

PCTEST
7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654
<http://www.pctest.com>

PART 0 SAR CHAR REPORT

Applicant Name:
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

Date of Testing:
06/21/2021 – 09/09/2021
Test Site/Location:
PCTEST Lab, Columbia, MD, USA
Document Serial No.:
1M2105060048-24.C3K

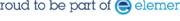
FCC ID:
C3K1995

APPLICANT: **MICROSOFT CORPORATION**

Report Type: Part 0 SAR Characterization
DUT Type: Portable Handset
Model(s): 1995

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Test results reported herein relate only to the item(s) tested.



Randy Ortanez
President

FCC ID: C3K1995	 PCTEST Proud to be part of	PART 0 SAR CHAR REPORT	Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021 – 09/09/2021	DUT Type: Portable Handset		Page 1 of 11

TABLE OF CONTENTS

1	DEVICE UNDER TEST	3
A1.1	Device Overview	3
A1.2	Time-Averaging for SAR and Power Density	3
A1.3	Nomenclature for Part 0 Report	4
A1.4	Bibliography	4
2	SAR AND POWER DENSITY MEASUREMENTS	5
A1.1	SAR Definition	5
A1.2	SAR Measurement Procedure	5
3	SAR CHARACTERIZATION	7
A1.1	DSI and SAR Determination	7
A1.4		7
A1.2	SAR Design Target	7
A1.3	SAR Char	8
4	EQUIPMENT LIST	10
5	MEASUREMENT UNCERTAINTIES	11
2	APPENDIX A1: SAR TEST RESULTS FOR P_{Limit} CALCULATIONS FLIP AND CLOSED	1
A1.1	Head Data	1
A1.4	Body-Worn Data	12
A1.4	Hotspot Data	22
A1.4	Phablet Data	44
3	APPENDIX A2: SAR TEST RESULTS FOR P_{Limit} CALCULATIONS FLAT AND READ	1
A2.1	UMPC Data	1
A2.2	Body Data	13

FCC ID: C3K1995	PCTEST Proud to be part of	PART 0 SAR CHAR REPORT	Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset		Page 2 of 11

1 DEVICE UNDER TEST

A1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 14	Voice/Data	790.5 - 795.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 48	Voice/Data	3552.5 - 3649.2 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
NR Band n71	Data	665.5 - 695.5 MHz
NR Band n5 (Cell)	Data	826.5 - 846.5 MHz
NR Band n66 (AWS)	Data	1712.5 - 1777.5 MHz
NR Band n25 (PCS)	Data	1852.5 - 1912.5 MHz
NR Band n2 (PCS)	Data	1852.5 - 1907.5 MHz
NR Band n41	Data	2506.02 - 2679.99 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NR Band n260	Data	37000 - 40000 MHz
NR Band n261	Data	27500 - 28350 MHz

This device uses the Qualcomm® Smart Transmit feature to control and manage transmitting power in real time and to ensure the time-averaged RF exposure is in compliance with the FCC requirement at all times for 2G/3G/4G/5G WWAN operations. Additionally, this device supports WLAN/BT/NFC technologies, but the output power of these modems is not controlled by the Smart Transmit algorithm.

A1.2 Time-Averaging for SAR and Power Density

This device is enabled with Qualcomm® Smart Transmit algorithm to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from 2G/3G/4G/5G Sub-6 NR WWAN is in compliance with FCC requirements. This Part 0 report shows SAR characterization of WWAN radios for 2G/3G/4G/5G Sub-6 NR. Characterization is achieved by determining P_{Limit} for 2G/3G/4G/5G Sub-6 NR that corresponds to the exposure design targets after accounting for all device design related uncertainties, i.e., SAR_design_target (< FCC SAR limit) for sub-6 radio. The SAR characterization is denoted as SAR Char in this report. Section 1.3 includes a nomenclature of the specific terms used in this report.

The compliance test under the static transmission scenario and simultaneous transmission analysis are reported in Part 1 report. The validation of the time-averaging algorithm and compliance under the dynamic (time- varying) transmission scenario for WWAN technologies are reported in Part 2 report (report SN could be found in Section 1.4 – Bibliography).

FCC ID: C3K1995	PCTEST® Proud to be part of	PART 0 SAR CHAR REPORT	Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021 – 09/09/2021	DUT Type: Portable Handset		Page 3 of 11

A1.3 Nomenclature for Part 0 Report

Technology	Term	Description
2G/3G/4G/5G Sub-6 NR	P_{limit}	Power level that corresponds to the exposure design target (<i>SAR_design_target</i>) after accounting for all device design related uncertainties
	P_{max}	Maximum tune up output power
	<i>SAR_design_target</i>	Target SAR level < FCC SAR limit after accounting for all device design related uncertainties
	<i>SAR Char</i>	Table containing P_{limit} for all technologies and bands

A1.4 Bibliography

Report Type	Report Serial Number
PD Exposure Part 0 Test Report	
Near Field PD Report (Part 1)	1M2105060048-20.C3K
RF Exposure Part 1 Test Report (Part 1)	1M2105060048-01.C3K
RF Exposure Part 2 Test Report	1M2105060048-21.C3K
RF Exposure Compliance Summary Report	1M2105060048-22.C3K

FCC ID: C3K1995	 Proud to be part of	PART 0 SAR CHAR REPORT		Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset		Page 4 of 11

2 SAR AND POWER DENSITY MEASUREMENTS

A1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

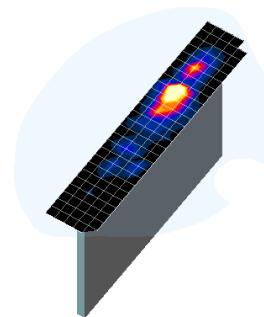
**Equation 2-1
SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:


σ = conductivity of the tissue-simulating material (S/m)
 ρ = mass density of the tissue-simulating material (kg/m³)
 E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

A1.2 SAR Measurement Procedure

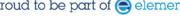
The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

**Figure 2-1
Sample SAR Area Scan**

FCC ID: C3K1995	PCTEST Proud to be part of	PART 0 SAR CHAR REPORT	Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset		Page 5 of 11

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):


- SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 2-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 2-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

Frequency	Maximum Area Scan Resolution (mm) (Δx_{area} , Δy_{area})	Maximum Zoom Scan Resolution (mm) (Δx_{zoom} , Δy_{zoom})	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) (x,y,z)
			Uniform Grid		Graded Grid	
			$\Delta z_{zoom}(n)$	$\Delta z_{zoom}(1)^*$	$\Delta z_{zoom}(n>1)^*$	
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≤ 3	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≤ 2.5	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤ 2	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: C3K1995	PCTEST Proud to be part of	PART 0 SAR CHAR REPORT			Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset			Page 6 of 11

3 SAR CHARACTERIZATION

A1.1 DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the smartphone, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

When 1g SAR and 10g SAR exposure comparison is needed, the worst-case was determined from SAR normalized to 1g or 10g SAR limit.

The device state index (DSI) conditions used in Table 3-1 represent different exposure scenarios.

Table 3-1
DSI and Corresponding Exposure Scenarios

Scenario	Description	SAR Test Cases
Head (Flip, Flat) (DSI = 2)	<ul style="list-style-type: none">Device positioned next to headReceiver Active	<i>Head SAR per KDB Publication 648474 D04</i>
Free Space (DSI = 3)	<ul style="list-style-type: none">Motion not detectedPlim > Pmax for all bands/modes	<i>N/A (Not applicable for portable conditions)</i>
Hotspot Mode (Flip, Closed) (DSI = 4)	<ul style="list-style-type: none">Device transmits in hotspot mode near body in flip or closed modeHotspot Mode Active	<i>Hotspot SAR per KDB Publication 941225 D06</i>
Body-worn (Flip, Closed) (DSI = 4)	<ul style="list-style-type: none">Device being used with a body-worn accessory flip or closed mode	<i>Body-worn SAR per KDB Publication 648474 D04</i>
Phablet (Flip) (DSI=4)	<ul style="list-style-type: none">Device being used hand in flip mode	<i>Phablet SAR per KDB Publication 648474 D04</i>
UMPC Body (Read) (DSI = 5)	<ul style="list-style-type: none">Device being used as a UMPC in read mode	<i>UMPC SAR per KDB Publication 941225 D07</i>
Body (Flat) (DSI=6)	<ul style="list-style-type: none">Device being used as a tablet in flat condition	<i>Tablet SAR per KDB 616217 D04</i>

A1.2 SAR Design Target

SAR_design_target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer (see Table 3-2).

Table 3-2
***SAR_design_target* Calculations for DSI2, DSI4, DSI5, and DSI6 North Antenna**

<i>SAR_design_target</i>			
<i>SAR_design_target</i> < <i>SAR_regulatory_limit</i> × 10 ^{−<i>Total Uncertainty</i>}			
1g SAR (W/kg)		10g SAR (W/kg)	
<i>Total Uncertainty</i>	1.0 dB	<i>Total Uncertainty</i>	1.0 dB
<i>SAR_regulatory_limit</i>	1.6 W/kg	<i>SAR_regulatory_limit</i>	4.0 W/kg
<i>SAR_design_target</i>	1.0 W/kg	<i>SAR_design_target</i>	2.5 W/kg

FCC ID: C3K1995	PCTEST Proud to be part of	PART 0 SAR CHAR REPORT	Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset		Page 7 of 11

Table 3-3
SAR_design_target Calculations for DSI6 South Antenna

SAR_design_target	
<i>SAR_design_target < SAR_regulatory_limit × 10^{-Total Uncertainty}</i>	10
1g SAR (W/kg)	
Total Uncertainty	1.0 dB
SAR regulatory limit	1.6 W/kg
SAR design target	0.8 W/kg

A1.3 SAR Char

SAR test results corresponding to P_{max} for each antenna/technology/band/DSI can be found in Appendices A1 and A2.

P_{limit} is calculated by linearly scaling with the measured SAR at the P_{part0} to correspond to the SAR_{design_target} . When $P_{limit} < P_{max}$, P_{part0} was used as P_{limit} in the Smart Transmit EFS. When $P_{limit} > P_{max}$ and $P_{part0}=P_{max}$, calculated P_{limit} was used in the Smart Transmit EFS. All reported SAR obtained from the P_{part0} SAR tests was less than $SAR_{Design_target} + 1$ dB Uncertainty. The final P_{limit} determination for each exposure scenario corresponding to SAR_{design_target} are shown in Table 3-3.

Table 3-4
PLimit Determination

Device State Index (DSI)	PLimit Determination Scenarios
2	P_{limit} is calculated based on 1g Head SAR
3	N/A (Not applicable for portable conditions)
4	P_{limit} is calculated based on <ul style="list-style-type: none"> 1. 1g Flip/Closed Body Worn SAR measured at 10 mm spacing 2. 1g Flip/Closed Hotspot SAR measured at 10 mm spacing 3. 10g Flip Extremity SAR measured at 0 mm spacing
5	P_{limit} is calculated based on 1g UMPC SAR measured at 5 mm spacing
6	P_{limit} is calculated based on 1g Body SAR at 0 mm spacing

FCC ID: C3K1995	 Proud to be part of	PART 0 SAR CHAR REPORT	 Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021–09/09/2021	DUT Type: Portable Handset		Page 8 of 11

Table 3-5
SAR Characterizations

Exposure Scenario	Free Space	Head	Flip/Closed Body	Read	Flat	Maximum Tune-Up Output Power*
Averaging Volume	1g, 10g	1g	1g, 10g	1g	1g	
Spacing	-	0 mm	10 mm	5 mm	0 mm	
Configuration	Flip/Closed/ Read/Flat	Flip/Flat	Flip/Closed	Read	Flat	
DSI	3	2	4	5	6	
Technology/Band	Antenna					Pmax
GSM 850	South	30.0	29.6	24.8	21.2	15.7
GSM 1900	South	30.0	29.8	20.6	15.8	10.9
UMTS 850	South	30.0	29.9	25.4	21.2	15.7
UMTS 1900	South	30.0	28.0	20.6	15.0	10.9
LTE Band 71	South	30.0	31.8	27.0	23.8	17.1
LTE Band 71	North	30.0	18.7	27.1	23.0	18.1
LTE Band 12	South	30.0	30.8	26.8	23.5	17.7
LTE Band 12	North	30.0	18.4	26.1	22.8	17.5
LTE Band 13	South	30.0	30.2	25.8	21.2	16.4
LTE Band 13	North	30.0	17.7	26.1	22.0	17.6
LTE Band 14	South	30.0	30.4	25.9	21.7	16.6
LTE Band 14	North	30.0	17.5	24.8	22.6	16.7
LTE Band 26 (Cell)	South	30.0	29.9	23.8	21.2	15.7
LTE Band 26 (Cell)	North	30.0	17.7	25.9	21.7	16.3
LTE Band 5 (Cell)	South	30.0	30.5	25.3	21.2	15.7
LTE Band 5 (Cell)	North	30.0	17.7	25.8	21.7	16.3
LTE Band 66/4 (AWS)	South	30.0	28.3	17.5	14.5	10.5
LTE Band 66/4 (AWS)	North	30.0	11.6	17.7	14.2	11.1
LTE Band 25/2 (PCS)	South	30.0	28.3	20.6	15.8	10.9
LTE Band 25/2 (PCS)	North	30.0	12.2	18.7	14.9	11.0
LTE Band 30	South	30.0	28.5	20.9	18.1	9.8
LTE Band 30	North	30.0	13.8	21.6	17.7	11.8
LTE Band 7	South	30.0	29.4	18.8	15.2	8.7
LTE Band 7	North	30.0	12.5	20.0	16.2	9.3
LTE Band 48	South	30.0	29.7	18.3	13.7	8.8
LTE Band 41	South	30.0	29.2	18.5	15.7	8.1
LTE Band 41 (PC2)	South	30.0	29.2	18.5	15.7	8.1
LTE Band 41	North	30.0	11.9	20.0	15.8	9.3
LTE Band 41 (PC2)	North	30.0	11.9	20.0	15.8	9.3
NR Band n71	South	30.0	31.3	27.0	25.6	17.1
NR Band n71	North	30.0	18.0	26.0	27.1	18.1
NR Band n5 (Cell)	South	30.0	30.0	24.8	21.2	15.7
NR Band n5 (Cell)	North	30.0	17.7	25.5	21.7	16.3
NR Band n66 (AWS)	South	30.0	28.1	17.5	14.5	10.5
NR Band n66 (AWS)	North	30.0	11.6	17.7	15.1	11.1
NR Band n25/2 (PCS)	South	30.0	28.8	20.6	15.8	10.9
NR Band n25/2 (PCS)	North	30.0	12.2	18.7	14.9	11.0
NR Band n41	South	30.0	27.3	18.5	15.1	8.1
NR Band n41	North	30.0	11.9	20.0	15.8	9.3
						22.5

Notes:

1. When $P_{max} < P_{limit}$, the DUT will operate at a power level up to P_{max} .

FCC ID: C3K1995	PCTEST® Proud to be part of	PART 0 SAR CHAR REPORT				Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset			Page 9 of 11	

4 EQUIPMENT LIST

For SAR measurements

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	CBT	N/A	CBT	3051A00187
Agilent	8503E	3.5mm Standard Calibration Kit	7/7/2021	Annual	7/7/2022	MW53402352
Agilent	8445C	ESG Vector Signal Generator	12/15/2020	Biennial	12/14/2022	MW47402385
Agilent	8449C	ESG-D Series Signal Generator	7/24/2021	Annual	7/24/2022	1540VX5386
Agilent	N5182A	MNG Vector Signal Generator	6/21/2021	Annual	6/21/2022	MW47402603
Agilent	N5182A	MNG Vector Signal Generator	6/15/2021	Annual	6/15/2022	MW47402800
Agilent	8753ES	S-Parameter Vector Networks Analyzer	9/16/2021	Annual	9/16/2021	MW40000670
Agilent	8753ES	S-Parameter Vector Networks Analyzer	2/21/2021	Annual	2/2/2022	1539170122
Agilent	E5515C	Wireless Communications Test Set	2/4/2021	Annual	2/4/2022	GB4139563
Agilent	E5515C	Wireless Communications Test Set	5/6/2021	Annual	5/6/2022	GB44002860
Agilent	NA010A	Wireless Connectivity Test Set	CBT	N/A	CBT	GB40000484
Amplifier Research	15515B	Amplifier	CBT	N/A	CBT	433121
Amplifier Research	15515G	Amplifier	CBT	N/A	CBT	353468
Amplifier Research	15515G	Amplifier	CBT	N/A	CBT	433971
Anritsu	MN8110B	I/O Adaptor	CBT	N/A	CBT	6261747981
Anritsu	ML2496A	Power Meter	3/3/2021	Annual	3/3/2022	1360069
Anritsu	ML2496A	Power Meter	4/21/2021	Annual	4/21/2022	1351094
Anritsu	MA2411B	Pulse Power Sensor	12/19/2020	Annual	12/18/2021	1126066
Anritsu	MA2411B	Pulse Power Sensor	9/22/2020	Annual	9/22/2021	1239006
Anritsu	ML2496C	Radio Communication Analyzer	3/3/2020	Annual	3/3/2021	6261747971
Anritsu	ML2496C	Radio Communication Analyzer	9/11/2020	Annual	9/11/2021	6261746317
Anritsu	MT8821C	Radio Communication Analyzer	7/18/2021	Annual	7/18/2022	626175047
Anritsu	MW24106A	USB Power Sensor	3/2/2021	Annual	3/2/2022	1244524
Anritsu	MW24106A	USB Power Sensor	9/15/2020	Annual	9/15/2021	1520594
Anritsu	MTR862G	Wireless Connectivity Test Set	10/29/2020	Annual	10/29/2021	6261782395
ComTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	MW15400-009
ComTech	AR85729-5/750B	Solid State Amplifier	CBT	N/A	CBT	MW15400-100
Control Company	4321	Long Stem Thermometer	1/29/2020	Biennial	1/29/2022	200013369
Control Company	4322	Long Stem Thermometer	3/24/2020	Biennial	3/24/2022	200043551
Control Company	4323	Long Stem Thermometer	5/19/2020	Biennial	5/16/2022	200094604
Control Company	4040	Therm / Clock / Humidity Monitor	2/17/2020	Biennial	2/17/2022	200113369
Control Company	4040	Therm / Clock / Humidity Monitor	3/6/2020	Biennial	3/6/2022	200170389
Control Company	4040	Therm / Clock / Humidity Monitor	3/6/2020	Biennial	3/6/2022	200170313
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MW5180215
Keysight Technologies	N6705B	DC Power Analyzer	5/5/2021	Triennial	5/5/2024	MW5300059
Keysight Technologies	N9020A	MXA Signal Analyzer	2/24/2021	Annual	2/24/2022	MW48010233
Keysight Technologies	8000A-6	Directional Coupler	CBT	N/A	CBT	5000
Minicircuits	S1B-2000	Low Pass Filter	CBT	N/A	CBT	8997500903
Minicircuits	V1L-6000	Low Pass Filter	CBT	N/A	CBT	N/A
Minicircuits	V1L-6000	Low Pass Filter	CBT	N/A	CBT	N/A
Minicircuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Minicircuits	NLP-1200	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Minicircuits	NLP-2500	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Minicircuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	3226
Narda	4014C-6	4- 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4014C-6	4- 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	BW1-5200	Attenuator (dB)	CBT	N/A	CBT	5200
Pasternack	PE2209-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	1445
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	N/A
Rohde & Schwarz	CHW500	Radio Communication Tester	2/18/2021	Annual	2/18/2022	101767
Rohde & Schwarz	CHW500	Radio Communication Tester	3/19/2021	Annual	3/19/2022	128633
Rohde & Schwarz	CHW500	Radio Communication Tester	3/22/2021	Annual	3/22/2022	167285
Rohde & Schwarz	ZNL6	Vector Network Analyzer	6/2/2020	Biennial	6/2/2022	101337
SPEAG	D300V3	750 MHz SAR Dipole	3/16/2020	Biennial	3/16/2022	5003
SPEAG	D750V3	750 MHz SAR Dipole	10/19/2018	Triennial	10/19/2021	1165
SPEAG	D835V2	835 MHz SAR Dipole	1/21/2021	Annual	1/21/2022	46132
SPEAG	D835V2	835 MHz SAR Dipole	10/19/2018	Triennial	10/19/2021	46132
SPEAG	D1750V2	1750 MHz SAR Dipole	5/12/2020	Biennial	5/12/2022	1148
SPEAG	D1750V2	1750 MHz SAR Dipole	10/22/2018	Triennial	10/22/2021	1150
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Triennial	10/23/2021	50308
SPEAG	D1900V2	1900 MHz SAR Dipole	2/17/2019	Triennial	2/17/2022	50148
SPEAG	D2450V2	2450 MHz SAR Dipole	10/19/2018	Biennial	10/19/2020	50147
SPEAG	D2450V2	2450 MHz SAR Dipole	1/21/2020	Annual	1/21/2021	50147
SPEAG	D2450V2	2450 MHz SAR Dipole	8/14/2020	Annual	8/14/2021	719
SPEAG	D2450V2	2450 MHz SAR Dipole	9/9/2020	Annual	9/9/2021	797
SPEAG	D3600V2	2600 MHz SAR Dipole	4/16/2021	Annual	4/14/2022	1004
SPEAG	D3600V2	2600 MHz SAR Dipole	6/14/2019	Triennial	6/14/2022	1054
SPEAG	D3500V2	3000 MHz SAR Dipole	1/19/2021	Annual	1/19/2022	1059
SPEAG	D3500V2	3000 MHz SAR Dipole	1/24/2020	Biennial	1/24/2022	1059
SPEAG	D3700V2	3700 MHz SAR Dipole	1/25/2018	Biennial	8/13/2021	3073
SPEAG	D3700V2	3700 MHz SAR Dipole	1/25/2018	Biennial	8/13/2021	3073
SPEAG	D3700V2	3700 MHz SAR Dipole	6/2/2021	Annual	6/2/2022	1116
SPEAG	D4250V2	4250 MHz SAR Dipole	8/14/2020	Annual	8/14/2021	719
SPEAG	D4250V2	4250 MHz SAR Dipole	9/9/2020	Annual	9/9/2021	797
SPEAG	D4250V2	4250 MHz SAR Dipole	1/19/2021	Annual	1/19/2022	981
SPEAG	D4260V2	4260 MHz SAR Dipole	4/16/2021	Annual	4/14/2022	1004
SPEAG	D4260V2	4260 MHz SAR Dipole	6/14/2019	Triennial	6/14/2022	1054
SPEAG	D5000V2	5 GHz SAR Dipole	9/10/2020	Annual	9/10/2021	1151
SPEAG	D5000V2	5 GHz SAR Dipole	1/19/2021	Annual	1/19/2022	1151
SPEAG	D5GHW2	5 GHz SAR Dipole	9/10/2020	Annual	9/10/2021	1151
SPEAG	DAE4	Daq Data Acquisition Electronics	3/18/2021	Annual	3/18/2022	1272
SPEAG	DAE4	Daq Data Acquisition Electronics	7/19/2021	Annual	7/15/2021	1322
SPEAG	DAE4	Daq Data Acquisition Electronics	10/16/2020	Annual	10/16/2021	1333
SPEAG	DAE4	Daq Data Acquisition Electronics	6/15/2021	Annual	6/15/2022	1334
SPEAG	DAE4	Daq Data Acquisition Electronics	6/17/2021	Annual	6/17/2022	1334
SPEAG	DAE4	Daq Data Acquisition Electronics	8/1/2021	Annual	8/1/2022	1345
SPEAG	DAE4	Daq Data Acquisition Electronics	8/12/2020	Annual	8/10/2021	1449
SPEAG	DAE4	Daq Data Acquisition Electronics	8/11/2020	Annual	8/11/2021	1450
SPEAG	DAE4	Daq Data Acquisition Electronics	12/7/2020	Annual	12/7/2021	1533
SPEAG	DAE4	Daq Data Acquisition Electronics	1/13/2021	Annual	1/13/2022	1558
SPEAG	DAE4	Daq Data Acquisition Electronics	5/14/2020	Annual	5/14/2021	1583
SPEAG	DAE4	Daq Data Acquisition Electronics	6/21/2021	Annual	6/21/2022	1676
SPEAG	DAE4	Daq Data Acquisition Electronics	6/22/2021	Annual	6/22/2022	1677
SPEAG	DAE4	Daq Data Acquisition Electronics	6/23/2021	Annual	6/23/2022	1678
SPEAG	DAE4	SAR Probe	1/22/2021	Annual	1/22/2022	1678
SPEAG	DA30V4	SAR Probe	7/21/2020	Annual	7/31/2021	7238
SPEAG	DA30V4	SAR Probe	4/19/2021	Annual	4/19/2022	7357
SPEAG	EX3D04	SAR Probe	6/23/2020	Annual	6/23/2021	7406
SPEAG	EX3D04	SAR Probe	6/21/2021	Annual	6/21/2022	7409
SPEAG	EX3D04	SAR Probe	7/20/2020	Annual	7/20/2021	7410
SPEAG	EX3D04	SAR Probe	3/16/2022	Annual	3/16/2022	7526
SPEAG	EX3D04	SAR Probe	11/23/2020	Annual	11/23/2021	7538
SPEAG	EX3D04	SAR Probe	10/20/2020	Annual	10/20/2021	7538
SPEAG	EX3D04	SAR Probe	10/20/2020	Annual	10/20/2021	7538
SPEAG	EX3D04	SAR Probe	12/11/2020	Annual	12/11/2021	7571
SPEAG	EX3D04	SAR Probe	5/29/2021	Annual	5/29/2022	7659
SPEAG	EX3D04	SAR Probe	6/28/2021	Annual	6/28/2022	7660
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/14/2020	Annual	10/14/2021	1091

Note:

1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
2. Each equipment item was used solely within its respective calibration period.

FCC ID: C3K1995	PCTEST® Proud to be part of PART 0 SAR CHAR REPORT			Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021–09/09/2021	DUT Type: Portable Handset	Page 10 of 11	

5 MEASUREMENT UNCERTAINTIES

For SAR Measurements

a	c	d	e= f(d,k)	f	g	h = c x f/e	i = c x g/e	k
Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	c _l 1gm	c _l 10 gms	1gm (± %)	10gms (± %)	v _l
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Uncertainty	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)						RSS	11.5	11.3
Expanded Uncertainty (95% CONFIDENCE LEVEL)						k=2	23.0	22.6

FCC ID: C3K1995	PCTEST® Proud to be part of	PART 0 SAR CHAR REPORT			Microsoft	Approved by: Quality Manager
Document S/N: 1M2105060048-24.C3K	Test Dates: 06/21/2021– 09/09/2021	DUT Type: Portable Handset			Page 11 of 11	