

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)

7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654
<http://www.element.com>

RF Exposure Part 0 Test Report

Applicant Name:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

Date of Testing:

04/23/2025 – 06/24/2025

Test Site/Location:

Element, Columbia, MD, USA

Document Serial No.:

1M2504010035-04.C3K (Rev1)

FCC ID (Licensed): **C3K2119**

FCC ID (Unlicensed): **C3K00002102A**

APPLICANT: **MICROSOFT CORPORATION**

Report Type: Part 0 SAR Characterization

DUT Type: Modular Approval - Host Integration (Portable Computing Device)

Model(s): 2114, HWB-Q94

Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Test results reported herein relate only to the item(s) tested.

RJ Ortanez
Executive Vice President

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 1 of 13

REV 1.1
04/08/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

TABLE OF CONTENTS

1	DEVICE UNDER TEST	3
1.1	Device Overview	3
1.2	Time-Averaging for SAR and Power Density	4
1.3	Nomenclature for Part 0 Report	4
1.4	Bibliography	4
2	SAR AND POWER DENSITY MEASUREMENTS	5
2.1	SAR Definition	5
2.2	SAR Measurement Procedure	5
3	SAR CHARACTERIZATION	7
3.1	DSI and SAR Determination	7
3.2	SAR Design Target	7
3.3	SAR Char	8
4	EQUIPMENT LIST	11
5	MEASUREMENT UNCERTAINTIES	12

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 2 of 13

1 DEVICE UNDER TEST

1.1 Device Overview

The equipment under test (EUT), Model 2119, is a portable computing device that incorporates two previously certified transmitter modules. The first is a WLAN/Bluetooth module authorized under FCC ID: C3K00002102A, and the second is a cellular module authorized under FCC ID: C3K2119. No hardware or software modifications have been made to either module for the purposes of this host integration. This report evaluates the host device for compliance with the applicable FCC rules, including assessment of co-location and simultaneous transmission conditions involving the integrated modules.

This device uses the Qualcomm® Smart Transmit feature to control and manage transmitting power for 2G/3G/4G/5G WWAN operations and Qualcomm® FastConnect TAS feature for WLAN technologies in real time and to ensure the time-averaged RF exposure is in compliance with the FCC requirement at all times. Additionally, this device supports BT technologies, but the output power of these modems is not controlled by the Smart Transmit algorithm.

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Data	826.40 - 846.60 MHz
UMTS 1750	Data	1712.4 - 1752.6 MHz
UMTS 1900	Data	1852.4 - 1907.6 MHz
LTE Band 71	Data	665.5 - 695.5 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 13	Data	779.5 - 784.5 MHz
LTE Band 14	Data	790.5 - 795.5 MHz
LTE Band 26	Data	814.7 - 848.3 MHz
LTE Band 5	Data	824.7 - 848.3 MHz
LTE Band 66	Data	1710.7 - 1779.3 MHz
LTE Band 4	Data	1710.7 - 1754.3 MHz
LTE Band 25	Data	1850.7 - 1914.3 MHz
LTE Band 2	Data	1850.7 - 1909.3 MHz
LTE Band 30	Data	2307.5 - 2312.5 MHz
LTE Band 41	Data	2498.5 - 2687.5 MHz
LTE Band 48	Data	3552.5 - 3697.5 MHz
NR Band n71	Data	665.5 - 695.5 MHz
NR Band n12	Data	701.5 - 713.5 MHz
NR Band n14	Data	790.5 - 795.5 MHz
NR Band n26	Data	816.5 - 846.5 MHz
NR Band n5	Data	826.5 - 846.5 MHz
NR Band n66	Data	1712.5 - 1777.5 MHz
NR Band n25	Data	1852.5 - 1912.5 MHz
NR Band n2	Data	1852.5 - 1907.5 MHz
NR Band n30	Data	2307.5 - 2312.5 MHz
NR Band n41	Data	2501.01 - 2685 MHz
NR Band n48	Data	3555 - 3694.98 MHz
NR Band n77	Data	3455.01 - 3544.98 MHz; 3705 - 3975 MHz
2.4 GHz WIFI	Data	2412 - 2472 MHz
5 GHz WIFI	Data	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz U-NII-4: 5845 - 5885 MHz
6 GHz WIFI	Data	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz
2.4 GHz Bluetooth	Data	2402 - 2480 MHz

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 3 of 13

1.2 Time-Averaging for SAR and Power Density

This device is enabled with Qualcomm® Smart Transmit algorithm and Qualcomm® FastConnect TAS feature to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from WWAN and WLAN is in compliance with FCC requirements. This Part 0 report shows SAR characterization of WWAN and WLAN radios. Characterization is achieved by determining PLimit for 2G/3G/4G/5G/WLAN that corresponds to the exposure design targets after accounting for all device design related uncertainties, i.e., SAR_design_target (< FCC SAR limit). The SAR characterization is denoted as SAR Char in this report. Section 1.3 includes a nomenclature of the specific terms used in this report.

The compliance test under the static transmission scenario and simultaneous transmission analysis are reported in Part 1 report. The validation of the time-averaging algorithm and compliance under the dynamic (time- varying) transmission scenario for WWAN and WLAN technologies are reported in their respective Part 2 SAR test reports (report SNs could be found in Section 1.4 – Bibliography).

1.3 Nomenclature for Part 0 Report

Technology	Term	Description
WWAN, WLAN	P_{limit}	Power level that corresponds to the exposure design target (SAR_design_target) after accounting for all device design related uncertainties
	P_{max}	Maximum tune up output power
	SAR_design_target	Target SAR level < FCC SAR limit after accounting for all device design related uncertainties
	SAR Char	Table containing PLimit for all technologies and bands

1.4 Bibliography

Report Type	Report Serial Number
RF Exposure Part 1 Test Report	1M2504010035-03.C3K
RF Exposure Part 2 WLAN Test Report	1M2504010035-12.C3K
RF Exposure Part 2 WWAN Test Report	1M2504010035-06.C3K
RF Exposure Compliance Summary Report	1M2504010035-05.C3K
RF Exposure Part 0 Test Report	1M2504010035-04.C3K

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K0002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 4 of 13

2 SAR AND POWER DENSITY MEASUREMENTS

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

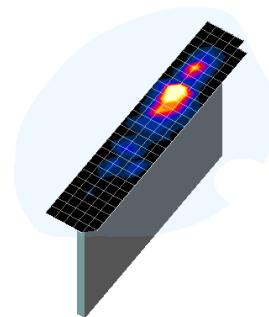
Equation 2-1
SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:


σ = conductivity of the tissue-simulating material (S/m)
 ρ = mass density of the tissue-simulating material (kg/m³)
 E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

2.2 SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume

Figure 2-1
Sample SAR Area Scan

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 5 of 13

size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

- a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 2-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 2-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) (x,y,z)
			Uniform Grid		Graded Grid	
			$\Delta z_{zoom}(n)$	$\Delta z_{zoom}(1)^*$	$\Delta z_{zoom}(n>1)^*$	
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≤ 3	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≤ 2.5	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤ 2	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 6 of 13

3 SAR CHARACTERIZATION

3.1 DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the smartphone, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

The device state index (DSI) conditions used in Table 3-1 and 3-2 represent different exposure scenarios.

Table 3-1

DSI and Corresponding Exposure Scenarios for Qualcomm® Smart Transmit algorithm

Scenario	Description	SAR Test Cases
No Motion (DSI = 3)	<ul style="list-style-type: none"> No Motion is detected 	<i>Laptop SAR per KDB Publication 616217 D04v01r02</i>
Motion (DSI = 6)	<ul style="list-style-type: none"> Motion is detected 	<i>Laptop SAR per KDB Publication 616217 D04v01r02</i>

Table 3-2

DSI and Corresponding Exposure Scenarios for Qualcomm® FastConnect TAS feature

Scenario	Description	SAR Test Cases
Motion (Pmax)	<ul style="list-style-type: none"> No Motion is detected 	<i>Laptop SAR per KDB Publication 616217 D04v01r02</i>
Motion (DSI = 1)	<ul style="list-style-type: none"> Motion is detected 	<i>Laptop SAR per KDB Publication 616217 D04v01r02</i>

3.2 SAR Design Target

SAR_design_target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer (see Table 3-3).

Table 3-3
SAR_design_target Calculations

<i>SAR_design_target</i>	
<i>SAR_design_target</i>	$\times 10^{\frac{-Total\ Uncertainty}{10}}$
<i>1g SAR</i> (W/kg)	
<i>Total Uncertainty</i>	1.0 dB
<i>SAR regulatory limit</i>	1.6 W/kg
<i>SAR design target</i>	1.0 W/kg

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 7 of 13

3.3 SAR Char

SAR test results corresponding to P_{max} for each antenna/technology/band/DSI can be found in Part 1 Test Report.

P_{limit} is calculated by linearly scaling with the measured SAR at the Part 0 to correspond to the SAR_{design_target} . When $P_{limit} < P_{max}$, P_{part0} was used as P_{limit} in the Smart Transmit EFS and FastConnect BDF. When $P_{limit} > P_{max}$ and $P_{part0}=P_{max}$, calculated P_{limit} was used in the Smart Transmit EFS and FastConnect BDF. All reported SAR obtained from the Part 0 SAR tests was less than $SAR_{Design_target} + 1$ dB Uncertainty. The final P_{limit} determination for each exposure scenario corresponding to SAR_{design_target} are shown in Table 3-4 and 3-5.

Table 3-4
 P_{limit} Determination for Qualcomm® Smart Transmit algorithm

Device State Index (DSI)	P_{limit} Determination Scenarios
3	P_{limit} is calculated based on 1g Body SAR at 25 mm
6	P_{limit} is calculated based on 1g Body SAR at 0 mm for the bottom surface of the keyboard

Table 3-5
 P_{limit} Determination for Qualcomm® FastConnect TAS feature

Device State Index (DSI)	P_{limit} Determination Scenarios
1	P_{limit} is calculated based on 1g Body SAR at 0 mm for the bottom surface of the keyboard

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K0002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 8 of 13

Table 3-6
SAR Characterizations for Qualcomm® Smart Transmit algorithm

Exposure Scenario		Maximum Tune-Up Output Power*	Body No Motion	Body Motion	
Averaging Volume			1g	1g	
Spacing			25mm	0mm	
DSI			3	6	
Technology/Band	Antenna	P _{max}	P _{limit}	P _{limit}	
UMTS 850	5	24.0	32.0	21.2	
UMTS 1750	1	24.0	26.7	17.2	
UMTS 1900	1	24.0	29.9	16.4	
LTE Band 71	2	24.0	33.6	21.0	
LTE Band 71	5	24.0	32.8	20.7	
LTE Band 12	2	24.0	32.6	20.5	
LTE Band 12	5	24.0	32.7	20.2	
LTE Band 13	2	24.0	32.4	20.4	
LTE Band 13	5	24.0	32.2	20.9	
LTE Band 14	2	24.0	33.1	20.4	
LTE Band 14	5	24.0	34.1	20.9	
LTE Band 26	2	24.0	34.4	21.1	
LTE Band 26	5	24.0	31.9	21.2	
LTE Band 5	2	24.0	33.7	21.1	
LTE Band 5	5	24.0	31.7	21.2	
LTE Band 66/4	1	24.5	27.9	17.2	
LTE Band 25	1	24.5	29.9	16.4	
LTE Band 2	1	24.5	27.7	16.4	
LTE Band 30	1	21.3	26.5	15.0	
LTE Band 41 PC2	1	22.4	26.0	16.5	
LTE Band 41 PC3	1	22.5	26.0	16.5	
LTE Band 41 PC2	6	22.4	22.9	16.4	
LTE Band 41 PC3	6	22.5	22.9	16.4	
LTE Band 48	1	18.0	28.1	15.8	
LTE Band 48	6	18.0	26.6	14.5	
NR Band n71	2	24.0	34.0	20.0	
NR Band n71	5	24.0	33.5	19.9	
NR Band n12	2	24.0	31.0	19.5	
NR Band n12	5	24.0	33.4	19.2	
NR Band n14	2	24.0	32.8	20.4	
NR Band n14	5	24.0	35.7	20.9	
NR Band n26	2	24.0	30.4	21.1	
NR Band n26	5	24.0	31.6	21.2	
NR Band n5	2	24.0	31.0	21.1	
NR Band n5	5	24.0	31.8	21.2	
NR Band n66	1	24.5	26.5	17.2	
NR Band n25/n2	1	24.5	28.9	15.4	
NR Band n30	1	21.3	25.5	15.0	
NR Band n41 PC2	1	26.0	27.8	16.5	
NR Band n41 PC3	1	24.5	27.8	16.5	
NR Band n41 PC2	6	26.0	28.4	16.5	
NR Band n41 PC3	6	24.5	28.4	16.5	
NR Band n48 PC3	1	20.0	26.6	15.8	
NR Band n48 PC3	3	20.0	28.5	13.5	
NR Band n48 PC3	4	20.0	28.4	13.0	
NR Band n48 PC3	6	20.0	24.4	14.5	
NR Band n77 PC2	1	26.0	27.7	15.8	
NR Band n77 PC3	1	24.0	27.7	15.8	
NR Band n77 PC2	3	26.0	28.0	13.5	
NR Band n77 PC3	3	24.0	28.0	13.5	
NR Band n77 PC2	4	26.0	27.9	13.0	
NR Band n77 PC3	4	24.0	27.9	13.0	
NR Band n77 PC2	6	26.0	27.9	14.5	
NR Band n77 PC3	6	24.0	27.9	14.5	
NR Band n41 PC1.5 UL-MIMO	1	26.0	27.8	16.5	
NR Band n41 PC1.5 UL-MIMO	6	26.0	28.4	16.5	
NR Band n48 PC3 UL-MIMO	1	17.0	26.6	15.8	
NR Band n48 PC3 UL-MIMO	6	17.0	24.4	14.5	
NR Band n77 PC1.5 UL-MIMO	1	26.0	27.7	15.8	
NR Band n77 PC1.5 UL-MIMO	6	26.0	27.9	14.5	

Table 3-7
SAR Characterizations for Qualcomm® FastConnect algorithm

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 9 of 13

Exposure Scenario			Maximum Tune-Up Output Power*	Body Motion
Averaging Volume				1g
Spacing				0mm
DSI				1
Technology/Band	Antenna	Antenna Group	P_{max}	P_{limit}
2.4 GHz WIFI	Chain 0	AG0	20.0	19.25
2.4 GHz WIFI	Chain 1	AG1	20.0	20.00
5 GHz WIFI - UNII-1	Chain 0	AG0	16.0	14.75
5 GHz WIFI - UNII-1	Chain 1	AG1	16.0	15.50
5 GHz WIFI - UNII-2C	Chain 0	AG0	16.0	13.25
5 GHz WIFI - UNII-2C	Chain 1	AG1	16.0	13.00
5 GHz WIFI - UNII-3	Chain 0	AG0	20.5	13.25
5 GHz WIFI - UNII-3	Chain 1	AG1	20.5	12.00
5 GHz WIFI - UNII-4	Chain 0	AG0	17.0	13.25
5 GHz WIFI - UNII-4	Chain 1	AG1	17.0	12.00
6 GHz WIFI	Chain 0	AG0	17.0	8.50
6 GHz WIFI	Chain 1	AG1	17.0	8.50

Notes:

1. When $P_{max} < P_{limit}$, the DUT will operate at a power level up to P_{max} .
2. MIMO is not included in SAR CHAR due to the two antennas being in separate Antenna Groups.

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 10 of 13

4 EQUIPMENT LIST

For SAR measurements

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4440B	Spectrum Analyzer	N/A	N/A	N/A	M445113242
Agilent	E4440C	ESG Vector Signal Generator	10/10/2024	Annual	10/10/2025	M445202770
Agilent	E4440C	ESG Vector Signal Generator	11/15/2024	Annual	11/15/2025	M445202770
Agilent	N5182A	MGV Vector Signal Generator	7/9/2024	Annual	7/9/2025	M445180566
Agilent	8753ES	S-Parameter Vector Network Analyzer	1/6/2025	Annual	1/6/2026	M440001472
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/25/2024	Annual	9/25/2025	M440000845
Agilent	E5512C	Wireless Communications Test Set	CBT	N/A	CBT	GB46310798
Agilent	E5512C	Wireless Communications Test Set	CBT	N/A	CBT	GB46310795
Agilent	N4109B	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46310794
Amplifier Research	1551GB	Amplifier	CBT	N/A	CBT	433973
Amplifier Research	1551GB	Amplifier	CBT	N/A	CBT	433974
Amplifier Research	1504100C	Amplifier	CBT	N/A	CBT	350132
Anritsu	MN8110B	I/O Adapter	CBT	N/A	CBT	626174781
Anritsu	MT2494A	Power Meter	7/10/2024	Annual	7/10/2025	18400005
Anritsu	MT2496A	Power Meter	6/24/2024	Annual	6/24/2025	18400005
Anritsu	MA3431B	Pulse Power Sensor	9/5/2024	Annual	9/5/2025	1728623
Anritsu	MA3431B	Pulse Power Sensor	10/11/2024	Annual	10/11/2025	1077293
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	CBT	N/A	CBT	6200001190
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	CBT	N/A	CBT	6200001191
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	3/14/2025	Annual	3/14/2026	6200044715
Anritsu	MT8800A	Radio Communication Test Station	CBT	N/A	CBT	620196_7072
Anritsu	MT8800A	Radio Communication Test Station	CBT	N/A	CBT	6272337408
Anritsu	MT8800A	Radio Communication Test Station	CBT	N/A	CBT	6262036628
Anritsu	MT8800A	Radio Communication Test Station	CBT	N/A	CBT	6261742026
Anritsu	MT8800A	Radio Communication Test Station	CBT	N/A	CBT	6261742027
Anritsu	MT8800A	Radio Communication Test Station	CBT	N/A	CBT	6261742028
Anritsu	MT8800A	Radio Communication Test Station	11/12/2024	Annual	11/12/2025	6272337405
Anritsu	MA2410B	USB Power Sensor	7/10/2024	Annual	7/10/2025	182730
Anritsu	MA2410B	USB Power Sensor	10/29/2024	Annual	10/29/2025	1248508
Anritsu	MA2410B	USB Power Sensor	6/12/2024	Annual	6/12/2025	1200170103
Mini-Circuits	PWR-40HS	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	24074748
Control Company	4023	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	24074748
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	240171059
Control Company	4040	Therm / Clock / Humidity Monitor	4/15/2024	Biennial	4/15/2026	240310204
Control Company	566279	Therm / Clock / Humidity Monitor	2/16/2024	Biennial	2/16/2026	2401400071
Keytronics Technologies	N9020A	MMW Signal Analyzer	7/10/2024	Annual	7/10/2025	M445107331
Agilent	N9020A	MMW Signal Analyzer	6/14/2024	Annual	6/14/2025	M445470200
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VFL-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	VFL-6000	Low Pass Filter DC to 6000 MHz	7/10/2024	Annual	7/10/2025	31634
Mini-Circuits	BW-N20W5	DC to 2000 MHz Power Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NFL-1200	Low Pass Filter DC to 1200 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NFL-250+	Low Pass Filter DC to 250 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	9406
Narda	4772-3	Attenuator (dB)	CBT	N/A	CBT	1226
Narda	4772-2	Attenuator (dB)	CBT	N/A	CBT	120
Seekin	NC-100	Torque Wrench	CBT	N/A	CBT	22217
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	6/10/2024	Annual	6/10/2025	168543
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	4/7/2025	Annual	4/7/2026	167284
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/28/2025	Annual	1/28/2026	139400
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/10/2024	Annual	1/10/2025	161616
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	12/10/2024	Annual	12/10/2025	167286
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/6/2025	Annual	1/6/2026	131454
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	4/9/2025	Annual	4/9/2026	145663
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	9/26/2024	Biennial	9/26/2026	130553
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	10/10/2024	Annual	10/10/2025	171010
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	4/1/2025	Annual	4/1/2026	167285
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/22/2025	Annual	2/22/2026	168527
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/6/2025	Annual	1/6/2026	150117
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	12/10/2024	Annual	12/10/2025	161616
SPTEAS	DAT-12	Dielectric Assessment Kit	3/10/2025	Annual	3/10/2026	1102
SPTEAS	DAT-12	Dielectric Assessment Kit	11/3/2024	Annual	11/5/2025	1277
SPTEAS	DAT-12.5	Dielectric Assessment Kit	8/20/2024	Annual	8/20/2025	1241
SPTEAS	MA1A	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPTEAS	MA1A	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1331
SPTEAS	MA1A	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1390
SPTEAS	DAT-12	Dielectric Assessment Kit (40Hz - 3GHz)	3/10/2025	Annual	3/10/2026	1102
SPTEAS	DAT-12	Dielectric Assessment Kit	10/20/2024	Annual	10/20/2025	12524
SPTEAS	D15N12	250 MHz SAR Dipole	10/17/2024	Annual	10/17/2025	1154
SPTEAS	D18N12	855 MHz SAR Dipole	3/11/2024	Biennial	3/11/2026	401332
SPTEAS	D18N12	855 MHz SAR Dipole	1/18/2024	Biennial	1/18/2026	401332
SPTEAS	D175N07	1750 MHz SAR Dipole	11/7/2024	Annual	11/7/2025	1150
SPTEAS	D175N07	1750 MHz SAR Dipole	1/13/2025	Annual	1/13/2026	1148
SPTEAS	D19N07	1900 MHz SAR Dipole	1/20/2024	Annual	1/20/2025	50144
SPTEAS	D19N07	1900 MHz SAR Dipole	8/8/2022	Biennial	8/8/2025	50080
SPTEAS	D19N07	1900 MHz SAR Dipole	7/10/2024	Annual	7/10/2025	50149
SPTEAS	D230N07	2300 MHz SAR Dipole	6/4/2024	Annual	6/4/2025	1116
SPTEAS	D2450N	2450 MHz SAR Dipole	11/15/2024	Biennial	11/15/2025	797
SPTEAS	D2450N	2450 MHz SAR Dipole	8/7/2024	Annual	8/7/2025	719
SPTEAS	D2600N2	2600 MHz SAR Dipole	11/15/2024	Biennial	11/15/2025	2071
SPTEAS	D2600N2	2600 MHz SAR Dipole	11/15/2024	Biennial	11/15/2025	2071
SPTEAS	D3500N2	3500 MHz SAR Dipole	1/10/2024	Biennial	1/10/2026	1097
SPTEAS	D3500N2	3500 MHz SAR Dipole	1/12/2024	Biennial	1/12/2026	1099
SPTEAS	D3700N2	3700 MHz SAR Dipole	1/13/2024	Biennial	1/13/2026	1067
SPTEAS	D3700N2	3700 MHz SAR Dipole	1/9/2024	Biennial	1/9/2026	1018
SPTEAS	D3900N2	3900 MHz SAR Dipole	1/20/2024	Biennial	1/20/2026	1026
SPTEAS	D3900N2	3900 MHz SAR Dipole	6/10/2024	Annual	6/10/2025	1073
SPTEAS	D5GHzV2	5 GHz SAR Dipole	2/21/2024	Biennial	2/21/2026	1057
SPTEAS	D5GHzV2	5 GHz SAR Dipole	1/17/2024	Biennial	1/17/2026	1191
SPTEAS	D6.5GHzV2	6.5 GHz SAR Dipole	2/4/2025	Annual	2/4/2026	1111
SPTEAS	SG Verification Source 100Hz	10GHz MM Verification Antenna	3/4/2025	Annual	3/4/2026	1002
SPTEAS	D44	Data Acquisition Electronics	1/10/2024	Annual	1/10/2025	1239
SPTEAS	D44	Data Acquisition Electronics	12/10/2024	Annual	12/10/2025	1450
SPTEAS	D48	Data Acquisition Electronics	6/11/2024	Annual	6/11/2025	1334
SPTEAS	D48	Data Acquisition Electronics	3/11/2025	Annual	3/11/2026	1415
SPTEAS	D48	Data Acquisition Electronics	7/8/2024	Annual	7/8/2025	1677
SPTEAS	D48	Data Acquisition Electronics	5/9/2024	Annual	5/9/2025	1678
SPTEAS	D48	Data Acquisition Electronics	1/10/2024	Annual	1/10/2025	1253
SPTEAS	D48	Data Acquisition Electronics	1/11/2024	Annual	1/11/2025	1253
SPTEAS	D48	Data Acquisition Electronics	7/9/2024	Annual	7/9/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/10/2024	Annual	7/10/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/11/2024	Annual	7/11/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/12/2024	Annual	7/12/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/13/2024	Annual	7/13/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/14/2024	Annual	7/14/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/15/2024	Annual	7/15/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/16/2024	Annual	7/16/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/17/2024	Annual	7/17/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/18/2024	Annual	7/18/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/19/2024	Annual	7/19/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/20/2024	Annual	7/20/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/21/2024	Annual	7/21/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/22/2024	Annual	7/22/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/23/2024	Annual	7/23/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/24/2024	Annual	7/24/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/25/2024	Annual	7/25/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/26/2024	Annual	7/26/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/27/2024	Annual	7/27/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/28/2024	Annual	7/28/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/29/2024	Annual	7/29/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/30/2024	Annual	7/30/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/31/2024	Annual	7/31/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/32/2024	Annual	7/32/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/33/2024	Annual	7/33/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/34/2024	Annual	7/34/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/35/2024	Annual	7/35/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/36/2024	Annual	7/36/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/37/2024	Annual	7/37/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/38/2024	Annual	7/38/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/39/2024	Annual	7/39/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/40/2024	Annual	7/40/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/41/2024	Annual	7/41/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/42/2024	Annual	7/42/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/43/2024	Annual	7/43/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/44/2024	Annual	7/44/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/45/2024	Annual	7/45/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/46/2024	Annual	7/46/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/47/2024	Annual	7/47/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/48/2024	Annual	7/48/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/49/2024	Annual	7/49/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/50/2024	Annual	7/50/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/51/2024	Annual	7/51/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/52/2024	Annual	7/52/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/53/2024	Annual	7/53/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/54/2024	Annual	7/54/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/55/2024	Annual	7/55/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/56/2024	Annual	7/56/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/57/2024	Annual	7/57/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/58/2024	Annual	7/58/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/59/2024	Annual	7/59/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/60/2024	Annual	7/60/2025	1406
SPTEAS	D48	Data Acquisition Electronics	7/61/2024	Annual	7/61/2025	

5 MEASUREMENT UNCERTAINTIES

Applicable for SAR Measurements < 6GHz:

a	b	c	d	e = f(d, k)	f	g	h = c x f/e	i = c x g/e	k	
Uncertainty Component	IEEE 1528 Sec.	Tol. (± %)	Prob. Dist.	Div.	c _i 1gm	c _i 10 gms	1gm u _i (± %)	10gms u _i (± %)	v _i	
Measurement System										
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞	
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞	
Hemispherical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞	
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞	
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞	
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	∞	
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	∞	
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞	
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	∞	
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	∞	
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	∞	
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	∞	
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	∞	
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞	
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	∞	
Test Sample Related										
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35	
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5	
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞	
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞	
Phantom & Tissue Parameters										
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞	
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76	
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75	
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞	
Liquid Permittivity - Temperature Uncertainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞	
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞	
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞	
Combined Standard Uncertainty (k=1)						RSS		12.2	12.0	191
Expanded Uncertainty (95% CONFIDENCE LEVEL)						k=2		24.4	24.0	

The above measurement uncertainties are according to IEEE Std. 1528-2013

Applicable for SAR Measurements > 6GHz:

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 12 of 13

REV 1.1
04/08/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

a	b	c	d	e= f(d,k)	f	g	h= c x f/e	i= c x g/e	k
Uncertainty Component	IEEE 1528 Sec.	Tol. (± %)	Prob. Dist.	Div.	c _i	c _i	1gm	10 gms (± %)	v _i
Measurement System									
Probe Calibration	E.2.1	9.3	N	1	1	1	9.3	9.3	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Uncertainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)					RSS			13.8	13.6
Expanded Uncertainty (95% CONFIDENCE LEVEL)					k=2			27.6	27.1

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: Licensed Module C3K2119 FCC ID: Unlicensed Module C3K00002102A	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2504010035-04.C3K (Rev1)	DUT Type: Modular Approval - Host Integration (Portable Computing Device)	Page 13 of 13

REV 1.1

04/08/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.