

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)

7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654
<http://www.element.com>

RF Exposure Part 0 Test Report

Applicant Name:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

Date of Testing:

01/07/2025 – 02/18/2025

Test Site/Location:

Element, Columbia, MD, USA

Document Serial No.:

1M2503050023-02.C3K

FCC ID: C3K00002101

APPLICANT: MICROSOFT CORPORATION

Report Type: Part 0 SAR Characterization

DUT Type: Wireless Module

Model(s): HWB-Q93

Host Model Name: 2109

Host Model FCC ID: C3K2109

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Test results reported herein relate only to the item(s) tested.

RJ Ortanez
Executive Vice President

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 1 of 12

REV 1.1
04/08/2022

TABLE OF CONTENTS

1 DEVICE UNDER TEST	3
1.1 Device Overview	3
1.2 Time-Averaging for SAR and Power Density	3
1.3 Nomenclature for Part 0 Report	4
1.4 Bibliography	4
2 SAR AND POWER DENSITY MEASUREMENTS	5
2.1 SAR Definition	5
2.2 SAR Measurement Procedure	5
3 SAR CHARACTERIZATION	7
3.1 DSI and SAR Determination	7
3.2 SAR Design Target	7
3.3 SAR Char	8
4 EQUIPMENT LIST	9
5 MEASUREMENT UNCERTAINTIES	10

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 2 of 12

REV 1.1
04/08/2022

1 DEVICE UNDER TEST

1.1 Device Overview

This device uses the Qualcomm® FastConnect feature to control and manage transmitting power in real time and to ensure the time-averaged RF exposure is in compliance with the FCC requirement at all times for WLAN operations. Additionally, this device supports BT technologies, but the output power of these modems is not controlled by the Time Averaged SAR (TAS) algorithm.

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WIFI	Data	2412 - 2472 MHz
5 GHz WIFI	Data	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz U-NII-4: 5845 - 5885 MHz
6 GHz WIFI	Data	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz
2.4 GHz Bluetooth	Data	2402 - 2480 MHz

1.2 Time-Averaging for SAR and Power Density

This device is enabled with Qualcomm® FastConnect algorithm to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from WLAN is in compliance with FCC requirements. This Part 0 report shows SAR characterization of WLAN radios. Characterization is achieved by determining P_{Limit} for WLAN that corresponds to the exposure design targets after accounting for all device design related uncertainties, i.e., SAR_design_target (< FCC SAR limit) for WLAN radio. The SAR characterization is denoted as SAR Char in this report. Section 1.3 includes a nomenclature of the specific terms used in this report.

The compliance test under the static transmission scenario and simultaneous transmission analysis are reported in Part 1 report. The validation of the time-averaging algorithm and compliance under the dynamic (time- varying) transmission scenario for WLAN technologies are reported in Part 2 report (report SN could be found in Section 1.4 – Bibliography).

This device operates using two different DSIs, each corresponding to a different power level. Throughout this report, $DSI=0$ (Laptop and/or No Motion) will be defined as Power mode 1 (high power test cases) and $DSI=1$ (Tablet and Motion) will be defined as Power mode 2 (low power test cases).

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 3 of 12

1.3 Nomenclature for Part 0 Report

Technology	Term	Description
WLAN	P_{limit}	Power level that corresponds to the exposure design target (<i>SAR_design_target</i>) after accounting for all device design related uncertainties
	P_{max}	Maximum tune up output power
	<i>SAR_design_target</i>	Target SAR level < FCC SAR limit after accounting for all device design related uncertainties
	<i>SAR Char</i>	Table containing P_{limit} for all technologies and bands

1.4 Bibliography

Report Type	Report Serial Number
RF Exposure Part 2 Test Report	1M2503050023-03.C3K
RF Exposure Compliance Summary	1M2503050023-04.C3K
RF Exposure Part 1 Test Report	1M2503050023-01.C3K

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 4 of 12

2 SAR AND POWER DENSITY MEASUREMENTS

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

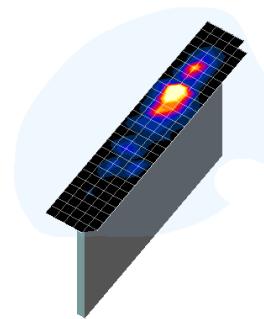
Equation 2-1
SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:


σ = conductivity of the tissue-simulating material (S/m)
 ρ = mass density of the tissue-simulating material (kg/m³)
 E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

2.2 SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013. On the

Figure 2-1
Sample SAR Area Scan

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 5 of 12

basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

- a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 2-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 2-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) (x,y,z)
			Uniform Grid		Graded Grid	
			$\Delta z_{zoom}(n)$	$\Delta z_{zoom}(1)*$	$\Delta z_{zoom}(n>1)*$	
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≤ 3	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≤ 2.5	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤ 2	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 6 of 12

3 SAR CHARACTERIZATION

3.1 DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the device, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

When 1g SAR and 10g SAR exposure comparison is needed, the worst-case was determined from SAR normalized to 1g or 10g SAR limit.

The device state index (DSI) conditions used in Table 3-1 represent different exposure scenarios.

Table 3-1
DSI and Corresponding Exposure Scenarios

Scenario	Description	SAR Test Cases
Power Mode 1 (DSI = 0)	<ul style="list-style-type: none">Device transmits when keyboard accessory is attached and at an angle $\leq 210^\circ$ or no motion is detected	<i>Power Mode 1 and Power Mode 2 SAR per KDB Publication 616217 D04v01r02</i>
Power Mode 2 (DSI = 1)	<ul style="list-style-type: none">Device transmits when no keyboard accessory is attached, motion is detected, and/or keyboard accessory is attached at $> 210^\circ$ angle	<i>Power Mode 1 and Power Mode 2 SAR per KDB Publication 616217 D04v01r02</i>

3.2 SAR Design Target

SAR_design_target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer (see Table 3-2).

Table 3-2
***SAR_design_target* Calculations**

<i>SAR_design_target</i>	
<i>SAR_design_target</i>	$< SAR_{regulatory_limit} \times 10^{\frac{-Total\ Uncertainty}{10}}$
1g SAR (W/kg)	
<i>Total Uncertainty</i>	1.0 dB
<i>SAR_{regulatory_limit}</i>	1.6 W/kg
<i>SAR_design_target</i>	1.0 W/kg

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 7 of 12

3.3 SAR Char

SAR Test results for each antenna/technology/band/DSI can be found in the RF Exposure Part 1 Report

P_{limit} is calculated by linearly scaling with the measured SAR at the P_{part0} to correspond to the SAR_design_target. When $P_{limit} < P_{max}$, P_{part0} was used as P_{limit} in the TAS BDF. When $P_{limit} > P_{max}$ and $P_{part0}=P_{max}$, calculated P_{limit} was used in the TAS BDF. All reported SAR obtained from the P_{part0} SAR tests was less than SAR_Design_target+ 1 dB Uncertainty. The final P_{limit} determination for each exposure scenario corresponding to SAR_design_target are shown in Table 3-3

Table 3-3
 P_{limit} Determination

Device State Index (DSI)	P_{limit} Determination Scenarios
0	The worst-case SAR exposure is determined as the maximum SAR normalized to the limit (i.e. lowest P_{limit}) among: •1g Body at 0 mm for bottom edge with keyboard accessory attached. •Device with no keyboard accessory and no motion detected at 25mm for back, top, right and left surfaces.
1	P_{limit} is calculated based on 1g Body SAR at 0 mm for back, top, bottom, right, and left surfaces with and without keyboard accessory.

Table 3-4
SAR Characterizations

Exposure Scenario			Maximum Tune-Up Output Power*	Power Mode 1	Power Mode 2	
Averaging Volume				1g	1g	
Spacing				25mm, 0mm	0mm	
DSI				0	1	
Technology/Band	Antenna	Antenna Group	P_{max}	P_{limit}	P_{limit}	
2.4 GHz WIFI	R	AG0	22.0	34.3	16.25	
2.4 GHz WIFI	L	AG1	22.0	33.7	16.25	
5 GHz WIFI	R	AG0	20.5	29.8	16.0	
5 GHz WIFI	L	AG1	20.5	27.4	16.0	
6 GHz WIFI	R	AG0	18.0	30.3	14.0	
6 GHz WIFI	L	AG1	18.0	29.3	14.0	

Notes:

- Per Qualcomm guidance, MIMO plimits are not included when the WLAN antennas are in separate antenna groups.
- All Plimit and maximum tune up output power Pmax levels entered in above Table correspond to average power levels after accounting for duty cycle in the case of OFDM modulation schemes (e.g. WLAN).

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 8 of 12

REV 1.1

04/08/2022

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	10/23/2024	Annual	10/23/2025	MY45099852
Agilent	E4438C	ESG Vector Signal Generator	3/25/2024	Annual	3/25/2025	MY47270002
Agilent	NS182A	MXG Vector Signal Generator	7/9/2024	Annual	7/9/2025	MY48180366
Agilent	NS182A	MXG Vector Signal Generator	3/7/2024	Annual	3/7/2025	MY47420603
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/25/2024	Annual	9/25/2025	MY40003841
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/25/2024	Annual	9/25/2025	US39170118
Agilent	E5515C	Wireless Communications Test Set	CBT	N/A	CBT	GB46310798
Agilent	E5515C	Wireless Communications Test Set	CBT	N/A	CBT	US41140256
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433973
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Anritsu	ML2496A	Power Meter	7/15/2024	Annual	7/15/2025	1138001
Anritsu	ML2496A	Power Meter	6/24/2024	Annual	6/24/2025	1840005
Anritsu	MA2411B	Pulse Power Sensor	9/5/2024	Annual	9/5/2025	1726262
Anritsu	MA2411B	Pulse Power Sensor	10/21/2024	Annual	10/21/2025	1027293
Anritsu	MA24106A	USB Power Sensor	7/10/2024	Annual	7/10/2025	1827530
Anritsu	MA24106A	USB Power Sensor	4/15/2024	Annual	4/15/2025	1827528
Mini-Circuits	PWR-4GHS	USB Power Sensor	6/12/2024	Annual	6/12/2025	12001070013
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	240174346
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	240171096
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	24017059
Control Company	4040	Therm./ Clock/ Humidity Monitor	4/15/2024	Biennial	4/15/2026	240310280
Control Company	4040	Therm./ Clock/ Humidity Monitor	4/15/2024	Biennial	4/15/2026	240310282
Control Company	S66279	Therm./ Clock/ Humidity Monitor	2/16/2024	Biennial	2/16/2026	240140051
Mitutoyo	500-196-30	CD-6" ASX 6inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies	N9020A	MXA Signal Analyzer	7/8/2024	Annual	7/8/2025	MY48010233
Agilent	N9020A	MXA Signal Analyzer	6/14/2024	Annual	6/14/2025	MY56470202
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	7/10/2024	Annual	7/10/2025	31634
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Seekonk	NC-100	Torque Wrench	CBT	N/A	CBT	22217
Seekonk	NC-100	Torque Wrench	4/2/2024	Biennial	4/2/2026	1262
SPEAG	DAK-3.5	Dielectric Assessment Kit	11/5/2024	Annual	11/5/2025	1277
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/7/2024	Annual	8/7/2025	1041
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1331
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1390
SPEAG	DAK-12	Dielectric Assessment Kit (4MHz - 3GHz)	3/11/2024	Annual	3/11/2025	1102
SPEAG	D2450V2	2450 MHz SAR Dipole	11/15/2022	Biennial	3/21/2025	797
SPEAG	D2450V2	2450 MHz SAR Dipole	11/7/2024	Annual	11/7/2025	981
SPEAG	DSGH2V2	5 GHz SAR Dipole	1/17/2024	Annual	1/17/2025	1191
SPEAG	D6.5GHzV2	6 GHz SAR Dipole	2/22/2024	Annual	2/22/2025	1111
SPEAG	5G Verification Source 10GHz	10GHz System Verification Antenna	3/5/2024	Annual	3/5/2025	1002
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2024	Annual	5/8/2025	728
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/8/2024	Annual	7/8/2025	1677
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/12/2024	Annual	3/12/2025	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/8/2024	Annual	7/8/2025	1583
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/10/2024	Annual	9/10/2025	1449
SPEAG	EX3DV4	SAR Probe	5/10/2024	Annual	5/10/2025	3914
SPEAG	EX3DV4	SAR Probe	6/28/2024	Annual	6/28/2025	7803
SPEAG	EX3DV4	SAR Probe	7/5/2024	Annual	7/5/2025	7406
SPEAG	EX3DV4	SAR Probe	3/8/2024	Annual	3/8/2025	7527
SPEAG	EUmmWV4	EUmmWV4 Probe	2/2/2024	Annual	2/2/2025	9622

Note:

1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
2. Each equipment item was used solely within its respective calibration period.

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 9 of 12

5

MEASUREMENT UNCERTAINTIES

Applicable for SAR Measurements < 6 GHz:

				f(d,k)			c x f/e	c x g/e	
Uncertainty Component	IEEE 1528 Sec.	Tol. (± %)	Prob. Dist.	Div.	c _i 1gm	c _i 10 gms	1gm u _i (± %)	10gms u _i (± %)	v _i
Measurement System									
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Uncertainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)	RSS						12.2	12.0	191
Expanded Uncertainty (95% CONFIDENCE LEVEL)	k=2						24.4	24.0	

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 10 of 12

REV 1.1
04/08/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

Applicable for SAR Measurements > 6 GHz:

				f(d,k)			c x f/e	c x g/e		
Uncertainty Component	IEEE 1528 Sec.	Tol. (± %)	Prob. Dist.	c _i	c _i	1gm	10 gms	U _i (± %)	U _i (± %)	V _i
Measurement System										
Probe Calibration	E.2.1	9.3	N	1	1	1	9.3	9.3	∞	
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞	
Hemispherical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞	
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	∞	
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞	
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	∞	
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	∞	
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞	
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞	
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞	
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	∞	
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	∞	
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	∞	
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞	
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞	
Test Sample Related										
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35	
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5	
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞	
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞	
Phantom & Tissue Parameters										
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞	
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76	
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75	
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞	
Liquid Permittivity - Temperature Uncertainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	∞	
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞	
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞	
Combined Standard Uncertainty (k=1)							RSS	13.8	13.6	191
Expanded Uncertainty (95% CONFIDENCE LEVEL)							k=2	27.6	27.1	

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 11 of 12

Applicable for Power Density Measurements:

a	b	c	d	e	f = c x f/e	g
Uncertainty Component	Unc. (± dB)	Prob. Dist.	Div.	c _i	u _i (± dB)	v _i
Measurement System						
Calibration	0.49	N	1	1	0.49	∞
Probe Correction	0.00	R	1.73	1	0.00	∞
Frequency Response	0.20	R	1.73	1	0.12	∞
Sensor Cross Coupling	0.00	R	1.73	1	0.00	∞
Isotropy	0.50	R	1.73	1	0.29	∞
Linearity	0.20	R	1.73	1	0.12	∞
Probe Scattering	0.00	R	1.73	1	0.00	∞
Probe Positioning offset	0.30	R	1.73	1	0.17	∞
Probe Positioning Repeatability	0.04	R	1.73	1	0.02	∞
Sensor MechanicalOffset	0.00	R	1.73	1	0.00	∞
Probe Spatial Resolution	0.00	R	1.73	1	0.00	∞
Field Impedence Dependance	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Drift	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Noise	0.04	R	1.73	1	0.02	∞
Measurement Area Truncation	0.00	R	1.73	1	0.00	∞
Data Acquisition	0.03	N	1	1	0.03	∞
Sampling	0.00	R	1.73	1	0.00	∞
Field Reconstruction	2.00	R	1.73	1	1.15	∞
Forward Transformation	0.00	R	1.73	1	0.00	∞
Power Density Scaling	0.00	R	1.73	1	0.00	∞
Spatial Averaging	0.10	R	1.73	1	0.06	∞
System Detection Limit	0.04	R	1.73	1	0.02	∞
Test Sample Related						
Probe Coupling with DUT	0.00	R	1.73	1	0.00	∞
Modulation Response	0.40	R	1.73	1	0.23	∞
Integration Time	0.00	R	1.73	1	0.00	∞
Response Time	0.00	R	1.73	1	0.00	∞
Device Holder Influence	0.10	R	1.73	1	0.06	∞
DUT alignment	0.00	R	1.73	1	0.00	∞
RF Ambient Conditions	0.04	R	1.73	1	0.02	∞
Ambient Reflections	0.04	R	1.73	1	0.02	∞
Immunity/Secondary Reception	0.00	R	1.73	1	0.00	∞
Drift of DUT	0.21	R	1.73	1	0.12	∞
Combined Standard Uncertainty (k=1)					RSS	1.34
Expanded Uncertainty (95% CONFIDENCE LEVEL)					k=2	

FCC ID: C3K00002101	RF Exposure Part 0 Test Report	Approved by: Technical Manager
Document S/N: 1M2503050023-02.C3K	DUT Type: Wireless Module	Page 12 of 12