

MEASUREMENT REPORT

Bluetooth (Low Energy)

Applicant Name:

Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052-8300
United States

Date of Testing:

2/25/2025 – 3/3/2025

Test Report Issue Date:

3/4/2025

Test Site/Location:

Element lab., Columbia, MD, USA

Test Report Serial No.:

1M2503050023-08-R1.C3K

FCC ID:**C3K00002101****APPLICANT:****Microsoft Corporation****Application Type:**

Class II Permissive Change, Module Host Integration

Host Model:

2109

EUT Type:

Limited Modular Approval – Host Integration

Frequency Range:

2402 – 2480MHz

FCC Classification:

Digital Transmission System20 (DTS)

FCC Rule Part(s):

Part 15 Subpart C (15.247)

Test Procedure(s):

ANSI C63.10-2013, KDB 558074 D01 v05r02

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M2503050023-08-R1.C3K) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez
Executive Vice President

CERT #2041.01

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 1 of 21

T A B L E O F C O N T E N T S

1.0	INTRODUCTION	3
1.1	Scope.....	3
1.2	Element Test Location	3
1.3	Test Facility / Accreditations	3
2.0	PRODUCT INFORMATION.....	4
2.1	Equipment Description.....	4
2.2	Device Capabilities	4
2.3	Antenna Description.....	4
2.4	Test Configuration.....	5
2.5	Software and Firmware.....	5
2.6	EMI Suppression Device(s)/Modifications.....	5
3.0	DESCRIPTION OF TESTS	6
3.1	Evaluation Procedure.....	6
3.2	AC Line Conducted Emissions.....	6
3.3	Radiated Emissions	7
3.4	Environmental Conditions	7
4.0	ANTENNA REQUIREMENTS	8
5.0	MEASUREMENT UNCERTAINTY	9
6.0	TEST EQUIPMENT CALIBRATION DATA	10
7.0	TEST RESULTS.....	11
7.1	Summary.....	11
7.2	Radiated Spurious Emission Measurements	12
7.3	Radiated Restricted Band Edge Measurements	17
7.4	Line-Conducted Test Data	18
8.0	CONCLUSION.....	21

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 2 of 21

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 3 of 21

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Microsoft Module (FCC ID: C3K00002101)** integrated into the **Portable Computing Device Model 2109**. The data found in this test report was taken with the EUT operating in Bluetooth low energy mode. While in low energy mode, the Bluetooth transmitter hops pseudo-randomly between 40 channels, three of which are “advertising channels”. When the transmitter is hopping only between the three advertising channels, the EUT does not fall under the category of a “hopper” as defined in 15.247(a)(iii) which states that a “frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.” As operation on only the advertising channels does not qualify the EUT as a hopper, the EUT is certified as a DTS device in this mode. The data found in this report is representative of the device when it transmits on its advertising channels. Typical Bluetooth operation is covered under the DSS report found with this application.

This host device (2109) contains a WLAN/BT transmitter module previously certified under FCC ID: C3K00002101. No changes have been made to the module and therefore all conducted testing performed on the original module remain applicable to this filing. This test report covers additional test cases for integrating the module transmitter into this host product.

Test Device Serial No.: 0F3K4CP24453Q6, 0F3K4CT24453Q6, 0F3K4CW24453Q6, 0F3K4CK24453Q6

2.2 Device Capabilities

This device contains the following capabilities:

Bluetooth (1x, EDR, LE), 802.11b/g/n/ac/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and GHz), Wireless Power Transfer, NFC

Ch.	Frequency (MHz)
0	2402
:	:
19	2440
:	:
39	2480

Table 2-1. Frequency / Channel Operations

2.3 Antenna Description

Following antenna was used for the testing.

Frequency [GHz]	ANT1	ANT2	Directional Gain (dBi)
2.4	1.50	1.02	4.11

Table 2-2. Antenna Peak Gain

The antenna gains shown in this table were provided by the manufacturer.

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval		Page 4 of 21

Note: This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the 2400 – 2483.5MHz band.

2.4 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups.

The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configuration were investigated and EUT powered by AC/DC was the worst case.

- EUT powered by AC/DC adaptor via USB cable with wire charger
- EUT powered by host PC via USB cable with wire charger

2.5 Software and Firmware

The test was conducted with software/firmware version 1.0.4166.1200 installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: C3K00002101		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval		Page 5 of 21

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50µH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that those cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.4. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 6 of 21

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 7 of 21

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna(s) of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of $k = 2$ to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (\pm dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 9 of 21

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	4/2/2024	Annual	4/2/2025	WL25-1
-	MD 1M 18-40	EMC Cable and Switch System	4/3/2024	Annual	4/3/2025	AP1-002
-	AP1-002	EMC Cable and Switch System	4/4/2024	Annual	4/4/2025	ETS-001
-	ETS-001	EMC Cable and Switch System	4/5/2024	Annual	4/5/2025	ETS-002
-	ETS-002	EMC Cable and Switch System	4/6/2024	Annual	4/6/2025	MD 1M 18-40
ETS-Lindgren	3116C	Horn Antenna (18-40GHz)	2/27/2023	Biennial	2/27/2025	218893
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	2/23/2023	Biennial	2/23/2025	26040036
Rohde & Schwarz	FSW26	Spectrum Analyzer (26.5GHz)	3/8/2024	Annual	3/8/2025	103187
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	10/16/2024	Annual	10/16/2025	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	11/25/2024	Annual	11/25/2025	100348
Pasternack	NMLC-2	Line Condcted Emissions Cable	4/2/2024	Annual	4/2/2025	NMLC-2
Rohde & Schwarz	ENV216	Two-Line V-Network	1/31/2023	Biennial	1/31/2025	101379
Sunol	JB6	Bi-Log Antenna (20M-6GHz)	3/2/2023	Biennial	3/2/2025	A082816
Sunol	JB5	Bi-Log Antenna (20M-5GHz)	9/11/2024	Biennial	9/11/2026	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 10 of 21	

7.0 TEST RESULTS

7.1 Summary

Company Name: Microsoft Corporation
 FCC ID: C3K00002101
 FCC Classification: Digital Transmission System (DTS)
 Number of Channels: 40

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz	CONDUCTED	PASS	See Original Filing for Module
15.247(b)(3)	RSS-247 [5.4(4)]	Transmitter Output Power	< 1 Watt		PASS	See Original Filing for Module
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band		PASS	See Original Filing for Module
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	See Original Filing for Module
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.3
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.4

Table 7-1. Summary of Test Results

Notes:

1. All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.
2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element “Bluetooth LE Automation,” Version 3.6.
5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element “Chamber Automation,” Version 1.3.1.

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 11 of 21	

7.2 Radiated Spurious Emission Measurements

§15.205 §15.209 §15.247(d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-2 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μ V/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-2. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3

KDB 558074 D01 v05r02 – Section 8.6, 8.7

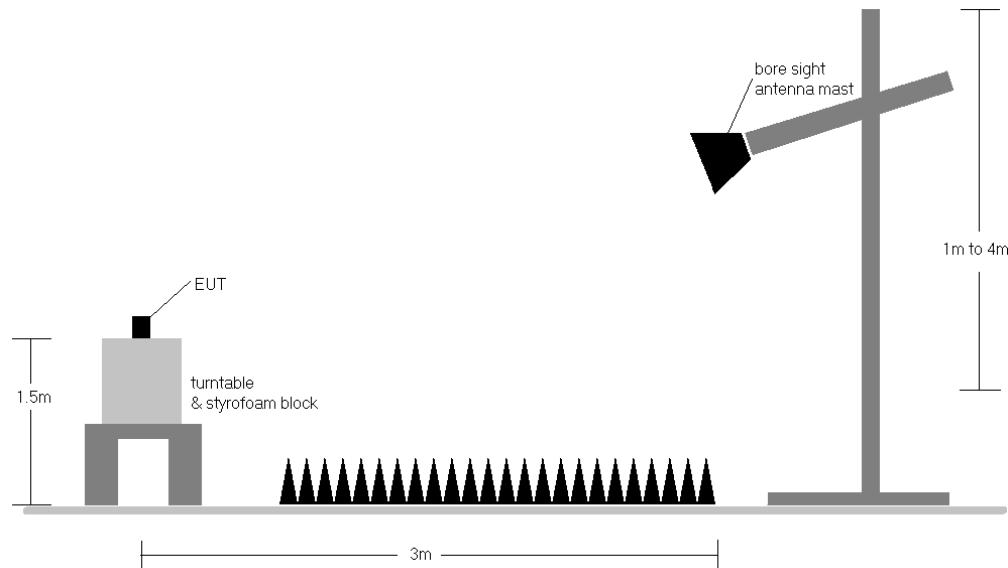
Test Settings

Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3kHz > 1/T
4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
5. Detector = peak
6. Sweep time = auto
7. Trace mode = max hold
8. Trace was allowed to run for at least 50 times (1/duty cycle) traces

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 12 of 21

Peak Field Strength Measurements


1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW is set depending on measurement frequency, as specified in Table 7-3 below
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize

Frequency	RBW
9 – 150kHz	200 – 300Hz
0.15 – 30MHz	9 – 10kHz
30 – 1000MHz	100 – 120kHz
> 1000MHz	1MHz

Table 7-3. RBW as a Function of Frequency

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Radiated Test Setup >1GHz

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 13 of 21

Test Notes

1. The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
2. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-2.
3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
4. This unit was tested with its standard battery.
5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
6. Average measurements were recorded using a VBW of 3kHz, per Section 4.1.4.2.3 of ANSI C63.10-2013, since 1/T is equal to just under 3kHz. This method was used because the EUT could not be configured to operate with a duty cycle > 98%. Both average and peak measurements were made using a peak detector
7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
8. No significant radiated band edge emissions were found in the 2310 – 2390MHz restricted band.
9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

Determining Spurious Emissions Levels

- Field Strength Level $[\text{dB}_{\mu\text{V/m}}]$ = Analyzer Level $[\text{dBm}]$ + 107 + AFCL $[\text{dB/m}]$
- AFCL $[\text{dB/m}]$ = Antenna Factor $[\text{dB/m}]$ + Cable Loss $[\text{dB}]$
- Margin $[\text{dB}]$ = Field Strength Level $[\text{dB}_{\mu\text{V/m}}]$ – Limit $[\text{dB}_{\mu\text{V/m}}]$

Radiated Band Edge Measurement Offset

- The amplitude offset shown in the radiated restricted band edge plots in Section 7.3 was calculated using the formula:
$$\text{Offset (dB)} = (\text{Antenna Factor} + \text{Cable Loss} + \text{Attenuator}) - \text{Preamplifier Gain}$$

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 14 of 21

Radiated Spurious Emission Measurements

§15.205 §15.209 §15.247(d); RSS-Gen [8.9]

DUAL

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	37

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
4804.00	Avg	H	129	166	-74.98	2.72	34.74	53.98	-19.24
4804.00	Peak	H	129	166	-64.01	2.72	45.71	73.98	-28.27
12010.00	Avg	H	-	-	-78.52	13.32	41.80	53.98	-12.18
12010.00	Peak	H	-	-	-67.22	13.32	53.10	73.98	-20.88

Table 7-4. Radiated Measurements @ 3 meters

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2440MHz
Channel:	17

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
4880.00	Avg	H	-	-	-76.22	3.10	33.88	53.98	-20.10
4880.00	Peak	H	-	-	-65.99	3.10	44.11	73.98	-29.87
7320.00	Avg	H	-	-	-78.25	9.49	38.24	53.98	-15.74
7320.00	Peak	H	-	-	-68.14	9.49	48.35	73.98	-25.63
12200.00	Avg	H	-	-	-79.01	13.17	41.16	53.98	-12.82
12200.00	Peak	H	-	-	-69.82	13.17	50.35	73.98	-23.63

Table 7-5. Radiated Measurements @ 3 meters

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)				Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval			Page 15 of 21

Bluetooth Mode: LE
Distance of Measurements: 3 Meters
Operating Frequency: 2480MHz
Channel: 39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
4960.00	Avg	H	333	114	-75.42	3.05	34.63	53.98	-19.35
4960.00	Peak	H	333	114	-65.21	3.05	44.84	73.98	-29.14
7440.00	Avg	H	-	-	-77.45	9.19	38.74	53.98	-15.24
7440.00	Peak	H	-	-	-68.21	9.19	47.98	73.98	-26.00
12400.00	Avg	H	-	-	-74.28	13.27	45.99	53.98	-7.99
12400.00	Peak	H	-	-	-65.21	13.27	55.06	73.98	-18.92

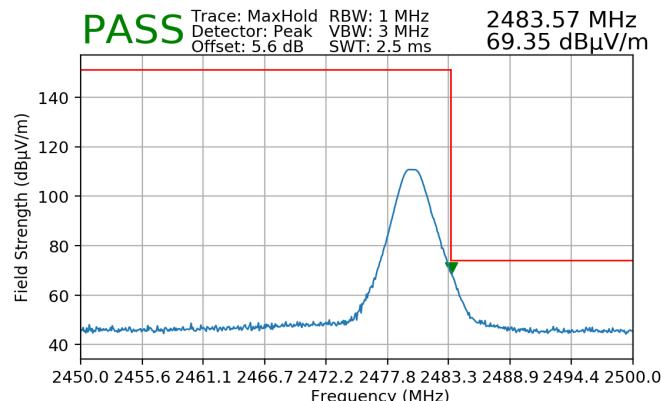
Table 7-6. Radiated Measurements @ 3 meters

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 16 of 21	

7.3 Radiated Restricted Band Edge Measurements

§15.205 §15.209; RSS-Gen [8.9]

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


The amplitude offset shown in the following plots for average measurements was calculated using the formula:

$$\text{Offset (dB)} = (\text{Antenna Factor} + \text{Cable Loss} + \text{Attenuator}) - \text{Preamplifier Gain}$$

Bluetooth Mode: LE
 Measurement Distance: 3 Meters
 Operating Frequency: 2480MHz
 Channel: 39

Plot 7-1. Radiated Restricted Upper Band Edge Measurement (Average) – DUAL

Plot 7-2. Radiated Restricted Upper Band Edge Measurement (Peak) – DUAL

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 17 of 21	

7.4 Line-Conducted Test Data

§15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-7. Conducted Limits

*Decreases with the logarithm of the frequency.

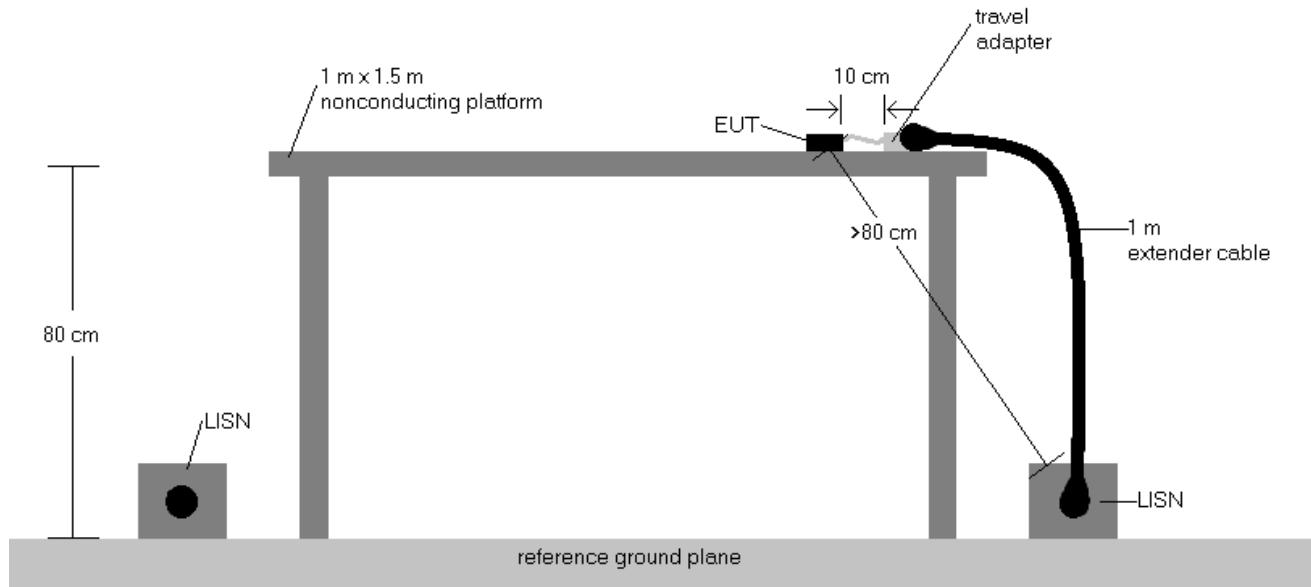
Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the spurious emission of interest
2. RBW = 9kHz (for emissions from 150kHz – 30MHz)
3. Detector = quasi-peak
4. Sweep time = auto couple
5. Trace mode = max hold
6. Trace was allowed to stabilize


Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the spurious emission of interest
2. RBW = 9kHz (for emissions from 150kHz – 30MHz)
3. Detector = RMS
4. Sweep time = auto couple
5. Trace mode = max hold
6. Trace was allowed to stabilize

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 18 of 21

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

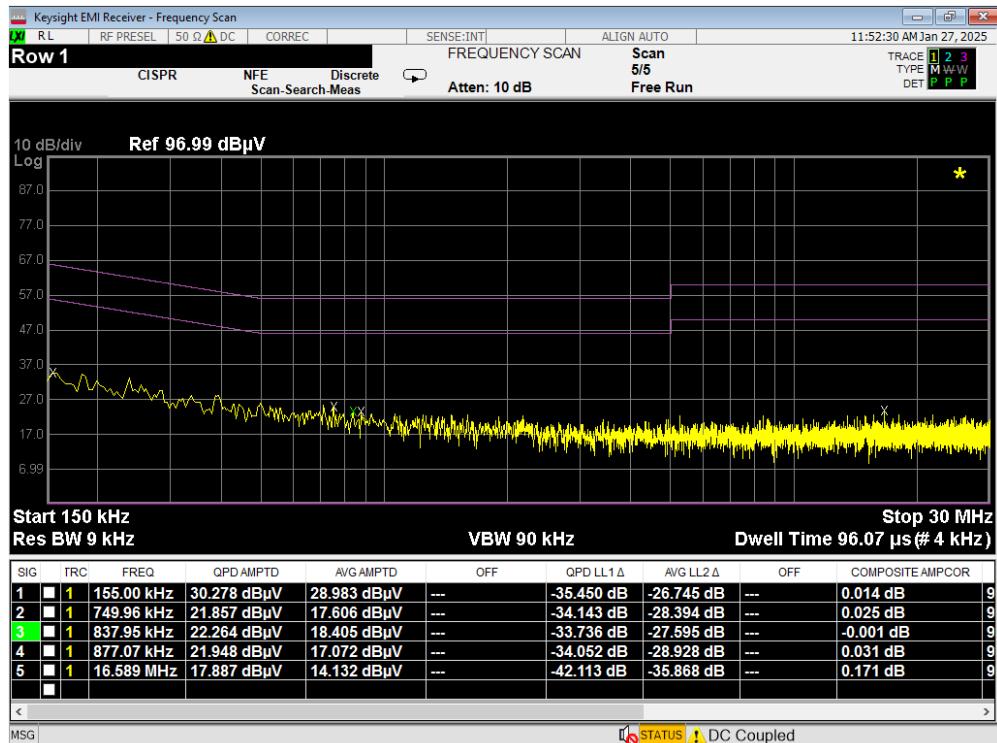
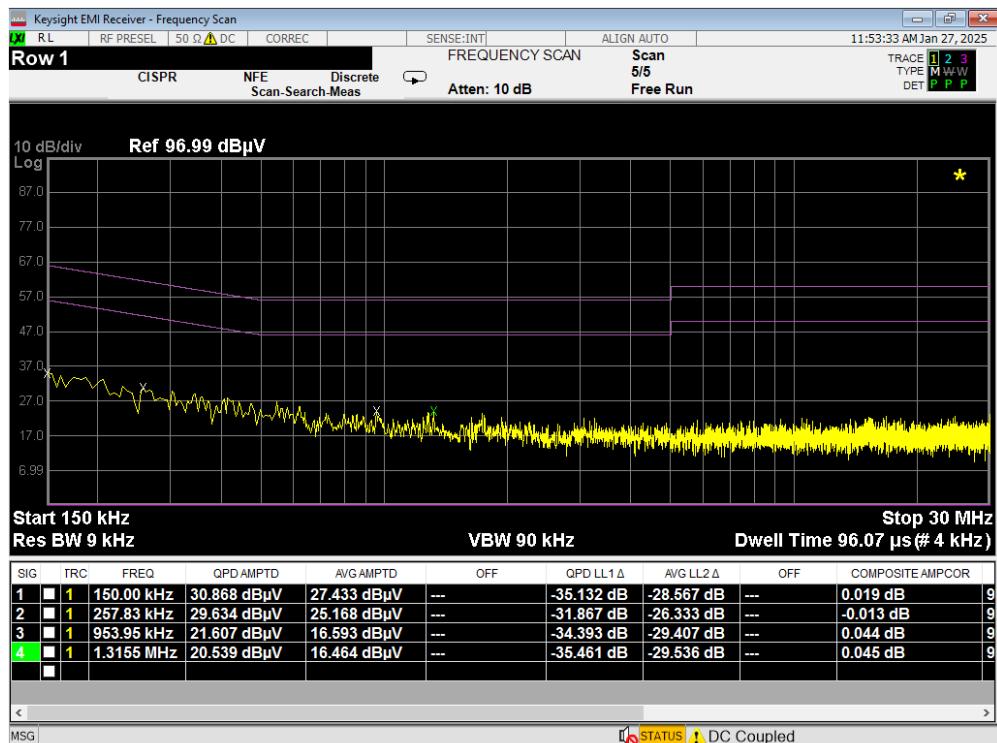


Figure 7-2. Test Instrument & Measurement Setup


Test Notes

1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen (8.8).
3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
5. Margin (dB) = QP/AV Limit (dB μ V) - QP/AV Level (dB μ V)
6. Traces shown in plot are made using a peak detector.
7. Deviations to the Specifications: None.

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval	Page 19 of 21

Plot 7-3. Line Conducted Plot with Bluetooth LE (L1)

Plot 7-4. Line Conducted Plot with Bluetooth LE (N)

FCC ID: C3K00002101	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)				Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval			Page 20 of 21

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Microsoft Portable Computing Device Model 2109 containing module FCC ID: C3K00002101** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: C3K00002101		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N: 1M2503050023-08-R1.C3K	Test Dates: 1/2/2025 - 1/31/2025	EUT Type: Limited Modular Approval		Page 21 of 21