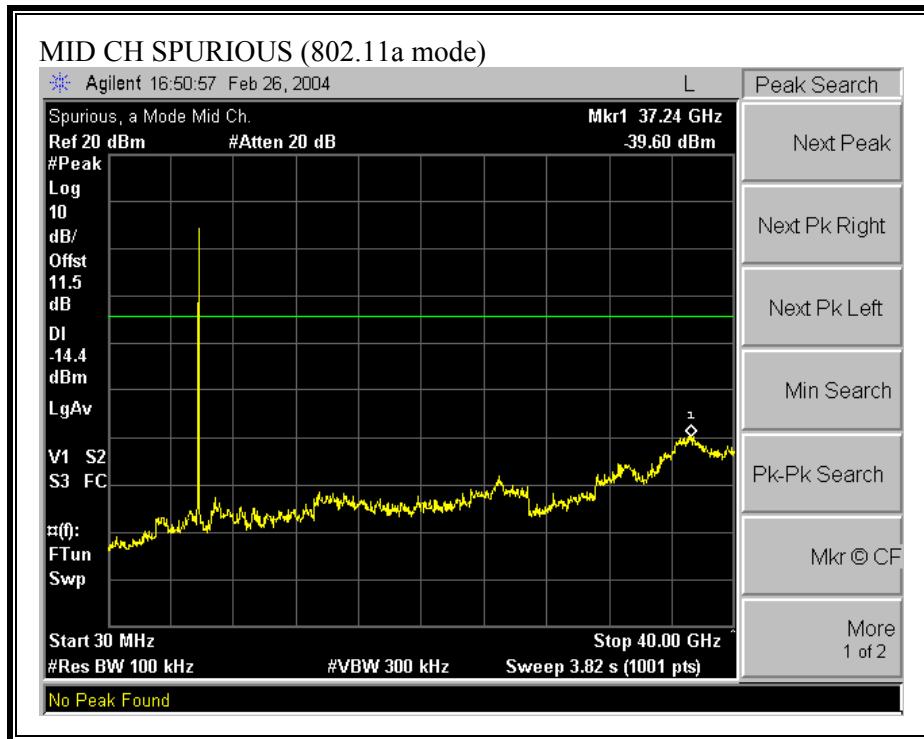


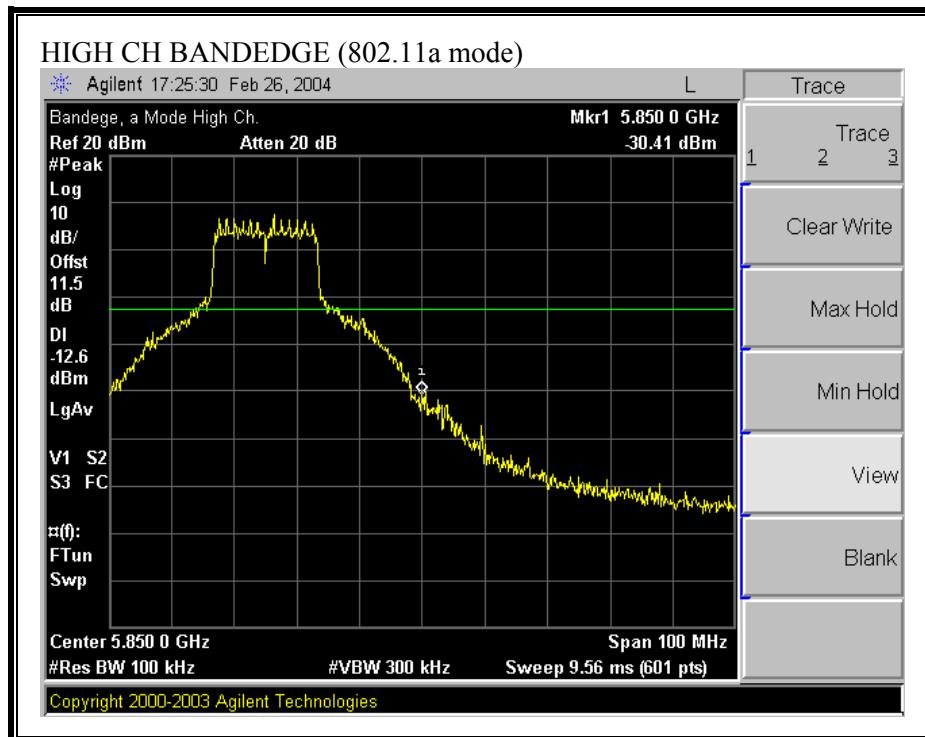

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)

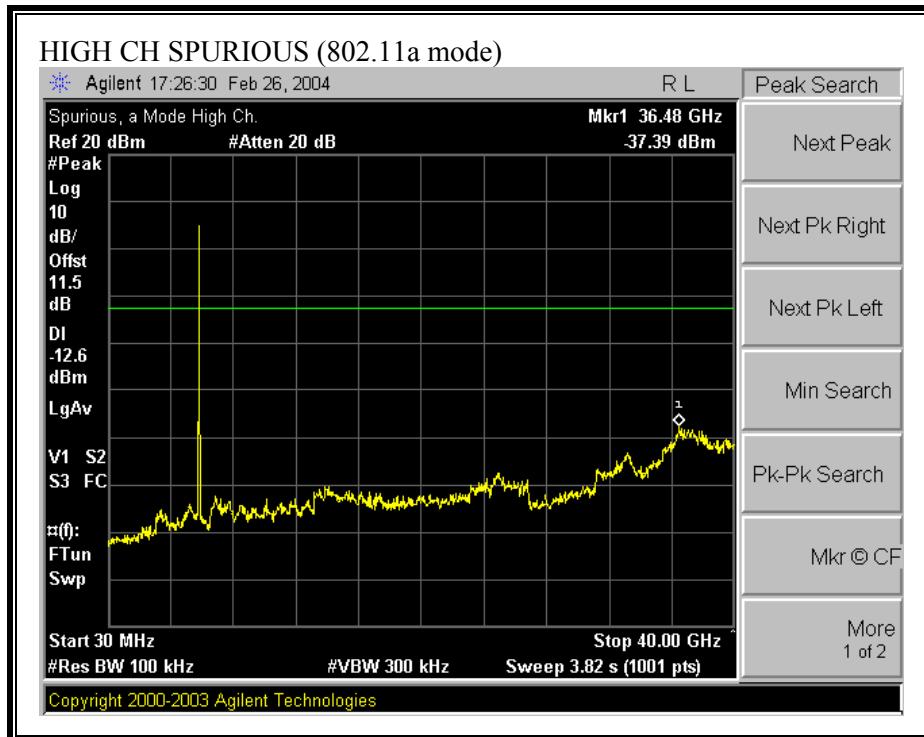


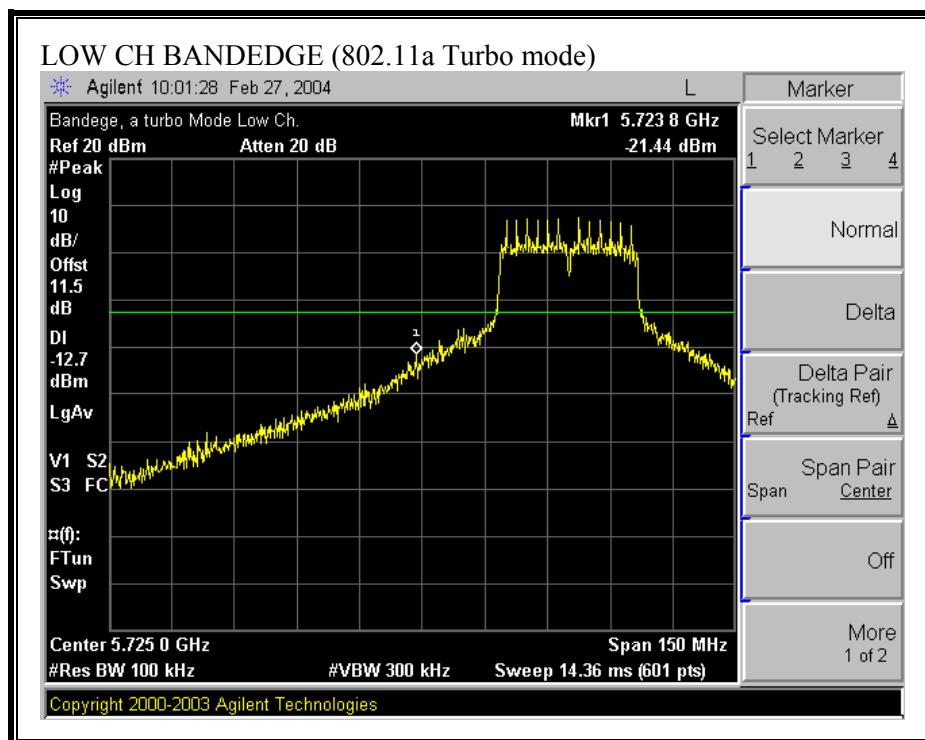

SPURIOUS EMISSIONS, MID CHANNEL (802.11g TURBO MODE)

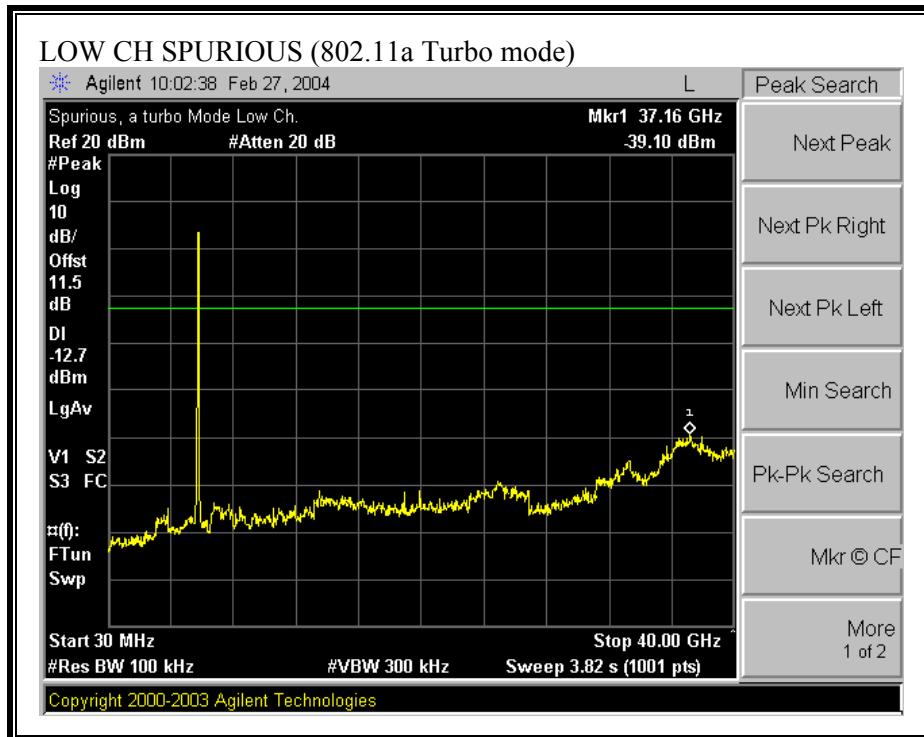


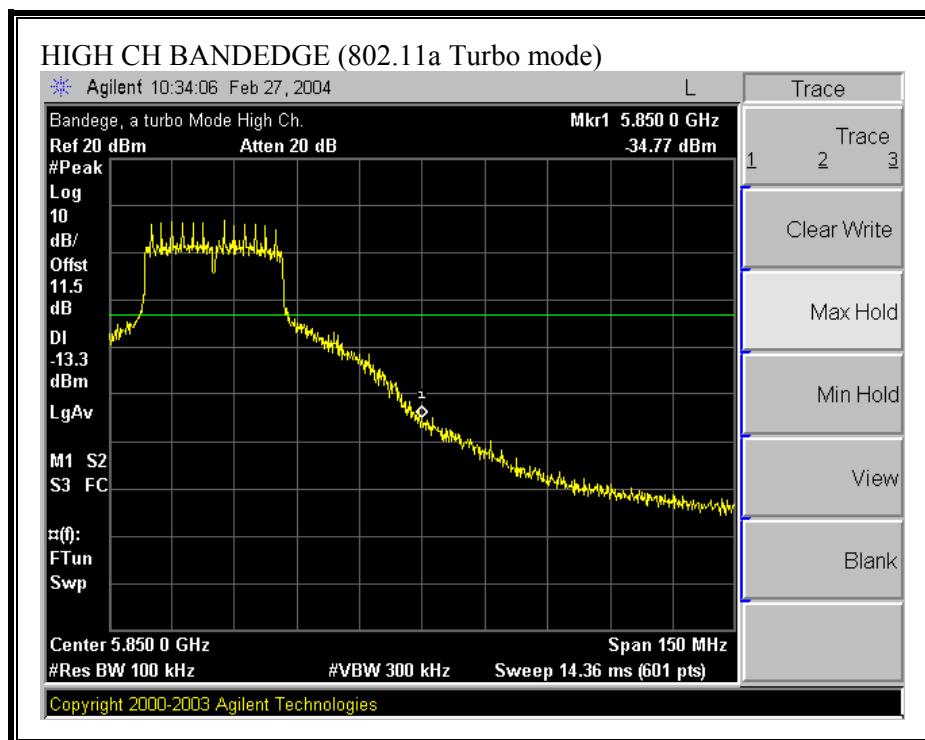

SPURIOUS EMISSIONS, LOW CHANNEL (802.11a MODE)

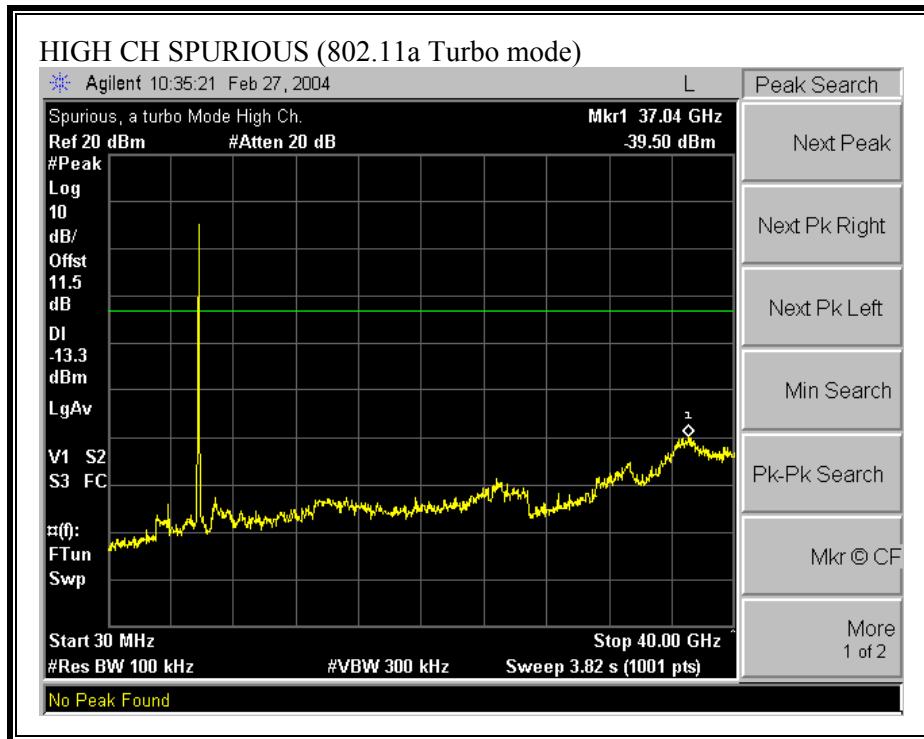



SPURIOUS EMISSIONS, MID CHANNEL (802.11a MODE)




SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a MODE)




SPURIOUS EMISSIONS, LOW CHANNEL (802.11a TURBO MODE)

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a TURBO MODE)

7.7. RADIATED EMISSIONS

7.7.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

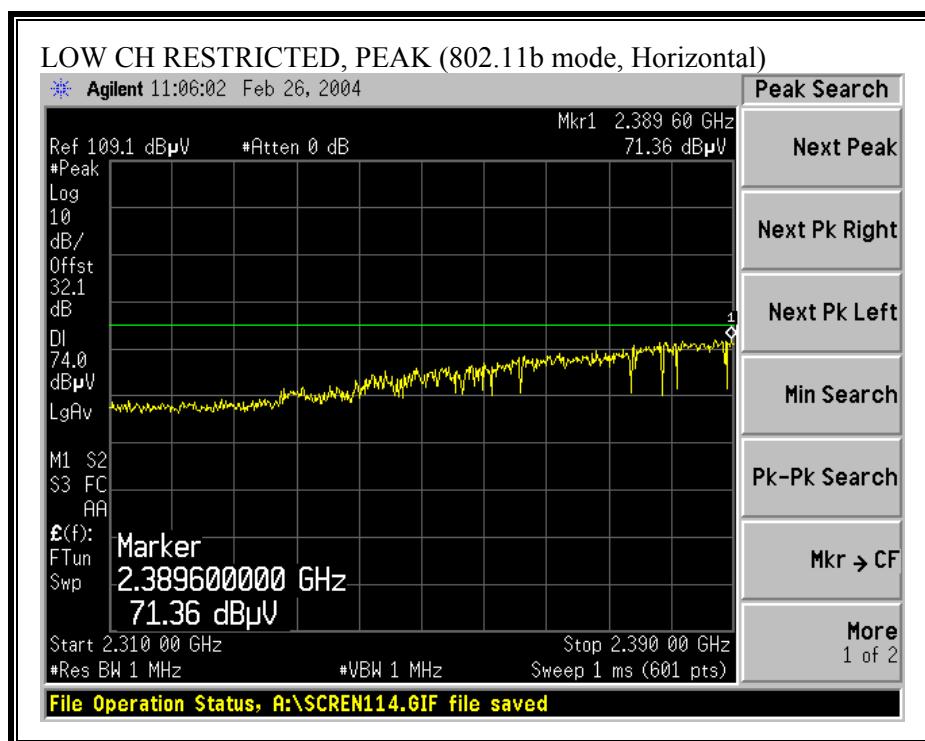
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

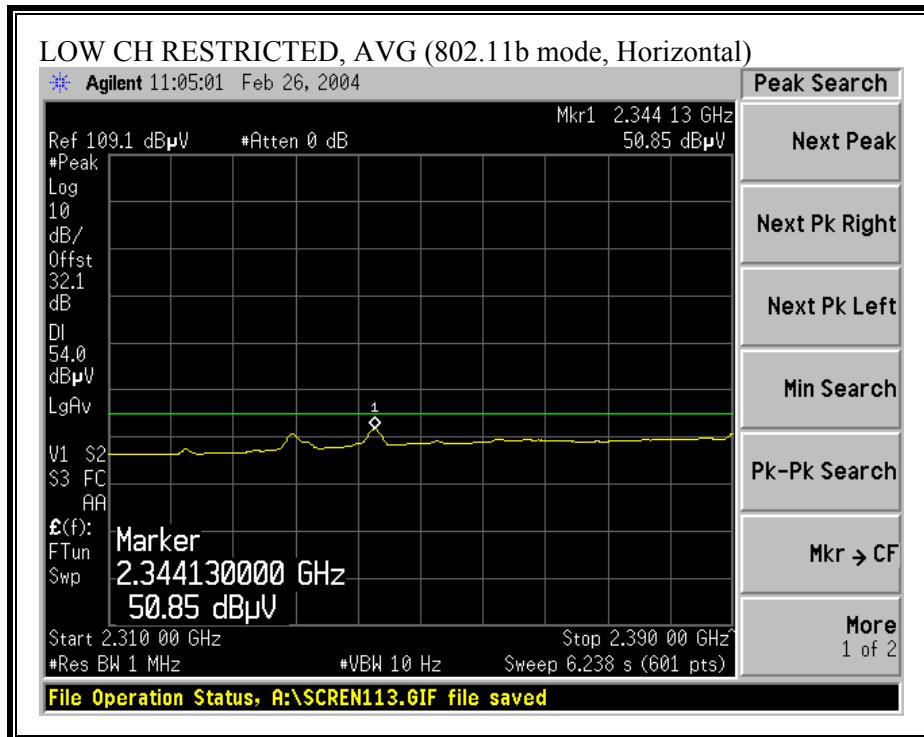
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

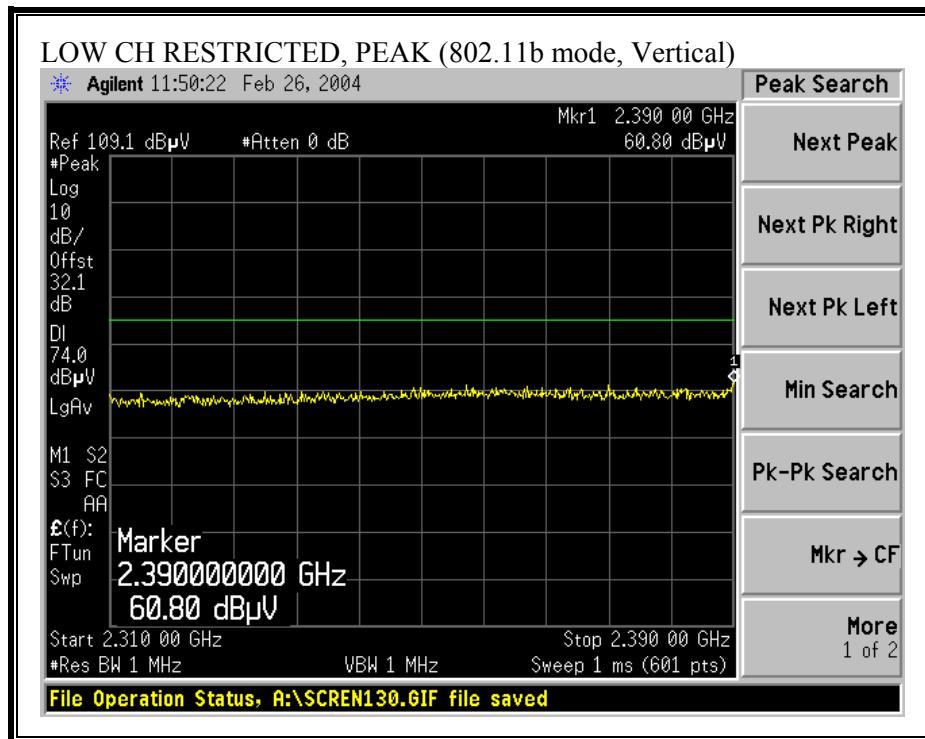
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of the 2.4 GHz band.

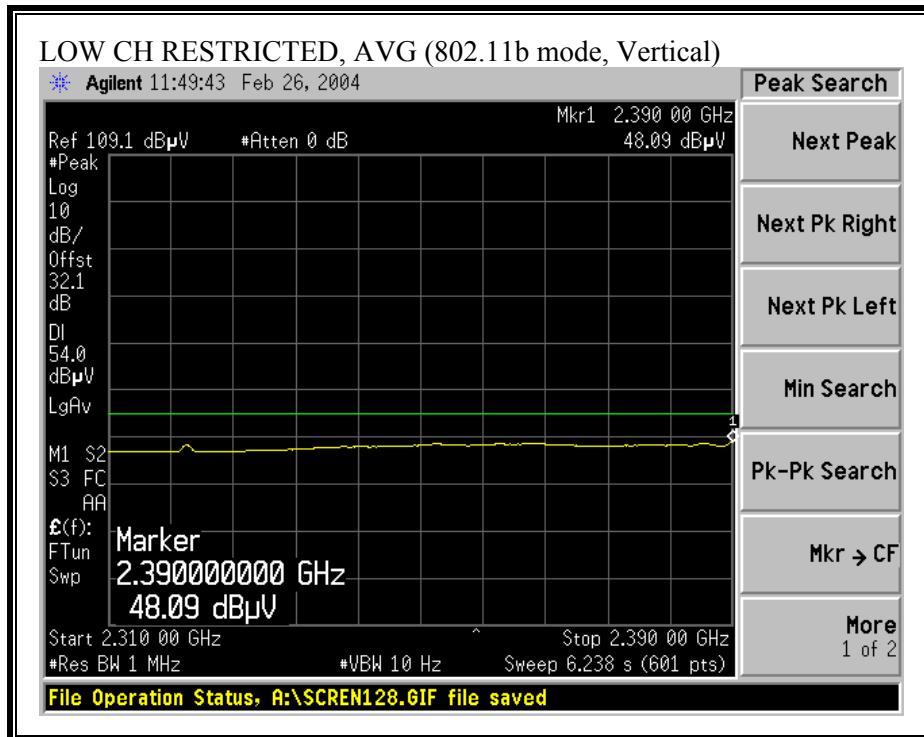
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of the 5.8 GHz band.

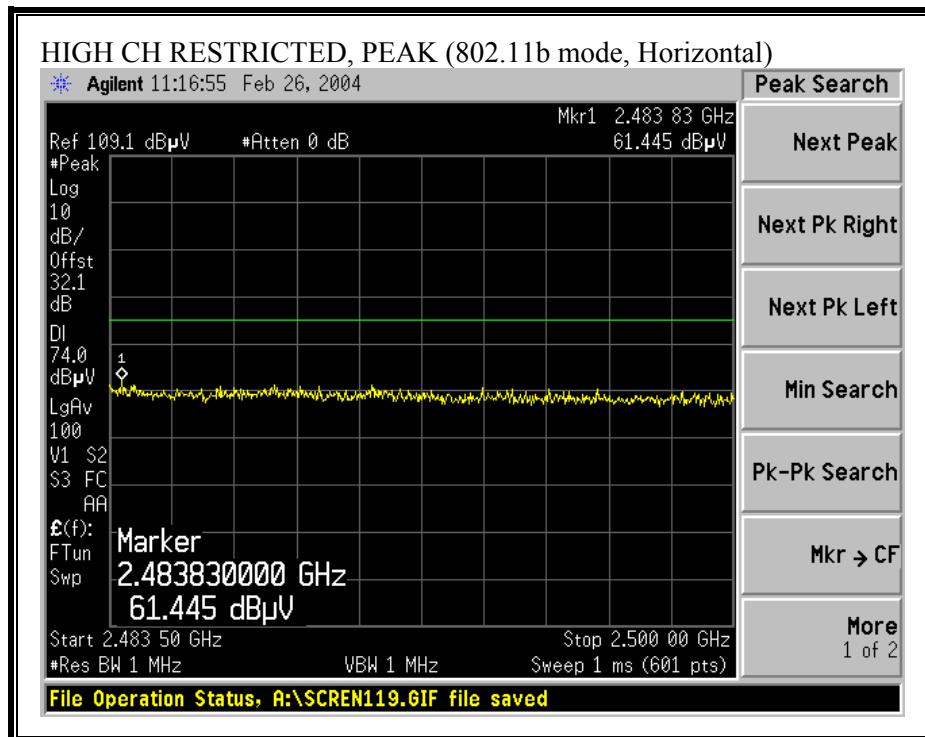

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

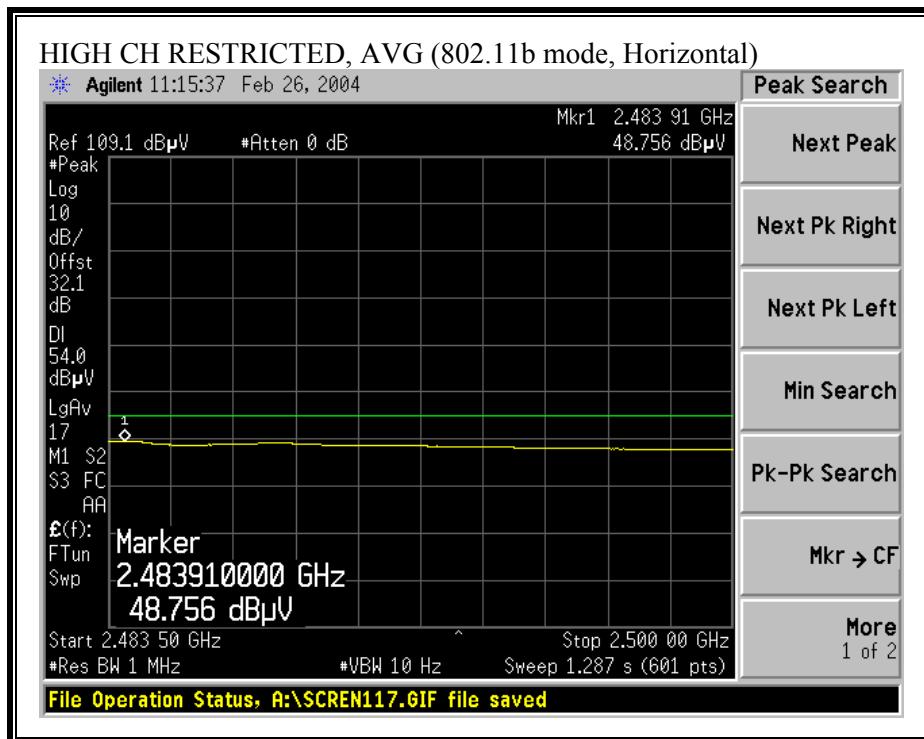

RESULTS

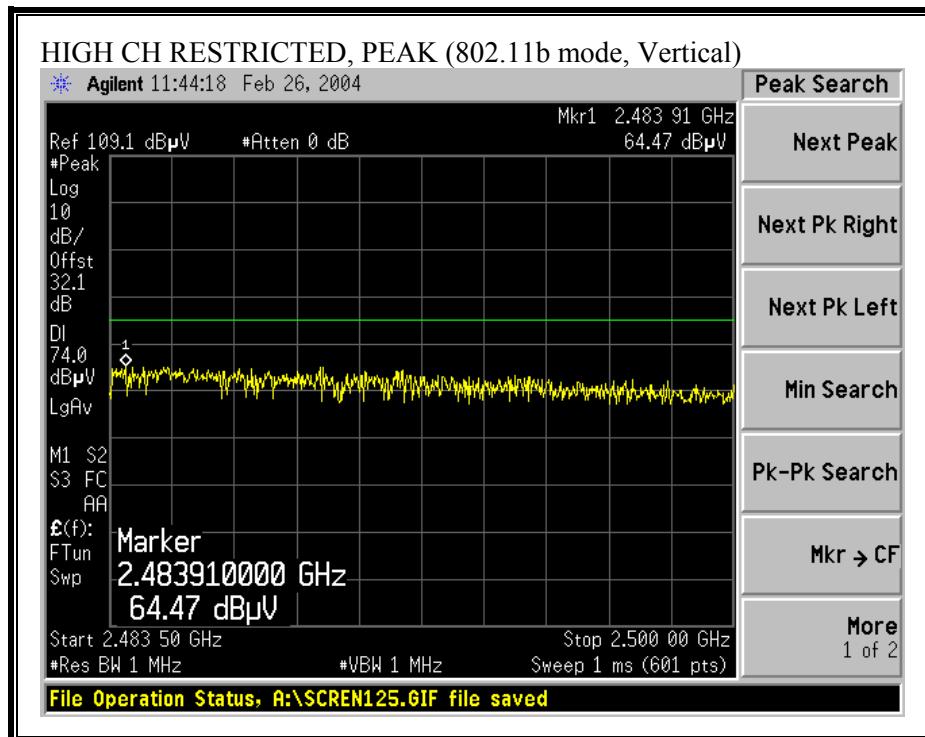
No non-compliance noted:

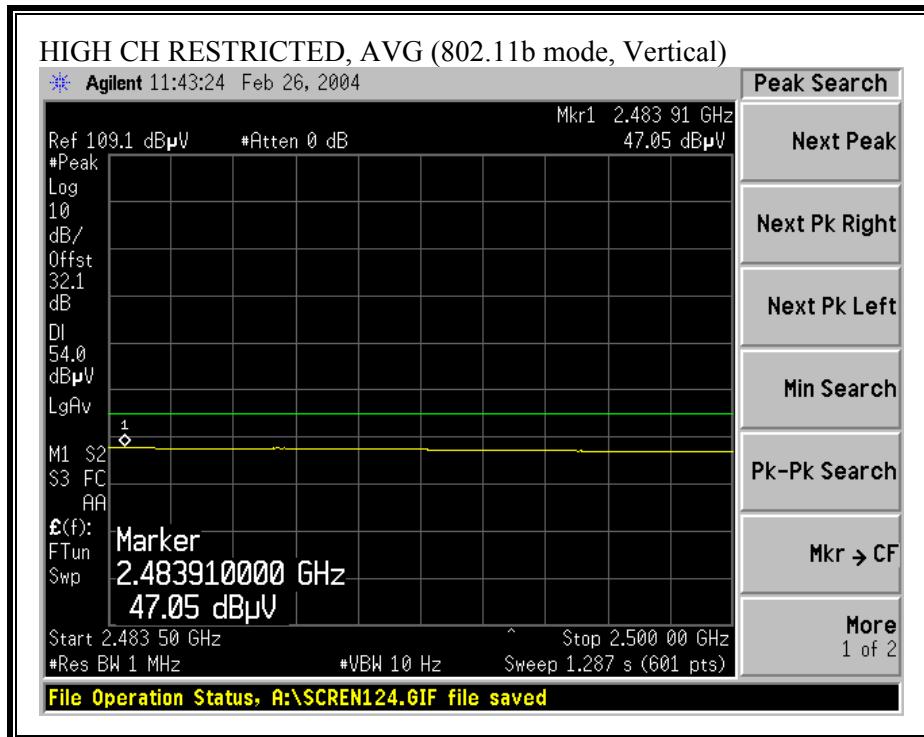

7.7.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ (LAPTOP CONFIGURATION)


RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

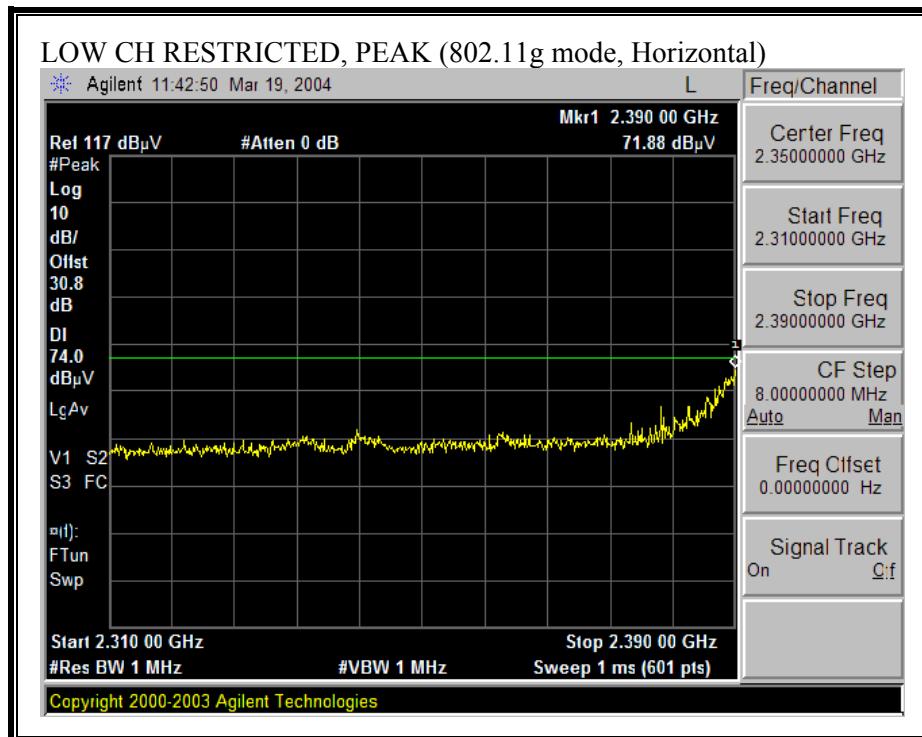


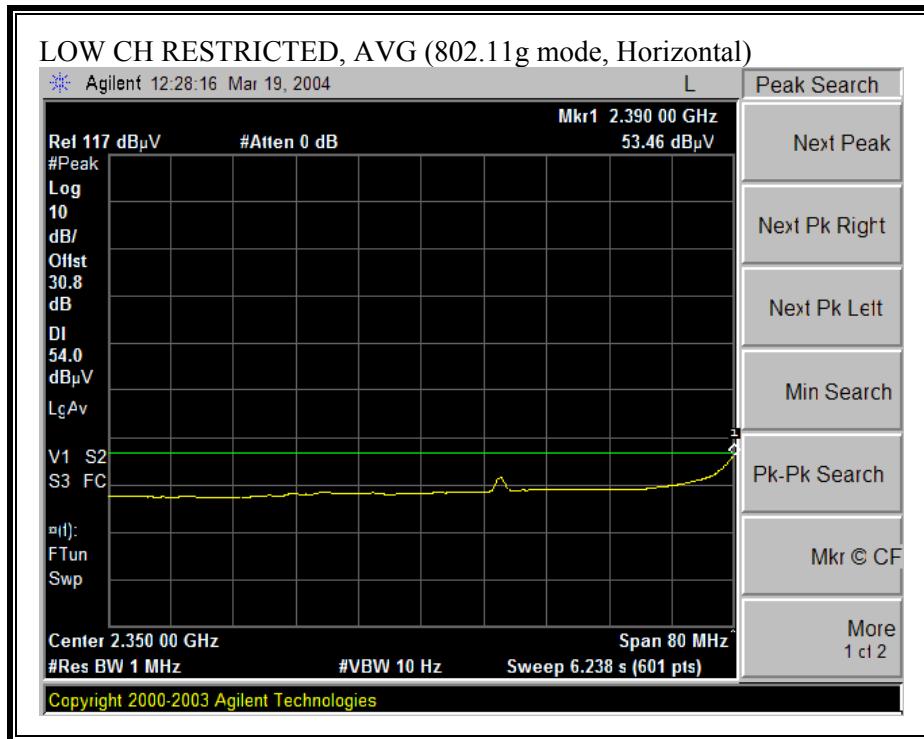

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)



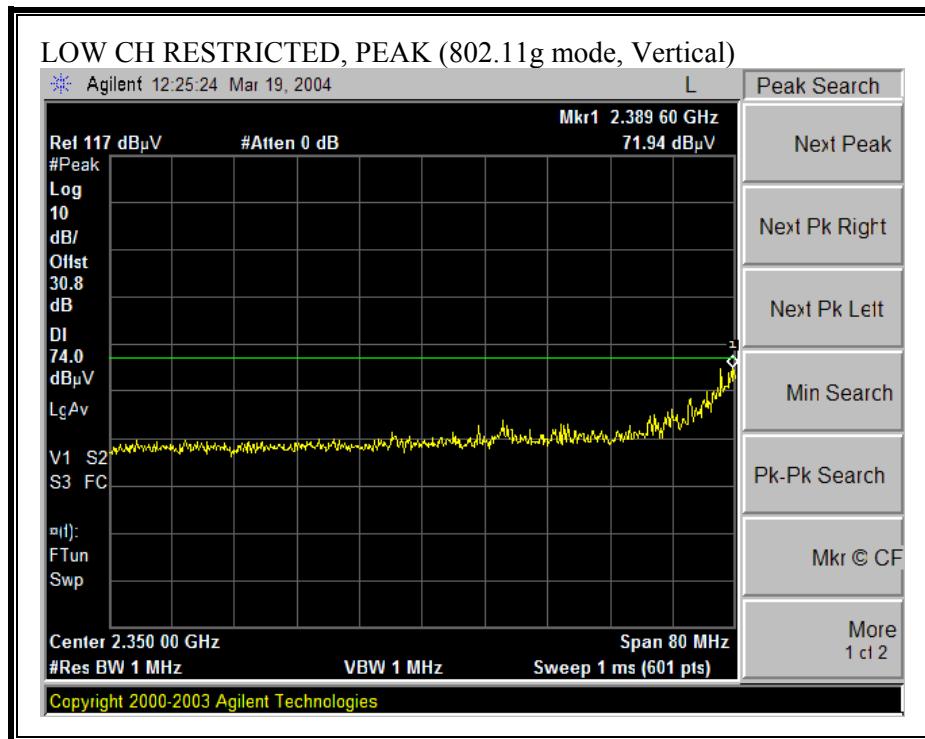

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)

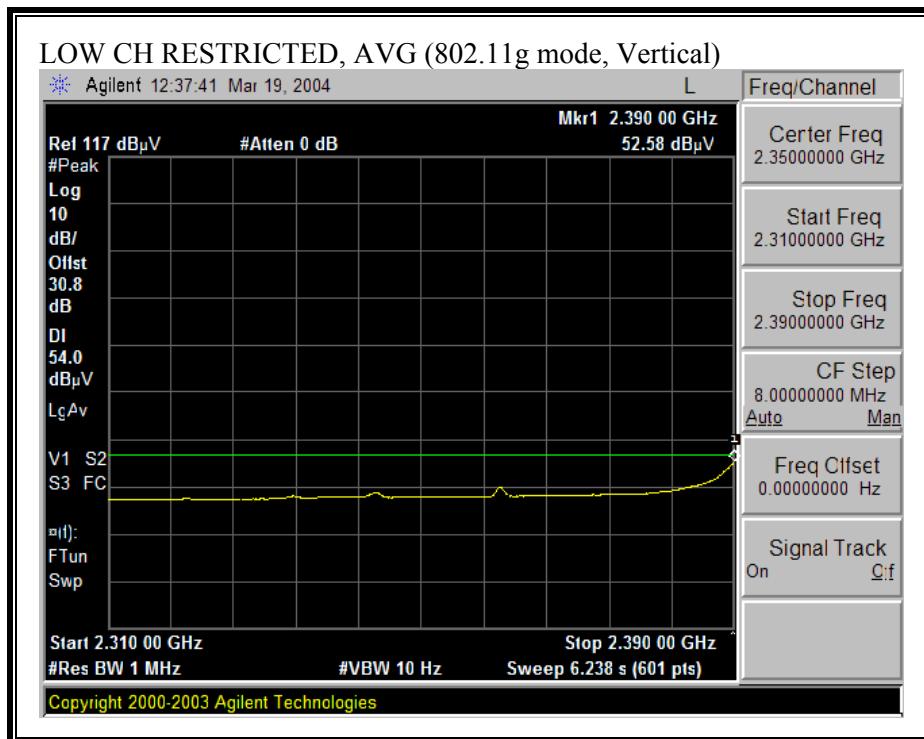
RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

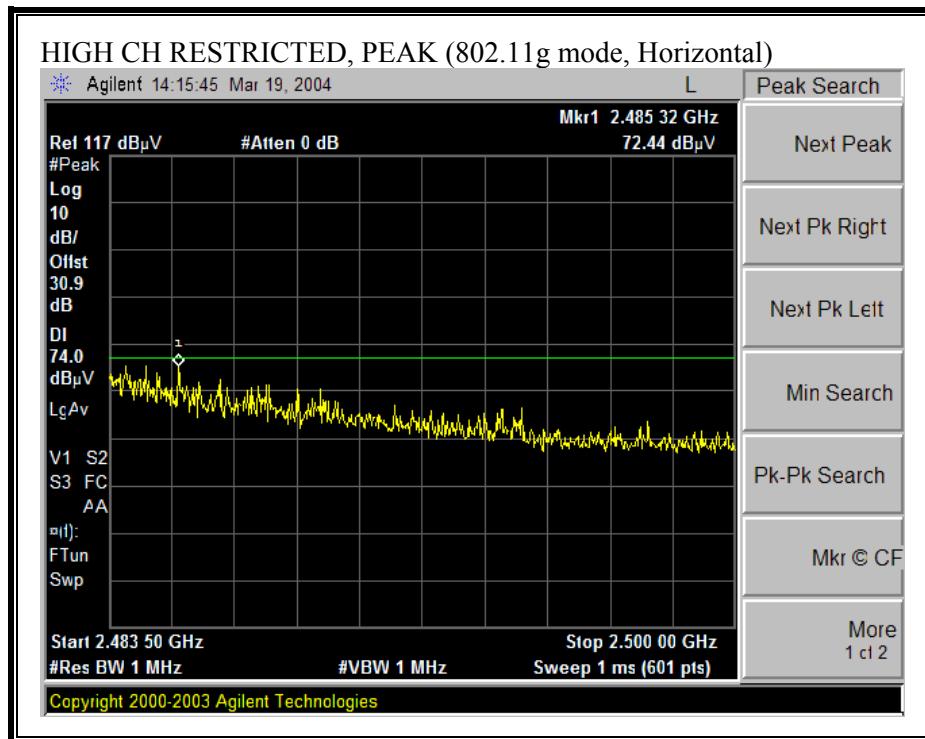


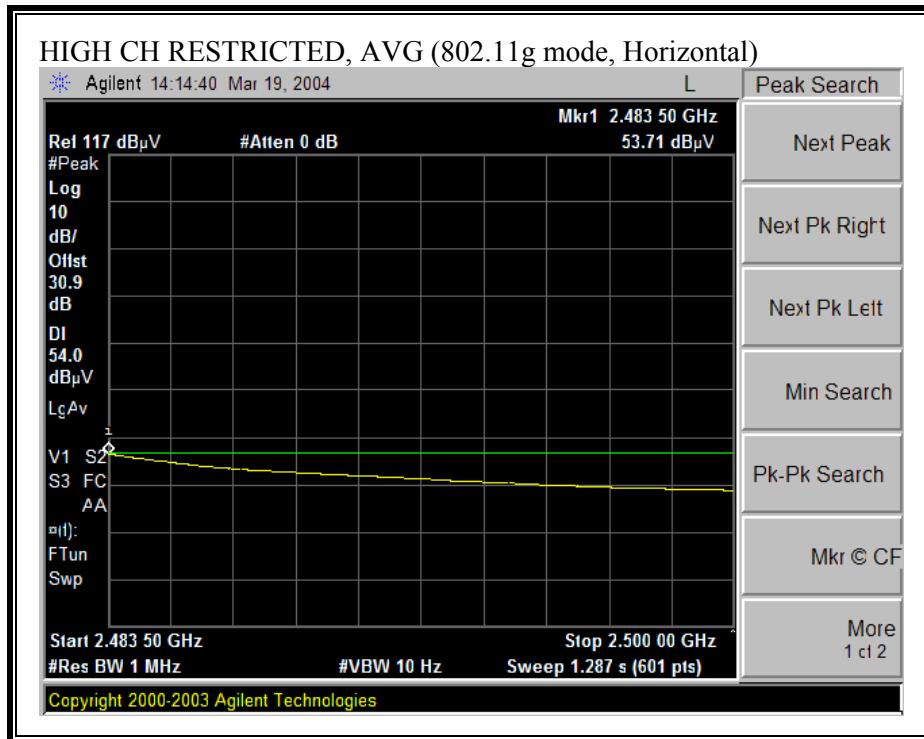


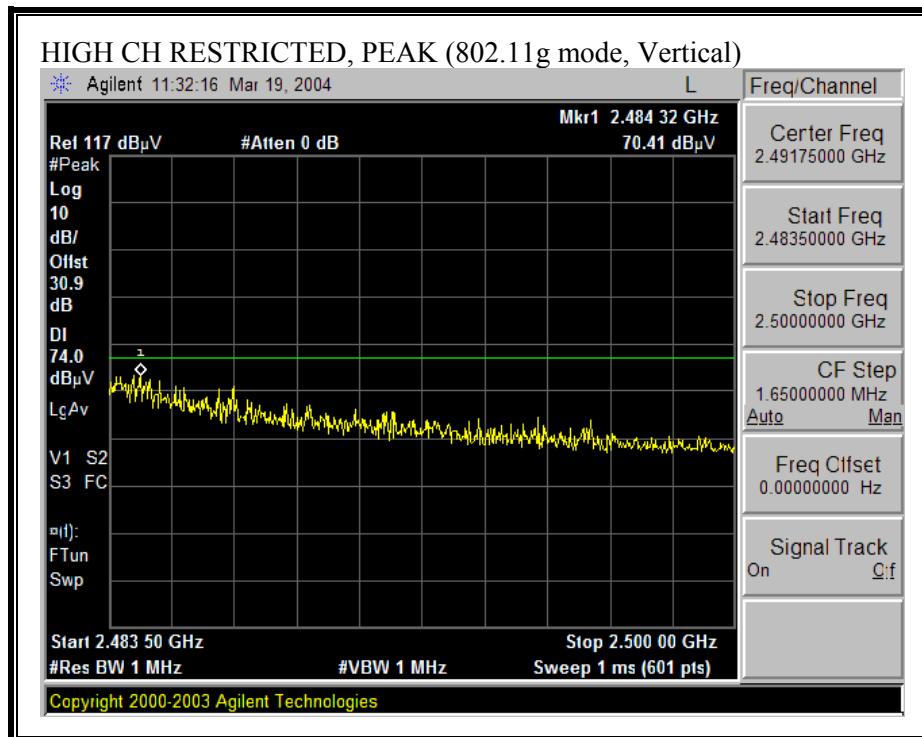
HARMONICS AND SPURIOUS EMISSIONS (b MODE)

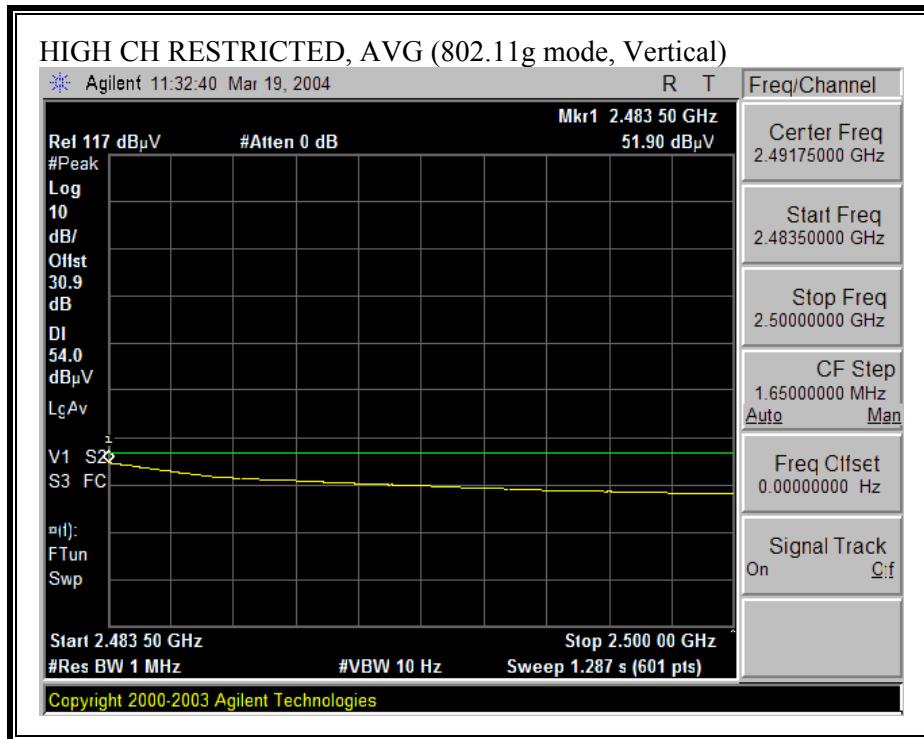

03/03/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																												
Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN NOTEBOOK PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_b MODE (2.4GHz)																												
Test Equipment:																												
EMCO Horn 1-18GHz			Spectrum Analyzer			Pre-amplifier 1-26GHz			Pre-amplifier 26-40GHz			Horn >18GHz																
T60; S/N: 2238 @3m			Agilent E4446A Analyzer			T63 Miteq 646456																						
Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)																												
<table border="1"> <tr> <td colspan="2">Limit</td> <td colspan="2">Peak Measurements:</td> <td colspan="2">Average Measurements:</td> </tr> <tr> <td colspan="2">FCC 15.209</td> <td colspan="2">1 MHz Resolution Bandwidth 1MHz Video Bandwidth</td> <td colspan="2">1 MHz Resolution Bandwidth 10Hz Video Bandwidth</td> </tr> </table>																	Limit		Peak Measurements:		Average Measurements:		FCC 15.209		1 MHz Resolution Bandwidth 1MHz Video Bandwidth		1 MHz Resolution Bandwidth 10Hz Video Bandwidth	
Limit		Peak Measurements:		Average Measurements:																								
FCC 15.209		1 MHz Resolution Bandwidth 1MHz Video Bandwidth		1 MHz Resolution Bandwidth 10Hz Video Bandwidth																								
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes													
LOW CH 2412MHz																												
4.824	9.8	50.3	43.9	33.1	2.9	-35.3	0.0	1.0	51.9	45.5	74.0	54.0	-22.1	-8.5	V													
4.824	9.8	51.4	45.3	33.1	2.9	-35.3	0.0	1.0	53.0	46.9	74.0	54.0	-21.0	-7.1	H													
MID CH 2437MHz																												
4.874	9.8	52.0	48.7	33.1	2.9	-35.3	0.0	1.0	53.7	50.3	74.0	54.0	-20.3	-3.7	V													
7.311	9.8	44.1	33.8	36.2	3.8	-34.6	0.0	1.0	50.5	40.2	74.0	54.0	-23.5	-13.8	V													
4.874	9.8	53.5	50.8	33.1	2.9	-35.3	0.0	1.0	55.2	52.4	74.0	54.0	-18.8	-1.6	H													
7.311	9.8	44.9	32.5	36.2	3.8	-34.6	0.0	1.0	51.3	38.9	74.0	54.0	-22.7	-15.1	H													
HIGH CH 2462MHz																												
4.924	9.8	49.4	44.3	33.2	2.9	-35.3	0.0	1.0	51.1	46.0	74.0	54.0	-22.9	-8.0	V													
7.386	9.8	43.0	31.7	36.3	3.9	-34.5	0.0	1.0	49.6	38.3	74.0	54.0	-24.4	-15.7	V													
4.924	9.8	51.8	48.3	33.2	2.9	-35.3	0.0	1.0	53.5	50.0	74.0	54.0	-20.5	-4.0	H													
7.386	9.8	43.5	31.9	36.3	3.9	-34.5	0.0	1.0	50.1	38.5	74.0	54.0	-23.9	-15.5	H													
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss																												
Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter																												
Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit																												


RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

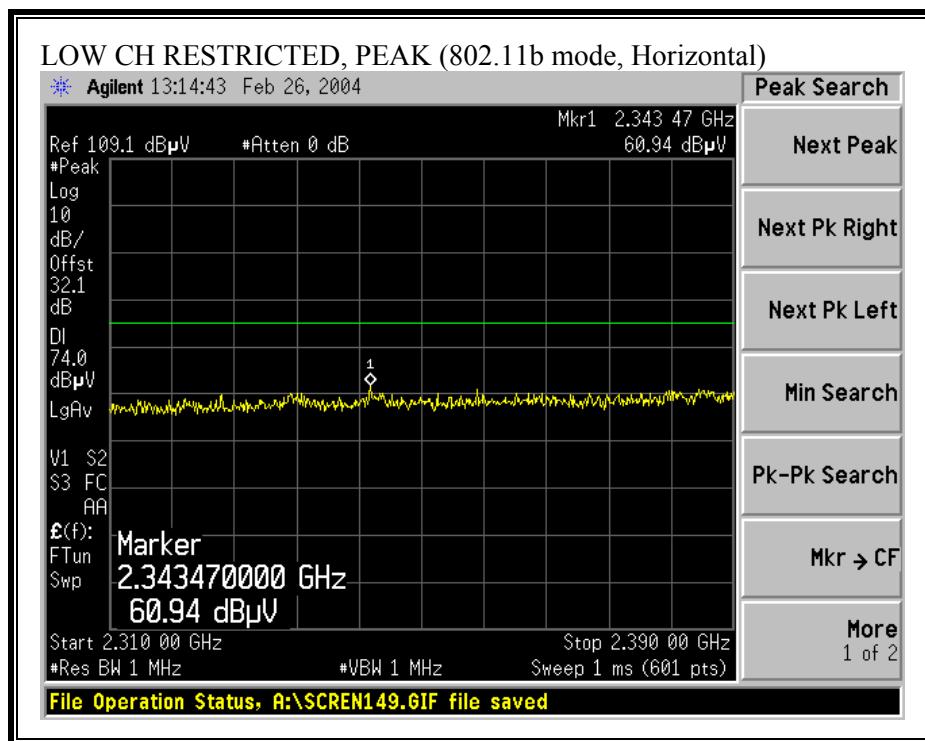
HARMONICS AND SPURIOUS EMISSIONS (g MODE)

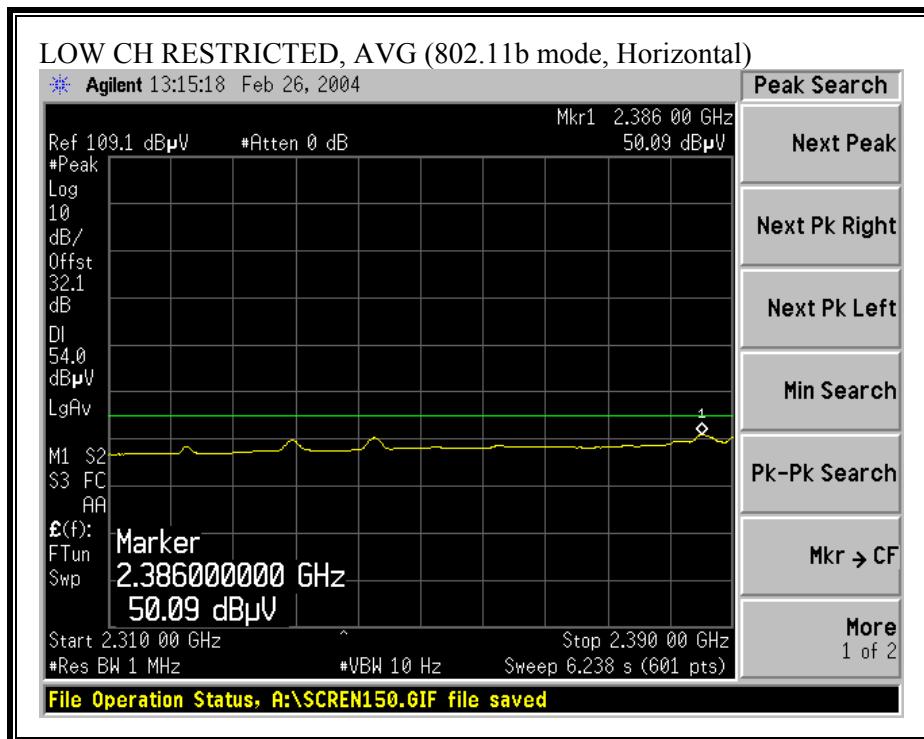
03/03/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																													
<p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN NOTEBOOK PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11g MODE (2.4GHz)</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td></td> </tr> </table> <p>Hi Frequency Cables</p> <table border="1"> <tr> <td><input checked="" type="checkbox"/> (2 ft)</td> <td><input type="checkbox"/> (2 ~ 3 ft)</td> <td><input type="checkbox"/> (4 ~ 6 ft)</td> <td><input checked="" type="checkbox"/> (12 ft)</td> </tr> </table> <table border="1"> <tr> <td>Limit</td> </tr> <tr> <td>FCC 15.209</td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p>																EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456			<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)	Limit	FCC 15.209														
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																									
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456																																											
<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)																																										
Limit																																													
FCC 15.209																																													
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																														
LOW CH 2412MHz																																													
4.824	9.8	53.8	41.3	33.1	2.9	-35.3	0.0	1.0	55.4	42.9	74.0	54.0	-18.6	-11.1	V																														
4.824	9.8	50.0	38.0	33.1	2.9	-35.3	0.0	1.0	51.6	39.6	74.0	54.0	-22.4	-14.4	H																														
MID CH 2437MHz																																													
4.874	9.8	52.2	39.9	33.1	2.9	-35.3	0.0	1.0	53.9	41.6	74.0	54.0	-20.1	-12.4	V																														
7.311	9.8	54.2	40.7	36.2	3.8	-34.6	0.0	1.0	60.6	47.1	74.0	54.0	-13.4	-6.9	V																														
12.187	9.8	43.8	32.5	39.4	6.2	-35.1	0.0	1.0	55.2	43.9	74.0	54.0	-18.8	-10.1	V																														
4.874	9.8	50.1	37.2	33.1	2.9	-35.3	0.0	1.0	51.8	38.9	74.0	54.0	-22.2	-15.1	H																														
7.311	9.8	48.9	36.8	36.2	3.8	-34.6	0.0	1.0	55.3	43.2	74.0	54.0	-18.7	-10.8	H																														
12.187	9.8	39.4	29.0	39.4	6.2	-35.1	0.0	1.0	50.8	40.4	74.0	54.0	-23.2	-13.6	H																														
HI CH 2462MHz																																													
4.924	9.8	51.0	39.8	33.2	2.9	-35.3	0.0	1.0	52.7	41.5	74.0	54.0	-21.3	-12.5	V																														
7.386	9.8	56.2	43.4	36.3	3.9	-34.5	0.0	1.0	62.8	50.0	74.0	54.0	-11.2	-4.0	V																														
4.924	9.8	47.9	36.0	33.2	2.9	-35.3	0.0	1.0	49.6	37.7	74.0	54.0	-24.4	-16.3	H																														
7.386	9.8	51.0	37.5	36.3	3.9	-34.5	0.0	1.0	57.6	44.1	74.0	54.0	-16.4	-9.9	H																														
<table> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>																f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																								
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																								
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																								
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																								
CL	Cable Loss	HPF	High Pass Filter																																										

HARMONICS AND SPURIOUS EMISSIONS (g TURBO MODE)

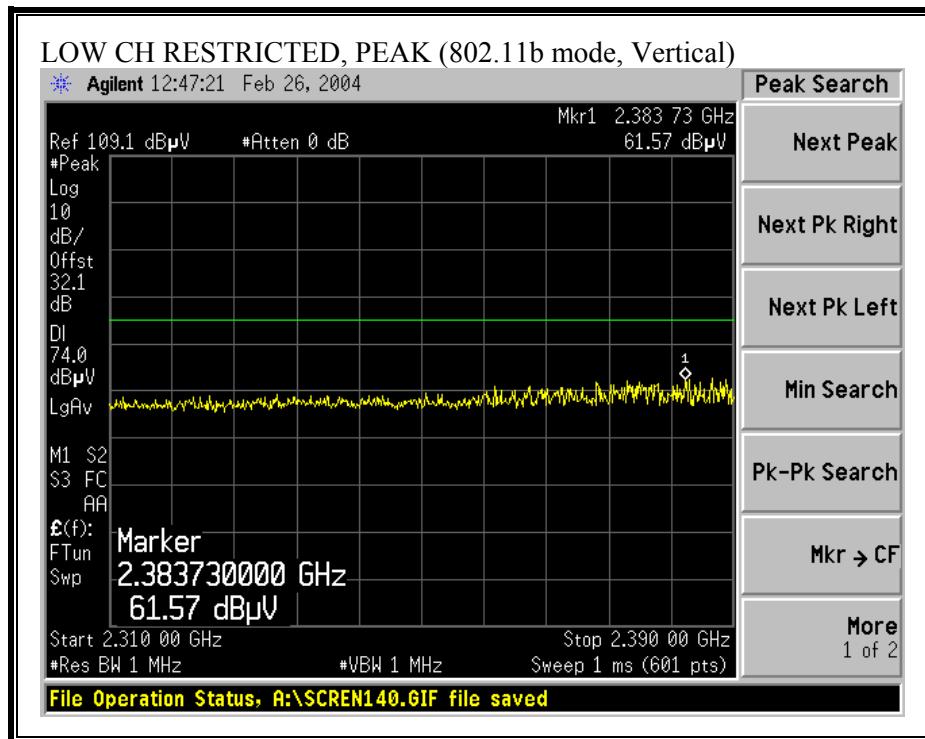
03/03/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																																																																																																																																																	
<p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN NOTEBOOK PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11g TURBO MODE (2.4GHz)</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td></td> </tr> </table> <p>Hi Frequency Cables</p> <table border="1"> <tr> <td><input checked="" type="checkbox"/> (2 ft)</td> <td><input type="checkbox"/> (2 ~ 3 ft)</td> <td><input type="checkbox"/> (4 ~ 6 ft)</td> <td><input checked="" type="checkbox"/> (12 ft)</td> </tr> </table> <table border="1"> <tr> <td>Limit</td> <td>FCC 15.209</td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p> <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="17">MID CH 2437MHz TURBO</td> </tr> <tr> <td>4.874</td> <td>9.8</td> <td>52.5</td> <td>39.8</td> <td>33.1</td> <td>2.9</td> <td>-35.3</td> <td>0.0</td> <td>1.0</td> <td>54.2</td> <td>41.5</td> <td>74.0</td> <td>54.0</td> <td>-19.8</td> <td>-12.5</td> <td>V</td> </tr> <tr> <td>7.311</td> <td>9.8</td> <td>55.7</td> <td>42.6</td> <td>36.2</td> <td>3.8</td> <td>-34.6</td> <td>0.0</td> <td>1.0</td> <td>62.1</td> <td>49.0</td> <td>74.0</td> <td>54.0</td> <td>-11.9</td> <td>-5.0</td> <td>V</td> </tr> <tr> <td>12.187</td> <td>9.8</td> <td>41.7</td> <td>29.0</td> <td>39.4</td> <td>6.2</td> <td>-35.1</td> <td>0.0</td> <td>1.0</td> <td>53.1</td> <td>40.4</td> <td>74.0</td> <td>54.0</td> <td>-20.9</td> <td>-13.6</td> <td>V</td> </tr> <tr> <td>4.874</td> <td>9.8</td> <td>50.4</td> <td>37.8</td> <td>33.1</td> <td>2.9</td> <td>-35.3</td> <td>0.0</td> <td>1.0</td> <td>52.1</td> <td>39.5</td> <td>74.0</td> <td>54.0</td> <td>-21.9</td> <td>-14.5</td> <td>H</td> </tr> <tr> <td>7.311</td> <td>9.8</td> <td>48.4</td> <td>37.3</td> <td>36.2</td> <td>3.8</td> <td>-34.6</td> <td>0.0</td> <td>1.0</td> <td>54.8</td> <td>43.7</td> <td>74.0</td> <td>54.0</td> <td>-19.2</td> <td>-10.3</td> <td>H</td> </tr> <tr> <td>12.187</td> <td>9.8</td> <td>40.0</td> <td>27.8</td> <td>39.4</td> <td>6.2</td> <td>-35.1</td> <td>0.0</td> <td>1.0</td> <td>51.4</td> <td>39.2</td> <td>74.0</td> <td>54.0</td> <td>-22.6</td> <td>-14.8</td> <td>H</td> </tr> </tbody> </table> <p> f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit </p>																	EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456			<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)	Limit	FCC 15.209	f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	MID CH 2437MHz TURBO																	4.874	9.8	52.5	39.8	33.1	2.9	-35.3	0.0	1.0	54.2	41.5	74.0	54.0	-19.8	-12.5	V	7.311	9.8	55.7	42.6	36.2	3.8	-34.6	0.0	1.0	62.1	49.0	74.0	54.0	-11.9	-5.0	V	12.187	9.8	41.7	29.0	39.4	6.2	-35.1	0.0	1.0	53.1	40.4	74.0	54.0	-20.9	-13.6	V	4.874	9.8	50.4	37.8	33.1	2.9	-35.3	0.0	1.0	52.1	39.5	74.0	54.0	-21.9	-14.5	H	7.311	9.8	48.4	37.3	36.2	3.8	-34.6	0.0	1.0	54.8	43.7	74.0	54.0	-19.2	-10.3	H	12.187	9.8	40.0	27.8	39.4	6.2	-35.1	0.0	1.0	51.4	39.2	74.0	54.0	-22.6	-14.8	H
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																																																																																																																																													
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456																																																																																																																																																															
<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)																																																																																																																																																														
Limit	FCC 15.209																																																																																																																																																																
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																																		
MID CH 2437MHz TURBO																																																																																																																																																																	
4.874	9.8	52.5	39.8	33.1	2.9	-35.3	0.0	1.0	54.2	41.5	74.0	54.0	-19.8	-12.5	V																																																																																																																																																		
7.311	9.8	55.7	42.6	36.2	3.8	-34.6	0.0	1.0	62.1	49.0	74.0	54.0	-11.9	-5.0	V																																																																																																																																																		
12.187	9.8	41.7	29.0	39.4	6.2	-35.1	0.0	1.0	53.1	40.4	74.0	54.0	-20.9	-13.6	V																																																																																																																																																		
4.874	9.8	50.4	37.8	33.1	2.9	-35.3	0.0	1.0	52.1	39.5	74.0	54.0	-21.9	-14.5	H																																																																																																																																																		
7.311	9.8	48.4	37.3	36.2	3.8	-34.6	0.0	1.0	54.8	43.7	74.0	54.0	-19.2	-10.3	H																																																																																																																																																		
12.187	9.8	40.0	27.8	39.4	6.2	-35.1	0.0	1.0	51.4	39.2	74.0	54.0	-22.6	-14.8	H																																																																																																																																																		

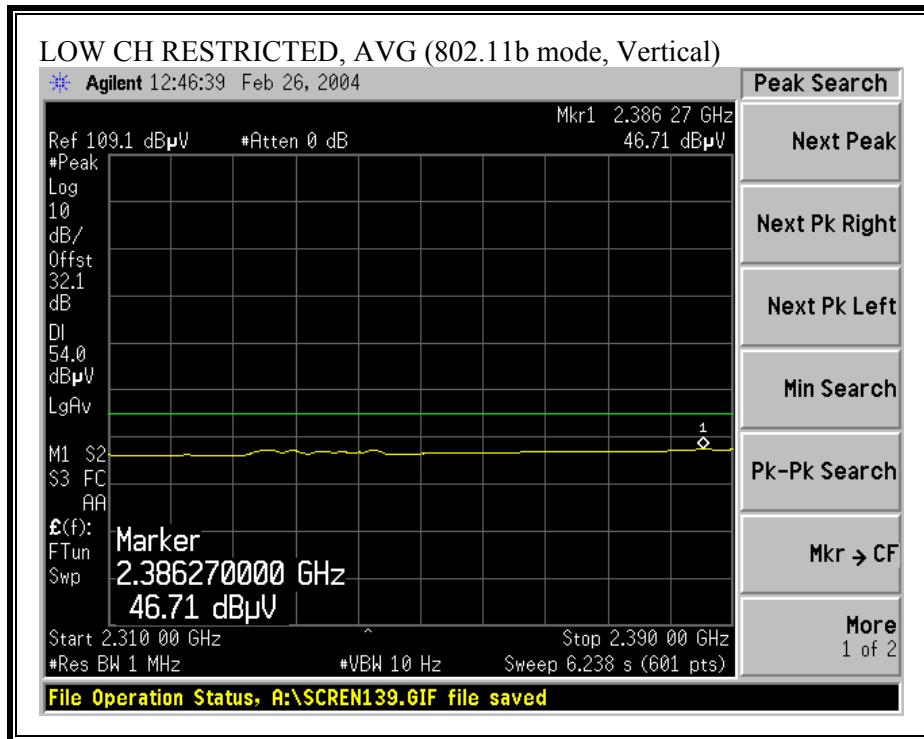
HARMONICS AND SPURIOUS EMISSIONS (a MODE)

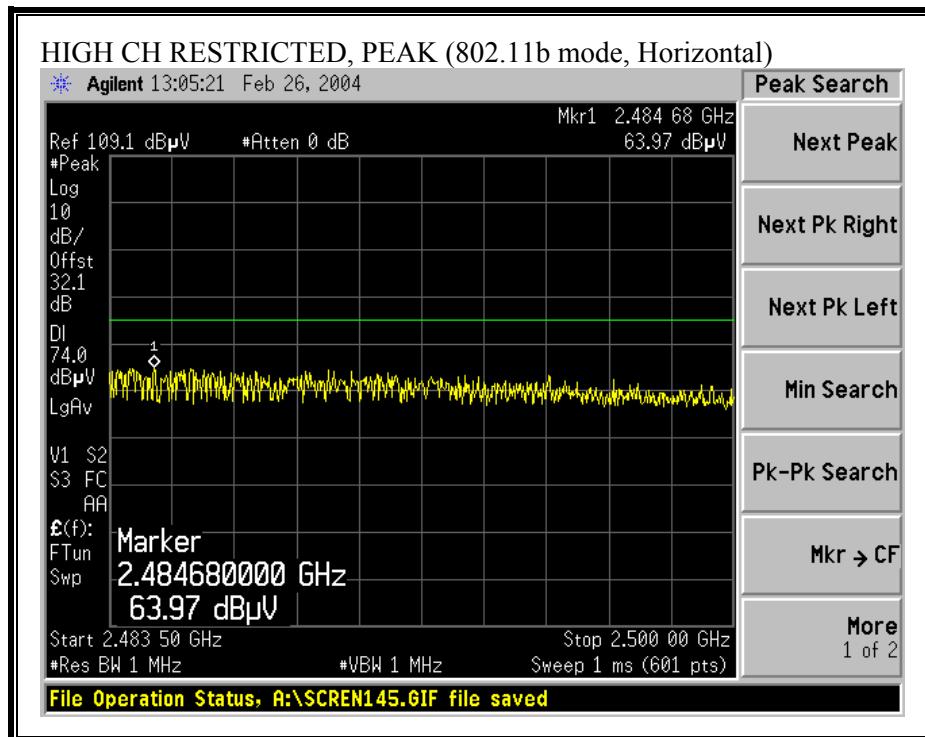

03/08/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																													
Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN NOTEBOOK PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11a MODE (5.745-5.825GHz)																																													
Test Equipment: <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td>T87; ARA 18-26GHz; S/N:1049</td> </tr> </table> <table border="1"> <tr> <td colspan="4">Hi Frequency Cables</td> </tr> <tr> <td><input checked="" type="checkbox"/> (2 ft)</td> <td><input type="checkbox"/> (2 ~ 3 ft)</td> <td><input type="checkbox"/> (4 ~ 6 ft)</td> <td><input checked="" type="checkbox"/> (12 ft)</td> </tr> </table> <table border="1"> <tr> <td>Limit</td> </tr> <tr> <td>FCC 15.209</td> </tr> </table> <div style="display: flex; justify-content: space-around;"> <div> Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth </div> <div> Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth </div> </div>																EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456		T87; ARA 18-26GHz; S/N:1049	Hi Frequency Cables				<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)	Limit	FCC 15.209										
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																									
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456		T87; ARA 18-26GHz; S/N:1049																																									
Hi Frequency Cables																																													
<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)																																										
Limit																																													
FCC 15.209																																													
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																														
LOW CH 5745MHz																																													
11.490	9.8	52.4	40.1	38.7	6.1	-34.2	0.0	1.0	64.0	51.6	74.0	54.0	-10.0	-2.4	V																														
22.980	9.8	49.4	36.8	36.3	7.3	-40.6	0.0	1.0	53.4	40.8	74.0	54.0	-20.6	-13.2	V																														
11.490	9.8	49.5	37.3	38.7	6.1	-34.2	0.0	1.0	61.1	48.9	74.0	54.0	-12.9	-5.1	H																														
22.980	9.8	47.3	35.4	36.3	7.3	-40.6	0.0	1.0	51.3	39.4	74.0	54.0	-22.7	-14.6	H																														
MID CH 5785MHz																																													
11.570	9.8	51.3	39.0	38.8	6.1	-34.3	0.0	1.0	62.9	50.5	74.0	54.0	-11.1	-3.5	V																														
11.570	9.8	50.7	38.0	38.8	6.1	-34.3	0.0	1.0	62.3	49.6	74.0	54.0	-11.7	-4.4	H																														
HIGH CH 5700MHz																																													
11.650	9.8	51.6	38.9	38.9	6.1	-34.4	0.0	1.0	63.2	50.5	74.0	54.0	-10.8	-3.5	V																														
11.650	9.8	49.7	36.9	38.9	6.1	-34.4	0.0	1.0	61.3	48.4	74.0	54.0	-12.7	-5.6	H																														
<table border="0"> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>																f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																								
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																								
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																								
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																								
CL	Cable Loss	HPF	High Pass Filter																																										

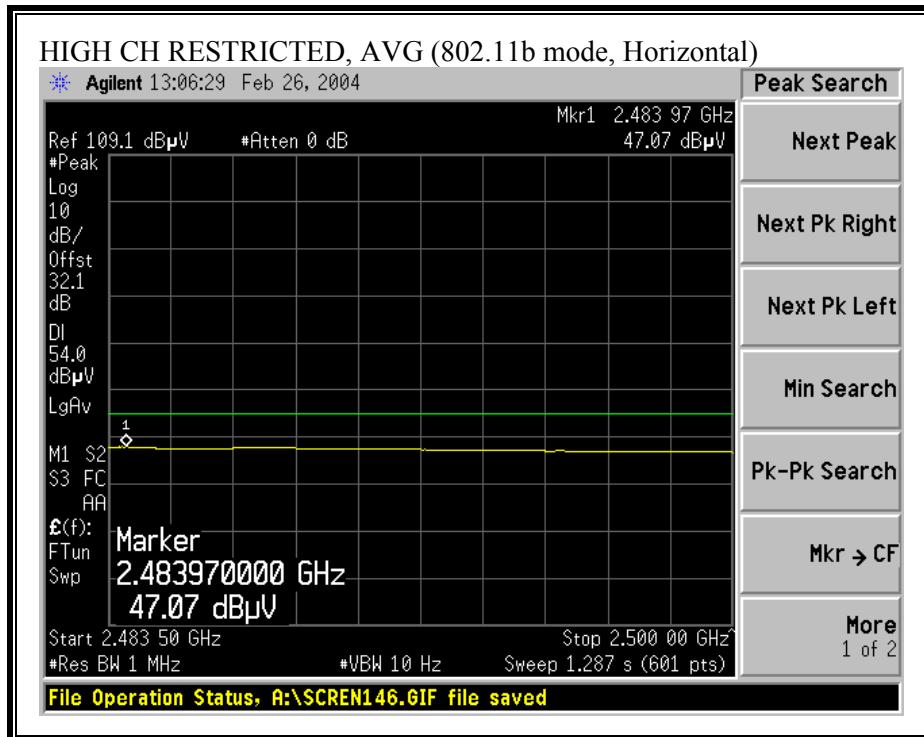

HARMONICS AND SPURIOUS EMISSIONS (a TURBO MODE)

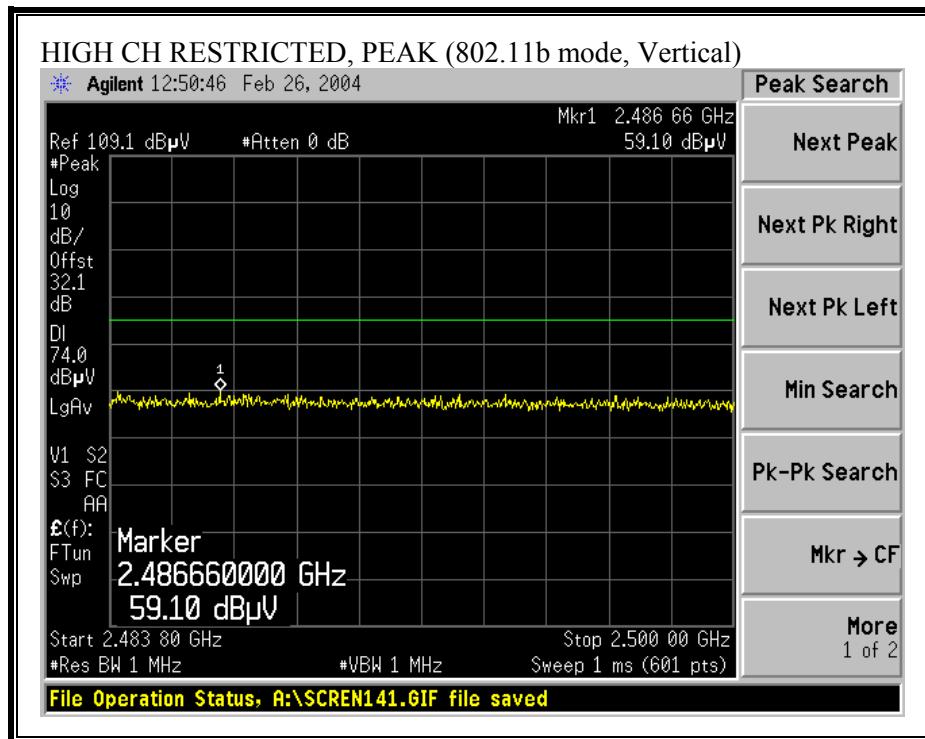
<p>03/08/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site</p> <p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN NOTEBOOK PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11a TURBO (5.8GHz)</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz T60; S/N: 2238 @3m</td> <td>Spectrum Analyzer Agilent E4446A Analyzer</td> <td>Pre-amplifier 1-26GHz T63 Miteq 646456</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz T87; ARA 18-26GHz; S/N:1049</td> </tr> <tr> <td colspan="2">Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)</td> <td colspan="2">Limit FCC 15.209</td> <td>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</td> <td>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</td> </tr> </table> <p>11a TURBO</p> <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="16">LOW CH 5760MHz</td> </tr> <tr> <td>11.520</td> <td>9.8</td> <td>48.6</td> <td>36.2</td> <td>38.7</td> <td>6.1</td> <td>-34.2</td> <td>0.0</td> <td>1.0</td> <td>60.2</td> <td>47.8</td> <td>74.0</td> <td>54.0</td> <td>-13.8</td> <td>-6.2</td> <td>V</td> </tr> <tr> <td>23.040</td> <td>9.8</td> <td>46.0</td> <td>35.0</td> <td>36.3</td> <td>7.4</td> <td>-40.7</td> <td>0.0</td> <td>1.0</td> <td>49.9</td> <td>38.9</td> <td>74.0</td> <td>54.0</td> <td>-24.1</td> <td>-15.1</td> <td>V</td> </tr> <tr> <td colspan="16">HI CH 5800MHz</td> </tr> <tr> <td>11.600</td> <td>9.8</td> <td>50.8</td> <td>38.6</td> <td>38.8</td> <td>6.1</td> <td>-34.3</td> <td>0.0</td> <td>1.0</td> <td>62.4</td> <td>50.2</td> <td>74.0</td> <td>54.0</td> <td>-11.6</td> <td>-3.8</td> <td>V</td> </tr> <tr> <td>11.600</td> <td>9.8</td> <td>48.6</td> <td>36.7</td> <td>38.8</td> <td>6.1</td> <td>-34.3</td> <td>0.0</td> <td>1.0</td> <td>60.2</td> <td>48.3</td> <td>74.0</td> <td>54.0</td> <td>-13.8</td> <td>-5.7</td> <td>H</td> </tr> </tbody> </table> <p>Definitions:</p> <table border="0"> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>																		EMCO Horn 1-18GHz T60; S/N: 2238 @3m	Spectrum Analyzer Agilent E4446A Analyzer	Pre-amplifier 1-26GHz T63 Miteq 646456	Pre-amplifier 26-40GHz	Horn > 18GHz T87; ARA 18-26GHz; S/N:1049	Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		Limit FCC 15.209		Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth	Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth	f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	LOW CH 5760MHz																11.520	9.8	48.6	36.2	38.7	6.1	-34.2	0.0	1.0	60.2	47.8	74.0	54.0	-13.8	-6.2	V	23.040	9.8	46.0	35.0	36.3	7.4	-40.7	0.0	1.0	49.9	38.9	74.0	54.0	-24.1	-15.1	V	HI CH 5800MHz																11.600	9.8	50.8	38.6	38.8	6.1	-34.3	0.0	1.0	62.4	50.2	74.0	54.0	-11.6	-3.8	V	11.600	9.8	48.6	36.7	38.8	6.1	-34.3	0.0	1.0	60.2	48.3	74.0	54.0	-13.8	-5.7	H	f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
EMCO Horn 1-18GHz T60; S/N: 2238 @3m	Spectrum Analyzer Agilent E4446A Analyzer	Pre-amplifier 1-26GHz T63 Miteq 646456	Pre-amplifier 26-40GHz	Horn > 18GHz T87; ARA 18-26GHz; S/N:1049																																																																																																																																																																						
Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		Limit FCC 15.209		Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth	Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth																																																																																																																																																																					
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																																											
LOW CH 5760MHz																																																																																																																																																																										
11.520	9.8	48.6	36.2	38.7	6.1	-34.2	0.0	1.0	60.2	47.8	74.0	54.0	-13.8	-6.2	V																																																																																																																																																											
23.040	9.8	46.0	35.0	36.3	7.4	-40.7	0.0	1.0	49.9	38.9	74.0	54.0	-24.1	-15.1	V																																																																																																																																																											
HI CH 5800MHz																																																																																																																																																																										
11.600	9.8	50.8	38.6	38.8	6.1	-34.3	0.0	1.0	62.4	50.2	74.0	54.0	-11.6	-3.8	V																																																																																																																																																											
11.600	9.8	48.6	36.7	38.8	6.1	-34.3	0.0	1.0	60.2	48.3	74.0	54.0	-13.8	-5.7	H																																																																																																																																																											
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																																																																																																																																																					
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																																																																																																																																																					
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																																																																																																																																																					
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																																																																																																																																																					
CL	Cable Loss	HPF	High Pass Filter																																																																																																																																																																							

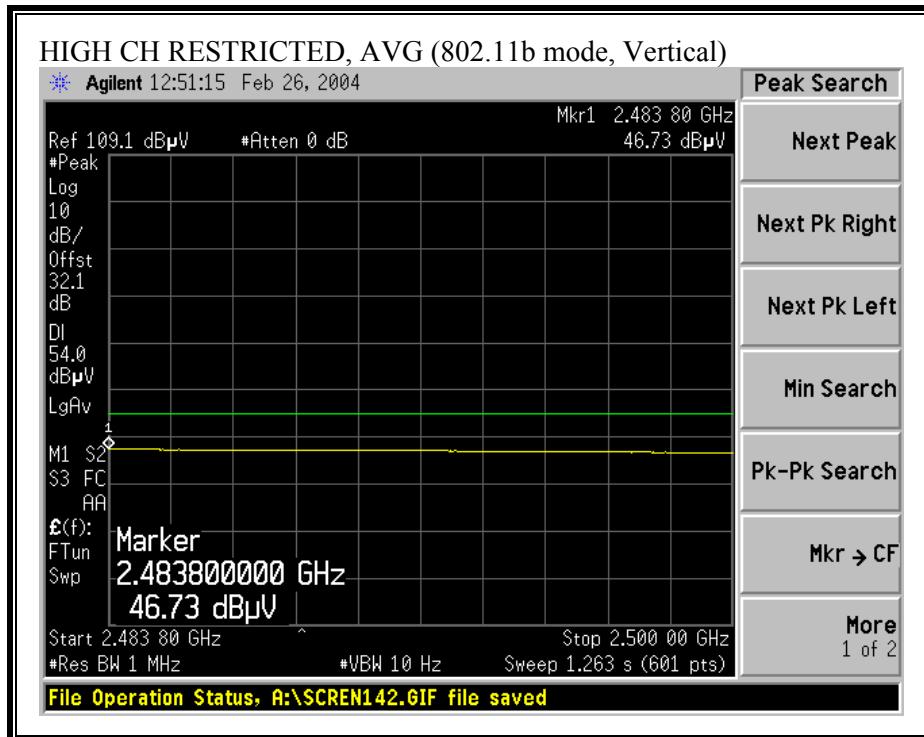

7.7.3. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ (PORTABLE CONFIGURATION)


RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

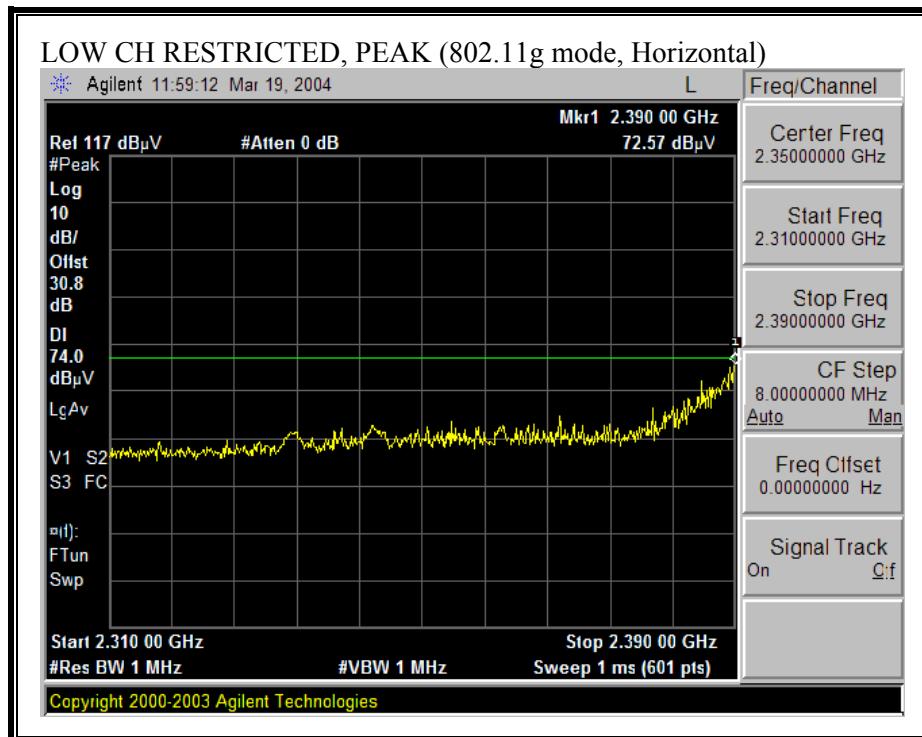


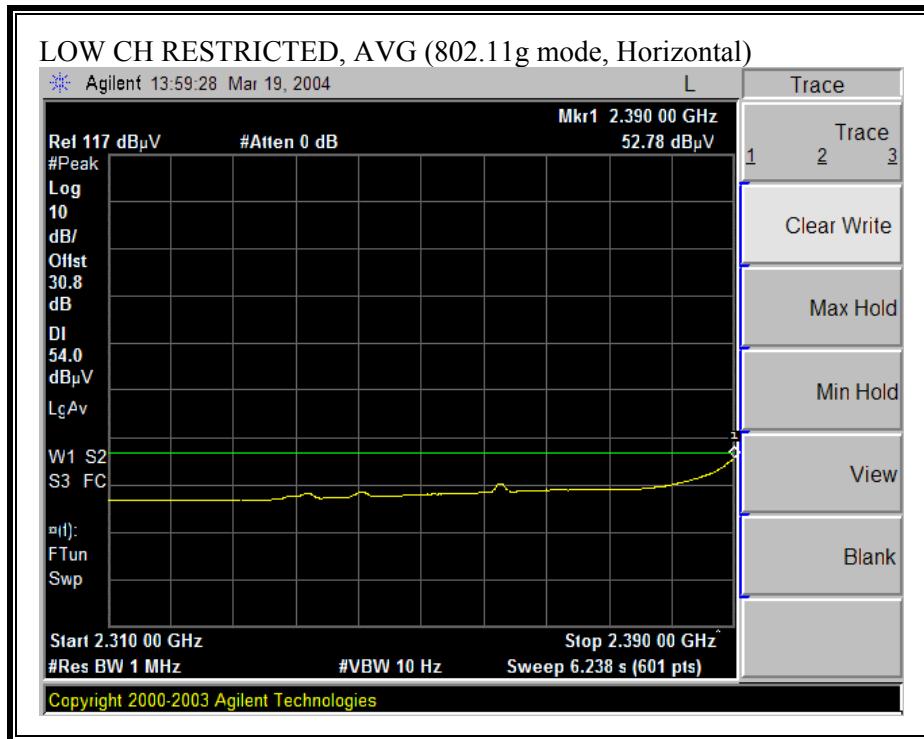

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)



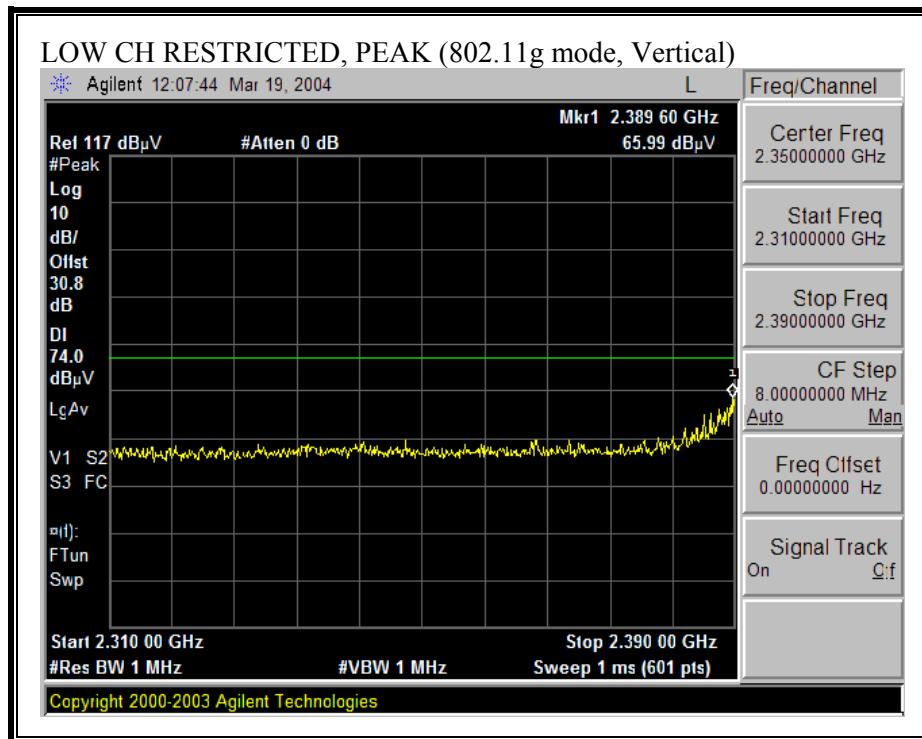

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)

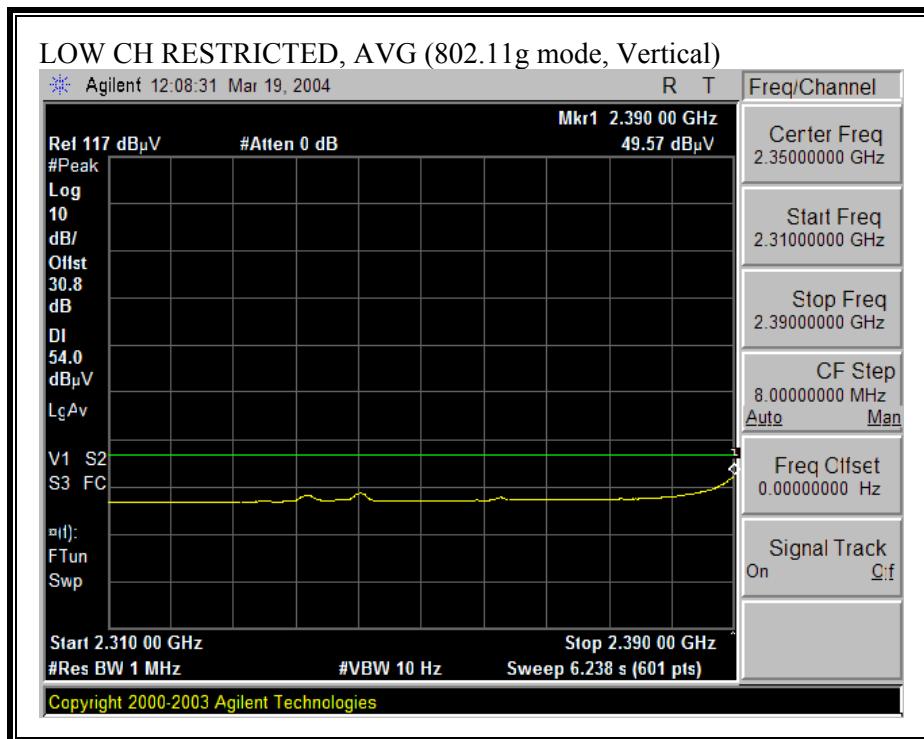
RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

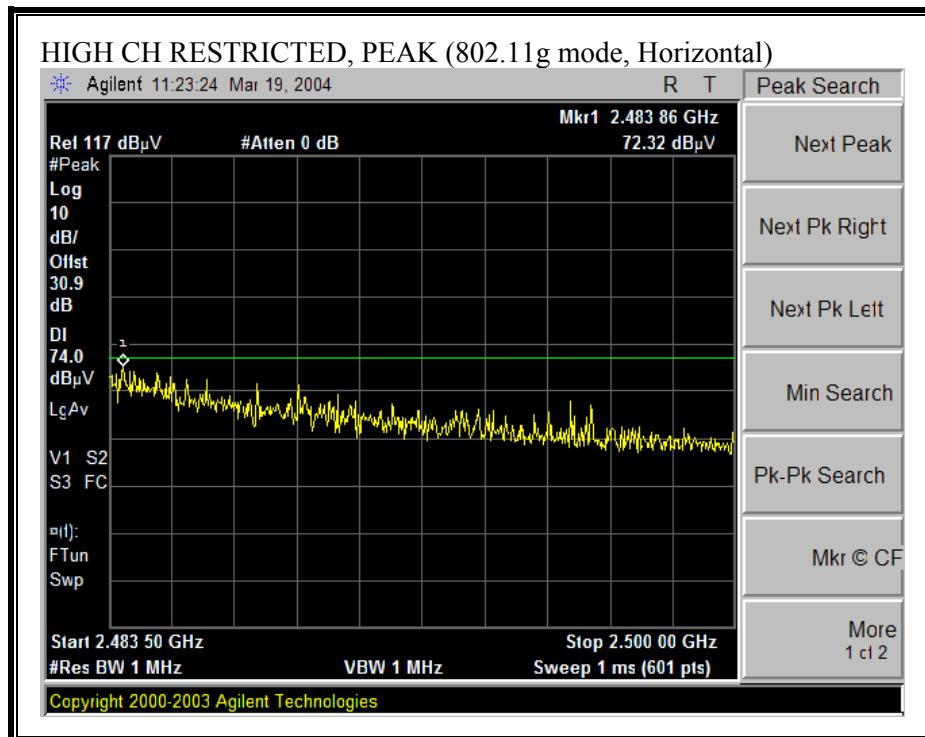


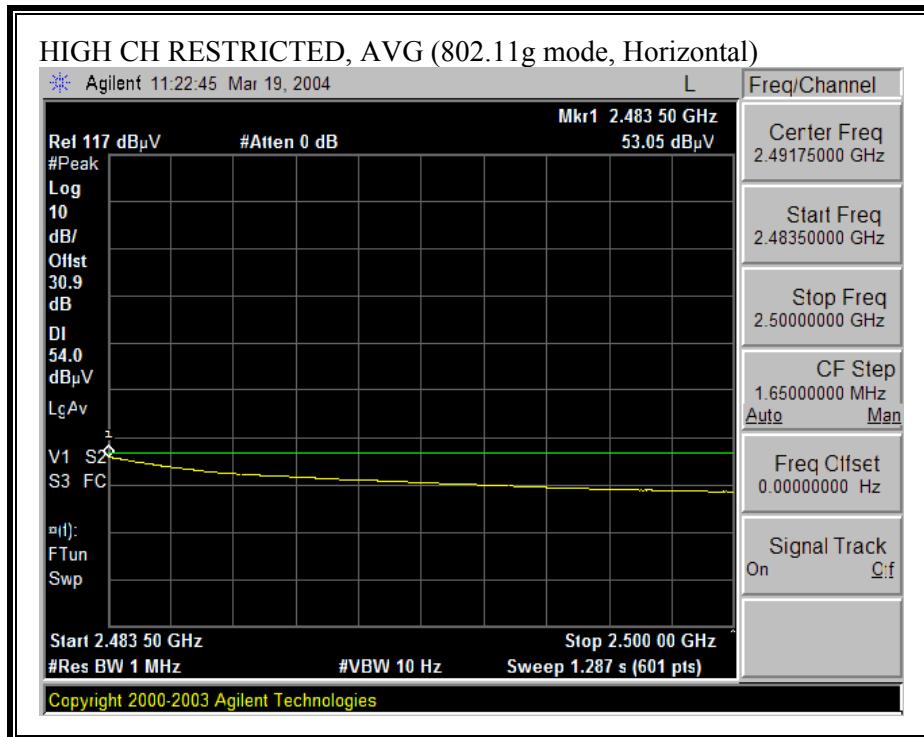


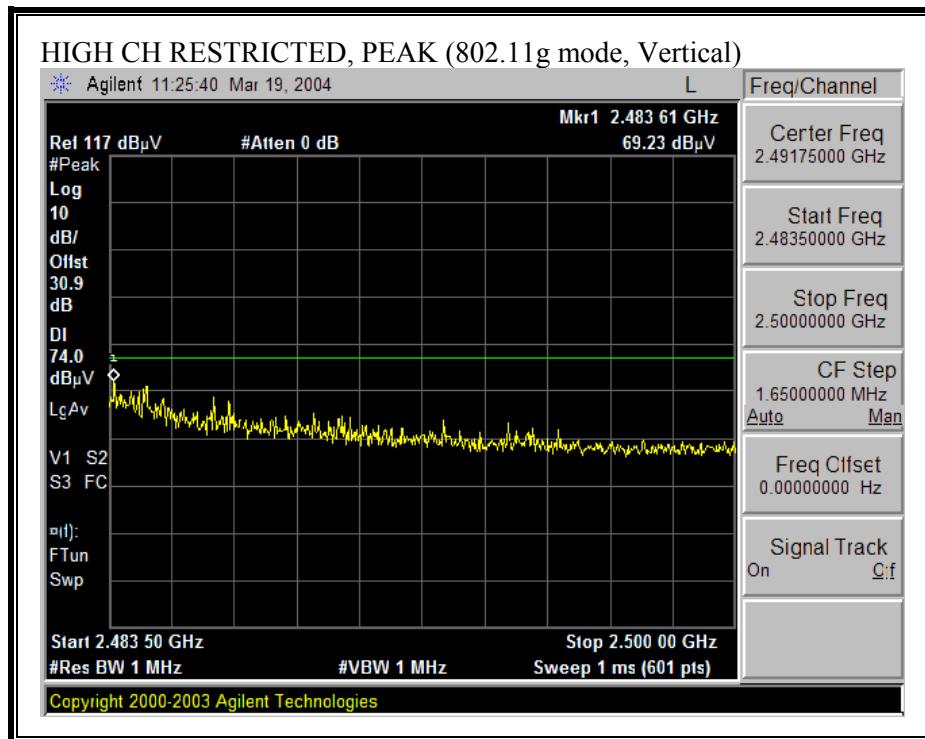
HARMONICS AND SPURIOUS EMISSIONS (b MODE)

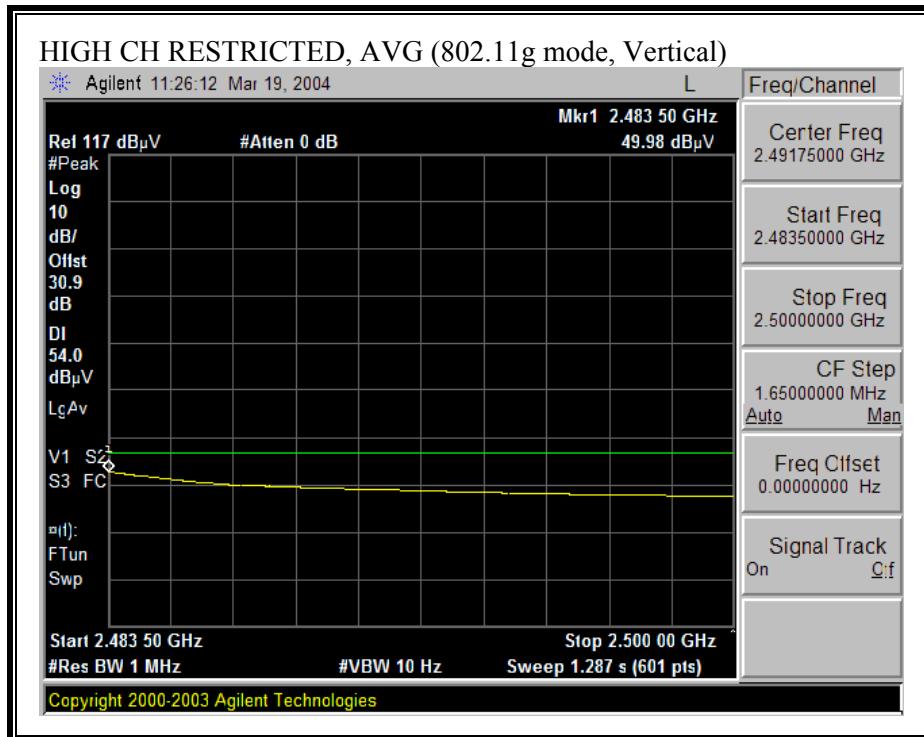

03/09/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																
<p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.:ATHEROS MB444 IN TABLET PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_b MODE (2.4GHz)</p> <p><u>Test Equipment:</u></p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn >18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td></td> </tr> </table> <p>Hi Frequency Cables</p> <table border="1"> <tr> <td><input checked="" type="checkbox"/> (2 ft)</td> <td><input type="checkbox"/> (2 ~ 3 ft)</td> <td><input type="checkbox"/> (4 ~ 6 ft)</td> <td><input checked="" type="checkbox"/> (12 ft)</td> </tr> </table> <table border="1"> <tr> <td>Limit</td> </tr> <tr> <td>FCC 15.209</td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p>																	EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn >18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456			<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)	Limit	FCC 15.209
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn >18GHz																												
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456																														
<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)																													
Limit																																
FCC 15.209																																
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																	
LOW CH 2412MHz																																
4.824	9.8	48.5	40.9	33.1	2.9	-35.3	0.0	1.0	50.1	42.5	74.0	54.0	-23.9	-11.5	V																	
4.824	9.8	47.8	41.5	33.1	2.9	-35.3	0.0	1.0	49.4	43.1	74.0	54.0	-24.6	-10.9	H																	
No spurious emissons above the system noise floor were detected																																
MID CH 2437MHz																																
4.874	9.8	48.0	43.0	33.1	2.9	-35.3	0.0	1.0	49.7	44.7	74.0	54.0	-24.3	-9.3	V																	
7.311	9.8	45.0	34.0	36.2	3.8	-34.6	0.0	1.0	51.4	40.4	74.0	54.0	-22.6	-13.6	V																	
4.874	9.8	50.0	47.2	33.1	2.9	-35.3	0.0	1.0	51.7	48.9	74.0	54.0	-22.3	-5.1	H																	
7.311	9.8	45.5	32.8	36.2	3.8	-34.6	0.0	1.0	51.9	39.2	74.0	54.0	-22.1	-14.8	H																	
No spurious emissons above the system noise floor were detected																																
HI CH 2462MHz																																
4.874	9.8	47.0	35.5	33.1	2.9	-35.3	0.0	1.0	48.7	37.2	74.0	54.0	-25.3	-16.8	V																	
7.311	9.8	44.0	32.0	36.2	3.8	-34.6	0.0	1.0	50.4	38.4	74.0	54.0	-23.6	-15.6	V																	
4.874	9.8	44.8	33.7	33.1	2.9	-35.3	0.0	1.0	46.5	35.4	74.0	54.0	-27.5	-18.6	H																	
7.311	9.8	43.8	31.7	36.2	3.8	-34.6	0.0	1.0	50.2	38.1	74.0	54.0	-23.8	-15.9	H																	
No spurious emissons above the system noise floor were detected																																
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss				Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter				Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit																								


RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

03/10/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																															
<p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB444 IN TABLET PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11g NORMAL (2.4GHz)</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td></td> </tr> </table> <p>Hi Frequency Cables</p> <table border="1"> <tr> <td><input checked="" type="checkbox"/> (2 ft)</td> <td><input type="checkbox"/> (2 ~ 3 ft)</td> <td><input type="checkbox"/> (4 ~ 6 ft)</td> <td><input checked="" type="checkbox"/> (12 ft)</td> </tr> </table> <table border="1"> <tr> <td>Limit</td> <td>FCC 15.209</td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p>																EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456			<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)	Limit	FCC 15.209
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																											
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456																													
<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)																												
Limit	FCC 15.209																														
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																
LOW CH 2412MHz																															
4.824	9.8	48.9	35.2	33.1	2.9	-35.3	0.0	1.0	50.5	36.8	74.0	54.0	-23.5	-17.2	V																
4.824	9.8	50.0	36.5	33.1	2.9	-35.3	0.0	1.0	51.6	38.1	74.0	54.0	-22.4	-15.9	H																
MID CH 2437MHz																															
4.874	9.8	48.6	35.0	33.1	2.9	-35.3	0.0	1.0	50.3	36.7	74.0	54.0	-23.7	-17.3	V																
7.311	9.8	46.7	34.0	36.2	3.8	-34.6	0.0	1.0	53.1	40.4	74.0	54.0	-20.9	-13.6	V																
4.874	9.8	50.0	37.5	33.1	2.9	-35.3	0.0	1.0	51.7	39.2	74.0	54.0	-22.3	-14.8	H																
7.311	9.8	46.3	35.7	36.2	3.8	-34.6	0.0	1.0	52.7	42.1	74.0	54.0	-21.3	-11.9	H																
HIGH CH 2462MHz																															
4.874	9.8	47.9	37.0	33.1	2.9	-35.3	0.0	1.0	49.6	38.7	74.0	54.0	-24.4	-15.3	V																
7.311	9.8	46.7	34.0	36.2	3.8	-34.6	0.0	1.0	53.1	40.4	74.0	54.0	-20.9	-13.6	V																
4.874	9.8	47.2	35.6	33.1	2.9	-35.3	0.0	1.0	48.9	37.3	74.0	54.0	-25.1	-16.7	H																
7.311	9.8	45.8	34.2	36.2	3.8	-34.6	0.0	1.0	52.2	40.6	74.0	54.0	-21.8	-13.4	H																
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss				Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter				Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit																							

HARMONICS AND SPURIOUS EMISSIONS (g TURBO MODE)

<p>03/10/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site</p> <p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB444 IN TABLET PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11g TURBO (2.4GHz)</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td></td> </tr> </table> <p>Hi Frequency Cables</p> <table border="1"> <tr> <td><input checked="" type="checkbox"/> (2 ft)</td> <td><input type="checkbox"/> (2 ~ 3 ft)</td> <td><input type="checkbox"/> (4 ~ 6 ft)</td> <td><input checked="" type="checkbox"/> (12 ft)</td> </tr> </table> <table border="1"> <tr> <td>Limit</td> <td>FCC 15.209</td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p> <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="16">MID CH 2437MHz TURBO</td> </tr> <tr> <td>4.874</td> <td>9.8</td> <td>50.0</td> <td>36.4</td> <td>33.1</td> <td>2.9</td> <td>-35.3</td> <td>0.0</td> <td>1.0</td> <td>51.7</td> <td>38.1</td> <td>74.0</td> <td>54.0</td> <td>-22.3</td> <td>-15.9</td> <td>V</td> </tr> <tr> <td>7.311</td> <td>9.8</td> <td>47.2</td> <td>34.4</td> <td>36.2</td> <td>3.8</td> <td>-34.6</td> <td>0.0</td> <td>1.0</td> <td>53.6</td> <td>40.8</td> <td>74.0</td> <td>54.0</td> <td>-20.4</td> <td>-13.2</td> <td>V</td> </tr> <tr> <td>4.874</td> <td>9.8</td> <td>48.7</td> <td>36.1</td> <td>33.1</td> <td>2.9</td> <td>-35.3</td> <td>0.0</td> <td>1.0</td> <td>50.4</td> <td>37.8</td> <td>74.0</td> <td>54.0</td> <td>-23.6</td> <td>-16.2</td> <td>H</td> </tr> <tr> <td>7.311</td> <td>9.8</td> <td>45.8</td> <td>34.8</td> <td>36.2</td> <td>3.8</td> <td>-34.6</td> <td>0.0</td> <td>1.0</td> <td>52.2</td> <td>41.2</td> <td>74.0</td> <td>54.0</td> <td>-21.8</td> <td>-12.8</td> <td>H</td> </tr> </tbody> </table> <p> f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Read Analyzer Reading Avg Average Field Strength @ 3 m AF Antenna Factor Peak Calculated Peak Field Strength CL Cable Loss HPF High Pass Filter </p>																		EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456			<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)	Limit	FCC 15.209	f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	MID CH 2437MHz TURBO																4.874	9.8	50.0	36.4	33.1	2.9	-35.3	0.0	1.0	51.7	38.1	74.0	54.0	-22.3	-15.9	V	7.311	9.8	47.2	34.4	36.2	3.8	-34.6	0.0	1.0	53.6	40.8	74.0	54.0	-20.4	-13.2	V	4.874	9.8	48.7	36.1	33.1	2.9	-35.3	0.0	1.0	50.4	37.8	74.0	54.0	-23.6	-16.2	H	7.311	9.8	45.8	34.8	36.2	3.8	-34.6	0.0	1.0	52.2	41.2	74.0	54.0	-21.8	-12.8	H
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																																																																																																													
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456																																																																																																																															
<input checked="" type="checkbox"/> (2 ft)	<input type="checkbox"/> (2 ~ 3 ft)	<input type="checkbox"/> (4 ~ 6 ft)	<input checked="" type="checkbox"/> (12 ft)																																																																																																																														
Limit	FCC 15.209																																																																																																																																
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																		
MID CH 2437MHz TURBO																																																																																																																																	
4.874	9.8	50.0	36.4	33.1	2.9	-35.3	0.0	1.0	51.7	38.1	74.0	54.0	-22.3	-15.9	V																																																																																																																		
7.311	9.8	47.2	34.4	36.2	3.8	-34.6	0.0	1.0	53.6	40.8	74.0	54.0	-20.4	-13.2	V																																																																																																																		
4.874	9.8	48.7	36.1	33.1	2.9	-35.3	0.0	1.0	50.4	37.8	74.0	54.0	-23.6	-16.2	H																																																																																																																		
7.311	9.8	45.8	34.8	36.2	3.8	-34.6	0.0	1.0	52.2	41.2	74.0	54.0	-21.8	-12.8	H																																																																																																																		

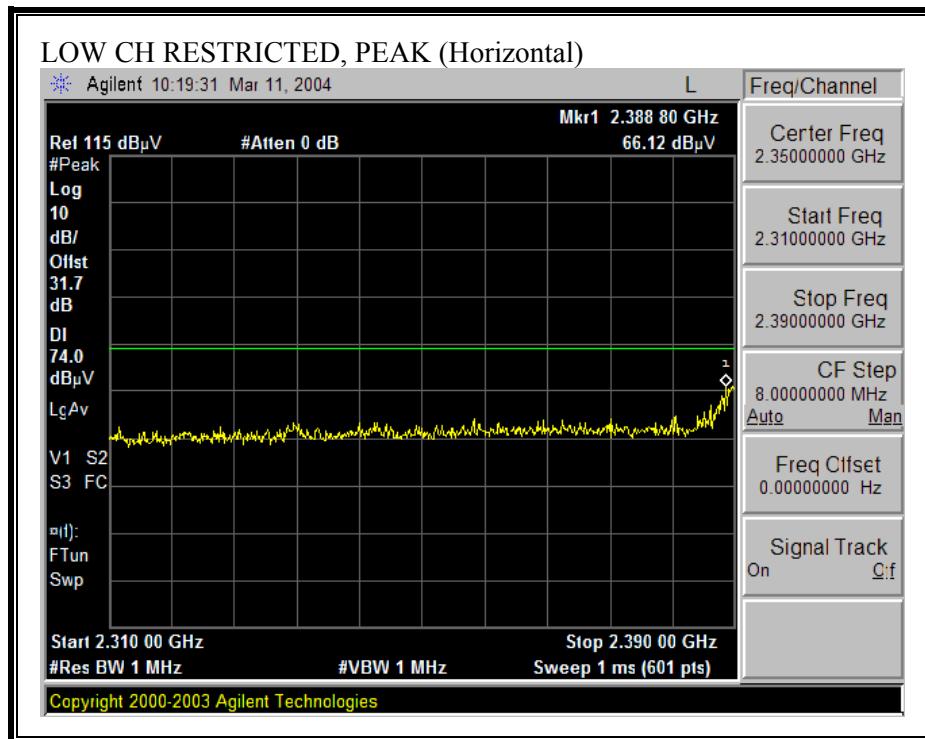
HARMONICS AND SPURIOUS EMISSIONS (a MODE)

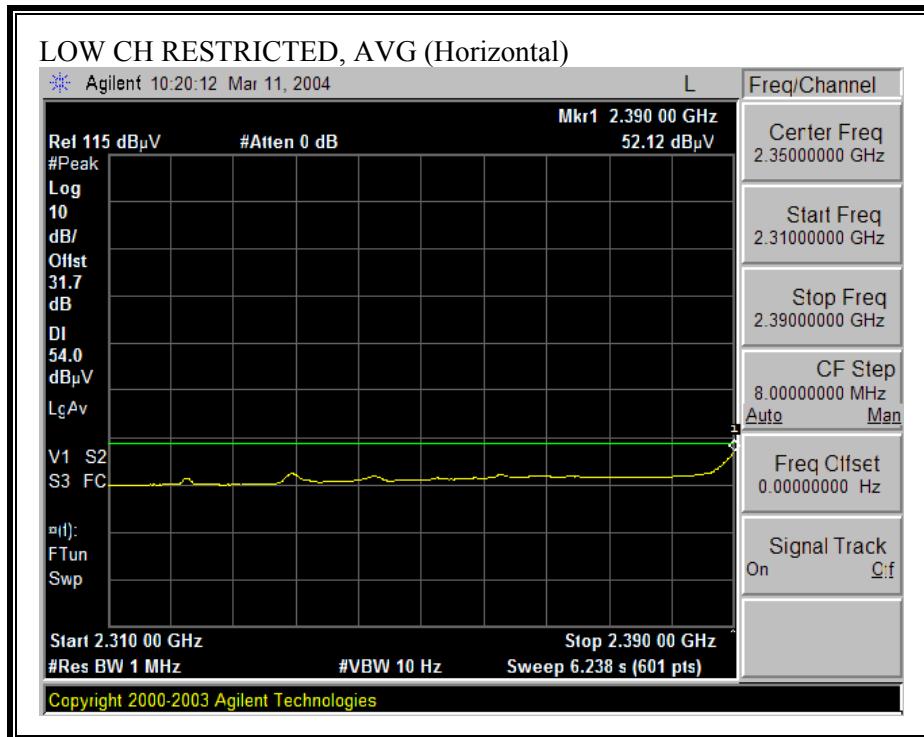
<p>03/09/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site</p> <p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN TABLET PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11a MODE (5.745-5.825GHz)</p> <p><u>Test Equipment:</u></p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz T60; S/N: 2238 @3m</td> <td>Spectrum Analyzer Agilent E4446A Analyzer</td> <td>Pre-amplifier 1-26GHz T63 Miteq 646456</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz T87; ARA 18-26GHz; S/N:1049</td> </tr> <tr> <td colspan="2">Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)</td> <td colspan="2">Limit FCC 15.209</td> <td>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</td> <td>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</td> </tr> </table> <p><u>11a NORMAL</u></p> <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="16"><u>LOW CH 5745MHz</u></td> </tr> <tr> <td>11.490</td> <td>9.8</td> <td>49.0</td> <td>37.4</td> <td>38.7</td> <td>6.1</td> <td>-34.2</td> <td>0.0</td> <td>1.0</td> <td>60.6</td> <td>49.0</td> <td>74.0</td> <td>54.0</td> <td>-13.4</td> <td>-5.0</td> <td>V</td> </tr> <tr> <td>11.490</td> <td>9.8</td> <td>51.6</td> <td>39.5</td> <td>38.7</td> <td>6.1</td> <td>-34.2</td> <td>0.0</td> <td>1.0</td> <td>63.2</td> <td>51.1</td> <td>74.0</td> <td>54.0</td> <td>-10.8</td> <td>-2.9</td> <td>H</td> </tr> <tr> <td colspan="16"><u>MID CH 5785MHz</u></td> </tr> <tr> <td>11.570</td> <td>9.8</td> <td>53.4</td> <td>40.7</td> <td>38.8</td> <td>6.1</td> <td>-34.3</td> <td>0.0</td> <td>1.0</td> <td>65.0</td> <td>52.3</td> <td>74.0</td> <td>54.0</td> <td>-9.0</td> <td>-1.7</td> <td>V</td> </tr> <tr> <td>11.570</td> <td>9.8</td> <td>50.5</td> <td>38.7</td> <td>38.8</td> <td>6.1</td> <td>-34.3</td> <td>0.0</td> <td>1.0</td> <td>62.1</td> <td>50.3</td> <td>74.0</td> <td>54.0</td> <td>-11.9</td> <td>-3.7</td> <td>H</td> </tr> <tr> <td colspan="16"><u>HII CH 5700MHz</u></td> </tr> <tr> <td>11.650</td> <td>9.8</td> <td>47.2</td> <td>35.1</td> <td>38.9</td> <td>6.1</td> <td>-34.4</td> <td>0.0</td> <td>1.0</td> <td>58.8</td> <td>46.7</td> <td>74.0</td> <td>54.0</td> <td>-15.2</td> <td>-7.3</td> <td>V</td> </tr> <tr> <td>11.650</td> <td>9.8</td> <td>48.5</td> <td>36.0</td> <td>38.9</td> <td>6.1</td> <td>-34.4</td> <td>0.0</td> <td>1.0</td> <td>60.1</td> <td>47.6</td> <td>74.0</td> <td>54.0</td> <td>-13.9</td> <td>-6.4</td> <td>H</td> </tr> </tbody> </table> <p><u>Definitions:</u></p> <table border="0"> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>																		EMCO Horn 1-18GHz T60; S/N: 2238 @3m	Spectrum Analyzer Agilent E4446A Analyzer	Pre-amplifier 1-26GHz T63 Miteq 646456	Pre-amplifier 26-40GHz	Horn > 18GHz T87; ARA 18-26GHz; S/N:1049	Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		Limit FCC 15.209		Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth	Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth	f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	<u>LOW CH 5745MHz</u>																11.490	9.8	49.0	37.4	38.7	6.1	-34.2	0.0	1.0	60.6	49.0	74.0	54.0	-13.4	-5.0	V	11.490	9.8	51.6	39.5	38.7	6.1	-34.2	0.0	1.0	63.2	51.1	74.0	54.0	-10.8	-2.9	H	<u>MID CH 5785MHz</u>																11.570	9.8	53.4	40.7	38.8	6.1	-34.3	0.0	1.0	65.0	52.3	74.0	54.0	-9.0	-1.7	V	11.570	9.8	50.5	38.7	38.8	6.1	-34.3	0.0	1.0	62.1	50.3	74.0	54.0	-11.9	-3.7	H	<u>HII CH 5700MHz</u>																11.650	9.8	47.2	35.1	38.9	6.1	-34.4	0.0	1.0	58.8	46.7	74.0	54.0	-15.2	-7.3	V	11.650	9.8	48.5	36.0	38.9	6.1	-34.4	0.0	1.0	60.1	47.6	74.0	54.0	-13.9	-6.4	H	f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
EMCO Horn 1-18GHz T60; S/N: 2238 @3m	Spectrum Analyzer Agilent E4446A Analyzer	Pre-amplifier 1-26GHz T63 Miteq 646456	Pre-amplifier 26-40GHz	Horn > 18GHz T87; ARA 18-26GHz; S/N:1049																																																																																																																																																																																																																						
Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		Limit FCC 15.209		Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth	Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth																																																																																																																																																																																																																					
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																																																																																											
<u>LOW CH 5745MHz</u>																																																																																																																																																																																																																										
11.490	9.8	49.0	37.4	38.7	6.1	-34.2	0.0	1.0	60.6	49.0	74.0	54.0	-13.4	-5.0	V																																																																																																																																																																																																											
11.490	9.8	51.6	39.5	38.7	6.1	-34.2	0.0	1.0	63.2	51.1	74.0	54.0	-10.8	-2.9	H																																																																																																																																																																																																											
<u>MID CH 5785MHz</u>																																																																																																																																																																																																																										
11.570	9.8	53.4	40.7	38.8	6.1	-34.3	0.0	1.0	65.0	52.3	74.0	54.0	-9.0	-1.7	V																																																																																																																																																																																																											
11.570	9.8	50.5	38.7	38.8	6.1	-34.3	0.0	1.0	62.1	50.3	74.0	54.0	-11.9	-3.7	H																																																																																																																																																																																																											
<u>HII CH 5700MHz</u>																																																																																																																																																																																																																										
11.650	9.8	47.2	35.1	38.9	6.1	-34.4	0.0	1.0	58.8	46.7	74.0	54.0	-15.2	-7.3	V																																																																																																																																																																																																											
11.650	9.8	48.5	36.0	38.9	6.1	-34.4	0.0	1.0	60.1	47.6	74.0	54.0	-13.9	-6.4	H																																																																																																																																																																																																											
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																																																																																																																																																																																																					
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																																																																																																																																																																																																					
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																																																																																																																																																																																																					
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																																																																																																																																																																																																					
CL	Cable Loss	HPF	High Pass Filter																																																																																																																																																																																																																							

HARMONICS AND SPURIOUS EMISSIONS (a TURBO MODE)

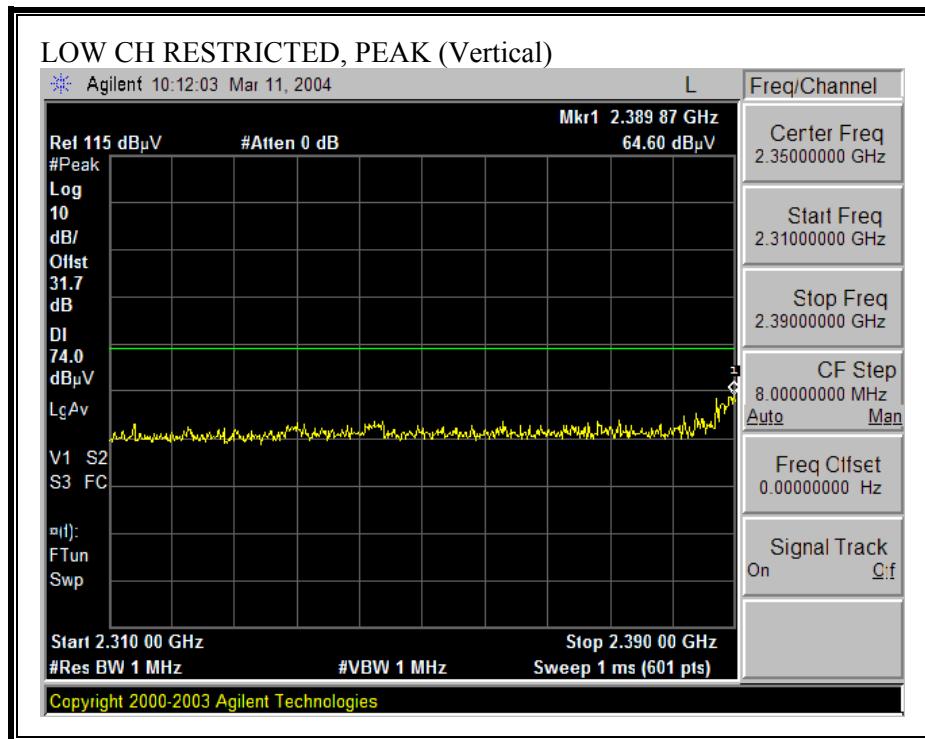
<p>03/09/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site</p> <p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN TABLET PC EUT M/N: MB44 Test Target: 15.247 Mode Oper: Tx_11a TURBO (5.8GHz)</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz T60; S/N: 2238 @3m</td> <td>Spectrum Analyzer Agilent E4446A Analyzer</td> <td>Pre-amplifier 1-26GHz T63 Miteq 646456</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz T87; ARA 18-26GHz; S/N:1049</td> </tr> <tr> <td colspan="2">Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)</td> <td colspan="2">Limit FCC 15.209</td> <td>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</td> <td>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</td> </tr> </table> <p>11a TURBO</p> <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="16">LOW CH 5760MHz</td> </tr> <tr> <td>11.520</td> <td>9.8</td> <td>52.9</td> <td>40.0</td> <td>38.7</td> <td>6.1</td> <td>-34.2</td> <td>0.0</td> <td>1.0</td> <td>64.4</td> <td>51.6</td> <td>74.0</td> <td>54.0</td> <td>-9.6</td> <td>-2.4</td> <td>V</td> </tr> <tr> <td>23.040</td> <td>9.8</td> <td>46.0</td> <td>35.0</td> <td>36.3</td> <td>7.4</td> <td>-40.7</td> <td>0.0</td> <td>1.0</td> <td>49.9</td> <td>38.9</td> <td>74.0</td> <td>54.0</td> <td>-24.1</td> <td>-15.1</td> <td>V</td> </tr> <tr> <td>11.520</td> <td>9.8</td> <td>53.0</td> <td>40.4</td> <td>38.7</td> <td>6.1</td> <td>-34.2</td> <td>0.0</td> <td>1.0</td> <td>64.6</td> <td>52.0</td> <td>74.0</td> <td>54.0</td> <td>-9.4</td> <td>-2.0</td> <td>H</td> </tr> <tr> <td>23.040</td> <td>9.8</td> <td>44.5</td> <td>34.0</td> <td>36.3</td> <td>7.4</td> <td>-40.7</td> <td>0.0</td> <td>1.0</td> <td>49.9</td> <td>38.9</td> <td>74.0</td> <td>54.0</td> <td>-24.1</td> <td>-15.1</td> <td>H</td> </tr> <tr> <td colspan="16">HI CH 5800MHz</td> </tr> <tr> <td>11.600</td> <td>9.8</td> <td>50.8</td> <td>38.6</td> <td>38.8</td> <td>6.1</td> <td>-34.3</td> <td>0.0</td> <td>1.0</td> <td>62.4</td> <td>50.2</td> <td>74.0</td> <td>54.0</td> <td>-11.6</td> <td>-3.8</td> <td>V</td> </tr> <tr> <td>23.200</td> <td>9.8</td> <td>47.0</td> <td>35.3</td> <td>36.2</td> <td>7.4</td> <td>-40.9</td> <td>0.0</td> <td>1.0</td> <td>50.7</td> <td>39.0</td> <td>74.0</td> <td>54.0</td> <td>-23.3</td> <td>-15.0</td> <td>V</td> </tr> <tr> <td>11.600</td> <td>9.8</td> <td>50.0</td> <td>37.3</td> <td>38.8</td> <td>6.1</td> <td>-34.3</td> <td>0.0</td> <td>1.0</td> <td>61.6</td> <td>48.9</td> <td>74.0</td> <td>54.0</td> <td>-12.4</td> <td>-5.1</td> <td>H</td> </tr> <tr> <td>23.200</td> <td>9.8</td> <td>47.0</td> <td>35.3</td> <td>36.2</td> <td>7.4</td> <td>-40.9</td> <td>0.0</td> <td>1.0</td> <td>50.7</td> <td>39.0</td> <td>74.0</td> <td>54.0</td> <td>-23.3</td> <td>-15.0</td> <td>H</td> </tr> </tbody> </table> <p>Definitions:</p> <table> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>																		EMCO Horn 1-18GHz T60; S/N: 2238 @3m	Spectrum Analyzer Agilent E4446A Analyzer	Pre-amplifier 1-26GHz T63 Miteq 646456	Pre-amplifier 26-40GHz	Horn > 18GHz T87; ARA 18-26GHz; S/N:1049	Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		Limit FCC 15.209		Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth	Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth	f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	LOW CH 5760MHz																11.520	9.8	52.9	40.0	38.7	6.1	-34.2	0.0	1.0	64.4	51.6	74.0	54.0	-9.6	-2.4	V	23.040	9.8	46.0	35.0	36.3	7.4	-40.7	0.0	1.0	49.9	38.9	74.0	54.0	-24.1	-15.1	V	11.520	9.8	53.0	40.4	38.7	6.1	-34.2	0.0	1.0	64.6	52.0	74.0	54.0	-9.4	-2.0	H	23.040	9.8	44.5	34.0	36.3	7.4	-40.7	0.0	1.0	49.9	38.9	74.0	54.0	-24.1	-15.1	H	HI CH 5800MHz																11.600	9.8	50.8	38.6	38.8	6.1	-34.3	0.0	1.0	62.4	50.2	74.0	54.0	-11.6	-3.8	V	23.200	9.8	47.0	35.3	36.2	7.4	-40.9	0.0	1.0	50.7	39.0	74.0	54.0	-23.3	-15.0	V	11.600	9.8	50.0	37.3	38.8	6.1	-34.3	0.0	1.0	61.6	48.9	74.0	54.0	-12.4	-5.1	H	23.200	9.8	47.0	35.3	36.2	7.4	-40.9	0.0	1.0	50.7	39.0	74.0	54.0	-23.3	-15.0	H	f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
EMCO Horn 1-18GHz T60; S/N: 2238 @3m	Spectrum Analyzer Agilent E4446A Analyzer	Pre-amplifier 1-26GHz T63 Miteq 646456	Pre-amplifier 26-40GHz	Horn > 18GHz T87; ARA 18-26GHz; S/N:1049																																																																																																																																																																																																																																						
Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		Limit FCC 15.209		Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth	Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth																																																																																																																																																																																																																																					
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																																																																																																											
LOW CH 5760MHz																																																																																																																																																																																																																																										
11.520	9.8	52.9	40.0	38.7	6.1	-34.2	0.0	1.0	64.4	51.6	74.0	54.0	-9.6	-2.4	V																																																																																																																																																																																																																											
23.040	9.8	46.0	35.0	36.3	7.4	-40.7	0.0	1.0	49.9	38.9	74.0	54.0	-24.1	-15.1	V																																																																																																																																																																																																																											
11.520	9.8	53.0	40.4	38.7	6.1	-34.2	0.0	1.0	64.6	52.0	74.0	54.0	-9.4	-2.0	H																																																																																																																																																																																																																											
23.040	9.8	44.5	34.0	36.3	7.4	-40.7	0.0	1.0	49.9	38.9	74.0	54.0	-24.1	-15.1	H																																																																																																																																																																																																																											
HI CH 5800MHz																																																																																																																																																																																																																																										
11.600	9.8	50.8	38.6	38.8	6.1	-34.3	0.0	1.0	62.4	50.2	74.0	54.0	-11.6	-3.8	V																																																																																																																																																																																																																											
23.200	9.8	47.0	35.3	36.2	7.4	-40.9	0.0	1.0	50.7	39.0	74.0	54.0	-23.3	-15.0	V																																																																																																																																																																																																																											
11.600	9.8	50.0	37.3	38.8	6.1	-34.3	0.0	1.0	61.6	48.9	74.0	54.0	-12.4	-5.1	H																																																																																																																																																																																																																											
23.200	9.8	47.0	35.3	36.2	7.4	-40.9	0.0	1.0	50.7	39.0	74.0	54.0	-23.3	-15.0	H																																																																																																																																																																																																																											
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																																																																																																																																																																																																																					
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																																																																																																																																																																																																																					
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																																																																																																																																																																																																																					
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																																																																																																																																																																																																																					
CL	Cable Loss	HPF	High Pass Filter																																																																																																																																																																																																																																							

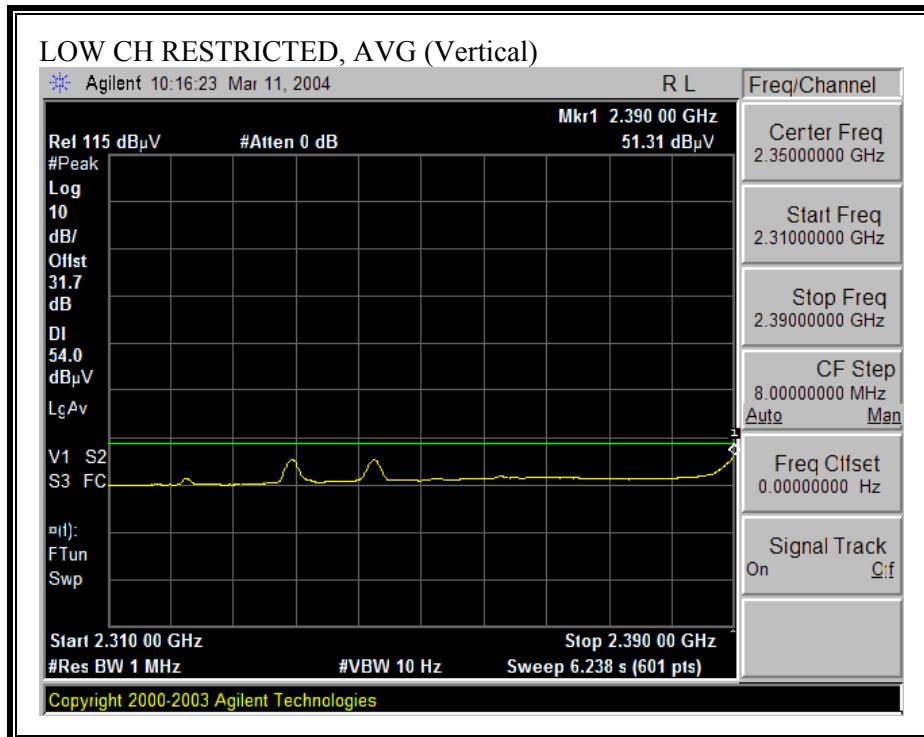
7.7.4. CO-LOCATED TRANSMITTER RADIATED EMISSIONS

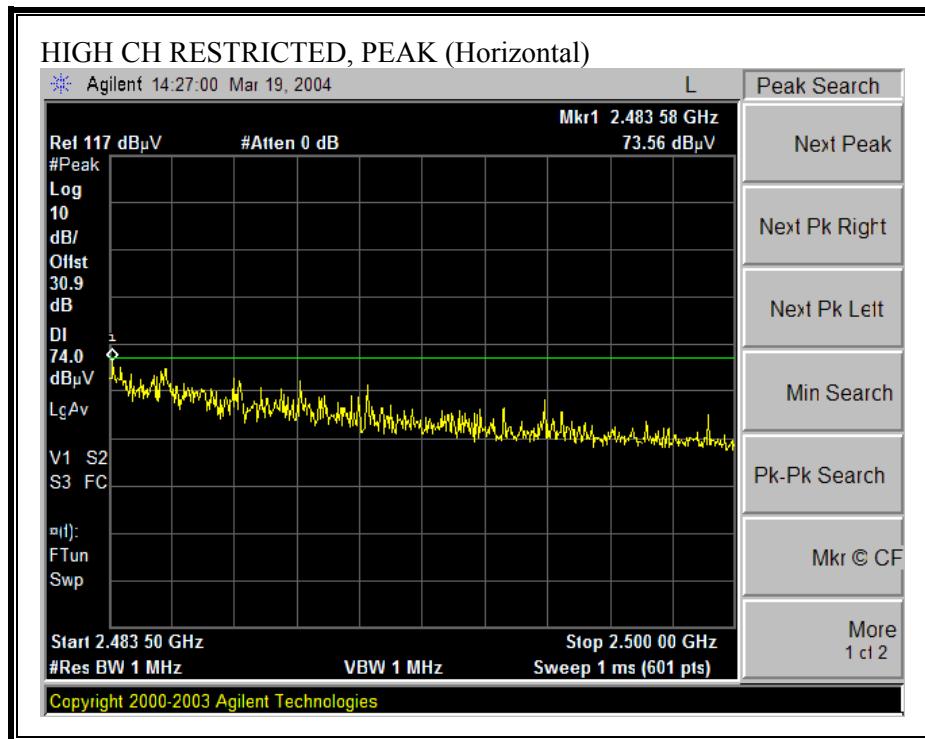

SUPPLEMENTAL TEST PROCEDURE

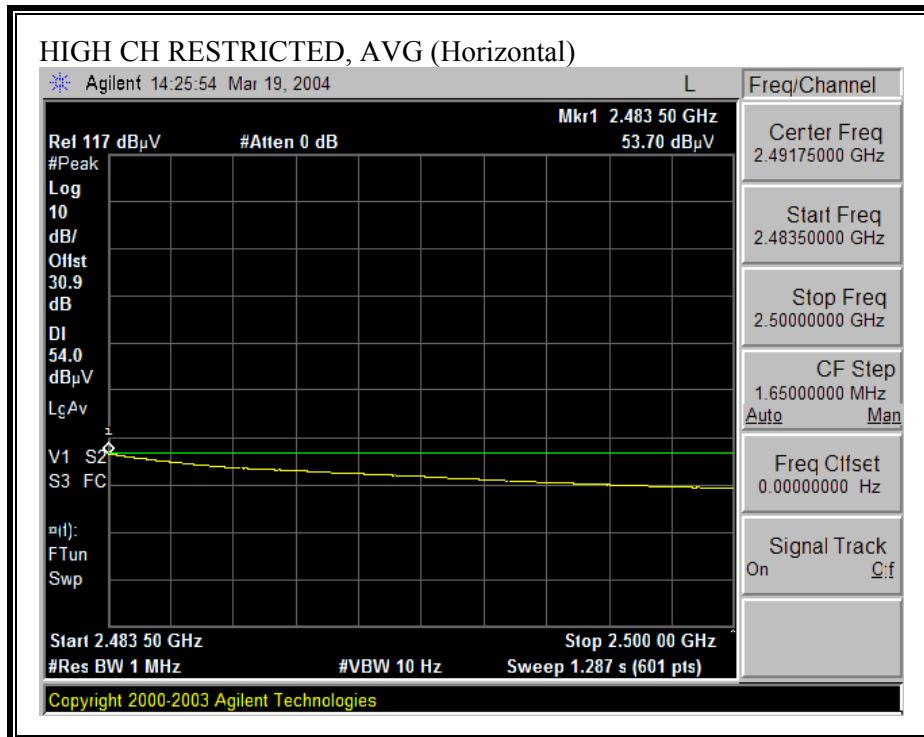

The EUT is placed on a non-conducting table 80 cm above the ground plane. The dominant transmitter is set to the worst case channel. The spurious emissions performance of the dominant transmitter is investigated as the settings of the non-dominant transmitter are varied. Worst case results are reported.

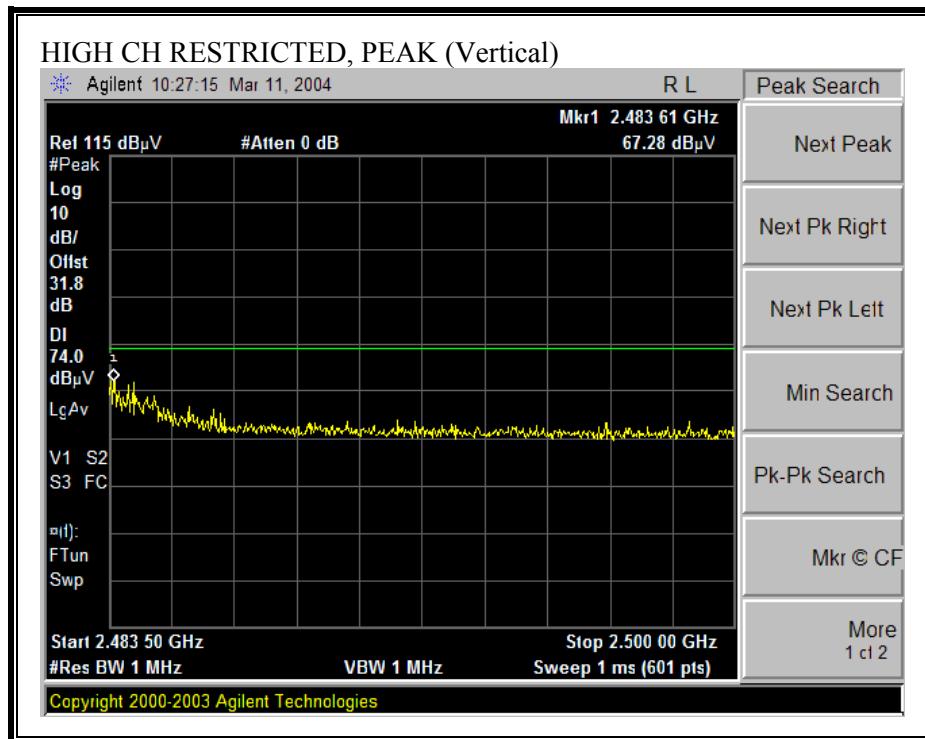
RESULTS

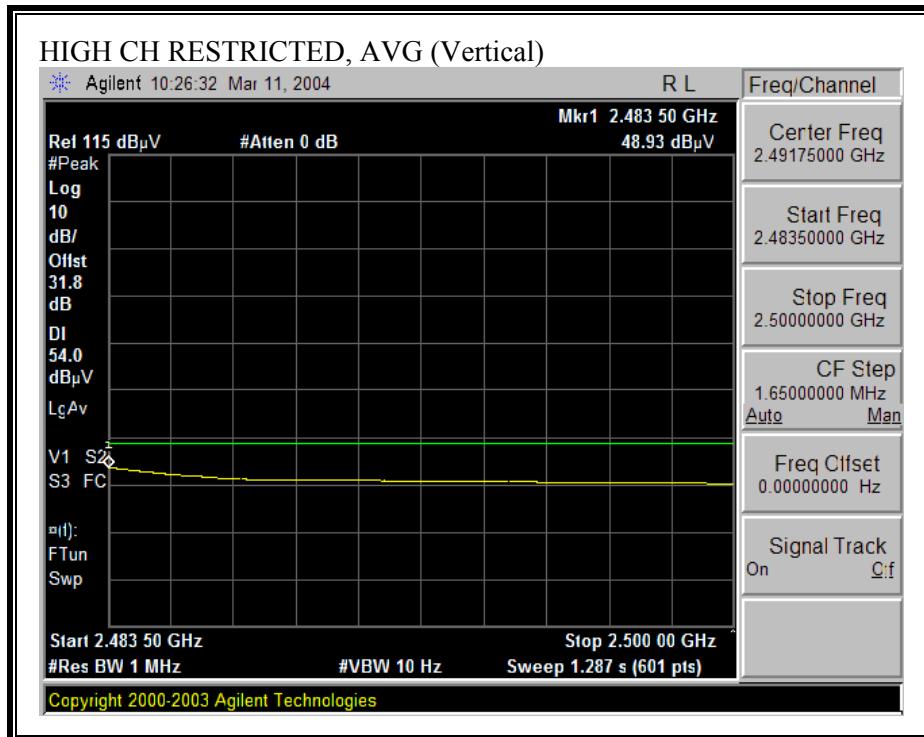

No non-compliance noted:


WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

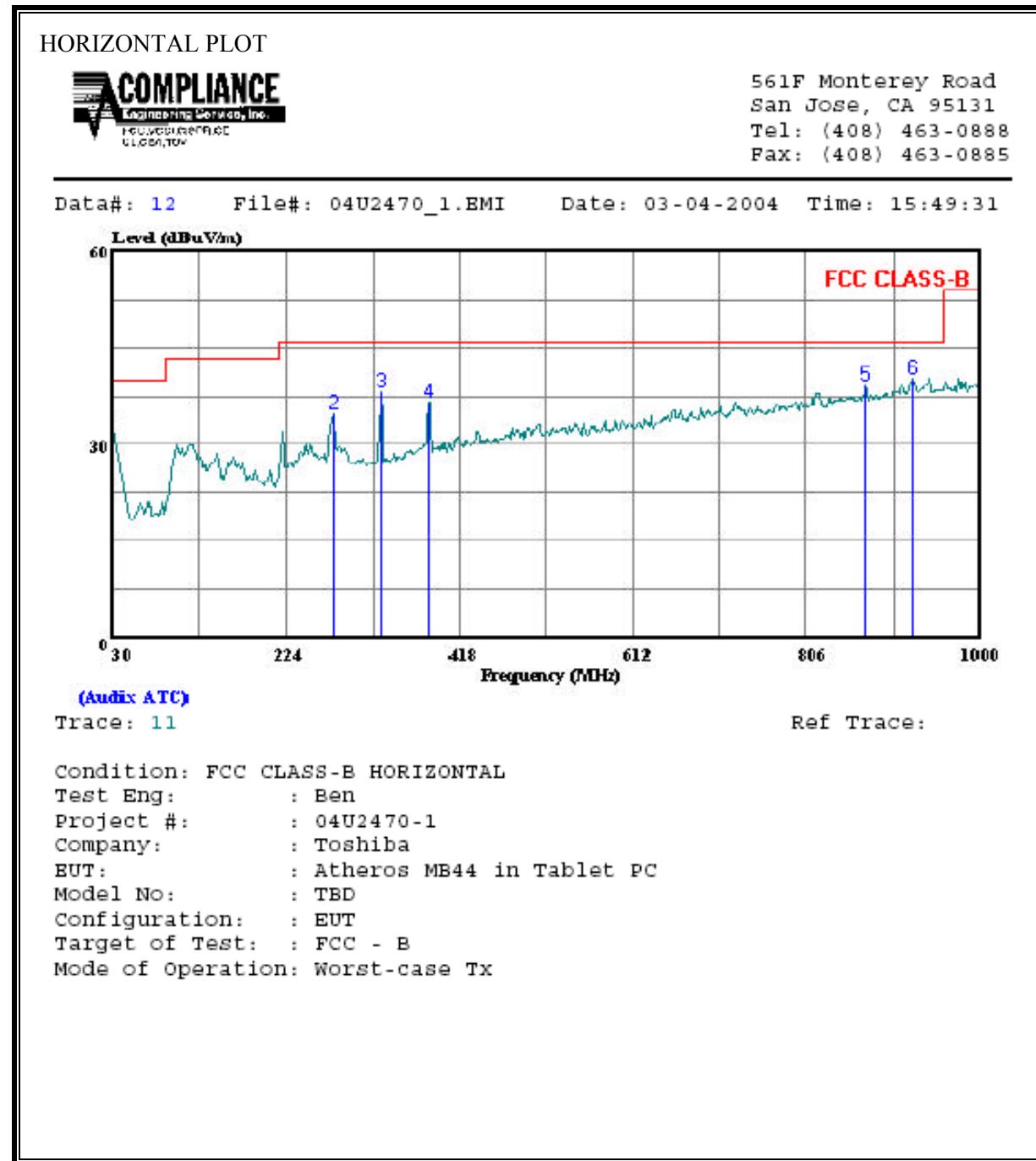



WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



WORST-CASE HARMONICS AND SPURIOUS EMISSIONS

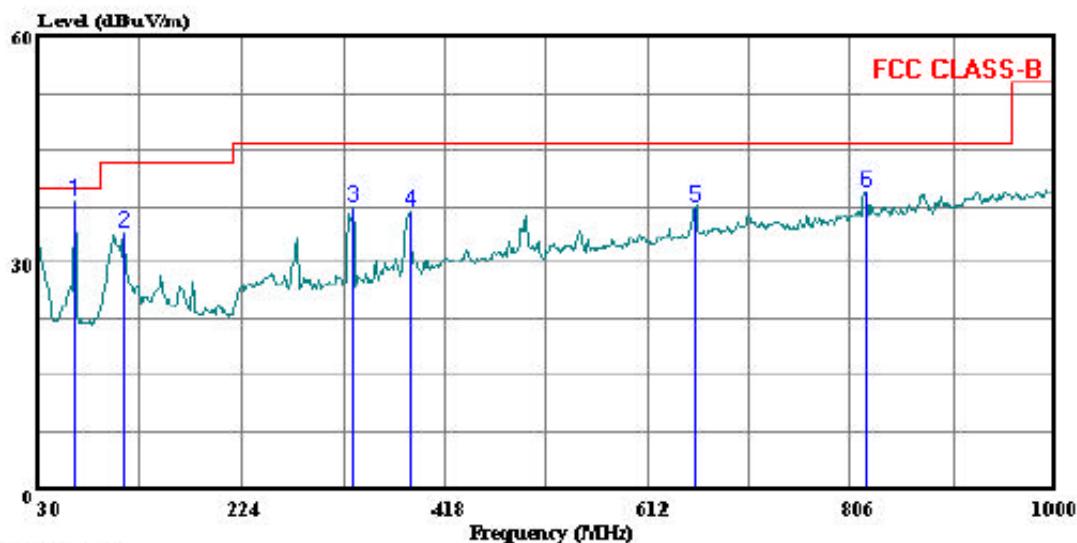
<p>03/12/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site</p> <p>Test Engr: VIEN TRAN Project #: 04U2470-1 Company: TOSHIBA EUT Descrip.: MB44 IN NOTEBOOK PC EUT M/N: MB44 Test Target: 15.247_CO-LOCATION_HARMONIC & SPUR Mode Oper: Tx_11g MODE (2.4GHz)_HI CH</p> <p><u>Test Equipment:</u></p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T63 Miteq 646456</td> <td></td> <td></td> </tr> <tr> <td colspan="5"> Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft) </td> </tr> <tr> <td colspan="5"> Limit FCC 15.209 </td> </tr> <tr> <td colspan="5"> Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth </td> <td colspan="5"> Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth </td> </tr> <tr> <td>f GHz</td> <td>Dist feet</td> <td>Read Pk dBuV</td> <td>Read Avg. dBuV</td> <td>AF dB/m</td> <td>CL dB</td> <td>Amp dB</td> <td>D Corr dB</td> <td>HPF</td> <td>Peak dBuV/m</td> <td>Avg dBuV/m</td> <td>Pk Lim dBuV/m</td> <td>Avg Lim dBuV/m</td> <td>Pk Mar dB</td> <td>Avg Mar dB</td> <td>Notes</td> </tr> <tr> <td colspan="18">HI CH 2462MHZ</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>51.3</td> <td>41.8</td> <td>33.2</td> <td>2.9</td> <td>-35.3</td> <td>0.0</td> <td>1.0</td> <td>53.0</td> <td>43.5</td> <td>74.0</td> <td>54.0</td> <td>-21.0</td> <td>-10.5</td> <td>V</td> </tr> <tr> <td>7.386</td> <td>9.8</td> <td>56.6</td> <td>44.0</td> <td>36.3</td> <td>3.9</td> <td>-34.5</td> <td>0.0</td> <td>1.0</td> <td>63.2</td> <td>50.6</td> <td>74.0</td> <td>54.0</td> <td>-10.8</td> <td>-3.4</td> <td>V</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>46.9</td> <td>35.3</td> <td>33.2</td> <td>2.9</td> <td>-35.3</td> <td>0.0</td> <td>1.0</td> <td>48.6</td> <td>37.0</td> <td>74.0</td> <td>54.0</td> <td>-25.4</td> <td>-17.0</td> <td>H</td> </tr> <tr> <td>7.386</td> <td>9.8</td> <td>51.9</td> <td>38.8</td> <td>36.3</td> <td>3.9</td> <td>-34.5</td> <td>0.0</td> <td>1.0</td> <td>58.5</td> <td>45.4</td> <td>74.0</td> <td>54.0</td> <td>-15.5</td> <td>-8.6</td> <td>H</td> </tr> <tr> <td colspan="4"> f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss </td> <td colspan="4"> Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter </td> <td colspan="4"> Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit </td> </tr> </table>																		EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456			Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)					Limit FCC 15.209					Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth					Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth					f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	HI CH 2462MHZ																		4.924	9.8	51.3	41.8	33.2	2.9	-35.3	0.0	1.0	53.0	43.5	74.0	54.0	-21.0	-10.5	V	7.386	9.8	56.6	44.0	36.3	3.9	-34.5	0.0	1.0	63.2	50.6	74.0	54.0	-10.8	-3.4	V	4.924	9.8	46.9	35.3	33.2	2.9	-35.3	0.0	1.0	48.6	37.0	74.0	54.0	-25.4	-17.0	H	7.386	9.8	51.9	38.8	36.3	3.9	-34.5	0.0	1.0	58.5	45.4	74.0	54.0	-15.5	-8.6	H	f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss				Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter				Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit			
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																																																																																																																																									
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T63 Miteq 646456																																																																																																																																																											
Hi Frequency Cables <input checked="" type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)																																																																																																																																																													
Limit FCC 15.209																																																																																																																																																													
Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth					Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth																																																																																																																																																								
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																														
HI CH 2462MHZ																																																																																																																																																													
4.924	9.8	51.3	41.8	33.2	2.9	-35.3	0.0	1.0	53.0	43.5	74.0	54.0	-21.0	-10.5	V																																																																																																																																														
7.386	9.8	56.6	44.0	36.3	3.9	-34.5	0.0	1.0	63.2	50.6	74.0	54.0	-10.8	-3.4	V																																																																																																																																														
4.924	9.8	46.9	35.3	33.2	2.9	-35.3	0.0	1.0	48.6	37.0	74.0	54.0	-25.4	-17.0	H																																																																																																																																														
7.386	9.8	51.9	38.8	36.3	3.9	-34.5	0.0	1.0	58.5	45.4	74.0	54.0	-15.5	-8.6	H																																																																																																																																														
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss				Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter				Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit																																																																																																																																																					

7.7.5. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL DATA

Freq	Remark	Read		Limit		Over	
		Level	Factor	Level	Line	Limit	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	30.000	Peak	9.24	22.95	32.19	40.00	-7.81
2	276.380	Peak	19.51	15.37	34.88	46.00	-11.13
3	329.730	Peak	21.64	16.44	38.08	46.00	-7.92
4	385.020	Peak	18.82	17.85	36.66	46.00	-9.34
5	872.930	Peak	13.57	25.65	39.22	46.00	-6.78
6	924.340	Peak	13.41	26.74	40.15	46.00	-5.85


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL PLOT

561F Monterey Road
San Jose, CA 95131
Tel: (408) 463-0888
Fax: (408) 463-0885

Data#: 6 File#: 04U2470_1.EMI Date: 03-04-2004 Time: 15:25:31

(Audix ATC)

Trace: 5

Ref Trace:

Condition: FCC CLASS-B VERTICAL
Test Eng: : Ben
Project #: : 04U2470-1
Company: : Toshiba
EUT: : Atheros MB44 in Tablet PC
Model No: : TBD
Configuration: : EUT
Target of Test: : FCC - B
Mode of Operation: Worst-case Tx

VERTICAL DATA

Freq	Remark	Read		Limit		Over	
		Level	Factor	Level	Line	Limit	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	65.890	Peak	28.84	9.29	38.13	40.00	-1.87
2	111.480	Peak	20.29	13.73	34.02	43.50	-9.48
3	329.730	Peak	20.85	16.44	37.29	46.00	-8.71
4	385.990	Peak	19.11	17.87	36.98	46.00	-9.02
5	656.620	Peak	14.51	22.97	37.48	46.00	-8.52
6	819.580	Peak	14.26	25.19	39.45	46.00	-6.55

7.8. POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 [*]	56 to 46 [*]
0.5-5	56	46
5-30	60	50

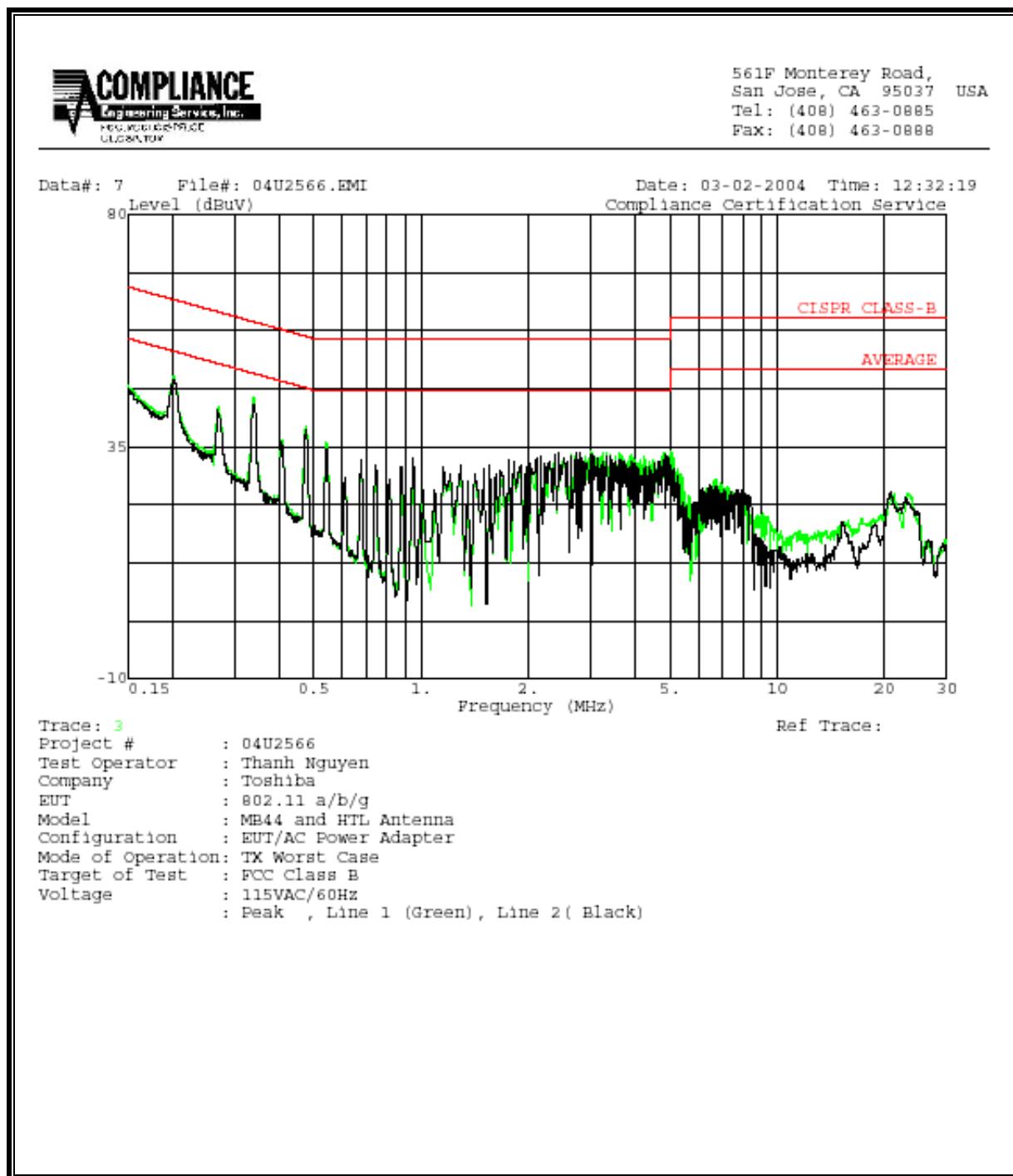
^{*} Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

No non-compliance noted:

6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq. (MHz)	Reading			Closs (dB)	Limit		Margin		Remark
	PK (dBuV)	QP (dBuV)	AV (dBuV)		QP	AV	QP (dB)	AV (dB)	
0.34	44.66	--	--	0.00	60.60	50.60	-15.94	-5.94	L1
0.20	48.66	--	--	0.00	64.51	54.51	-15.85	-5.85	L1
4.82	33.94	--	--	0.00	56.00	46.00	-22.06	-12.06	L1
0.34	43.20	--	--	0.00	60.60	50.60	-17.40	-7.40	L2
0.20	47.86	--	--	0.00	64.51	54.51	-16.65	-6.65	L2
4.87	33.60	--	--	0.00	56.00	46.00	-22.40	-12.40	L2
6 Worst Data									

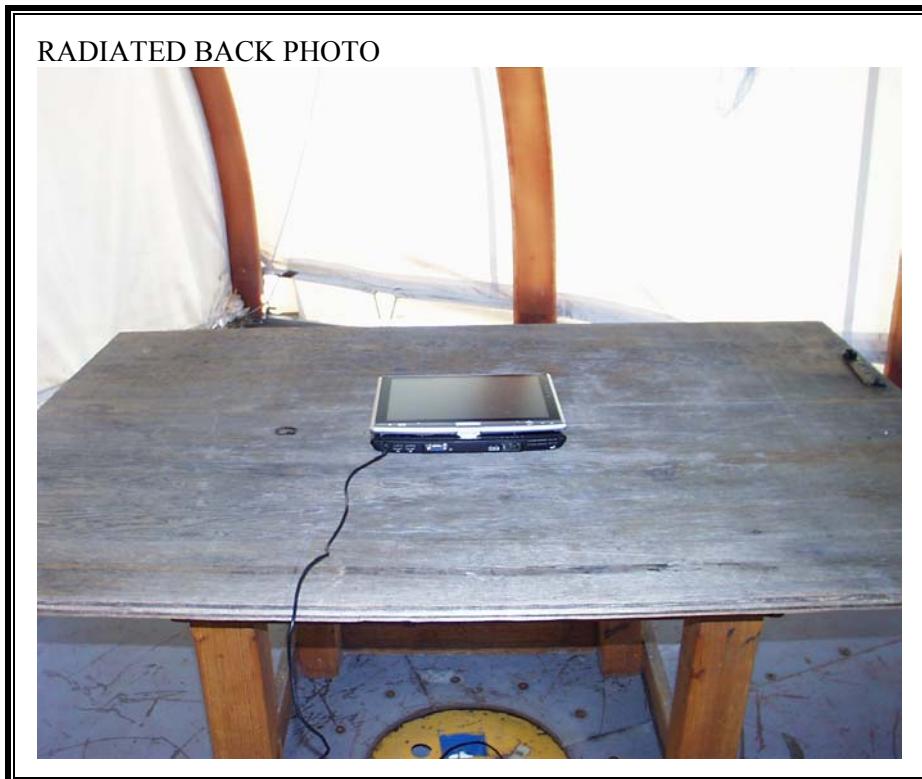
LINE 1 AND LINE 2 RESULTS


8. SETUP PHOTOS

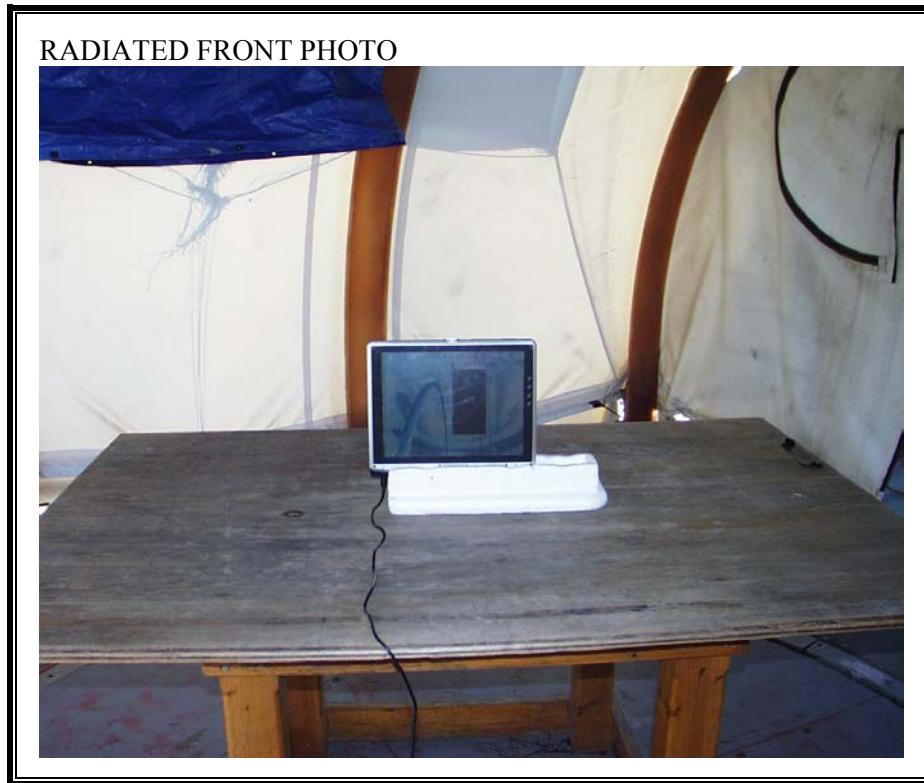
ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

RADIATED RF MEASUREMENT SETUP WITH LAPTOP POSITION

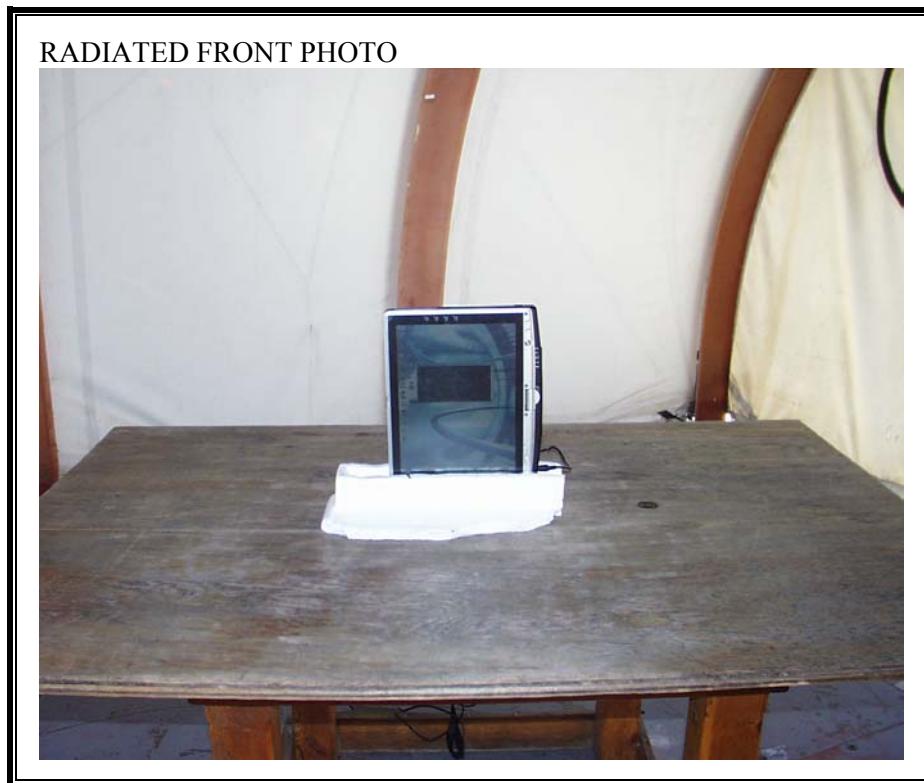

RADIATED FRONT PHOTO

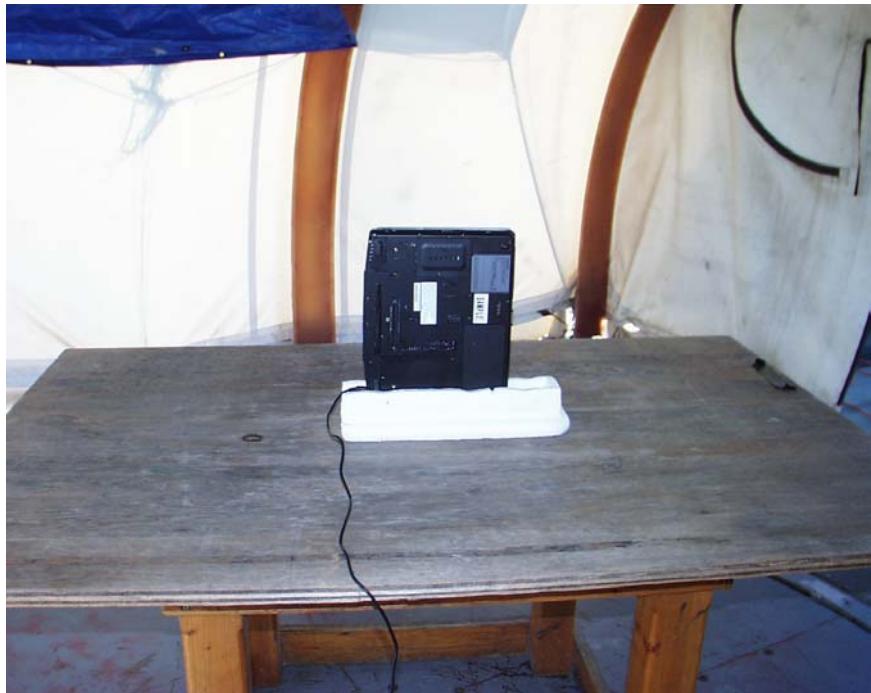


RADIATED BACK PHOTO



RADIATED RF MEASUREMENT SETUP WITH PORTABLE, X AXIS POSITION


RADIATED RF MEASUREMENT SETUP WITH PORTABLE, Y AXIS POSITION


RADIATED BACK PHOTO

RADIATED RF MEASUREMENT SETUP WITH PORTABLE, Z AXIS POSITION

RADIATED BACK PHOTO

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

LINE CONDUCTED FRONT PHOTO

LINE CONDUCTED BACK PHOTO

END OF REPORT