

MEASUREMENT REPORT

FCC Part 15.407 802.11a/ax/be WiFi 6GHz

Applicant Name:

Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052-8300
United States

Date of Testing:

12/9/24 - 1/27/25

Test Report Issue Date:

4/1/2025

Test Site/Location:

Element Lab., Columbia, MD, USA

Test Report Serial No.:

1M2412090112-08-R4.C3K

FCC ID:
C3K2095
APPLICANT:
Microsoft Corporation
Application Type:

Certification

Model:

2095

EUT Type:

Portable Computing Device

Frequency Range:

5935 – 7115MHz

Modulation Type:

OFDM, OFDMA

FCC Classification:

15E 6GHz Low Power Dual Client (6CD)

FCC Rule Part(s):

Part 15 Subpart E (15.407)

Test Procedure(s):

ANSI C63.10-2013, KDB 987594 D02 v03,

KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M2412090112-08-R4.C3K) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortiz
Executive Vice President

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 1 of 33

T A B L E O F C O N T E N T S

1.0	INTRODUCTION.....	3
1.1	Scope.....	3
1.2	Element Test Location	3
1.3	Test Facility / Accreditations	3
2.0	PRODUCT INFORMATION	4
2.1	Equipment Description.....	4
2.2	Device Capabilities.....	4
2.3	Antenna Description.....	7
2.4	Test Configuration.....	7
2.5	Software and Firmware	7
2.6	EMI Suppression Device(s) / Modifications	7
3.0	DESCRIPTION OF TESTS	8
3.1	Evaluation Procedure.....	8
3.2	AC Line Conducted Emissions	8
3.3	Radiated Emissions	9
3.4	Environmental Conditions	9
4.0	ANTENNA REQUIREMENTS	10
5.0	MEASUREMENT UNCERTAINTY.....	11
6.0	TEST EQUIPMENT CALIBRATION DATA.....	12
7.0	TEST RESULTS	13
7.1	Summary.....	13
7.2	UNII Output Power Measurement.....	15
7.3	Emission Measurements.....	17
7.3.1	MIMO Radiated Spurious Emission Measurements	21
7.3.2	MIMO Band Edge Measurements (20MHz BW).....	25
7.3.3	MIMO Band Edge Measurements (320MHz BW).....	26
7.4	Line Conducted Test Data	27
8.0	CONCLUSION	33

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 2 of 33

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and\or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

Measurements were conducted at the Element laboratory(ies) indicated in Section 1.3 below. All measurement facilities are compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A. ("MD")

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 3 of 33

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Microsoft Corporation Portable Computing Device FCC: C3K2095**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter while operating in the 6GHz band.

This host device (2095) contains a WLAN/BT transmitter module previously certified under FCC ID: C3K00002101. The filing for this current host product (FCC ID: C3K2095) contains the full test reports filed for the original WLAN/BT module transmitter to support the single certification of the host. No changes have been made to the module and therefore all conducted testing performed on the original module remain applicable to this filing. This test report covers additional test cases for integrating the module transmitter into this host product.

Test Device Serial No.: 0F37BDX24383K9, 0F34CYP24403K9, 0F34CYP24403K9

2.2 Device Capabilities

This device contains the following capabilities:

Bluetooth (1x, EDR, LE), 802.11b/g/n/ac/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and GHz)

Band 5		Band 6		Band 7		Band 8	
Ch.	Frequency (MHz)						
1	5955	97	6435	117	6535	189	6895
:	:	:	:	:	:	:	:
45	6175	105	6475	149	6695	209	6995
:	:	:	:	:	:	:	:
93	6415	113	6515	185	6875	233	7115

Table 2-1. 802.11a/ax/be (20MHz) Frequency / Channel Operations

Band 5		Band 6		Band 7		Band 8	
Ch.	Frequency (MHz)						
3	5965	99	6445	123	6565	187	6885
:	:	:	:	:	:	:	:
43	6165	107	6485	155	6725	211	7005
:	:	:	:	:	:	:	:
91	6405	115	6525	179	6845	227	7085

Table 2-2. 802.11ax/be (40MHz BW) Frequency / Channel Operations

Band 5		Band 6		Band 7		Band 8	
Ch.	Frequency (MHz)						
7	5985	103	6465	119	6545	199	6945
:	:			:	:	:	:
39	6145			151	6705	215	7025
:	:			:	:		
87	6385			183	6865		

Table 2-3. 802.11ax/be (80MHz BW) Frequency / Channel Operations

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)			Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device		Page 4 of 33

Band 5		Band 6		Band 7		Band 8	
Ch.	Frequency (MHz)						
15	6025	111	6505	143	6665	207	6985
47	6185			175	6825		
79	6345						

Table 2-4. 802.11ax/be (160MHz BW) Frequency / Channel Operations

Band 5		Band 6		Band 7		Band 8	
Ch.	Frequency (MHz)						
31	6105	95	6425	127	6585	191	6905
63	6265			159	6745		

Table 2-5. 802.11be (320MHz BW) Frequency / Channel Operations

Notes:

1. 6GHz NII operation is possible in 20MHz, 40MHz, 80MHz, 160MHz, and 320MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B2(b) of ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

802.11 Mode/Band		MIMO (1+2)
		Duty Cycle [%]
6GHz	a	98.63
	ax (HE20)	99.24
	be (EHT20)	99.63
	ax (HE40)	98.74
	be (EHT40)	98.69
	ax (HE80)	98.75
	be (EHT80)	98.88
	ax (HE160)	98.87
	be (EHT160)	98.89
	be (EHT320)	97.95

Table 2-6. Measured Duty Cycles

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 5 of 33

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		CDD		SDM	
		ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
6GHz	11a	✓	✓	✓	✓	✗	✗
	11ax	✓	✓	✓	✓	✓	✓
	11be	✓	✓	✓	✓	✓	✓

Table 2-7. Antenna / Technology Configurations

✓ = Support; ✗ = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity – 2Tx Function

3. The device supports the following data rates (shown in Mbps):

802.11a	MCS Index		Spatial Stream	OFDM (802.11ax/be)																	
				20MHz				40MHz				80MHz				160MHz				320MHz	
	HT	EHT		0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	
6	0	0	1	8.6	8.1	7.3	17.2	16.3	14.6	36	34	30.6	72.1	68.1	61.3	144.1	136.1	122.5	122.5	122.5	
9	1	1	1	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5	288.2	272.2	245	245	245	
12	2	2	1	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8	432.4	408.3	367.5	576.5	544.4	490
18	3	3	1	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245	864.7	816.7	816.7	735	735	735
24	4	4	1	51.6	48.8	43.9	108.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5	864.7	816.7	816.7	122.5	122.5	122.5
36	5	5	1	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490	1152.9	1088.9	980	1088.9	1088.9	1088.9
48	7	6	1	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3	1297.1	1225	1102.5	2594.1	2450	2205
54	7	1	86	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5	1441.2	1361.1	1225	2882.4	2722.2	2450	2205
	8	1	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735	1729.4	1633.3	1470				
	9	1	114.7	108.3	97.5	229.4	216.7	195	480.4	453.7	408.3	960.8	907.4	816.7	1921.6	1814.8	1633.3				
	10	1	129	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8	2161.8	2041.7	1837.5				
	11	1	143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201	1134.3	1020.8	2402	2268.5	2041.7				
	12	1	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5	2594.1	2450	2205				
	13	1	172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225	2882.4	2722.2	2450				
6	8	0	2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5	288.2	272.2	245			
9	9	1	2	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245	576.5	544.4	490			
12	10	2	2	51.6	48.8	43.9	108.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5	864.7	816.7	816.7	735		
18	11	3	2	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490	1152.9	1088.9	980			
24	12	4	2	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735	1729.4	1633.3	1470			
36	13	5	2	137.6	130	117	275.3	260	234	576.5	544.4	490	1152.9	1088.9	980	2305.9	2177.8	1960			
48	14	6	2	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5	2594.1	2450	2205			
54	15	7	2	172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225	2882.4	2722.2	2450			
	8	2	206.5	195	175.5	412.9	390	351	864.7	816.7	735	1729.4	1633.3	1470	3458.8	3266.7	2940				
	9	2	229.4	216.7	195	458.8	433.3	390	960.8	907.4	816.7	1921.6	1814.8	1633.3	3843.1	3629.6	3266.7				
	10	2	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5	4323.5	4083.3	3675				
	11	2	286.8	270.8	243.8	573.5	541.7	487.5	1201	1134.3	1020.8	2402	2268.5	2041.7	4803.9	4537	4083.3				
	12	2	309.7	292.5	263.3	619.4	585	526.5	1297.1	1225	1102.5	2594.1	2450	2205	5188.2	4900	4410				
	13	2	344.1	325	292.5	688.2	650	585	1441.2	1361.1	1225	2882.4	2722.2	2450	5764.7	5444.4	4900				

Table 2-8. Supported Data Rates

FCC ID: C3K2095		MEASUREMENT REPORT (Certification)						Approved by: Technical Manager	
Test Report S/N: 1M2412090112-08-R4.C3K		Test Dates: 12/9/24 - 1/27/25		EUT Type: Portable Computing Device				Page 6 of 33	
© 2025 ELEMENT Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.						V 11.2 9/11/2024			

2.3 Antenna Description

The following antenna gains are used in this device per the "Unlicensed Band Antenna Gain" document provided by the client. This document is also included in the filing as a public exhibit.

	Ant1 Peak Gain [dBi]	Ant2 Peak Gain [dBi]	Measured Directional Gain [dBi]
5925 – 6425 MHz	6.20	5.27	8.60
6425 – 6525 MHz	5.04	4.75	7.55
6525 – 6875 MHz	5.58	6.52	8.81
6875 – 7125 MHz	6.33	6.52	8.81

Table 2-9. Antenna Peak Gain

The antenna gains shown in this table were provided by the manufacturer.

2.4 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 987594 D02 v03. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups.

There are two versions of this device, one with a plastic cover and one with a metal cover. Testing was done on both and the worst-case data was included in this report. Worst case for RF testing was determined to be the metal cover.

2.5 Software and Firmware

The test was conducted with firmware version 1.0.4146.3600 installed on the EUT.

2.6 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 7 of 33

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 987594 D02 v03 were used in the measurement of the EUT.

Deviation from measurement procedure.....**None**

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50µH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.4. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 8 of 33

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3-meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precautions were taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height were noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst-case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 9 of 33

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 10 of 33

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of $k = 2$ to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (\pm dB)
Contention Based Protocol Conducted Measurements	0.86
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

Table 5-1. Measurement Uncertainty Budget – MD

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 11 of 33

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	4/2/2024	Annual	4/2/2025	WL25-1
-	MD 1M 18-40	EMC Cable and Switch System	4/3/2024	Annual	4/3/2025	MD 1M 18-40
-	AP1-002	EMC Cable and Switch System	4/4/2024	Annual	4/4/2025	AP1-002
-	ETS-001	EMC Cable and Switch System	4/5/2024	Annual	4/5/2025	ETS-001
-	ETS-002	EMC Cable and Switch System	4/6/2024	Annual	4/6/2025	ETS-002
Anritsu	MA24408A	8GHz Microwave Peak Power Sensor	10/2/2024	Annual	10/2/2025	11676
Anritsu	MA24408A	8GHz Microwave Peak Power Sensor	10/2/2024	Annual	10/2/2025	11675
ETS-Lindgren	3116C	Horn Antenna (18-40GHz)	2/27/2023	Biennial	2/26/2025	218893
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	2/23/2023	Biennial	2/22/2025	26040036
Rohde & Schwarz	FSW26	Spectrum Analyzer (26.5GHz)	3/8/2024	Annual	3/8/2025	103187
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	10/16/2024	Annual	10/16/2025	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	11/25/2024	Annual	11/25/2025	100348
Pasternack	NMLC-2	Line Conducted Emissions Cables	4/2/2024	Annual	4/2/2025	NMLC-2
Rohde & Schwarz	ENV216	Two-Line V-Network	1/31/2023	Biennial	1/30/2025	101379
Sunol	JB6	Bi-Log Antenna (20M-6GHz)	3/2/2023	Biennial	3/1/2025	A082816
Sunol	JB5	Bi-Log Antenna (20M-5GHz)	9/11/2024	Biennial	9/11/2026	A051107

Table 6-1. Test Equipment Calibration Table

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)			Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device		Page 12 of 33

7.0 TEST RESULTS

7.1 Summary

Company Name: Microsoft Corporation
 FCC ID: C3K2095
 FCC Classification: 15E 6GHz Low Power Dual Client (6CD)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1046, 15.407(a)(12)	Maximum Conducted Output Power	N/A	CONDUCTED	PASS	See Note #4 Below
15.407(a)(8), 15.407(a)(7)	Maximum Radiated Output Power	< 24dBm over the frequency band of operation <30dBm over the frequency band of operation when connecting to a standard power access point		PASS	See Original Filing
2.1049, 15.407(a)(11)	Occupied Bandwidth/ 26dB Bandwidth	99% of the occupied bandwidth of any channel must be contained within each of its respective U-NII sub bands. The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.		PASS	See Original Filing
15.407(a)(8), 15.407(a)(7)	Maximum Power Spectral Density	< -1dBm/MHz e.i.r.p. <17dBm/MHz when operating with a standard power access point		PASS	See Original Filing
15.407(b)(7)	In-Band Emissions	EUT must meet the limits detailed in 15.407(b)(7)		PASS	See Original Filing
15.407(d)(6)	Contention Based Protocol	EUT must detect AWGN signal with 90% (or better) certainty		PASS	See Element WiFi 6GHz CBP Test Report
15.407(b)(6)	Undesirable Emissions	< -27dBm/MHz e.i.r.p. outside of the 5.925 – 7.125GHz band	CONDUCTED/ RADIATED	PASS	Section 7.3
15.205, 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		PASS	Section 7.3
15.407(b)(9)	AC Conducted Emissions (150kHz – 30MHz)	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.4

Table 7-1. Summary of Test Results

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)			Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 13 of 33	

Notes:

- 1) For band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.1.
- 2) The test data for several test cases shown in the table above are leveraged from the data shown in the original test reports for the transmitter filed under FCC ID: C3K00002101. The data can be found in the report ("R15374786-E4") included in this filing.
- 3) The test data shown in this report follows the test plan prepared by the Grantee after consultation with FCC. Also, additional measurements are included based on worst-case findings from the filing of the original module report.
- 4) The full set of conducted powers can be found in the original test report uploaded to this filing ("R15374786-E4"). Those full conducted powers are leveraged in this report to apply the antenna gains relevant to the host laptop. Section 7.2 contains spot-check conducted power measurements made on the host device based on the worst-case powers from the original module report in order to determine the e.i.r.p. of the host device with its corresponding antenna gains.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 14 of 33

7.2 UNII Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm. For client devices operating under the control of a standard power access point, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G

ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

Compliance for this device while operating under the control of either an indoor low power access point or a standard power access point is demonstrated by applying either the low power indoor access point limit of 24dBm e.i.r.p. or the standard power access point limit of 30dBm e.i.r.p.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 15 of 33

MIMO Maximum Conducted Output Power Measurements

320MHz BW	Band	Freq [MHz]	Channel	Tones	Average Conducted Power (dBm)			Dir. Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]				
					RU Index										
					69										
					ANT1		ANT2								
							MIMO								
5	6105	31	4x996T		9.52	9.32	12.43	8.60	21.0	24.0	-2.97				
	6265	63	4x996T		9.43	9.27	12.36	8.60	21.0	24.0	-3.04				
6	6425	95	4x996T		9.33	9.00	12.18	7.55	19.7	24.0	-4.27				
7	6585	127	4x996T		9.18	9.17	12.19	8.81	21.0	24.0	-3.00				
8	6745	159	4x996T		9.23	9.11	12.18	8.81	21.0	24.0	-3.01				
	6905	191	4x996T		9.29	9.11	12.21	8.81	21.0	24.0	-2.98				

Table 7-2. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – 4x996 Tones – LPI

160MHz BW	Band	Freq [MHz]	Channel	Tones	Average Conducted Power (dBm)			Dir. Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]				
					MRU Index										
					69										
					ANT1		ANT2								
							MIMO								
5	6025	15	996+484+242T		14.32	14.26	17.30	8.60	25.9	30.0	-4.10				
	6185	47	996+484+242T		17.71	17.20	20.47	8.60	29.1	30.0	-0.93				
7	6345	79	996+484+242T		17.59	17.37	20.49	8.60	29.1	30.0	-0.91				
	6665	143	996+484+242T		17.24	17.32	20.29	8.81	29.1	30.0	-0.90				

Table 7-3. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – 996T+484T+242T – SP

Sample MIMO Calculation:

At 6105MHz in 802.11ax (320MHz BW) mode, the average conducted output power was measured to be 9.52 dBm for Antenna-1 and 9.32 dBm for Antenna-2.

$$\text{Antenna 1} + \text{Antenna 2} = \text{MIMO}$$

$$(9.52 \text{ dBm} + 9.32 \text{ dBm}) = (8.954 \text{ mW} + 8.551 \text{ mW}) = 17.505 \text{ mW} = 12.43 \text{ dBm}$$

Sample Directional Gain Calculation:

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

$$\text{Directional gain} = 10 \log[(10^{G1/20} + 10^{G2/20} + \dots + 10^{GN/20})^2 / N_{\text{ANT}}] \text{ dBi}$$

Sample e.i.r.p. Calculation:

At 6105MHz in 802.11ax (320MHz BW) mode, the average MIMO conducted power was calculated to be 12.43 dBm with directional gain of 8.6 dBi.

$$\text{e.i.r.p. (dBm)} = \text{Conducted Power (dBm)} + \text{Ant gain (dBi)}$$

$$12.43 \text{ dBm} + 8.6 \text{ dBi} = 21.03 \text{ dBm}$$

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)			Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 16 of 33	

7.3 Emission Measurements

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11ax (20/40/80/160MHz), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst-case emissions are reported in this section.

All band edge emissions are measured with a spectrum analyzer connected directly to the EUT while it is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11ax (20/40/80/160MHz), and modulations/data rates were investigated among all UNII bands.

For transmitters operating in the 5.925-7.125 GHz band: All emissions outside of the 5.925-7.125 GHz band shall not exceed an EIRP of -27dBm/MHz (68.2dBuV/m at a 3m distance). Emissions found in a restricted band are subject to the limits of 15.209 as shown in the table below.

Frequency	Field Strength [μ V/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400F (kHz)	300
0.490 – 1.705 MHz	24000F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-4. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5

Test Settings – Above 1GHz

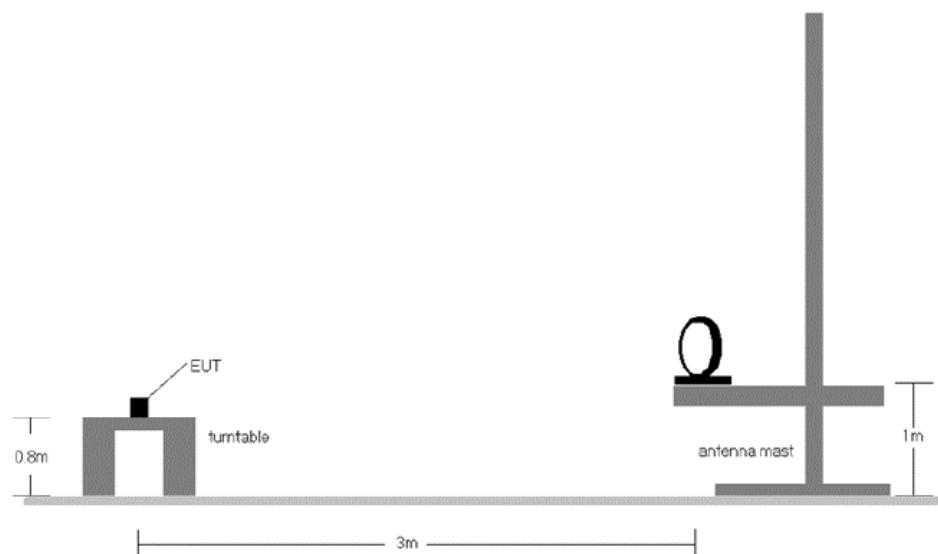
Average Field Strength Measurements (Method AD – Average Detection)

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = power average (RMS)
5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span} \backslash \text{RBW}$)
6. Sweep time = auto
7. Trace (RMS) averaging was performed over at least 100 traces.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 17 of 33

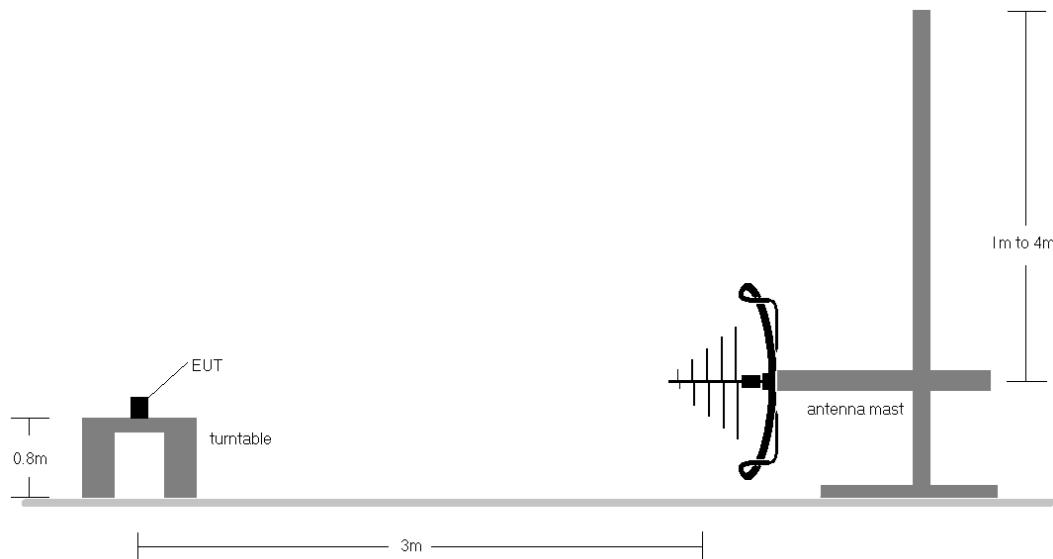
Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize.


Test Settings – Below 1GHz

Quasi-Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
2. RBW = 120kHz (for emissions from 30MHz – 1GHz)
3. Detector = quasi-peak
4. Sweep time = auto couple
5. Trace mode = max hold
6. Trace was allowed to stabilize.


Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

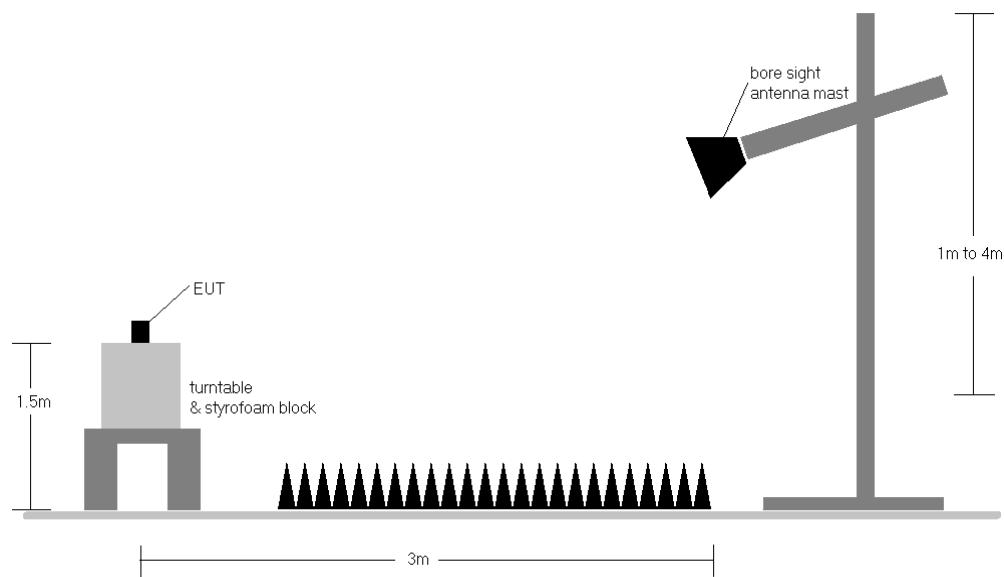


Figure 7-2. Radiated Test Setup < 30MHz

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 18 of 33

Figure 7-3. Radiated Test Setup < 1GHz

Figure 7-4. Radiated Test Setup > 1GHz

Figure 7-5. Conducted Test Setup > 1GHz

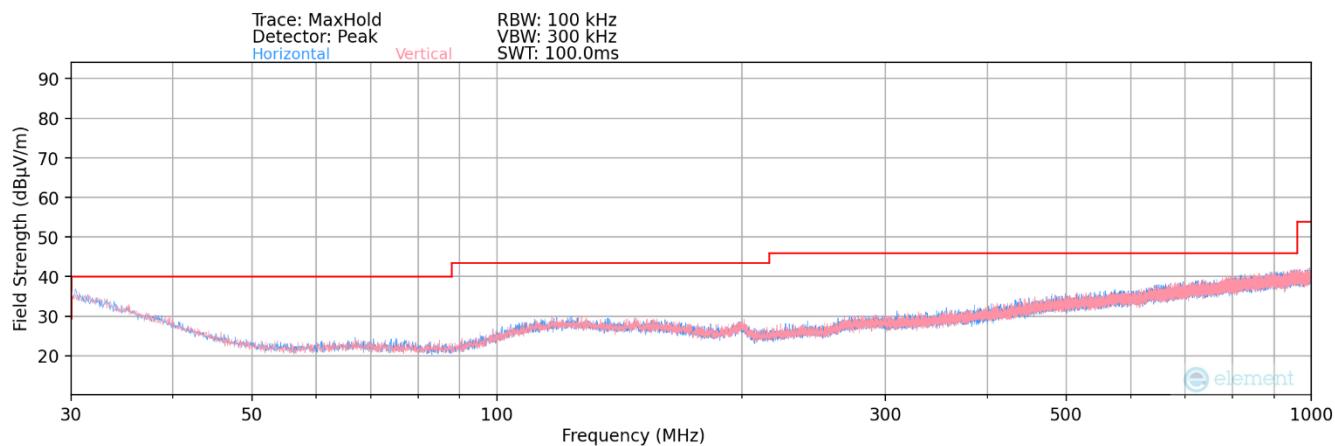
FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 19 of 33

Test Notes

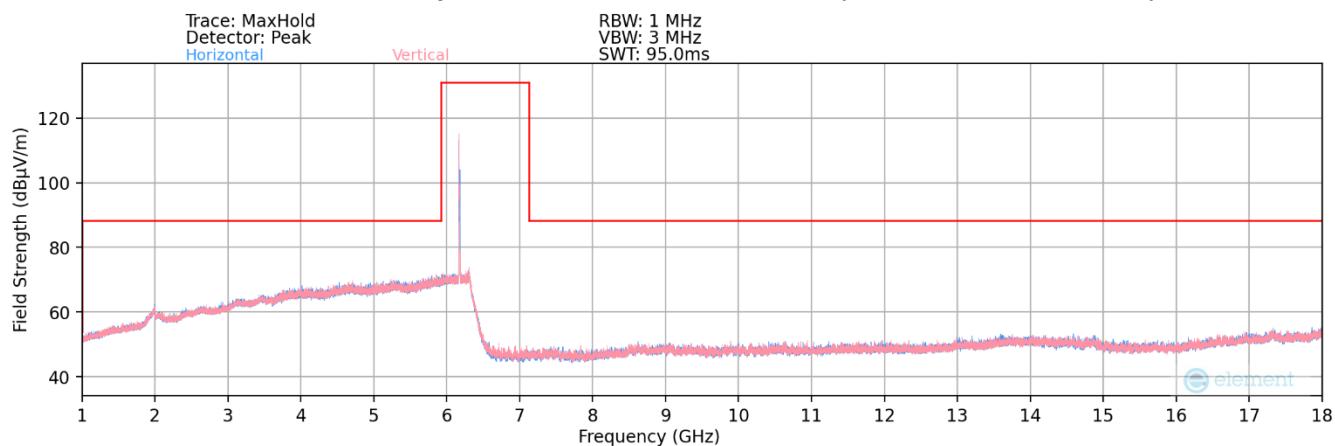
1. All spurious emissions lying in restricted bands specified in §15.205 are below the limits specified in §15.209. All spurious emissions that do not lie in a restricted band are subject to an average limit of -27dBm/MHz.
2. All spurious emissions that do not lie in a restricted band are subject to a peak limit not to exceed 20dB of the average limit [68.2dB μ V/m]. If a peak measurement passes the average limit, it was determined no further investigation is necessary.
3. The antenna is manipulated through typical positions, polarity, and length during the tests. The EUT is manipulated through three orthogonal planes.
4. This unit was tested with its standard battery.
5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported, however emissions whose levels were not within 20dB of the respective limits were not reported.
6. Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
8. In the case where a peak-detector measurement passed the given RMS limit it was determined sufficient to demonstrate compliance.
9. The results recorded using the broadband antenna are known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
10. Restricted Band Edge testing was performed using a conducted setup per ANSI C63.10-2013 Section 12.7.4.2.

Sample Calculations

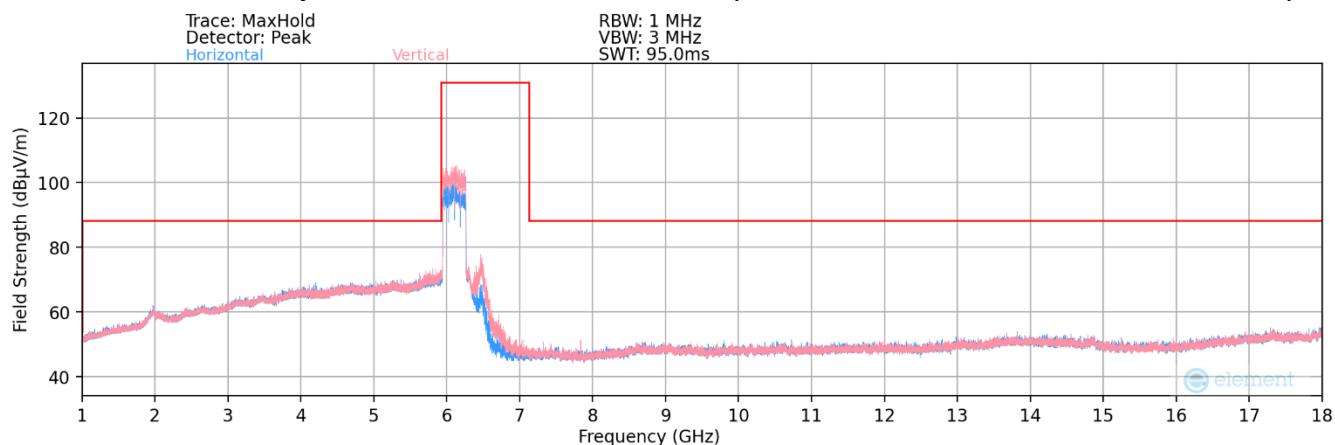
Determining Spurious Emissions Levels


- Field Strength Level [dB μ V/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dB μ V/m] - Limit [dB μ V/m]

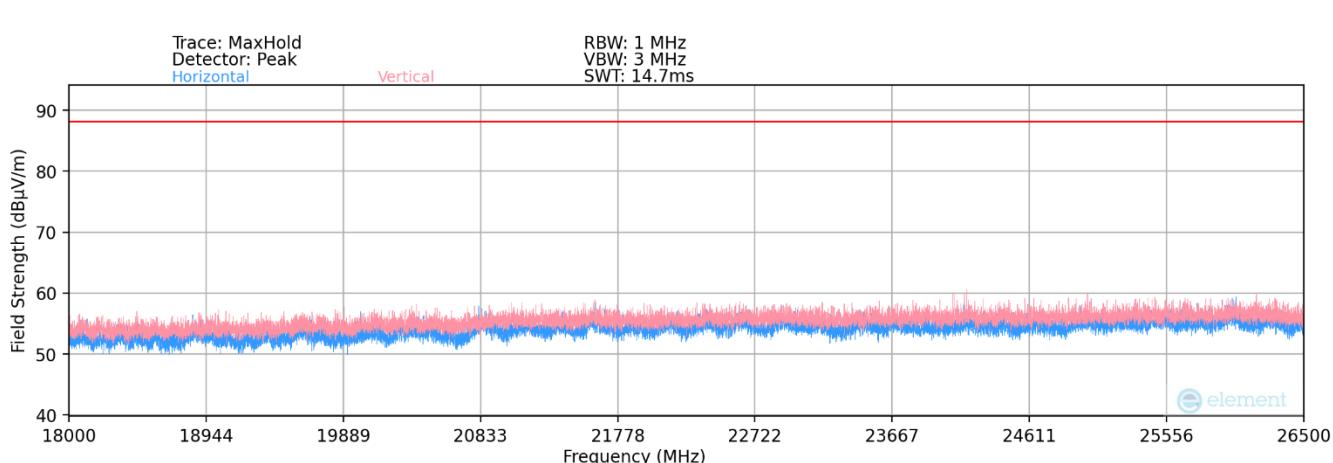
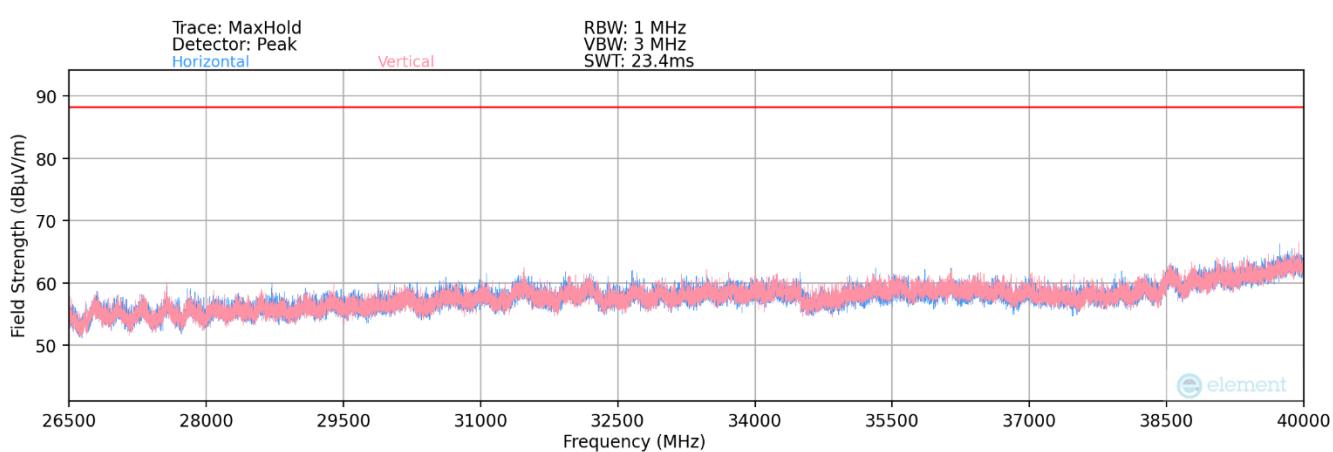
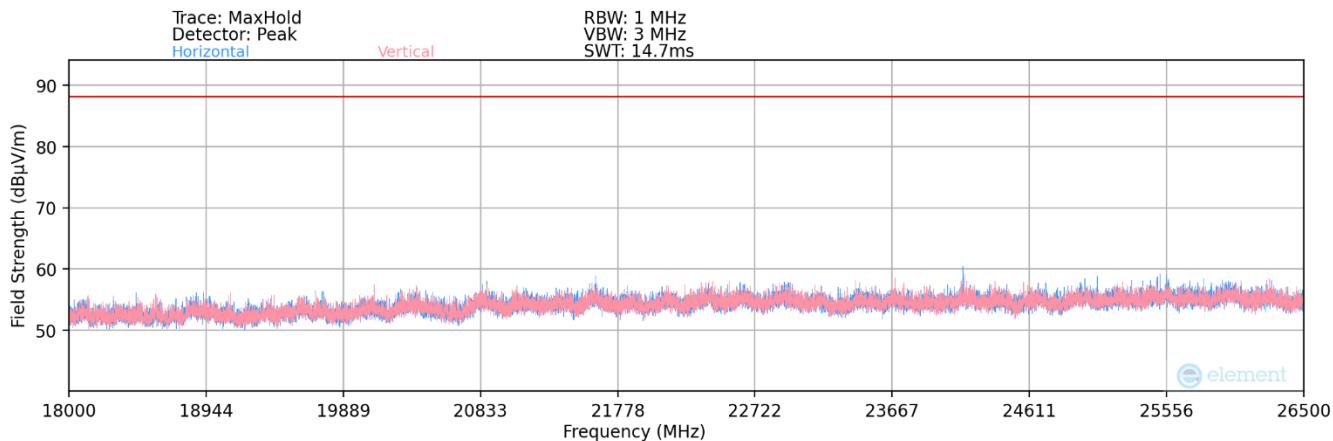
Conducted Band Edge Field Strength Conversion


- Field Strength Level [dB μ V/m] = EIRP [dBm] + 95.2

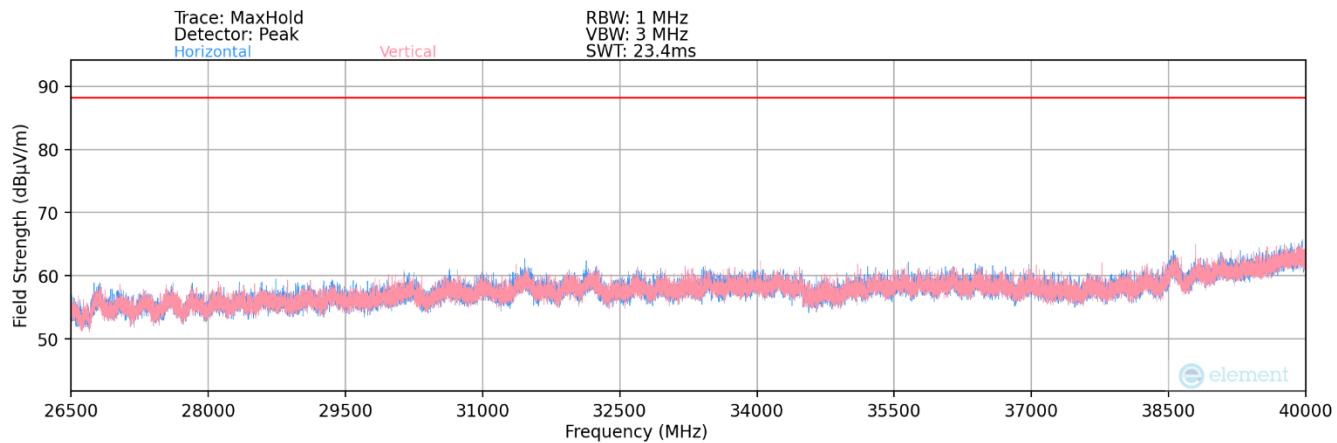
FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 20 of 33


7.3.1 MIMO Radiated Spurious Emission Measurements

Plot 7-1. Radiated Spurious Plot below 1GHz MIMO (802.11be – 52T – 20MHz)

Plot 7-2. Radiated Spurious Plot 1GHz – 18GHz MIMO (802.11be – UNII Band 5 Ch. 49 52T – 20MHz)



Plot 7-3. Radiated Spurious Plot 1GHz – 18GHz MIMO (802.11be – UNII Band 5 Ch. 31 – 320MHz)

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 21 of 33

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 22 of 33

Plot 7-7. Radiated Spurious Plot 26.5GHz - 40GHz (802.11be(320MHz))

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 23 of 33

MIMO Radiated Spurious Emission Measurements – UNII Band 5

Worst Case Mode:	802.11be
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6195MHz
Channel:	49

Restricted	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	Distance Correction Factor [dB]	Field Strength [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
*	12390.00	Average	H	-	-	-87.55	0.00	42.08	53.98	-11.90
*	12390.00	Peak	H	-	-	-75.23	0.00	54.40	73.98	-19.58
*	18585.00	Average	H	-	-	-64.12	0.00	44.36	53.98	-9.62
*	18585.00	Peak	H	-	-	-55.61	0.00	52.87	73.98	-21.11
*	24780.00	Average	H	-	-	-65.62	-9.54	35.59	53.98	-18.39
*	24780.00	Peak	H	-	-	-55.11	-9.54	46.10	73.98	-27.88
	30975.00	Peak	H	-	-	-54.98	-9.54	48.96	68.20	-19.24

Table 7-5. Radiated Measurements MIMO

Worst Case Mode:	802.11ax
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	6175MHz
Channel:	45

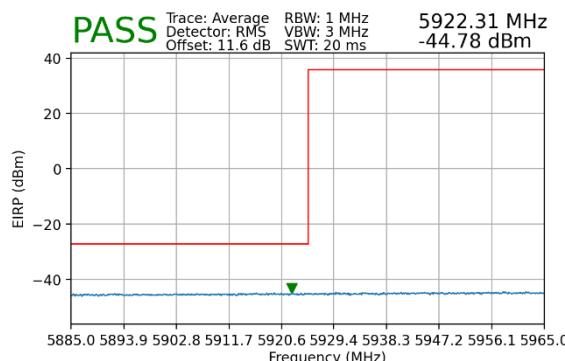
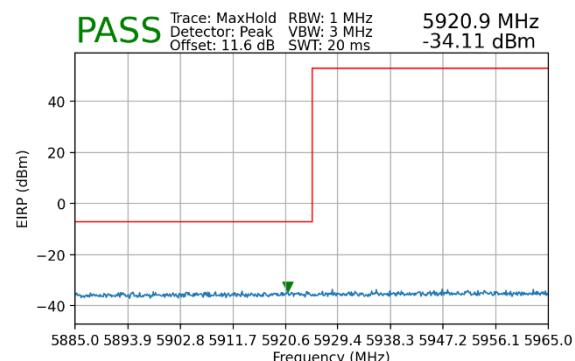
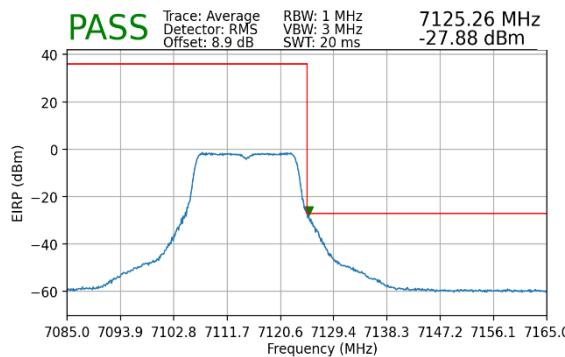

Channel	Test Channel Freq. [MHz]	Restricted	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	Distance Correction Factor [dB]	Field Strength [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
31	6105	*	12210.00	Average	H	-	-	-88.11	0.00	41.35	53.98	-12.63
		*	12210.00	Peak	H	-	-	-75.26	0.00	54.20	73.98	-19.78
		*	18315.00	Average	H	-	-	-66.32	-9.54	32.32	53.98	-21.66
		*	18315.00	Peak	H	-	-	-56.12	-9.54	42.52	73.98	-31.46
			24420.00	Peak	H	-	-	-55.85	-9.54	45.36	68.20	-22.84
			30525.00	Peak	H	-	-	-55.23	-9.54	48.20	68.20	-20.00

Table 7-6. Radiated Measurements MIMO

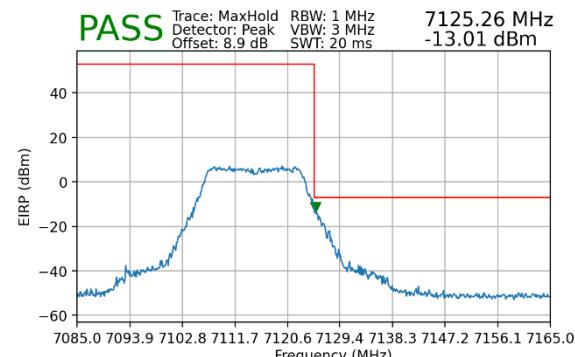

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)				Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device			Page 24 of 33

7.3.2 MIMO Band Edge Measurements (20MHz BW)

Worst Case Mode: 802.11be
 Worst Case Transfer Rate: MCS0
 Distance of Measurements: 3 Meters
 Operating Frequency: 6175MHz
 Channel: 2
 RU: 53



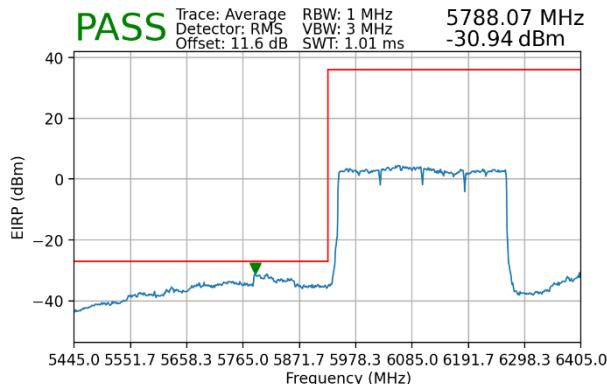
Plot 7-8. Lower Band Edge Plot MIMO (Average – UNII Band 5)



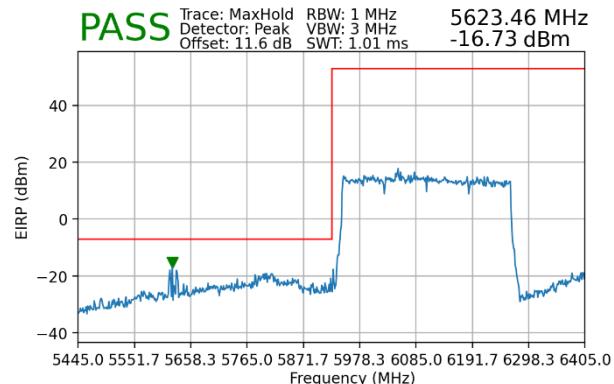
Plot 7-9. Lower Band Edge Plot MIMO (Peak – UNII Band 5)

Worst Case Mode: 802.11a
 Worst Case Transfer Rate: 6Mbps
 Distance of Measurements: 3 Meters
 Operating Frequency: 7115MHz
 Channel: 233

Plot 7-10. Upper Band Edge Plot MIMO (Average – UNII Band 8)



Plot 7-11. Upper Band Edge Plot MIMO (Peak – UNII Band 8)


FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 25 of 33

7.3.3 MIMO Band Edge Measurements (320MHz BW)

Worst Case Mode: 802.11ax
 Worst Case Transfer Rate: MCS0
 Distance of Measurements: 3 Meters
 Operating Frequency: 5935MHz
 Channel: 2

Plot 7-12. Lower Band Edge Plot MIMO (Average – UNII Band 5)

Plot 7-13. Lower Band Edge Plot MIMO (Peak – UNII Band 5)

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 26 of 33

7.4 Line Conducted Test Data

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst-case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-7. Conducted Limits

*Decreases with the logarithm of the frequency.

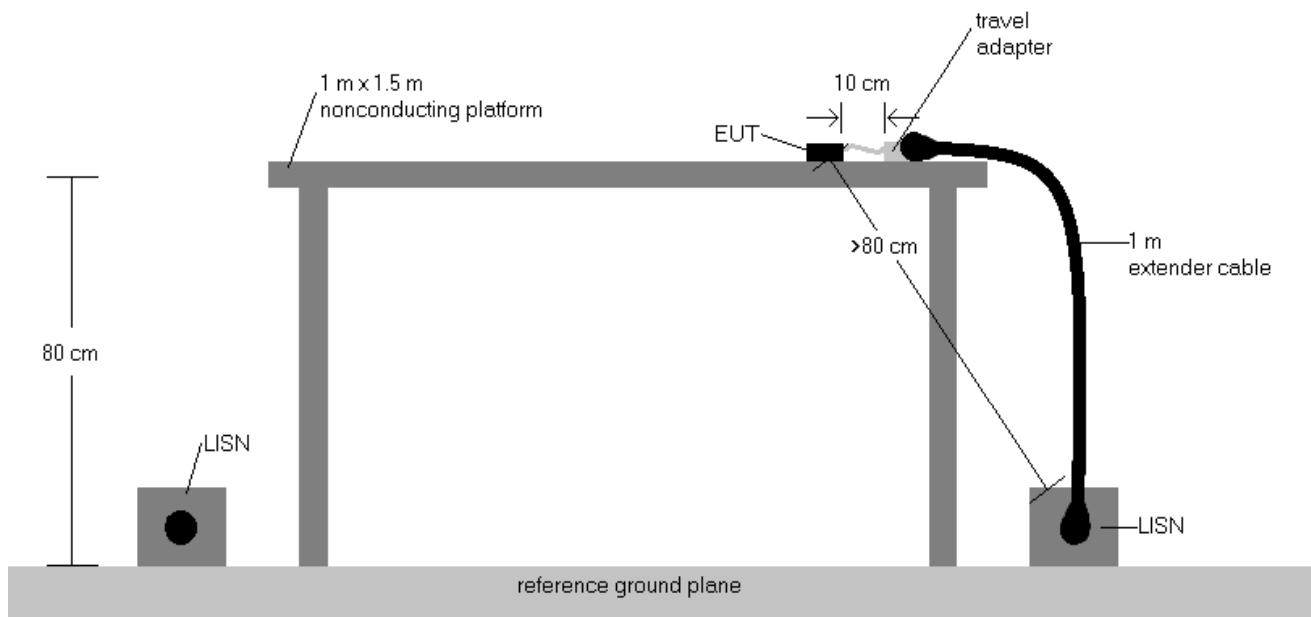
Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the spurious emission of interest.
2. RBW = 9kHz (for emissions from 150kHz – 30MHz)
3. Detector = quasi-peak
4. Sweep time = auto couple
5. Trace mode = max hold
6. Trace was allowed to stabilize.


Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the spurious emission of interest.
2. RBW = 9kHz (for emissions from 150kHz – 30MHz)
3. Detector = RMS
4. Sweep time = auto couple
5. Trace mode = max hold
6. Trace was allowed to stabilize.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 27 of 33

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

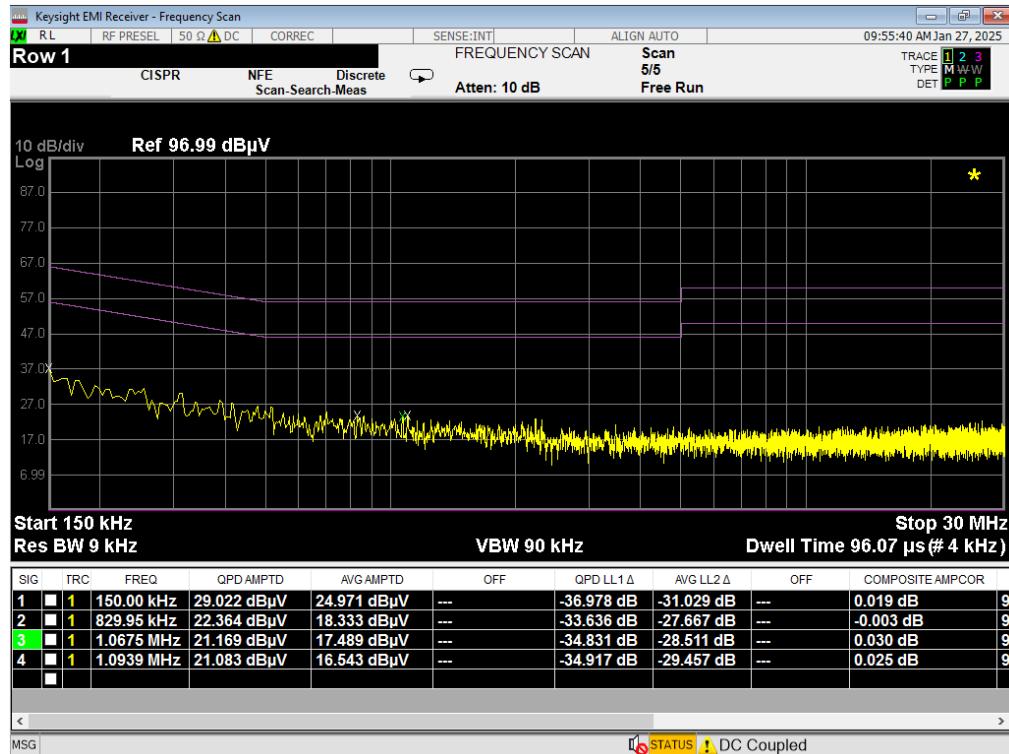
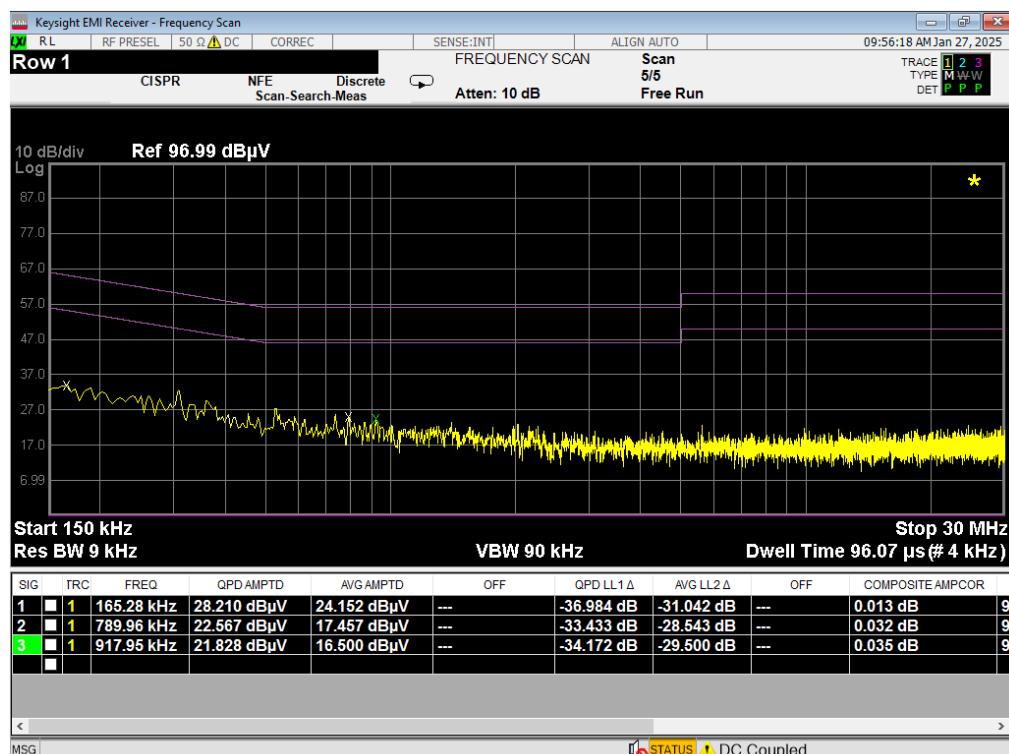
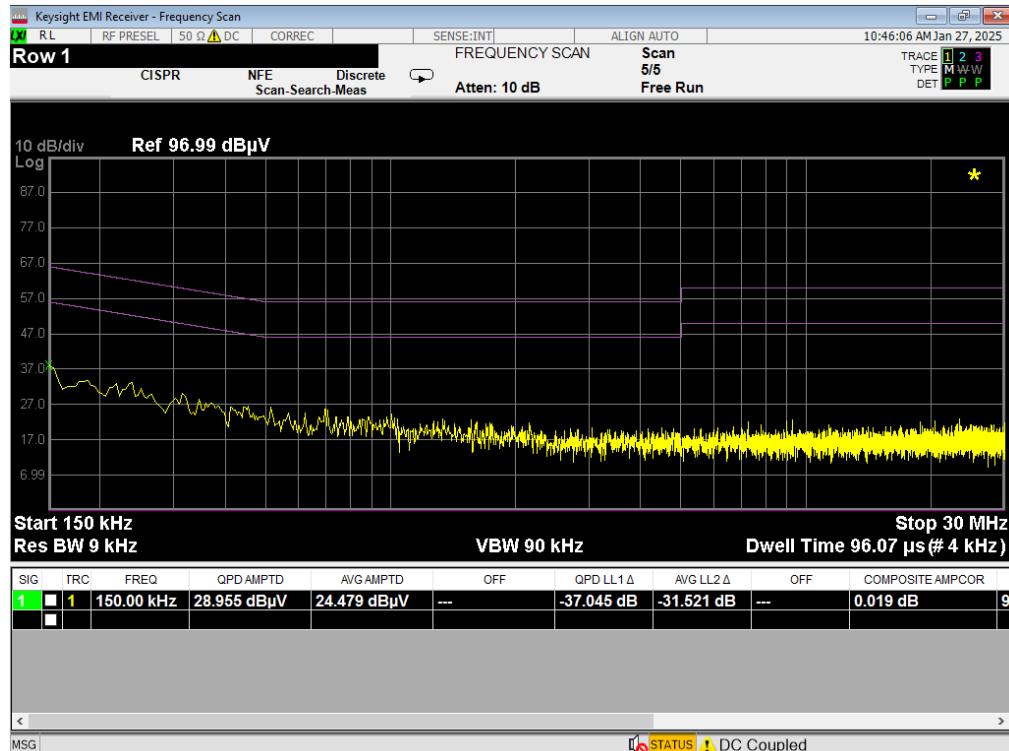


Figure 7-6. Test Instrument & Measurement Setup

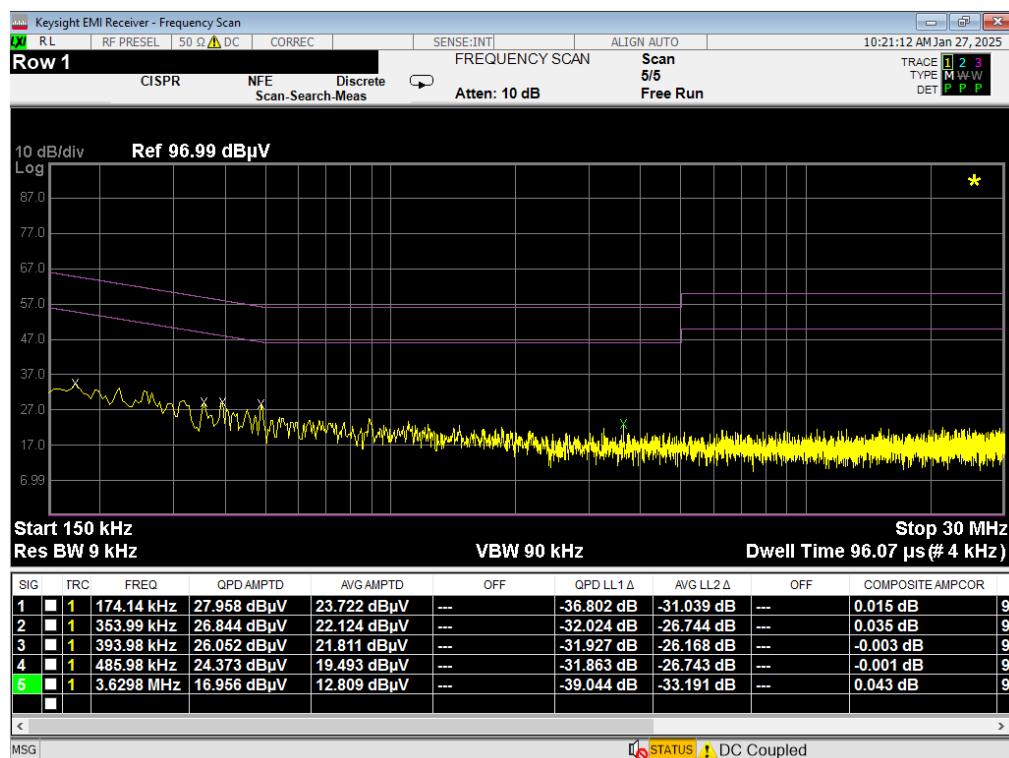

Test Notes

1. All modes of operation were investigated, and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
2. The limit for an intentional radiator from 150kHz to 30MHz is specified in 15.207.
3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
5. Margin (dB) = QP/AV Limit (dB μ V) - QP/AV Level (dB μ V)
6. Traces shown in plot are made using a peak detector.
7. Deviations to the Specifications: None.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 28 of 33

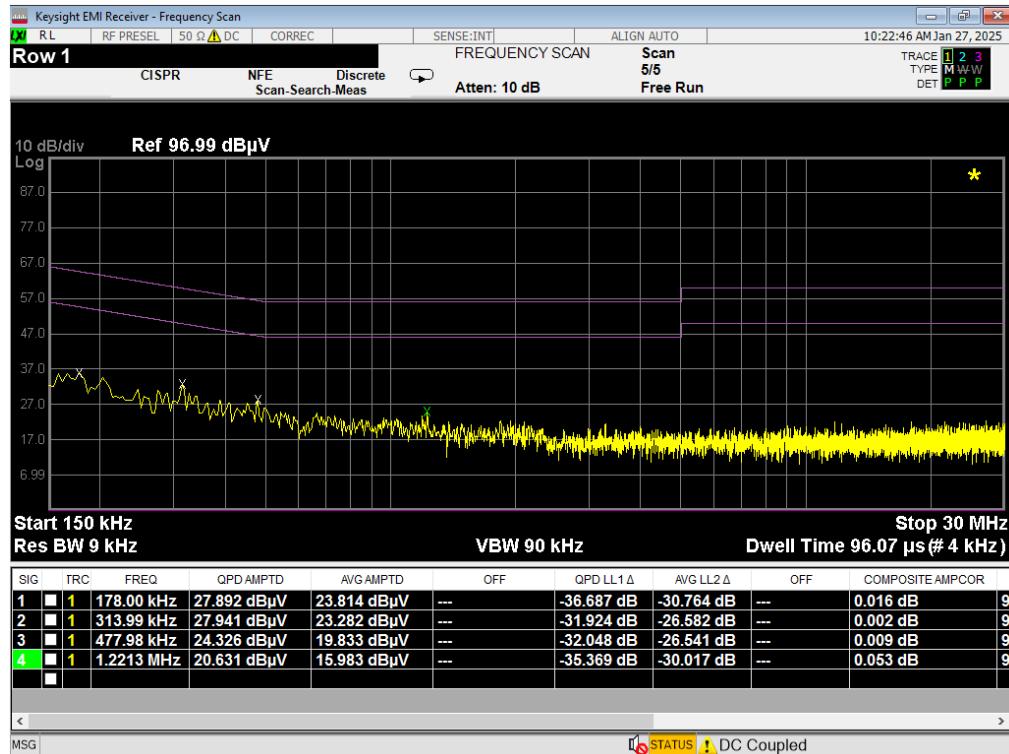


Plot 7-14. Line Conducted Plot with 802.11a UNII Band 5 (L1)

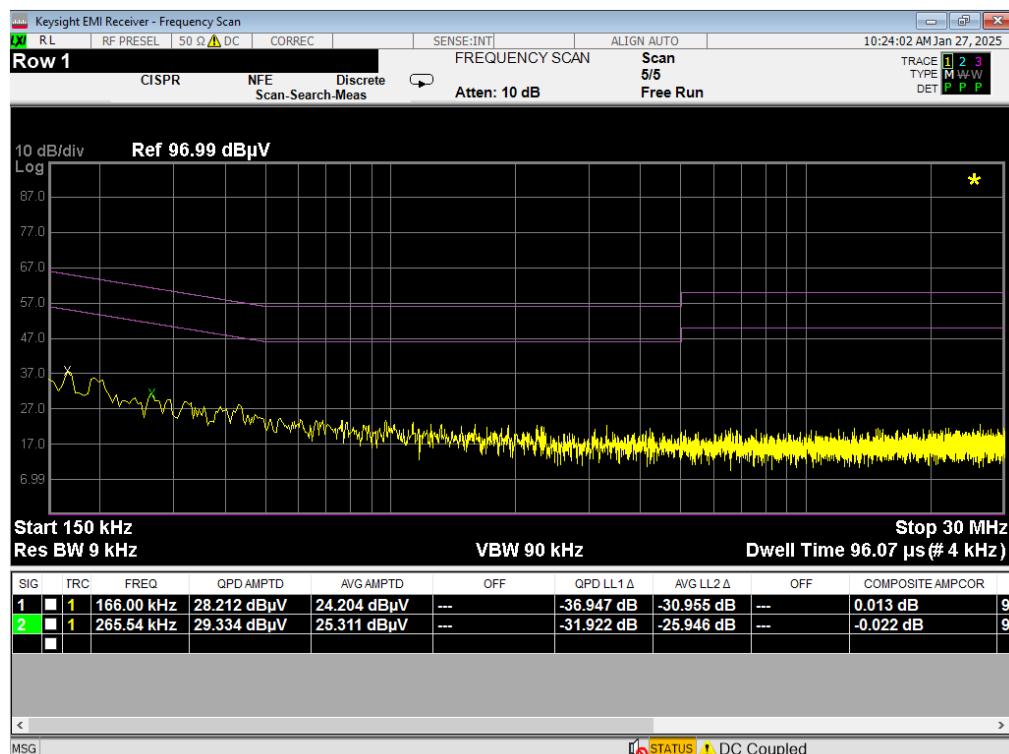


Plot 7-15. Line Conducted Plot with 802.11a UNII Band 5 (N)

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)				Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device			

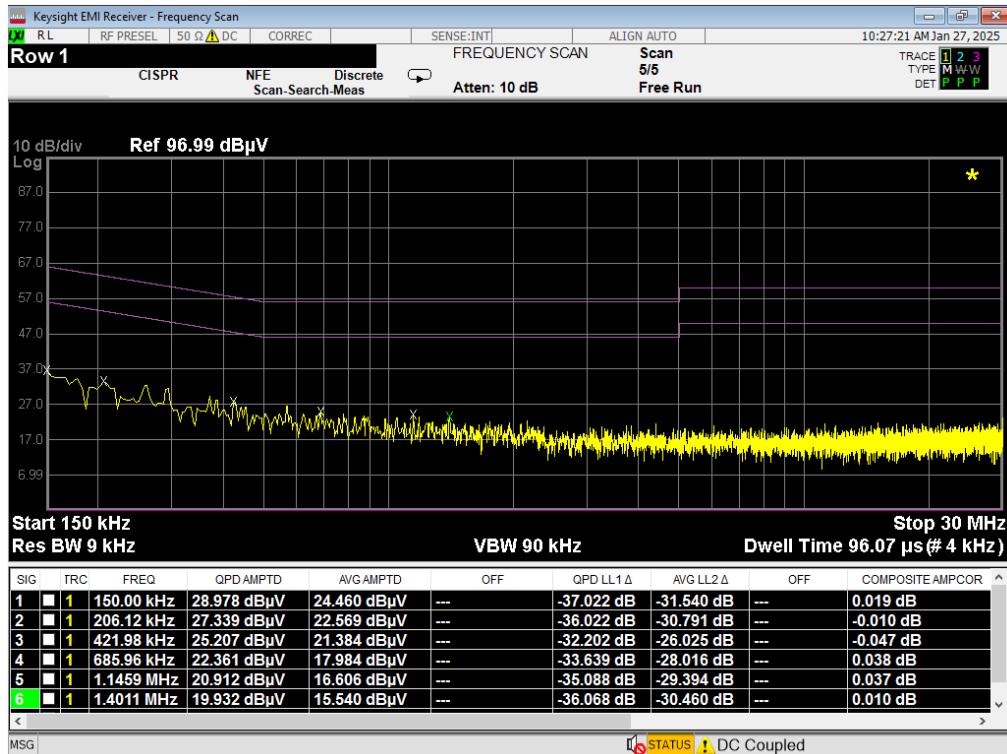


Plot 7-16. Line Conducted Plot with 802.11a UNII Band 6 (L1)

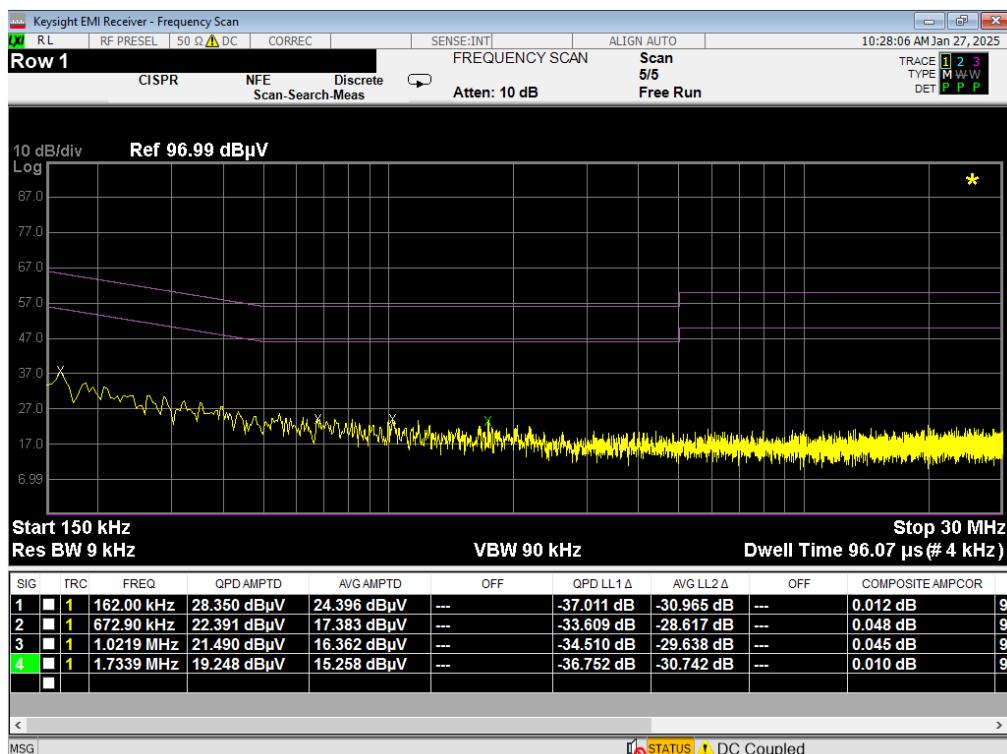


Plot 7-17. Line Conducted Plot with 802.11a UNII Band 6 (N)

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)			Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 30 of 33	



Plot 7-18. Line Conducted Plot with 802.11a UNII Band 7 (L1)



Plot 7-19. Line Conducted Plot with 802.11a UNII Band 7 (N)

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)				Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device			Page 31 of 33

Plot 7-20. Line Conducted Plot with 802.11a UNII Band 8 (L1)

Plot 7-21. Line Conducted Plot with 802.11a UNII Band 8 (N)

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)				Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device			Page 32 of 33

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Microsoft Portable Computing Device FCC: C3K2095** is in compliance with FCC Part Subpart E (15.407) of the FCC rules for operation as a client device.

FCC ID: C3K2095	MEASUREMENT REPORT (Certification)		Approved by: Technical Manager
Test Report S/N: 1M2412090112-08-R4.C3K	Test Dates: 12/9/24 - 1/27/25	EUT Type: Portable Computing Device	Page 33 of 33