

RADIO TEST REPORT

For

MODEL NO.: 1707
FCC ID: C3K1707
IC ID: 3048A-1707

Test Report No. R-TR371-FCCIC-DFS-2
Issue Date: 14 Oct 2016

FCC CFR47 Part 15 Subpart E
Innovation, Science and Economic Development
Canada RSS-247 Issue 1

Prepared by
Microsoft EMC Laboratory
17760 NE 67th Ct,
Redmond WA, 98052, U.S.A.
425-421-9799
sajose@microsoft.com

1 Record of Revisions

Table of Contents

1	Record of Revisions.....	2
2	Deviations from Standards	6
3	Facilities and Accreditations	6
3.1	Test Facility	6
3.2	Accreditations	6
4	Product Description	7
4.1	Test Configurations	8
4.2	Environmental Conditions.....	8
4.3	Antenna Requirements.....	8
4.4	Equipment Modifications	9
4.5	Dates of Testing	9
5	Test Results Summary	10
6	Test Equipment List	11
7	Test Method.....	12
7.1	Antenna port conducted measurements.....	12
7.2	Test Setup Diagrams.....	12
7.3	Radar Waveform Verification.....	13
7.4	Channel Loading	16
7.4.1	Test Method	16
8	Test Results.....	18
8.1	Channel Move Time	18
8.1.1	Test Requirement:.....	18
8.1.2	Test Method:	18
8.1.3	Limits:	18
8.1.4	Test Results:	18
8.1.5	Test Data.....	18
8.2	Channel Closing Transmission Time	21
8.2.1	Test Requirement:.....	21
8.2.2	Test Method:	21
8.2.3	Limits:	21
8.2.4	Test Results:	21
8.2.5	Test Data.....	21

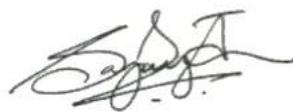
8.3	Non-Occupancy Period	24
8.3.1	Test Requirement:	24
8.3.2	Test Method:	24
8.3.3	Limits:	24
8.3.4	Test Results:	24
8.3.5	Test Data:	24

Test Report Attestation

Microsoft Corporation**Model:** 1707**FCC ID:** C3K1707**IC ID:** 3048A-1707**Applicable Standards**

Specification	Test Result
FCC 47CFR Rule Parts 15.407 (DFS)	Pass
Innovation, Science and Economic Development Canada RSS-247 Issue 1 (DFS)	Pass

Microsoft EMC Laboratory attests that the product model identified in this report has been tested to and meets the requirements identified in the above standards. The test results in this report solely pertains to the specific sample tested, under the conditions and operating modes as provided by the customer.


This report shall not be used to claim product certification, approval, or endorsement by A2LA or any agency of any Government. Reproduction, duplication or publication of extracts from this test report is prohibited and requires prior written approval of Microsoft EMC Laboratory.

This report replaces the previously issued report #R-TR371-FCCIC-DFS-1 issued by Microsoft EMC labs on 9/2/2016.

Written By: Daniel Salinas

Radio Test Lead

Reviewed/ Issued By: Sajay Jose

EMC/RF Compliance Lab Manager

2 Deviations from Standards

None.

3 Facilities and Accreditations

3.1 Test Facility

All test facilities used to collect the test data are located at Microsoft EMC Laboratory,

17760 NE 67th Ct,
Redmond WA, 98052, USA

3.2 Accreditations

The lab is established and follows procedures as outlined in IEC/ISO 17025 and A2LA accreditation requirements.

A2LA Accredited Testing Certificate Number: 3472.01

FCC Registration Number: US1141

IC Site Registration Numbers: 3048A-3, 3048A-4

4 Product Description

Company Name:	Microsoft Corporation
Address:	One Microsoft Way
City, State, Zip:	Redmond, WA 98052-6399
Customer Contact:	Jennifer Liu
Functional Description of the EUT:	PC with IEEE 802.11a/b/g/n/ac MIMO supporting 20/40/80 MHz bandwidths, Bluetooth and additional 802.11n Radio.
Model:	1707
FCC ID:	C3K1707
IC ID:	3048A-1707
Radio under test:	IEEE 802.11a/n/ac with 20MHz, 40MHz and 80MHz Signal Bandwidths
Modulation(s):	OFDM – BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
EUT Classification:	UNII Client Device without radar detection
RF Conducted port impedance:	50 Ω in the frequency range of operation
Antenna Gain Measurement Verification:	N/A – Measurements were performed using conducted test methods
Transmit Power Control:	The EUT does not implement TPC
Wireless Bridge or Mesh Capability:	The device does not implement bridge or mesh modes.
Power – Cycle Time:	N/A. The EUT is a client device without radar detection
Radar Waveform Information:	The EUT does not detect or store information regarding radar waveforms
Equipment Design State:	Prototype/Production Equivalent
Equipment Condition:	Good
Test Sample Details:	RF Conducted Test Sample SN: 000008661958

4.1 Test Configurations

The device was setup in normal operation and connected wirelessly to an 802.11 access point on 20 MHz and 40 MHz bandwidth channels. The EUT supports 80 MHz bandwidths, which were excluded from measurements (based on guidance from KDB 905462 D03 v01r01).

A host laptop was configured to transmit traffic by using an .MP4 video file to the EUT. Iperf was used to generate a continuous amount of traffic while the video was streamed simultaneously to meet channel loading conditions and allow for random pinging intervals and dynamically allocate the talk/listen ratio.

Aeroflex PXI 3001C DFS test system was used to monitor traffic and generate radar pulses. Measurements were performed on the main antenna, Chain B of the EUT. DFS signals were injected into 5 GHz Tx/Rx port B of the Master device.

4.2 Environmental Conditions

Ambient air temperature of the test site was within the range of 10 °C to 40 °C (50 °F to 104 °F) unless the EUT specified testing over a different temperature range. Humidity levels were in the range of 10% to 90% relative humidity. Testing conditions were within tolerance and any deviations required from the EUT are reported.

4.3 Antenna Requirements

The antennas are internal, permanently attached and there are no provisions for connection to an external antenna.

Antenna Gain		
Frequency Band (MHz)	Chain A MIMO Wi-Fi Antenna Peak Gain (dBi)	Chain B Main Antenna Wi-Fi Peak Gain (dBi)
UNII Band 1- 5150 to 5250	5.59	5.37
UNII Band 2a – 5250 to 5350	6.41	6.19
UNII Band 2c – 5470 to 5725	6.89	6.71
UNII Band 3 – 5725 to 5850	5.05	5.56

Simultaneous transmission on both transmit chains was observed to be the worst case mode of operation for all test cases. Since the transmit signals are completely uncorrelated, the combined gain is calculated using the following formula as specified in KDB 662911 D01 Multiple Transmitter Output v02r01:

$$\text{Directional gain} = 10\log [(10^{G1/10} + 10^{G2/10} + \dots + 10^{GN/10})/N_{\text{ANT}}] \text{ dBi}$$

Combined Directional Antenna Gain	
Frequency Band (MHz)	Combined Directional Gain (dBi)
UNII Band 1- 5150 to 5250	5.48
UNII Band 2a – 5250 to 5350	6.3
UNII Band 2c – 5470 to 5725	6.8
UNII Band 3 – 5725 to 5850	5.31

4.4 Equipment Modifications

No modifications were made during testing.

4.5 Dates of Testing

Testing was performed from July 22th – August 4, 2016.

5 Test Results Summary

Test Description	FCC CFR 47/ ISED Rule Part	Limit	Test Result
In-Service Monitoring	15.407(h)(2)(iv) RSS-247 [6.3]	Monitor co-channel radar	N/A*
Channel Availability Check	15.407 (h)(2)(ii) RSS-247 [6.3]	60s detection	N/A*
Channel Move Time	15.407 (h)(2)(iii) RSS-247 [6.3]	10s	Pass
Channel Closing Transmission Time	15.407 (h)(2)(iii) RSS-247 [6.3]	200ms +aggregate 60ms over remaining 10s period	Pass
Non-occupancy Period	15.407 (h)(2)(iv) RSS-247 [6.3]	30 minutes	Pass

*Note: The EUT is a Client device without radar detection.

6 Test Equipment List

Manufacturer	Description	Model #	Asset #	FCC ID	Calibration Due
Aeroflex	PXI Chassis	3001C	RF-132	N/A	05/27/2017
Cisco	Cisco Aironet ISO Access Point	AIR-AP1252AG-A-K9	RF-331	LDK 102061 LDK 102062	N/A*
Agilent	Spectrum Analyzer	N9030A	EMC-607	N/A	05/26/2017
Agilent	Microwave Analyzer	N9918A	EMC-728	N/A	04/13/2017
MegaPhase	RF Cable	KB18-S1S1-79	EMC-1042	N/A	N/A*
Rosenberger	RF Cable	L72-449-1830	EMC-123	N/A	N/A*
Argosy	RF Cable	B101	RF-271	N/A	N/A*
Rosenberger	RF Cable	L72-450-1830	RF-106	N/A	N/A*
Pasternack	RF Cable	PE304-200CM	RF-445	N/A	N/A*
Matura	RF-Cable	MXHQ87WA3000	RF-392	N/A	N/A*
Fairview Microwave	10dB Attenuator	SA18N5W	RF-418	N/A	N/A*
Pasternack	3dB Attenuator	7092-3	RF-154	N/A	N/A*
Pasternack	Attenuator	PE7005-20	RF-085	N/A	N/A*
Pasternack	6dB Attenuator	PE7087-6	RF-436	N/A	N/A*
Pasternack	3dB Attenuator	PE7092-3	RF-440	N/A	N/A*
Pasternack	20dB Attenuator	PE7087-20	RF-334	N/A	N/A*
Pasternack	20dB Attenuator	PE7005-20	RF-082	N/A	N/A*
Pasternack	6dB Attenuator	PE7087-6	RF-437	N/A	N/A*
L-Com	RF Combiner	SC5802N	RF-048	N/A	N/A*
L-Com	RF Combiner	SC5802N	RF-049	N/A	N/A*

7 Test Method

7.1 Antenna port conducted measurements

Antenna port conducted measurements were performed on a bench-top setup consisting of a spectrum analyzer, splitters/combiners (as necessary), attenuators, and pre-characterized RF cables. The Aeroflex PXI 3001C DFS test system monitored traffic and generated radar bursts.

The correction factors between the EUT, support equipment, radar test generator and the spectrum analyzer are added internally in the Aeroflex test system.

7.2 Test Setup Diagrams

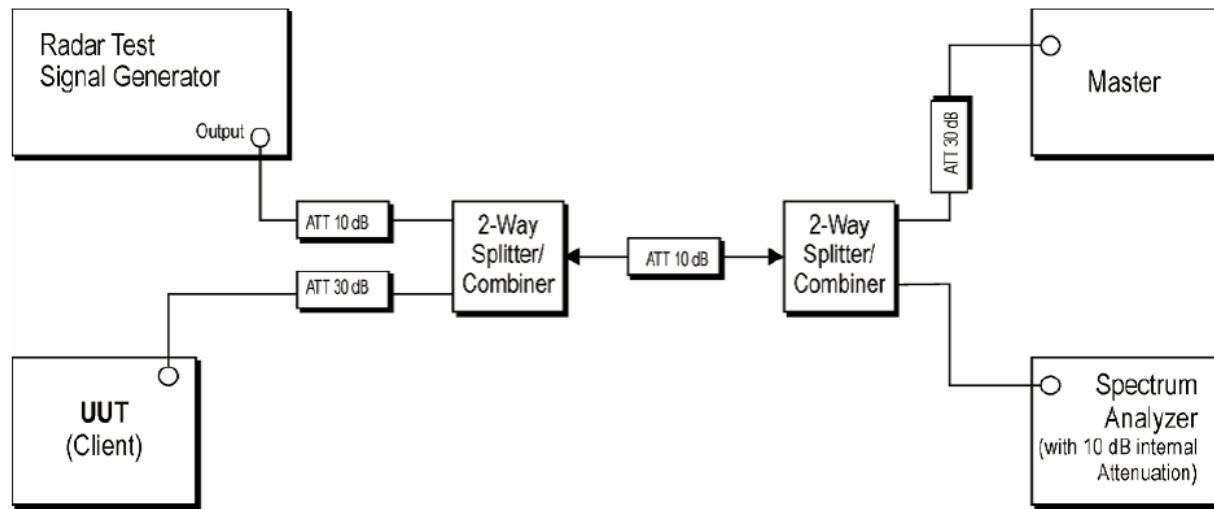


Figure 1. Test Setup for Antenna Port Conducted Measurements

7.3 Radar Waveform Verification

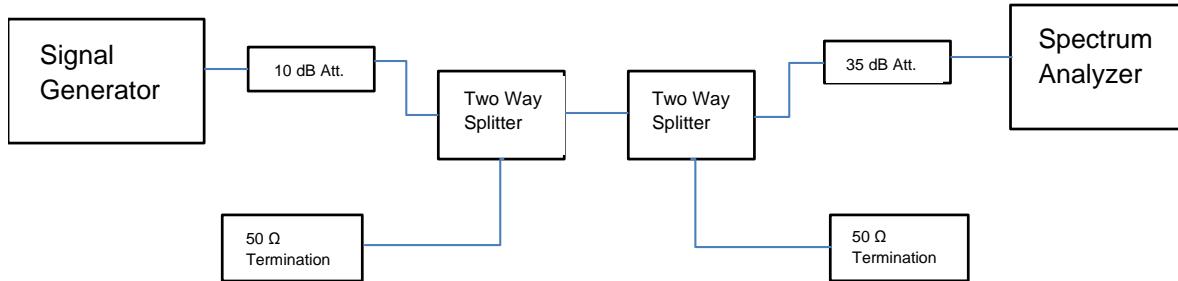


Figure 2. Test Setup for Conducted Measurement Radar Verification

Device Type	Device	Min. Output Power (dBm)	Max Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Required Radar Detection Threshold Level (dBm)
Master	CISCO AIR-AP1252AG-A-K9	-1	20	6	26	-63
Client	Microsoft Model 1707	5.5	18.5	6.8	25.3	N/A

DFS Measurement	Radar Type
Channel Move Time	0
Channel Closing Transmission Time	0
Non-Occupancy Period	0

Rader Type	Frequency (MHz)	Level (dBm)	Pulse count	Pulse width (μs)	Pulse Repetition Interval (ms)
0	5520	-63.06	18	1.020	1.428
0	5310	-63.54	18	1.057	1.428

Note: 80 MHz bandwidths were not tested, due to the lack of 80 MHz Master devices available on the market (based on guidance from KDB 905462 D03 v01r01).

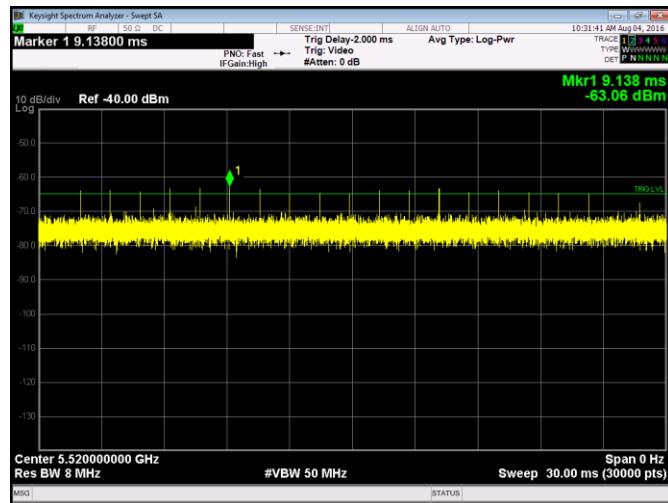


Figure 3. Radar Burst Level at -63dBm: Radar Type 0 (5520 MHz 20 MHz BW)



Figure 4. Radar Pulse width: Radar Type 0 (5520 MHz 20 MHz BW)

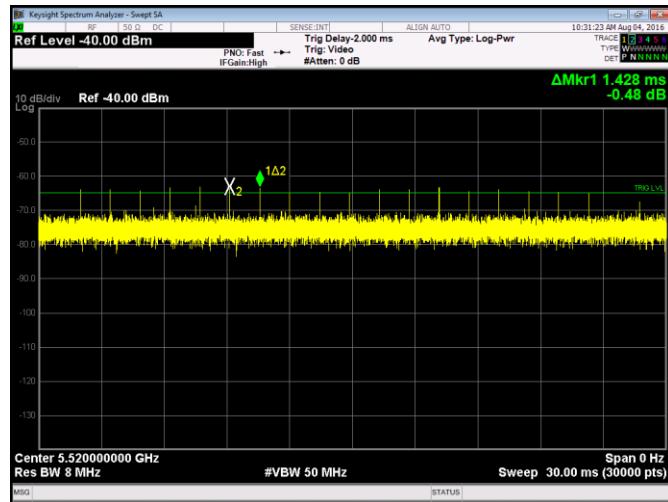


Figure 5. Radar Pulse Repetition Interval: Radar Type 0 (5520 MHz 20 MHz BW)

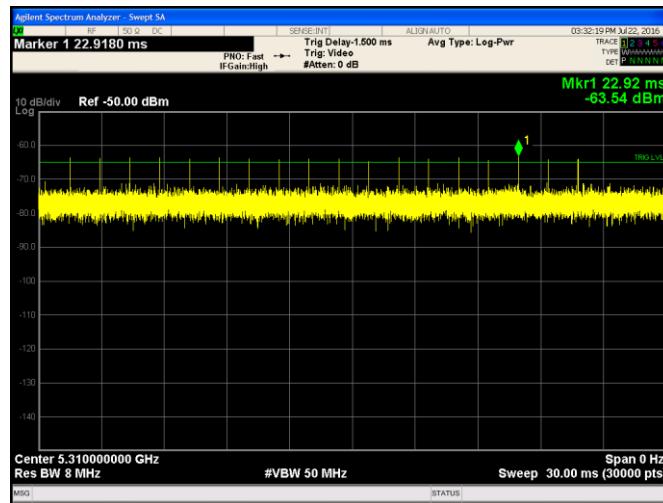


Figure 6. Radar Burst Level at -63dBm: Radar Type 0 (5310 MHz 40 MHz BW)

Figure 7. Radar Pulse width: Radar Type 0 (5310 MHz 40 MHz BW)

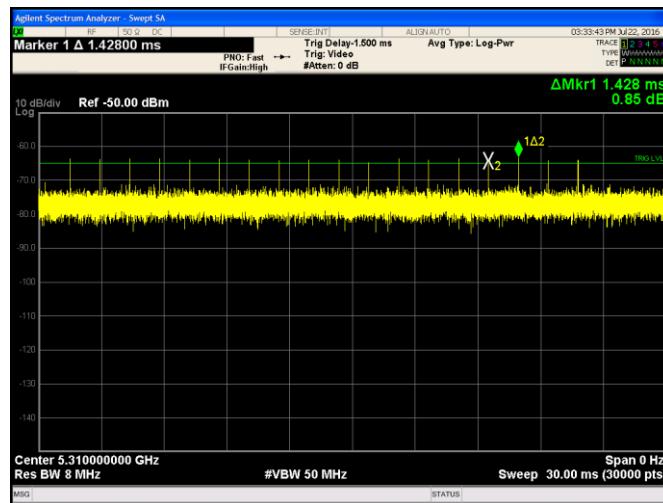
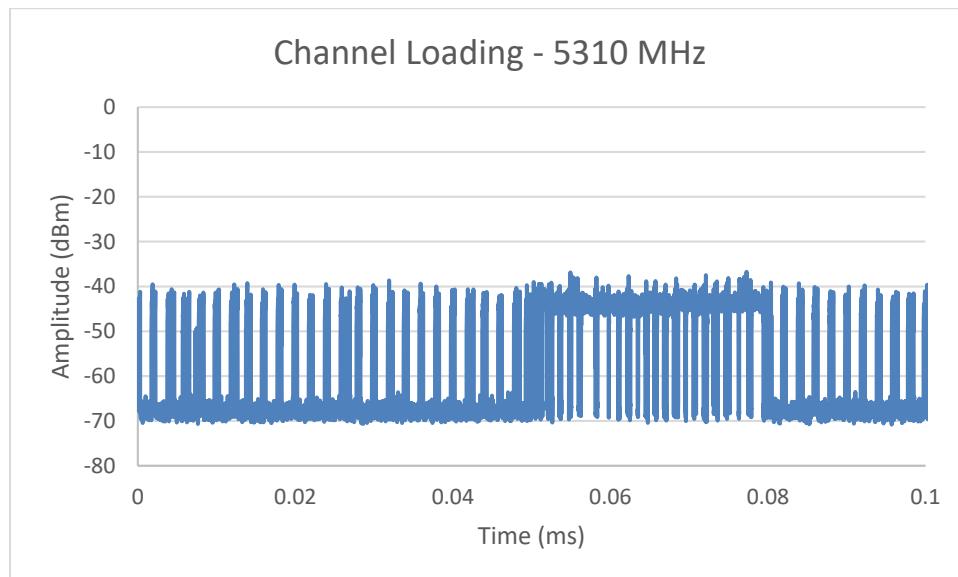


Figure 8. Radar Pulse Repetition Interval: Radar Type 0 (5310 MHz 40 MHz BW)

7.4 Channel Loading

7.4.1 Test Method

Channel Loading measurements were taken with a spectrum analyzer. A .csv file was generated and Channel Loading was calculated using that measured data.


Channel Loading is calculated using the following formula:

$$\text{Channel Loading (\%)} = \frac{\text{On Time}}{(\text{On Time} + \text{Off Time})} \times 100$$

Frequency (MHz)	Signal Bandwidth (MHz)	Total On Time (ms)	On Time + Off Time (ms)	Channel Loading (%)
5520	20	26.57	100	26.57
5310	40	41.65	100	41.65

Figure 9. Channel Loading (5520 MHz 20 MHz BW)

Figure 10. Channel Loading (5310 MHz 40 MHz BW)

8 Test Results

8.1 Channel Move Time

8.1.1 Test Requirement:

FCC CFR 47 Rule Part 15.407 (h)(2)(iv)

ISED Canada RSS-247 [6.3]

8.1.2 Test Method:

Measurements were performed according to the procedures defined in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

8.1.3 Limits:

After a radar signal is detected, the device shall cease all transmissions on the operating channel within 10 seconds.

8.1.4 Test Results:

Pass.

The EUT ceased transmission on the channel within 200 ms and there was less than an aggregate of 60ms transmission time in a 10s period.

8.1.5 Test Data

8.1.5.1 Channel Move Time

Frequency (MHz)	Signal Bandwidth (MHz)	Channel Move Time (s)	Limit (s)	Result
5520	20	0.66	10	Pass
5310	40	0.10	10	Pass

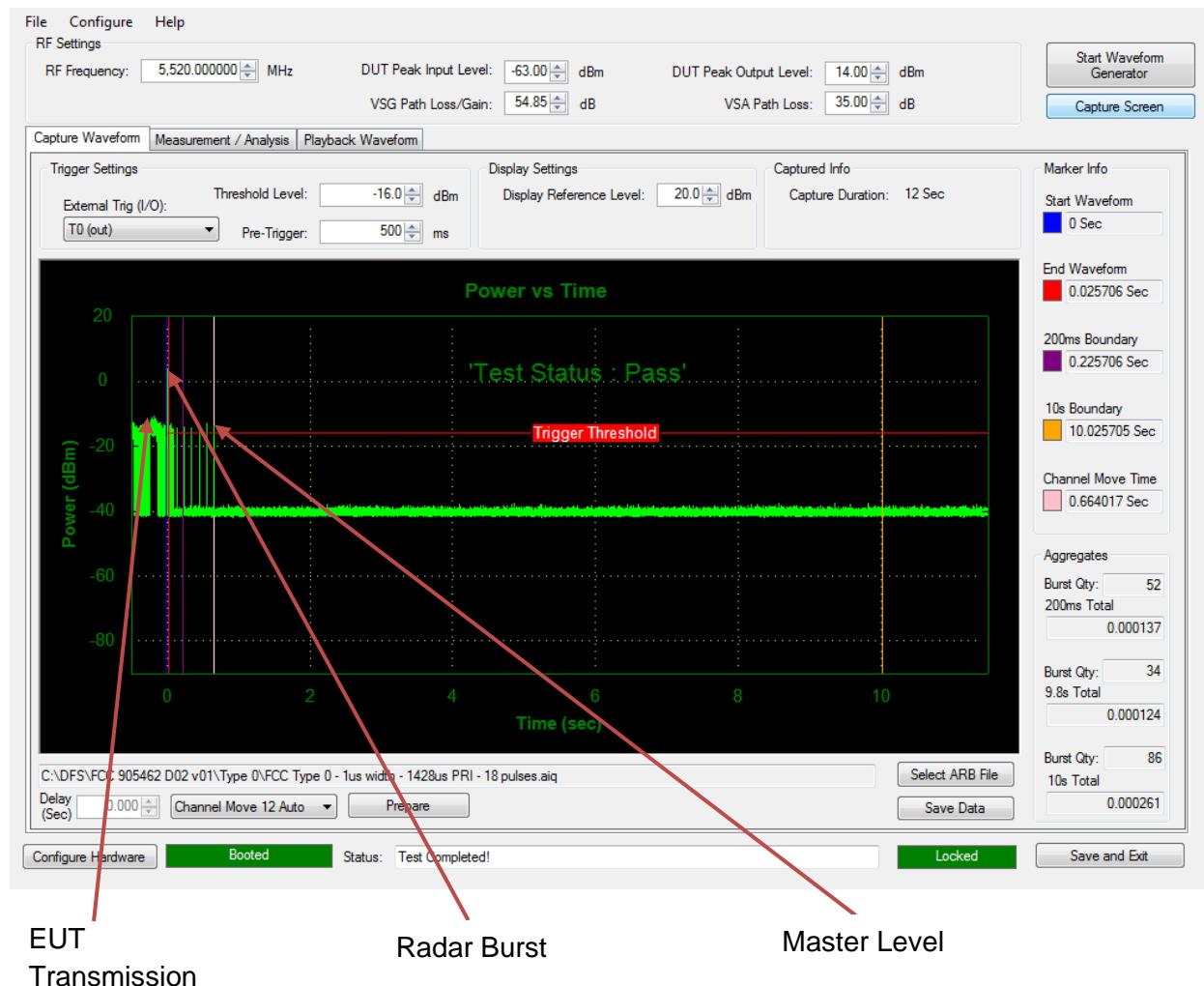


Figure 11. Channel Move Time 20 MHz Bandwidth

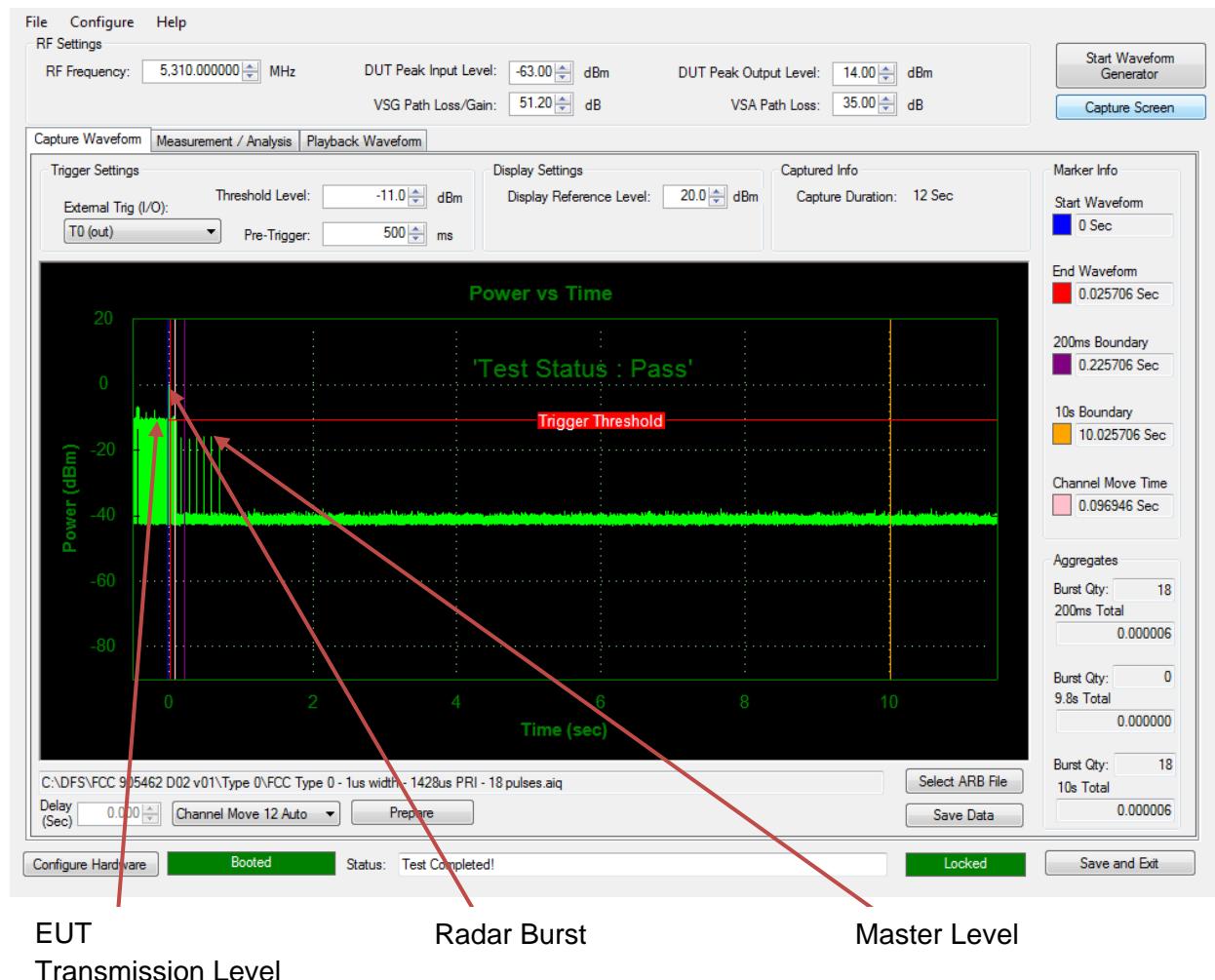


Figure 12. Channel Move Time 40 MHz Bandwidth

8.2 Channel Closing Transmission Time

8.2.1 Test Requirement:

FCC CFR 47 Rule Part 15.407 (h)(2)(iii)

ISED Canada RSS-247 [6.3]

8.2.2 Test Method:

Measurements were performed according to the procedures defined in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

8.2.3 Limits:

After the radar burst has been applied, the EUT shall cease normal transmission on the channel within 200 ms starting at the beginning of the channel move time. Control signaling required to facilitate a channel move (an aggregate of 60 ms) over the remaining 10-second period of the channel move time is permissible.

8.2.4 Test Results:

Pass.

The EUT ceased transmission on the channel within the allotted time.

8.2.5 Test Data

Channel Bandwidth (MHz)	Channel Closing Transmission Time (ms)	Channel Closing Transmission Time Limit + Aggregate Control Signaling Time Limit (ms)	Result
20	0.261	200 +60	Pass
40	0.006	200 +60	Pass

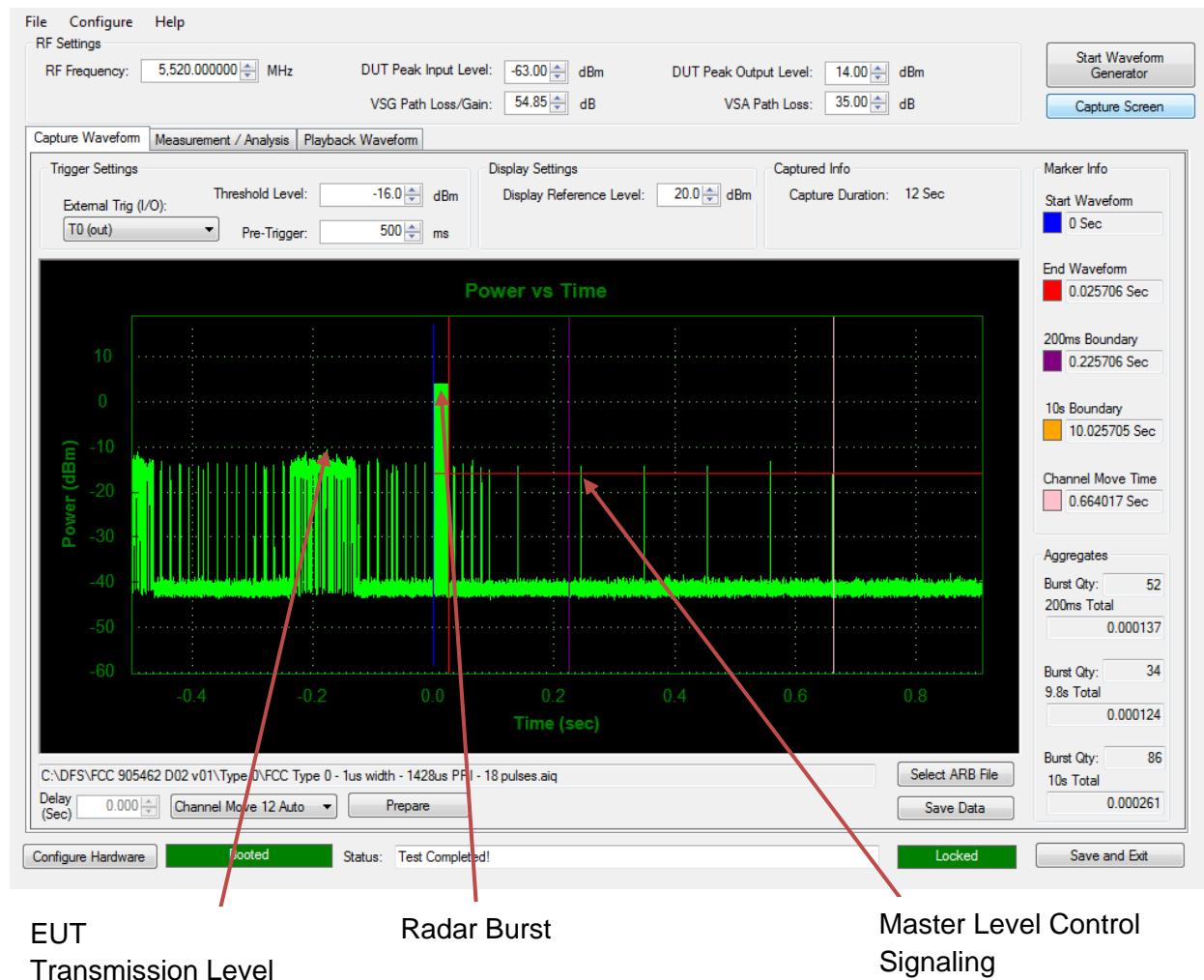


Figure 13. Channel Closing Transmission Time (5520 MHz 20 MHz BW)

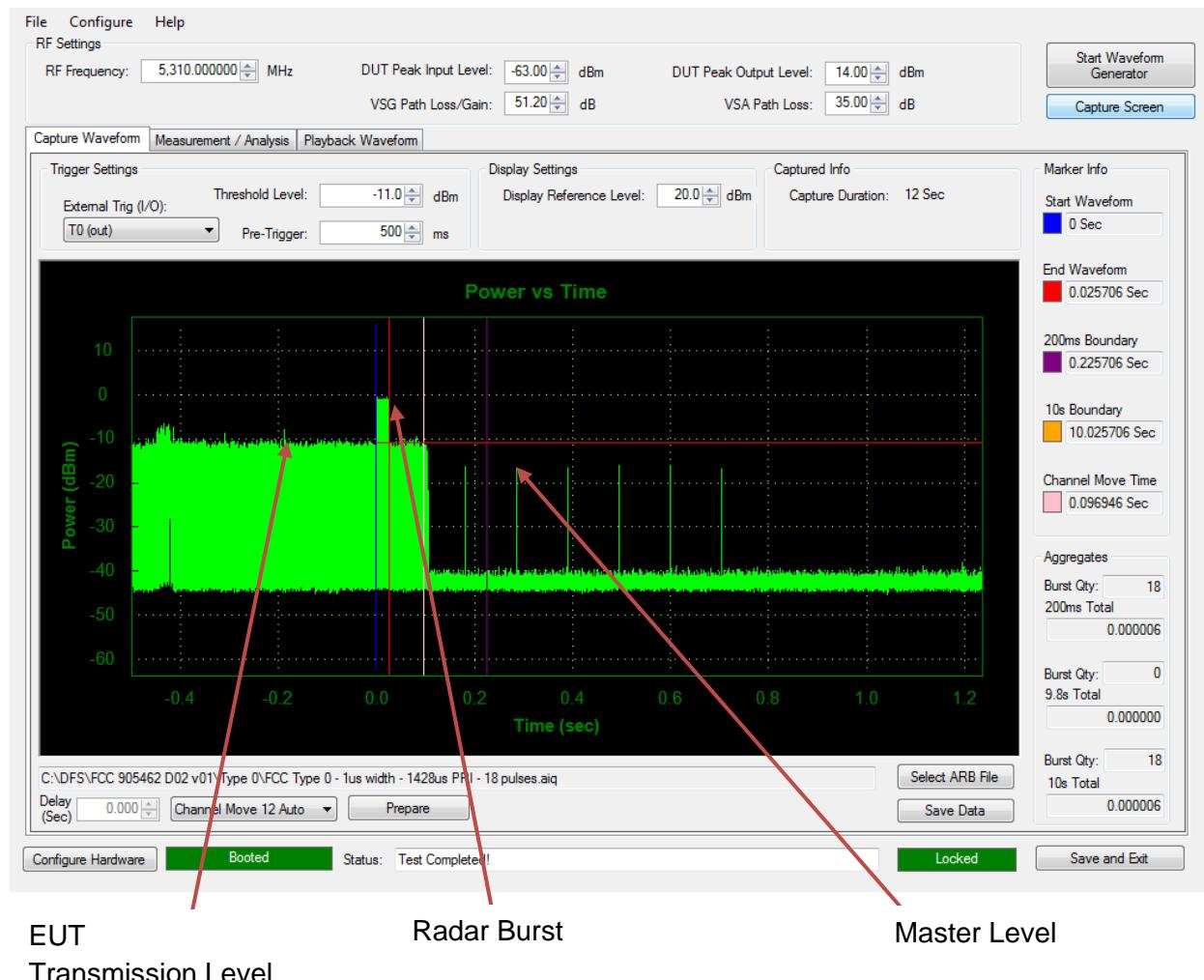


Figure 14. Channel Closing Transmission Time (5310 MHz 40 MHz BW)

8.3 Non-Occupancy Period

8.3.1 Test Requirement:

FCC CFR 47 Rule Part 15.407 (h)(2)(iv)

ISED Canada RSS-247 [6.3]

8.3.2 Test Method:

Measurements were performed according to the procedures defined in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

8.3.3 Limits:

A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

8.3.4 Test Results:

Pass.

After radar was detected by the master device, the EUT did not transmit on the tested channel for at least 30 minutes.

8.3.5 Test Data:

Plot shown for 2000 seconds sweep time.

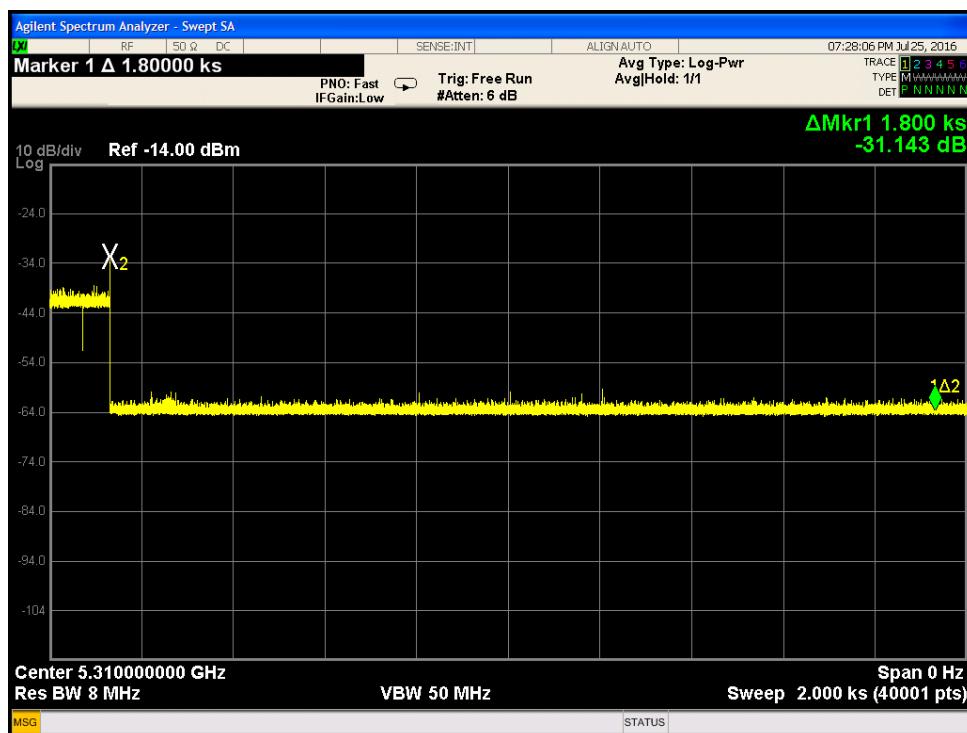


Figure 15. 30 Minute Non-Occupancy Period

End of Report