

TYCO SAFETY PRODUCTS  
SENSORMATIC ELECTRONICS, LLC.  
EMC TEST REPORT

Model:  
IDX-8000-NA  
IDX-4000-NA  
IDX-2000-NA

Type: IDX8000NA

FCC ID: BVCIDX8000NA  
IC: 3506A-IDX8000NA

**Intentional Radiator**

**FCC and IC**  
47 CFR, Part 15, Subpart B, and Subpart C  
**Industry Canada**  
ICES-003e, RSS GENi3, RSS-210i8

*William D. Dwelley*

EMC Engineer

6600 Congress Ave.  
Boca Raton, FL. 33487  
USA

| Revision Level | Reason  | Date         |
|----------------|---------|--------------|
| Rev. A         | Initial | May 17, 2012 |

**Table of contents**

|        |                                                                  |    |
|--------|------------------------------------------------------------------|----|
| 1      | Summary Of Results .....                                         | 3  |
| 2      | General Information.....                                         | 4  |
| 2.2    | Test Site Registration .....                                     | 4  |
| 2.3    | Sample Calculation – Radiated & Conducted Emissions .....        | 5  |
| 2.4    | Uncertainty of Measurements .....                                | 7  |
| 3      | Test Set-Up Block Diagram.....                                   | 8  |
| 3.1    | List Of Ports .....                                              | 8  |
| 3.2    | Ancillary Equipment Used During Testing.....                     | 8  |
| 3.2.1  | List of Power Supplies evaluated for worst case: .....           | 9  |
| 3.2.2  | List of Antennas that can be used with the EUT: .....            | 9  |
| 3.3    | RF Exposure Compliance Requirements per 15.247 (b) (5).....      | 10 |
| 3.4    | Input Voltage Variation, 15.31(e). .....                         | 11 |
| 3.5    | Temperature Variation, 15.215(c).....                            | 11 |
| 3.6    | AC Conducted Emissions, 15.207 And 15.107, Class B. ....         | 12 |
| 3.7    | Frequency Hopping Requirement, 15.247 .....                      | 15 |
| 3.8    | Carrier Frequency Separation, 15.247 (a)(1) .....                | 16 |
| 3.9    | Number Of Hopping Channels, 15.247 (a)(1)(i).....                | 17 |
| 3.10   | Time Of Occupancy (Dwell Time), 15.247 (a)(1)(i) .....           | 18 |
| 3.11   | 20 dB Bandwidth, 15.247 (a)(1)(i).....                           | 20 |
| 3.12   | Peak Power Output, 15.247 (b) .....                              | 21 |
| 3.13   | Band-Edge Compliance Of RF Conducted Emissions, 15.247 (c) ..... | 22 |
| 3.14   | Spurious RF Conducted Emissions, 15.247 (d) .....                | 23 |
| 3.15   | Spurious Radiated Emissions, 15.247 (d), 15.205, 15.209 .....    | 26 |
| 3.15.1 | Spurious Radiated Emissions below 30 MHz – H-field. ....         | 28 |
| 4      | Test Equipment List.....                                         | 30 |
| 5      | Antenna Factors. ....                                            | 31 |

## 1 Summary Of Results

| FCC 47<br>CFR Part<br>15. Subpart<br>C.                                                                                                                                              | Test Requirement                                | Test Limit                                                                                                                                                                        | Comments                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 15.15 (b)                                                                                                                                                                            | User Accessible Controls                        | Cannot change output power above limit.                                                                                                                                           | The product contains no user accessible controls that increase transmission power above permitted levels. |
| 15.31 (e)                                                                                                                                                                            | Vary Input AC Mains Power                       | Does not increase the output power above the limit.                                                                                                                               | AC Mains Input was varied from 102 to 138 VAC. Input power to antenna was measured. Complies.             |
| 13.33 (a)                                                                                                                                                                            | Frequency range of radiated measurements        | General Limits of 15.209, 9kHz to 10 GHz.                                                                                                                                         | H-field and E-field measurements comply                                                                   |
| 15.107                                                                                                                                                                               | AC Mains Conducted Emissions Requirements       | See Table 15.107. Unintentional digital emissions subject to Class B limits.                                                                                                      | Digital emissions determined by turning transmitter off. Complies [Verification].                         |
| 15.109                                                                                                                                                                               | Radiated Emissions Requirements                 | See Table 15.109. Unintentional digital emissions subject to Class B limits.                                                                                                      | Digital emissions determined by turning transmitter off. Complies [Verification].                         |
| 15.203                                                                                                                                                                               | Antenna Connector                               | Permanently attached or unique coupling.                                                                                                                                          | The radio to antenna connectors are MMX to RP SMA connectors. Complies.                                   |
| 15.204(b)(c)                                                                                                                                                                         | System and Antennas                             | Marketed as a system with authorized antenna types                                                                                                                                | System is complete radio with list of patch type antennas. Complies                                       |
| 15.207 (a)<br>(b)                                                                                                                                                                    | AC Mains Conducted Emissions                    | General Limits.                                                                                                                                                                   | Conducted emissions on AC side of DC supply. . Complies.                                                  |
| 15.205 (a)<br>(b) 15.209<br>(a) (c)                                                                                                                                                  | Radiated Emission                               | Must comply with limits specified in 15.209 (a). No intentional emissions in the restricted bands of 15.205                                                                       | The radiated emissions in the comply with the general emission limits.                                    |
| 15.247 (a)<br>(1)                                                                                                                                                                    | Carrier Frequency Separation                    | Separated by minimum of 25 kHz or 20 dB BW of the hopping channel, whichever is greater.                                                                                          | The carrier frequencies of the hopping channel are separated by 500 kHz. Complies.                        |
| 15.247 (a)<br>(1) (i)                                                                                                                                                                | Number of Hopping Frequencies .                 | If 20 dB BW is less than 250 kHz, then shall use at least 50 hopping channels, using frequencies in a pseudo random list.                                                         | The EUT has 50 hopping channels and complies with the requirement.                                        |
| 15.247 (a)<br>(1) (i)                                                                                                                                                                | Dwell Time – Number of Hopping Frequencies > 25 | < 0.4 sec within a 20 second period                                                                                                                                               | The EUT complies with the requirement.                                                                    |
| 15.247 (b)<br>(2) (3)                                                                                                                                                                | Output Power 902-928 MHz Tx                     | Maximum 1 W – frequency hopping with 50+ channels                                                                                                                                 | The EUT complies with the requirement.                                                                    |
| 15.247 (b)<br>(4)                                                                                                                                                                    | Maximum Antenna Gain                            | If directional gain of transmitting antenna greater than 6 dBi, the peak output power of the device shall be reduced below the stated values by the amount in dB exceeding 6 dBi. | Permanently attached attenuators on each antenna ensure compliance to 6 dBi.                              |
| 15.247 (b)<br>(5)                                                                                                                                                                    | RF Exposure                                     | Must ensure that RF MPE to the public falls within Commission Guidelines                                                                                                          | See RF Exposure Section.                                                                                  |
| These results are deemed satisfactory evidence of compliance with Industry Canada Interference-Causing Equipment Standard ICES-003 and Radio Standards RSS Gen and RSS-210, RSS-101. |                                                 |                                                                                                                                                                                   |                                                                                                           |

## 2 General Information

This report is part of the application for Certification of a RFID reader operating in the 902-928 MHz bands under the rules provided for frequency-hopping transmitters found in 47 CFR 15.247. The digital portion of the radio was evaluated according to the DoC procedures. The product covered by this report is the Sensormatic IDX-x000-NA Reader. (The x can be any number to represent other models with fewer output ports.)

The EUT is a RFID radio transceiver with 30 dBm maximum output power and 2-8 ports that are used one at a time.

The EUT can accommodate up to 8 transmit antennas on 8 electrically identical transmit ports. However, only one port, and therefore one antenna, can be active at a time. Under no circumstances can more than one transmitter port be on at a time.

### 2.1 Test Procedures

Both conducted and radiated emissions testing were performed according to the procedures in ANSI C63.4-2003, as required by 47 CFR Part 15 Subpart A Section 15.31(a)(3), 15.107, 15.109, 15.207, 15.209.

15.247 requirements were measured per FCC document DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems", released March 30, 2000.

Accessory Equipment used to terminate ports and communicate are all FCC DoC products. This includes ITE power supplies, PC's, network switches.

### 2.2 Test Site Registration

The Tyco Safety Products / Sensormatic Electronics, LLC OATS located at 6600 Congress Ave. Boca Raton, FL. 33487 is registered with the FCC, number – 889978 and 616407, and with Industry Canada, number – 3506A-1.

## 2.3 Sample Calculation – Radiated & Conducted Emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

$$\text{Field Strength (dB}\mu\text{V/m)} = \text{RAW} - \text{AMP} + \text{CBL} + \text{ACF}$$

Where:

RAW = Measured level before correction (dB $\mu$ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\text{dB}\mu\text{V/m} = 20 * \log * \mu\text{V/m}$$

Margin to Limit is calculated by subtracting corrected measurement from Limit. Positive margin indicates compliance. Negative margin indicates non-compliance

To convert dB $\mu$ V/m to dB $\mu$ A/m,

Reduce reading in dB $\mu$ V/m by 51.5 dB to convert to dB $\mu$ A/m.

### IC RSS GEN

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$\text{TP} = (\text{FS} \times \text{D}) / (30 \times \text{G})^2$$

Where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain. (Note: In an open-area test measurement, the effect due to the metal ground plane should be subtracted)

$$\text{FS} = \text{TP} \times (30 \times \text{G})^2 / \text{D}$$

### Radiated Power, e.r.p dBm

By using  $\text{PC} = \text{Pe.r.p.} - \text{GIC} + 5.15 + \text{CL}$  dBm and re-arranging to  $\text{Perp} = \text{PC} + \text{GIC} - 5.15 - \text{CL}$ .

Where the highest reading was 30.28 dBm.

Antenna gain = 6 dBi = 9 dBic

Cable loss = 2.1 dB

Maximum e.r.p. is  $29.1 = 30.3 + 6 - 5.15 - 2.1$

Effective Radiated Power is converted to Field Strength by the following:

The Friis transmission equation governs the interaction between two antennas in the far field:

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi r)^2}, \quad (5)$$

where  $P_r$  is the power measured at the receive antenna output port;

$P_t$  is the power measured at the transmit antenna input port;

$G_t$  is the gain of the transmit antenna;

$G_r$  is the gain of the receive antenna;

$\lambda$  is the wavelength; and

$r$  is the separation between the two antennas (the range length).

The electric field generated at a point in the far field as a function of the transmitted power is given by

$$E = \frac{\sqrt{30} P_t G_t(\theta, \phi)}{r}, \quad (12)$$

where  $E$  is the electric field generated at the distance  $r$  from the transmit antenna,

$P_t$  is the power measured at the transmit antenna input port,

$G_t(\theta, \phi)$  is the angle-dependent gain of the transmit antenna, and

$r$  is the distance from the transmit antenna to the test point (the range length)

Info: <http://www.ce-mag.com/archive/02/Spring/fogelle2.html>

Note:

power levels into a dipole results in an E-field at a distance according to power:  $(V^2) / R = P$

power flux density:  $s = PG / (4\pi r^2)$ , where  $\pi = 3.14$  and  $r$  = distance

Field strength:  $e = \sqrt{120 \pi s} = \sqrt{30 P} / r$

A half-wave dipole has a 1.64 gain in its equatorial plane, therefore:

$$e = \sqrt{1.64 \cdot 30 P} / r = 7 \sqrt{P} / r$$

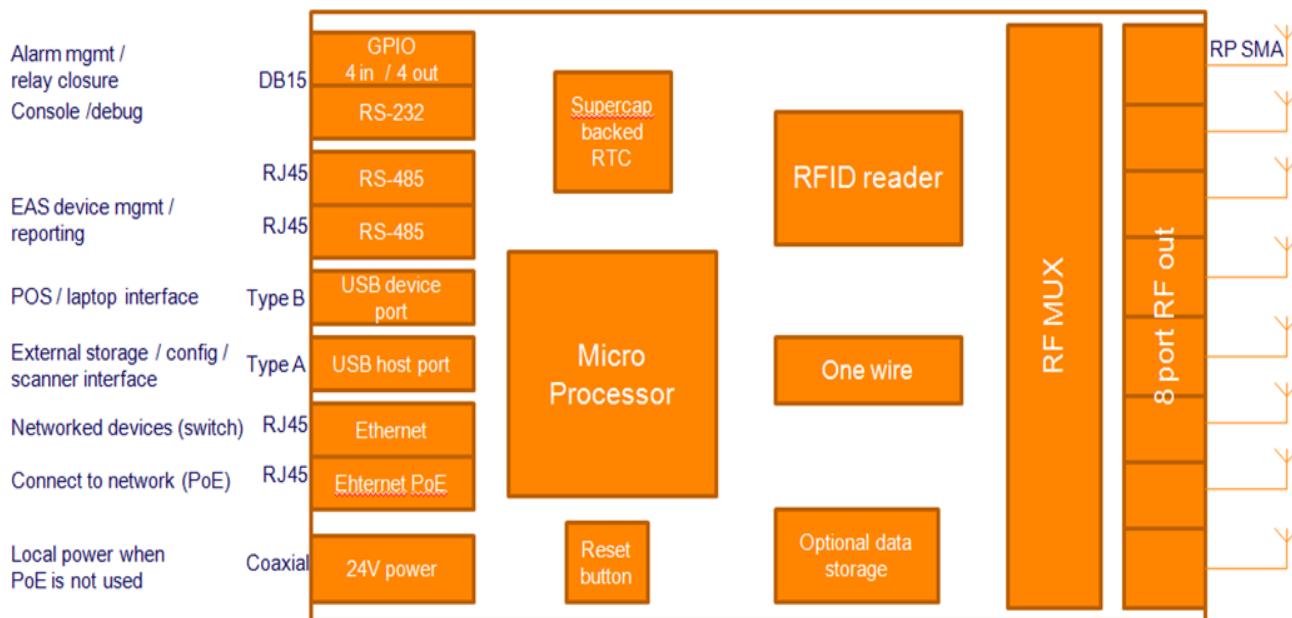
Field strength  $e = (7.02 \sqrt{ERP}) / d$ . ERP in Watts,  $d$  in meters.

Or Source Radiating (ERP)  $\rightarrow$   $ERP = (e \cdot d / 7.02)^2$  in Watts, Volts/meter, meters

Conversion to dBuV from [http://www.compeng.com.au/emc\\_conversion\\_tables\\_rf\\_calculator2.aspx](http://www.compeng.com.au/emc_conversion_tables_rf_calculator2.aspx)

## 2.4 Uncertainty of Measurements

| Combined Standard Uncertainty and<br>Expanded Uncertainty using an expansion factor of 2.<br>(estimated) |                                  | CISPR 16-4-2<br>Uncertainty<br>Limits |
|----------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|
| Radiated Emissions = $\pm 1.56$ dB                                                                       | Expanded Uncertainty = $3.12$ dB | 5.2 dB                                |
| Conducted Emissions = $\pm 1.12$ dB                                                                      | Expanded Uncertainty = $2.24$ dB | 3.6 dB                                |
| Harmonic Current and Flicker = $\pm 2.6$ %                                                               | Expanded Uncertainty = $5.12$ %  |                                       |
| Radiated Immunity = $\pm 2.15$ dB                                                                        | Expanded Uncertainty = $4.3$ dB  |                                       |
| ESD Immunity = $4.15$ %                                                                                  | Expanded Uncertainty = $8.3$ %   |                                       |
| EFT - Fast Transient Immunity = $\pm 2.82$ %                                                             | Expanded Uncertainty = $5.64$ %  |                                       |
| Conducted Immunity = $\pm 1.83$ dB                                                                       | Expanded Uncertainty = $2.24$ dB |                                       |
| Voltage Variation and Interruption = $\pm 1.7$ %                                                         | Expanded Uncertainty = $3.4$ %   |                                       |
| Surge Immunity = $\pm 3.1$ %                                                                             | Expanded Uncertainty = $6.2$ %   |                                       |


Uncertainty values were calculated based on methods in ETSI TR 100 028.

Per EN 302 208-1, Clause 7, the value of the measurement uncertainty for each measurement, shall be equal to or lower than the figures given below.

### Parameter Uncertainty

|                                           |                        |
|-------------------------------------------|------------------------|
| RF frequency                              | $+\/-1 \times 10^{-7}$ |
| RF power, conducted                       | $+\/-0.75$ dB          |
| RF power, radiated, valid up to 12,75 GHz | $+\/-6$ dB             |
| Maximum frequency deviation for FM        | $+\/-5$ %              |
| Two-signal measurements                   | $+\/-4$ dB             |
| Time                                      | $+\/-5$ %              |
| Temperature                               | $+\/-1$ K              |
| Humidity                                  | $+\/-5$ %              |

### 3 Test Set-Up Block Diagram



#### 3.1 List Of Ports

| Cable              | Signal or Power     | Max Length | Type        | Load                    |
|--------------------|---------------------|------------|-------------|-------------------------|
| GPIO               | Signal              | >3m        | shielded    | Alarms/Relays           |
| RS-232             | Signal              | >3m        | shielded    | Console/Debug           |
| RS-485 x 2         | Signal              | >3m        | Un-shielded | EAS Device Mgmt         |
| USB-Type B         | Signal              | >3m        | shielded    | POS/Computer            |
| USB-Type A         | Signal              | >3m        | shielded    | Ext Storage/Scanner I/F |
| Ethernet Cat-5     | Signal              | >3m        | Un-shielded | Network devices         |
| Ethernet PoE-Cat-5 | Signal and DC Power | >3m        | Un-shielded | Network Connect/PoE     |
| 24 VDC             | DC Power            | <3m        | coax        | AC-DC Power Supply      |
| RF Coax x 8        | Signal              | <3m        | 50 ohm Coax | RFID Antenna            |

#### 3.2 Ancillary Equipment Used During Testing

RFID Tag or label  
UHF patch antenna

#### Accessory Equipment Declaration of Conformity

All accessory equipment used during testing is commercially available off-the-shelf (COTS) FCC DoC or Verified devices.

Laptop Computer for USB and Ethernet communication  
LDM CBC-4055 for RS-485 termination

### 3.2.1 List of Power Supplies evaluated for worst case:

Any LPS rated independently approved power supply such as,

Sensormatic p/n 5606-0091-01

GlobTek, Inc.

PN: TR9KI170760BKN-(RVB)

Model: GT-41083-4042-T2

Input: 100-240Vac, 50/60Hz, 1.0A

Output: 24Vdc, 1.7A

Any LPS rated independently rated Power over Ethernet supply such as,

PoE Injector Power Supply, Phihong PSA16U-480(POE), PowerDsine 7001G

### 3.2.2 List of Antennas that can be used with the EUT:

| Manufacturer      | Model Number          | Polarization | Composite Gain |
|-------------------|-----------------------|--------------|----------------|
| Sensormatic       | IDA-1000-US           | RHCP         | 3.3dBiL        |
| Sensormatic       | IDA-2100-US           | RHCP         | 6.0dBiL        |
| Sensormatic       | IDA-2400-US           | RHCP         | 6.0dBiL        |
| Sensormatic       | IDKM-1000 / IDKM-1010 | near field   | -8.5dBiL       |
| Motorola (Symbol) | AN480-CL66100WR       | LHCP         | 6.0dBiL        |
| Motorola (Symbol) | AN480-CR66100WR       | RHCP         | 6.0dBiL        |

All antennas were evaluated to determine worst case emissions

All ports were evaluated for worst case emissions

EUT was tested with modulation and without modulation for worst case

Radiated evaluations were performed in a pre-screen environment and the worst case was tested on the OATS. Multiple orientations of antenna and radio were evaluated to determine worst case.

Maximum conducted transmit power was measured at the antenna end of the supplied antenna cable.

### 3.3 RF Exposure Compliance Requirements per 15.247 (b) (5)

Operating Band Center Frequency = 915 MHz, Range 902-928

EUT Max Output Power = 30 dBm

Antenna Gain = 6 dBi => Numeric Gain = 4

Power Density Limit for General Population is  $S = f(\text{MHz}) / 1500 = 0.61 \text{ mW} / \text{cm}^2$  or  $6.100 \text{ W/m}^2$  (CFR 47 Part 1.1310, Table 1)

**Minimum MPE safe distance (using equation below) = 23 cm**

Calculations:

$$\text{Power Density } P_d = (P_t * G) / (4 * \pi * d^2)$$

Solve for d

$$d^2 = (P_t * G) / (4 * \pi * P_d)$$

$$d = \text{SqrRoot}((P_t * G) / (4 * \pi * P_d))$$

$$d = \text{SqrRoot}((1\text{watt} * 4\text{gain}) / (4 * \pi * 6.100\text{watt/m}^2))$$

$$d = \text{SqrRoot}((1/\pi * 6.100)\text{m}^2)$$

$$d = \text{SqrRoot}(1/\pi * 6.100)\text{m}$$

$$d = 0.228\text{meters} = 23 \text{ cm}$$

Where

E = Field Strength in Volts/meter

Pt= Transmit Power In Watts

G = Numeric Antenna Gain

d = Distance in Meters

Pd = Power Density in W / square m

Per IC: RSS-102i4, 4.2.

Power Density Limit for General Population is  $S = f(\text{MHz}) / 150 = 0.61 \text{ mW} / \text{cm}^2$  or  $61.00 \text{ W/m}^2$

From above;

$$d = \text{SqrRoot}(1/\pi * 61.0)\text{m}$$

$$d = 0.072\text{meters} = 7.2 \text{ cm}$$

**3.4 Input Voltage Variation, 15.31(e).**Measured using a connector adapter short cable, MCX to N.The required cable is longer and has more loss.Output power set to Maximum, 30 dBm.

| <u>Frequency</u> | <u>Voltage</u> | <u>Peak Signal Level</u> |
|------------------|----------------|--------------------------|
| 902.74           | 120            | 30.02                    |
| 902.75           | +15% (138V)    | 30.00                    |
| 902.75           | -15% (102V)    | 30.05                    |
| 915.25           | 120            | 29.93                    |
| 914.25           | +15% (138V)    | 29.93                    |
| 915.25           | -15% (102V)    | 29.92                    |
| 927.25           | 120            | 30.07                    |
| 927.25           | +15% (138V)    | 30.12                    |
| 927.25           | -15% (102V)    | 30.07                    |

**3.5 Temperature Variation, 15.215(c).**

| <b>Freq</b> | <b>-20 C</b> | <b>25 C</b> | <b>55 C</b> |
|-------------|--------------|-------------|-------------|
| 138 V       | 902.74       | 902.74      | 902.74      |
| 120 V       | 902.75       | 902.75      | 902.74      |
| 102 V       | 902.75       | 902.75      | 902.74      |

| <b>Freq</b> | <b>-20 C</b> | <b>25 C</b> | <b>55 C</b> |
|-------------|--------------|-------------|-------------|
| 138 V       | 916.25       | 914.25      | 914.24      |
| 120 V       | 915.25       | 915.25      | 915.24      |
| 102 V       | 915.25       | 915.25      | 915.25      |

| <b>Freq</b> | <b>-20 C</b> | <b>25 C</b> | <b>55 C</b> |
|-------------|--------------|-------------|-------------|
| 138 V       | 927.25       | 927.25      | 927.24      |
| 120 V       | 927.25       | 927.25      | 927.25      |
| 102 V       | 927.25       | 927.25      | 927.25      |

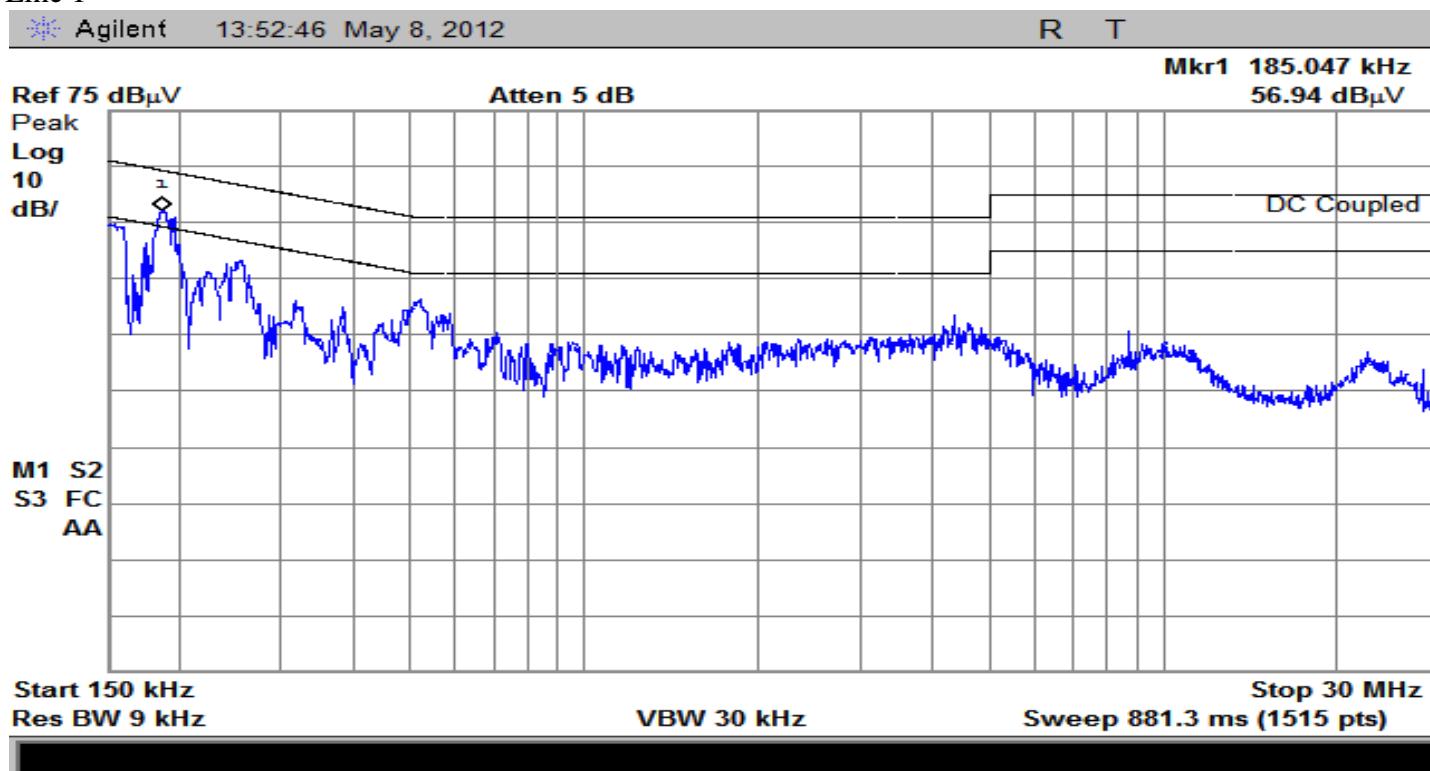
### 3.6 AC Conducted Emissions, 15.207 And 15.107, Class B.

Port : AC Mains  
 Equipment operation : Transmitting modulated. Communicating with accessories.  
 AC Mains : 120V / 60 Hz  
 Ambient temperature : 23.1 °C  
 Relative humidity : 53.1 % RH  
 Equipment list asset numbers : 1, 37, 104, 10.

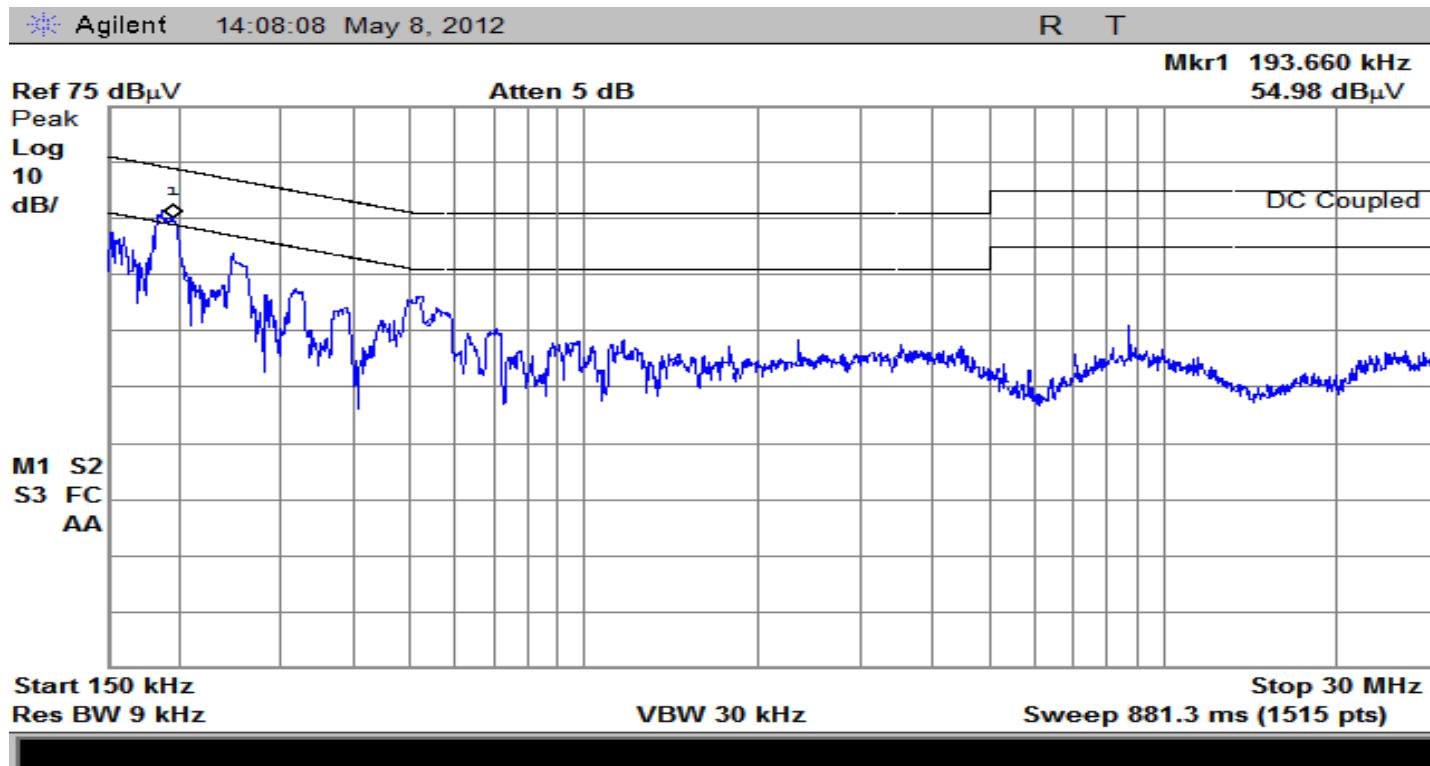
Test method is according to ANSI C63.4-2003.

#### FCC 15.107 - Class B digital device, and 15.207 - General limits

| Frequency range | Quasi-peak (dBuV) | Average (dBuV) |
|-----------------|-------------------|----------------|
| 0,15 - 0,50     | 66 - 56           | 56 - 46        |
| 0,50 - 5        | 56                | 46             |
| 5 - 30          | 60                | 50             |

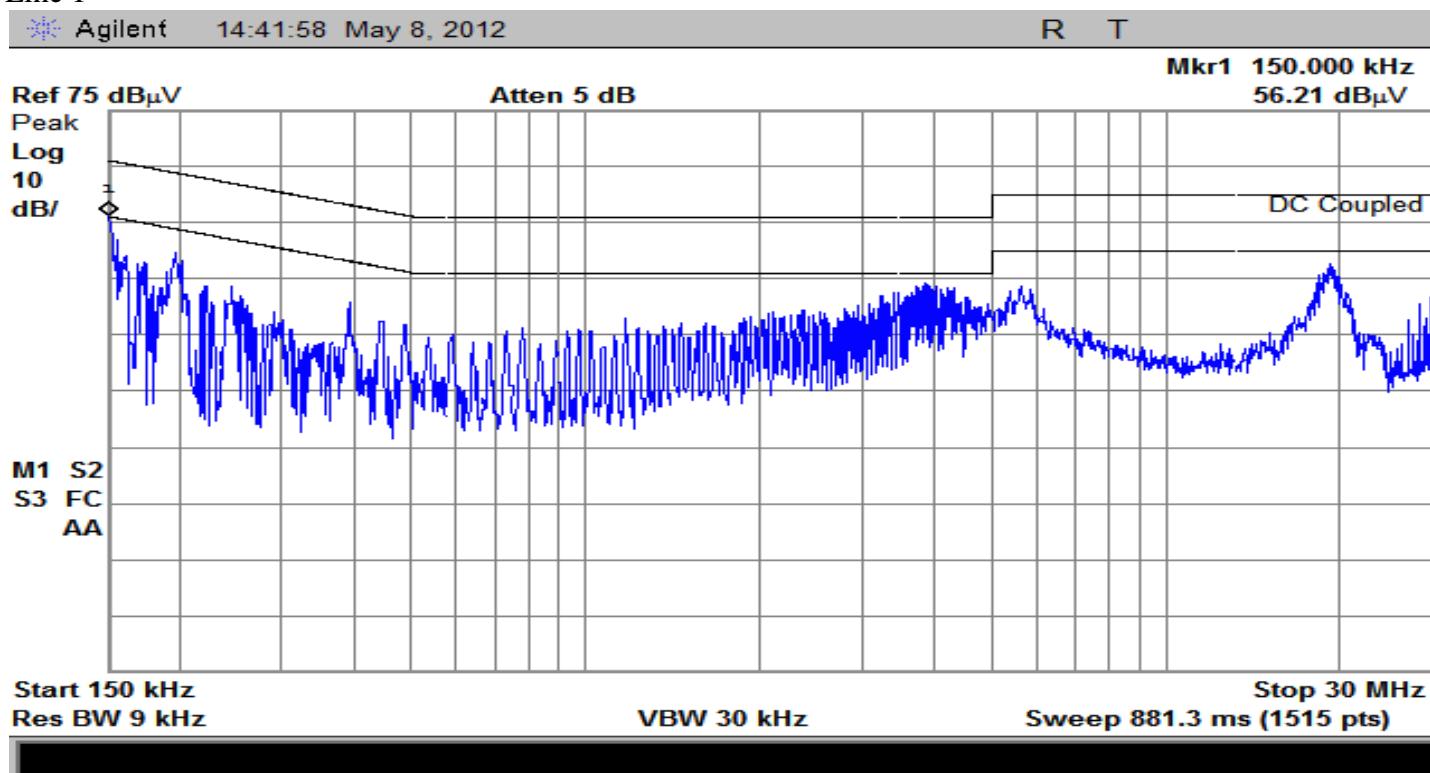

| Freq (MHz) | Reading |       | Limit   |       | Margin |
|------------|---------|-------|---------|-------|--------|
|            | dbUv    | Line  | Class B |       |        |
| 0.19       | QP      | 54.84 | L1      | 64.04 | 9.20   |
|            | Avg     | 36.59 | L1      | 54.04 | 17.45  |
| 0.19       | QP      | 53.36 | L2      | 64.04 | 10.68  |
|            | Avg     | 35.03 | L2      | 54.04 | 19.01  |
| 0.525      | QP      | 36.59 | L1      | 56.00 | 19.41  |
|            | Avg     | 29.19 | L1      | 46.00 | 16.81  |
| 0.525      | Qp      | 38.78 | L2      | 56.00 | 17.22  |
|            | Avg     | 29.17 | L2      | 46.00 | 16.83  |
| 0.154      | Qp      | 50.41 | L1      | 66.00 | 15.59  |
|            | Avg     | 23.23 | L1      | 56.00 | 32.77  |
| 0.315      | Qp      | 37.8  | L2      | 59.97 | 22.17  |
|            | Avg     | 23.53 | L2      | 49.97 | 26.44  |

FCC ID: BVCIDX8000NA

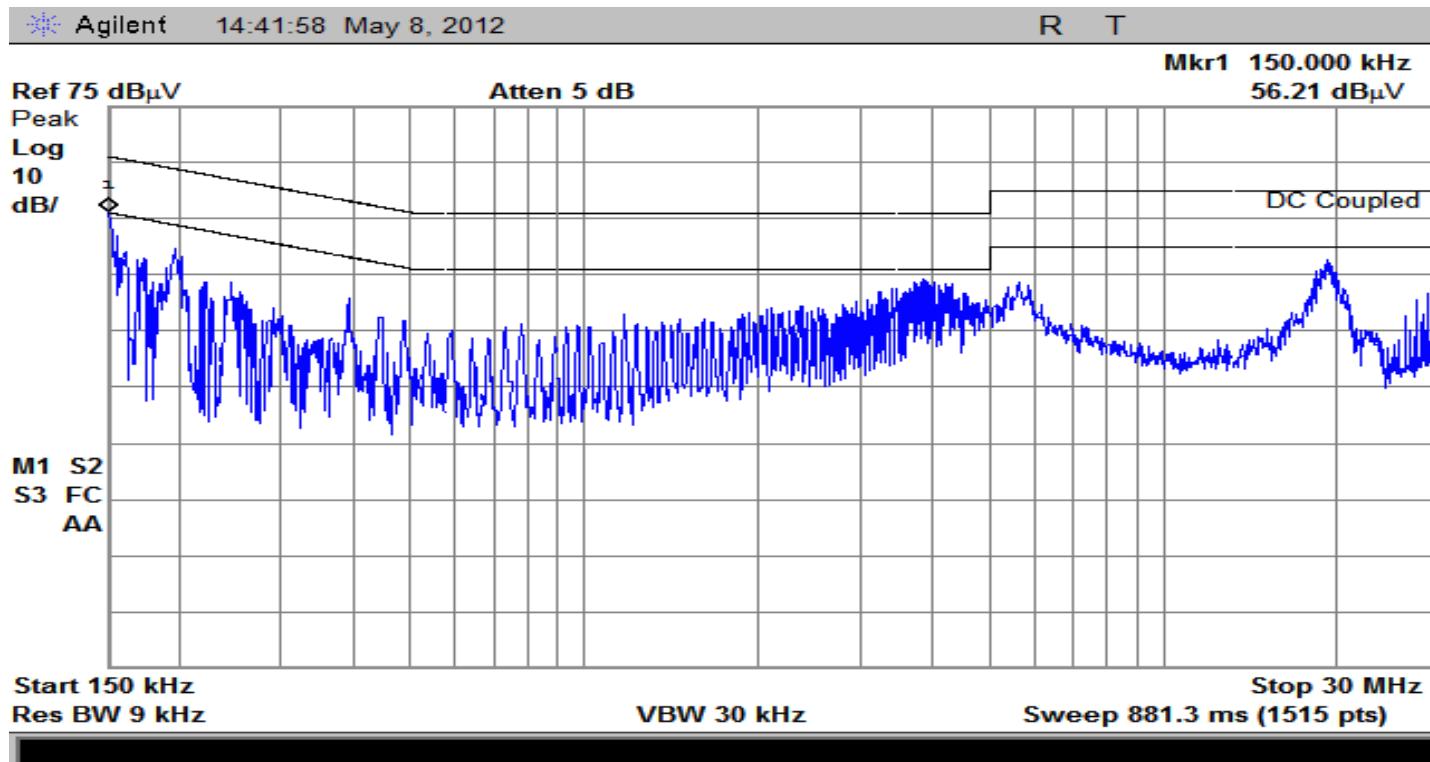

IC: 3506AIDX8000NA

GlobTek power supply

Line 1




Line 2




FCC ID: BVCIDX8000NA  
Phihong PoE power injector  
Line 1

IC: 3506AIDX8000NA



Line 2



### 3.7 Frequency Hopping Requirement, 15.247

#### Section 15.247 (a)

The EUT contains a transmitter that modulates a carrier with data, changes carrier frequency in a pseudo-random pattern with a dwell time, channel separation, and hop count that meets the requirements of 15.247. In addition, the receiver tracks the transmitter's pseudo-random hopping sequence and demodulates the signal. The order of channels in the hop sequence is pseudo random list.

Frequency-hopping proceeds in order through the list.

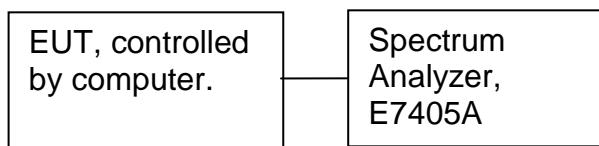
#### Equal Hopping Frequency Use [Section 15.247 (g)]

Each Frequency is specified only once in the list and the list is completed before looping back to the beginning.

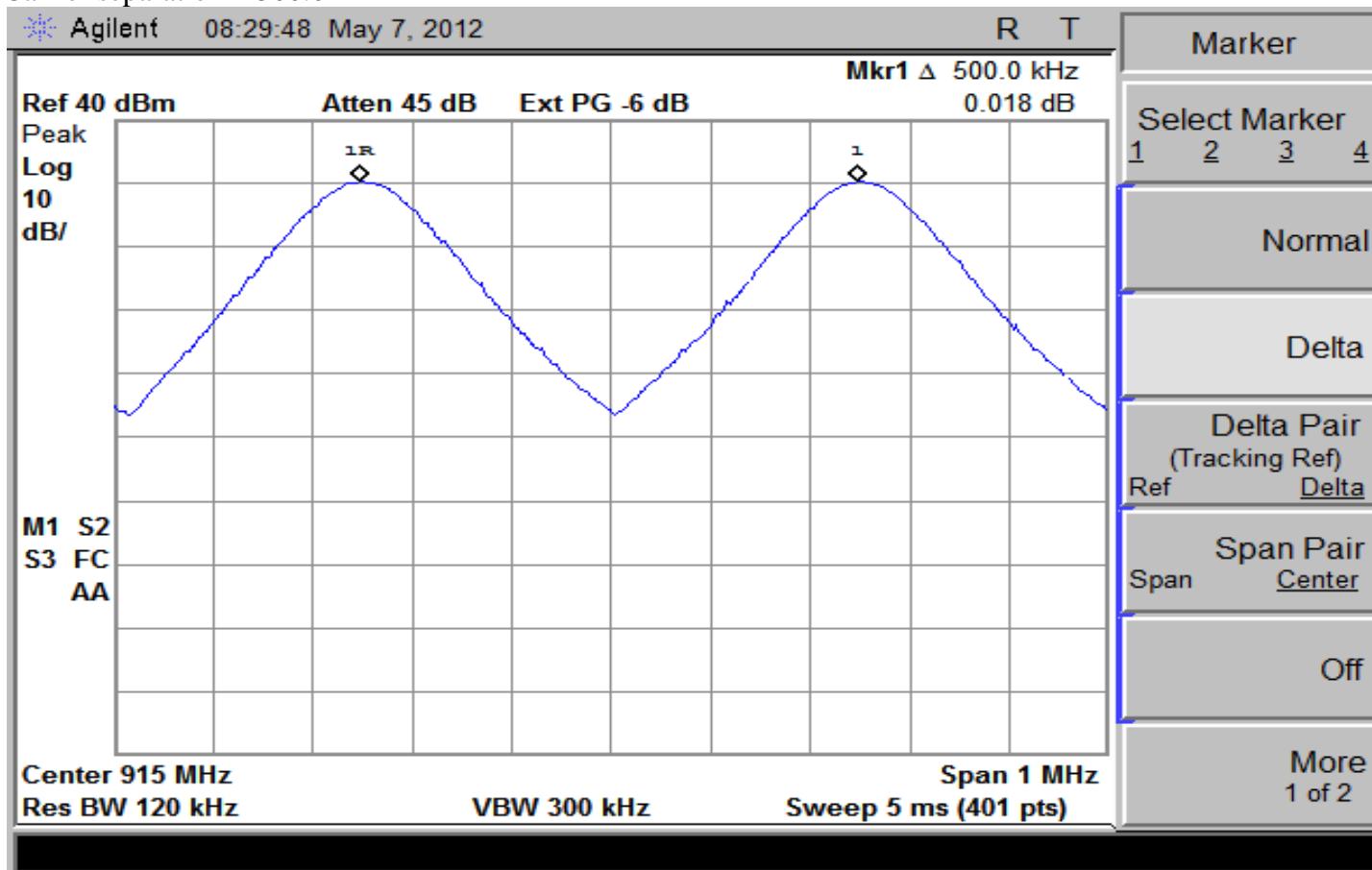
#### System Receiver Input Bandwidth

The received signal is demodulated by a balanced mixer. The output of this mixer is filter by a fixed 5Mhz low pass 5th order anti-aliasing filter. The output of the anti-aliasing filter is sampled by the ADC – where the samples are passed to the DSP for selective filtering. Depending on the protocol used, the signal is further digitally filtered (by the DSP) as required by the tag protocol.

#### System Receiver Hopping Capability

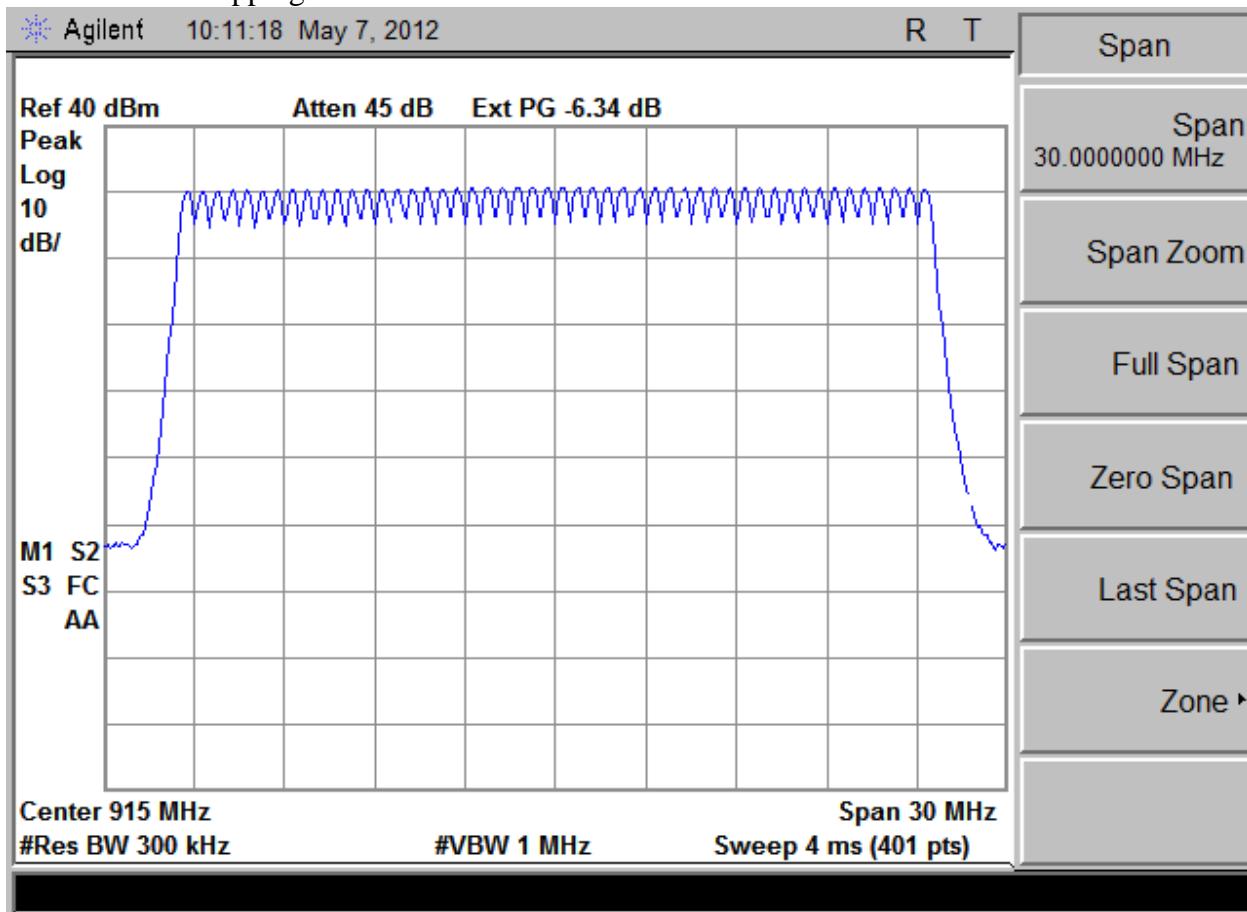

Each RF radio module carrier starts from a Synthesizer with an 8 MHz input clock. The synthesizer output (carrier) is passed through a preliminary RF chain of filters and pre-amplifiers. Through a power splitter, the Carrier is sent into two directions—one for the transmit path and the other for the receive path. Through the transmit path, the carrier is further filtered and amplified before passing through an isolator before passing through a 4 port switch—where the signal can be multiplexed onto one of four external antenna ports. The portion of the transmitter split off into the receive path is used to demodulate the received signal from the selected output port—thereby assuring that the demodulation reference is exactly equal to the transmit carrier frequency. The carrier may hop to one of 50 different frequencies and the receive path will always be in synchronization with it.

#### Section 15.247 (h)


Since the device is programmed to follow a set hopping sequence, regardless of potential interference and it is not programmed to scan the channels for interference, it does not have the ability to coordinate with other FHSS systems in an effort to avoid the simultaneous occupancy of individual frequencies.

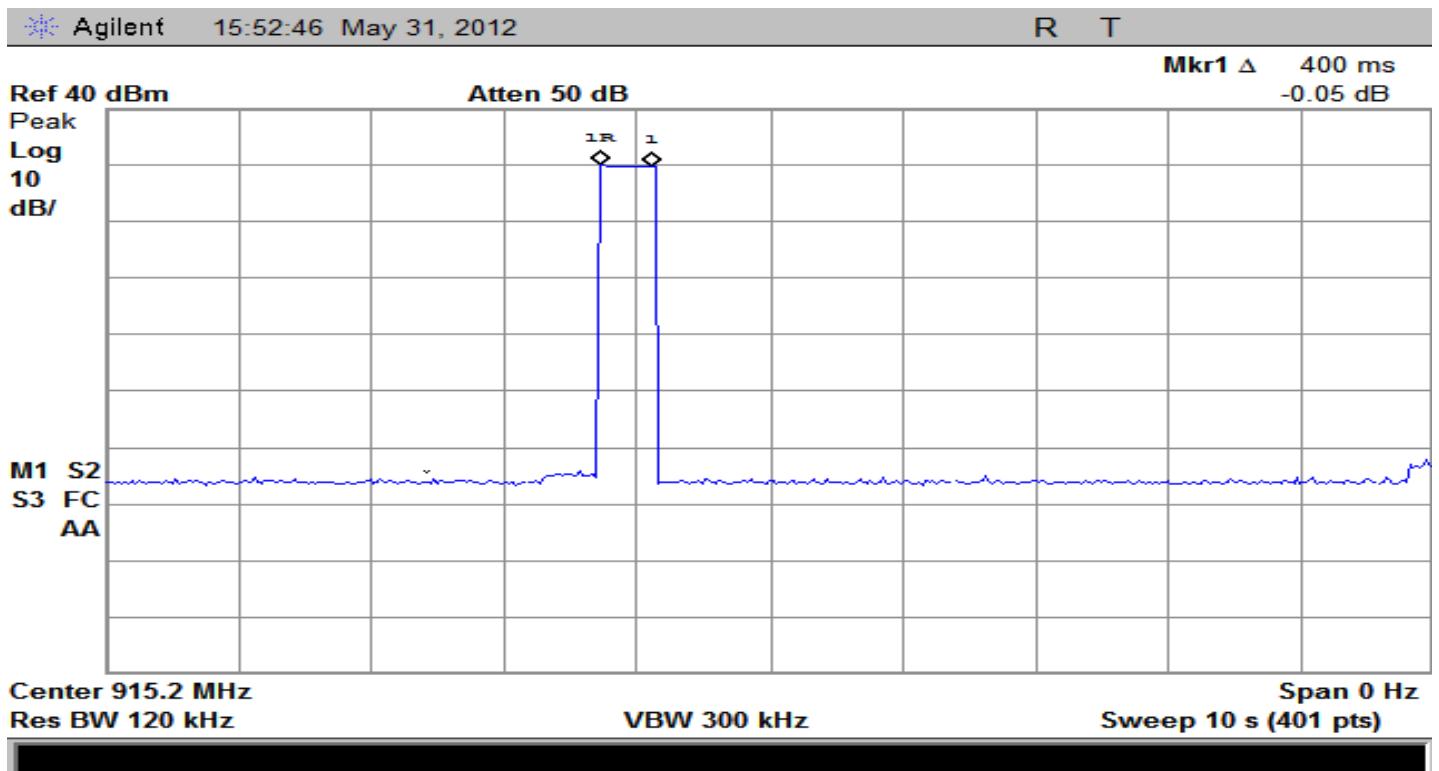
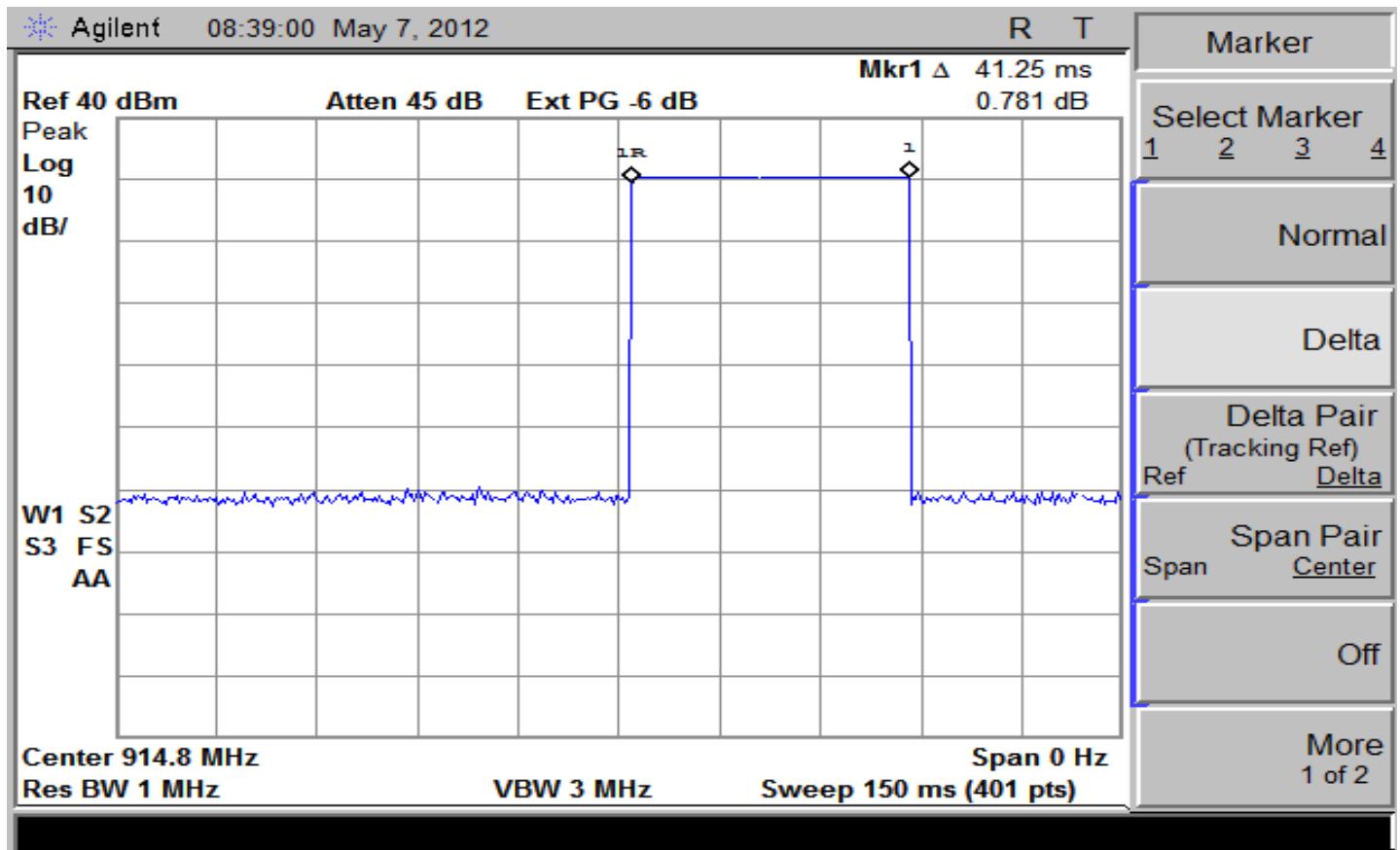
### 3.8 Carrier Frequency Separation, 15.247 (a)(1)

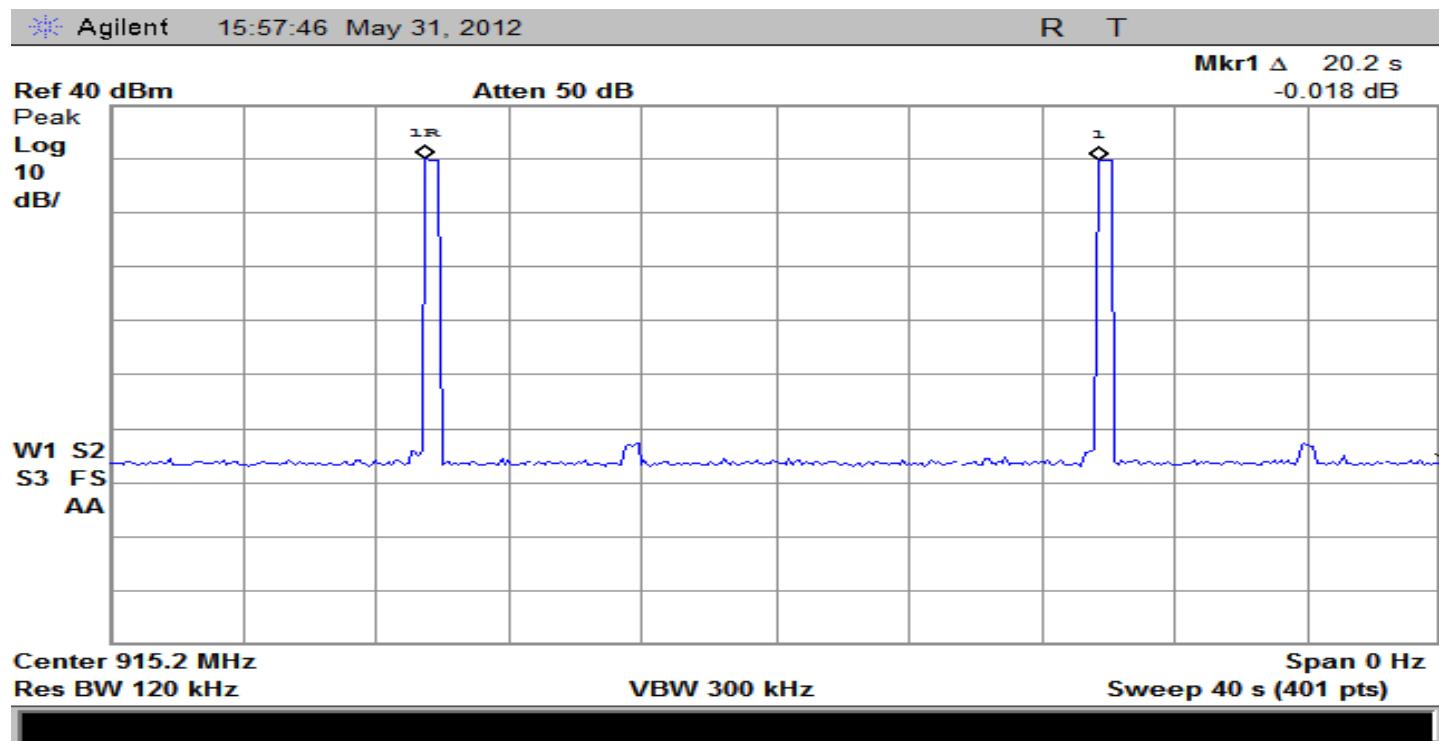
Setup used for the following tests.



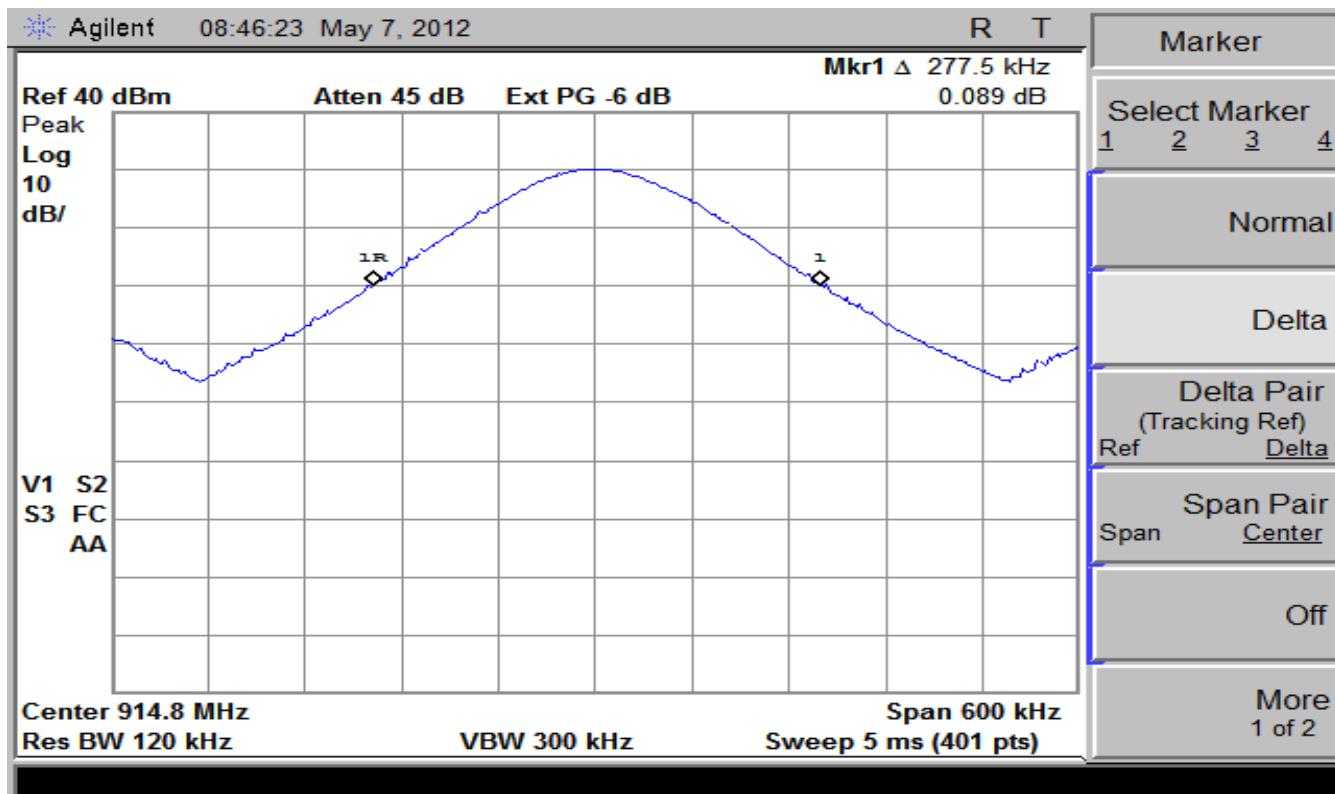

Carrier separation = 500.0 kHz





**3.9 Number Of Hopping Channels, 15.247 (a)(1)(i)**


The number of hopping channels = 50




## 3.10 Time Of Occupancy (Dwell Time), 15.247 (a)(1)(i)

Limit = 400 ms.

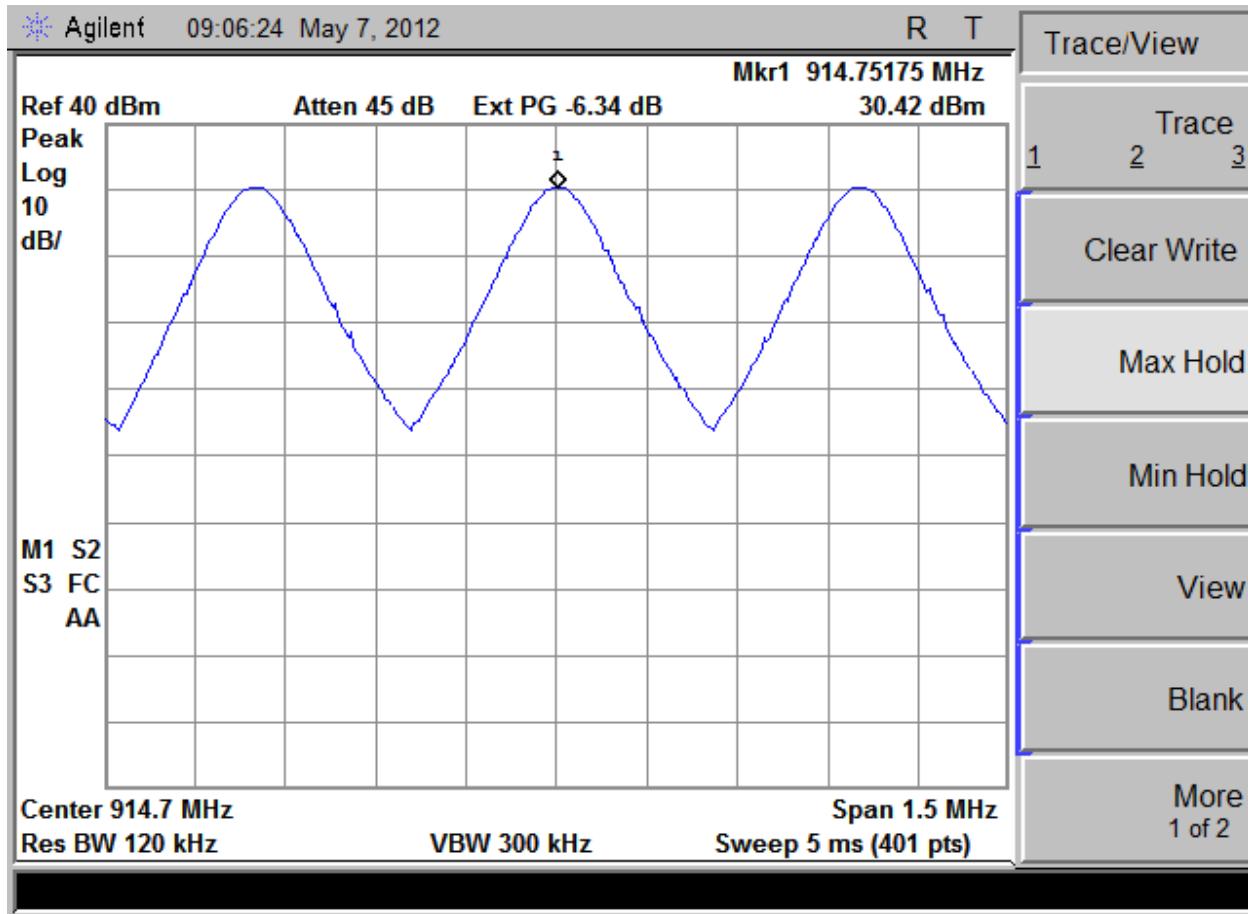




## 3.11 20 dB Bandwidth, 15.247 (a)(1)(i)



### 3.12 Peak Power Output, 15.247 (b)


On the transmitter ports, the maximum output power is set at 30 dBm.

The worst case peak conducted power is reported here and is measured at 30.42 dBm.

A 6 dB attenuator was used to prevent damage to the spectrum analyzer front end and the loss with short connecting cable was measured at 6.34 dB. This factor was added into the spectrum analyzer.

The EUT complies with the limit.

The intended use for the EUT is detection of nearby tags. Therefore, maximum output of 30 dBm is not needed at the antennas. Cable loss provides acceptable performance for detecting tags. Thus there is no need to define cable parameters to meet the limit.

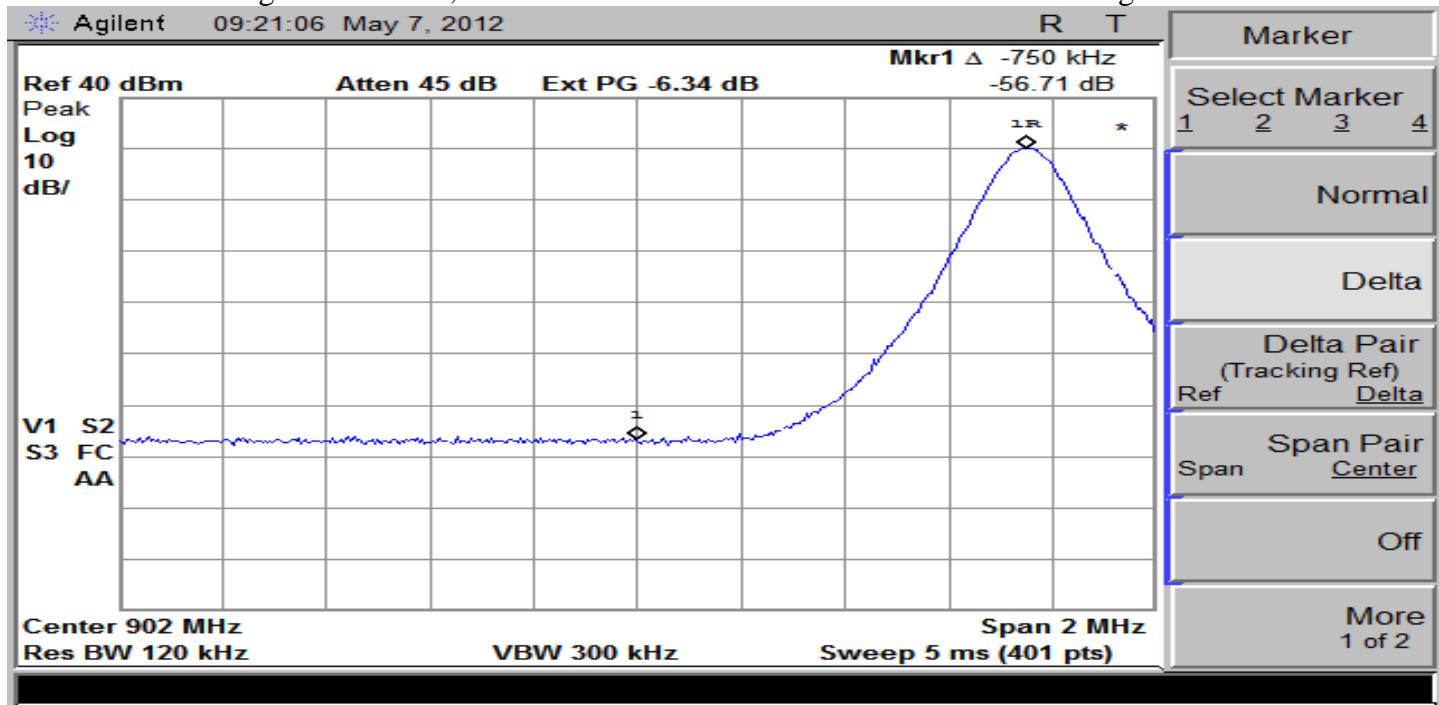


Radiated Power, e.r.p dBm

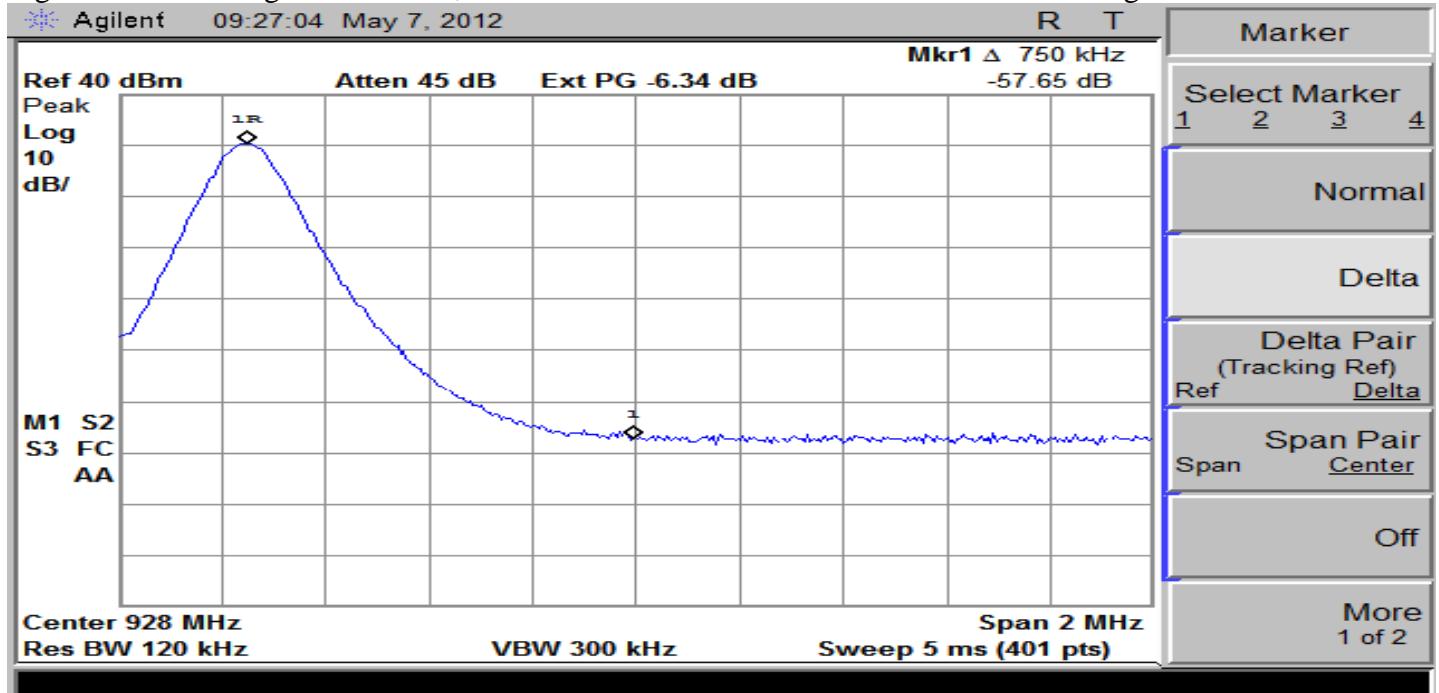
By using  $PC = Pe.r.p. - GIC + 5.15 + CL$  dBm and re-arranging to  $Perp = PC + GIC - 5.15 - CL$ .

Where the highest reading was 30.28.

Antenna gain = 6 dBi = 9 dBic


Cable loss = 2.1 dB

Maximum e.r.p. is  $29.1 = 30.3 + 6 - 5.15 - 2.1$


### 3.13 Band-Edge Compliance Of RF Conducted Emissions, 15.247 (c)

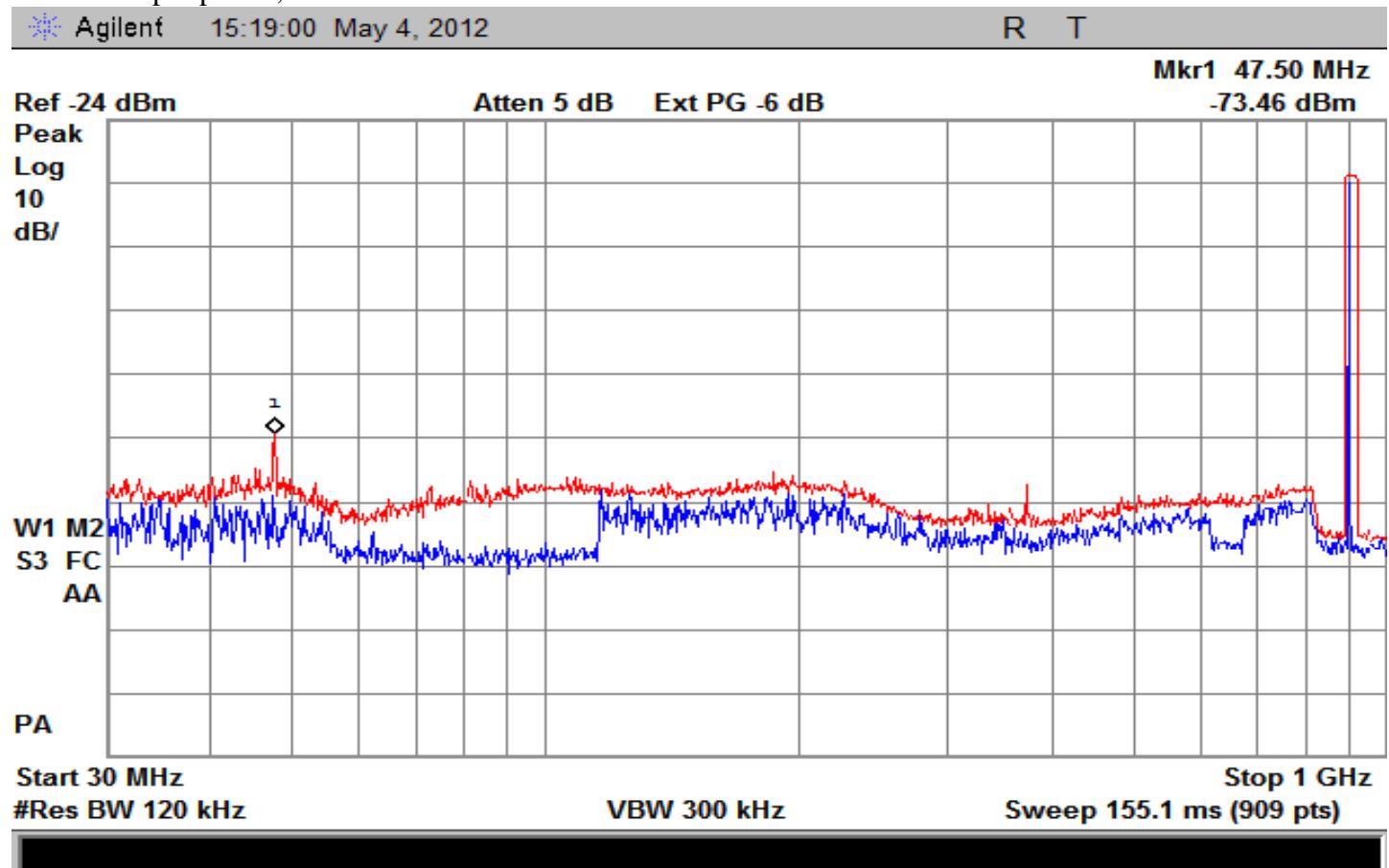
Limit: > 20 dB below highest inband signal.

Low side.. Band edge is 902 MHz; emissions are more than 30 dB below the inband signal.



High side.. Band edge is 928 MHz; emissions are more than 30 dB below the inband signal.

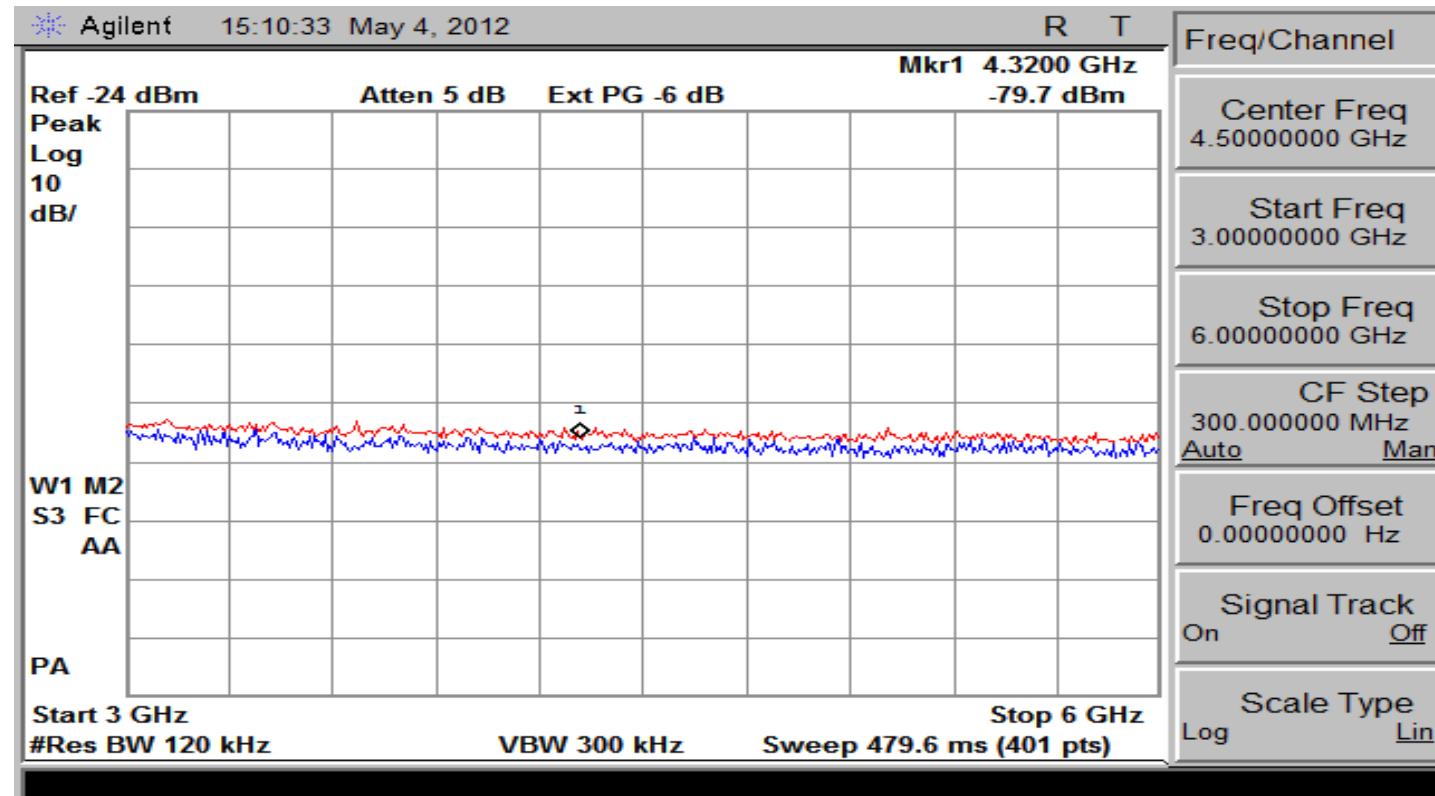
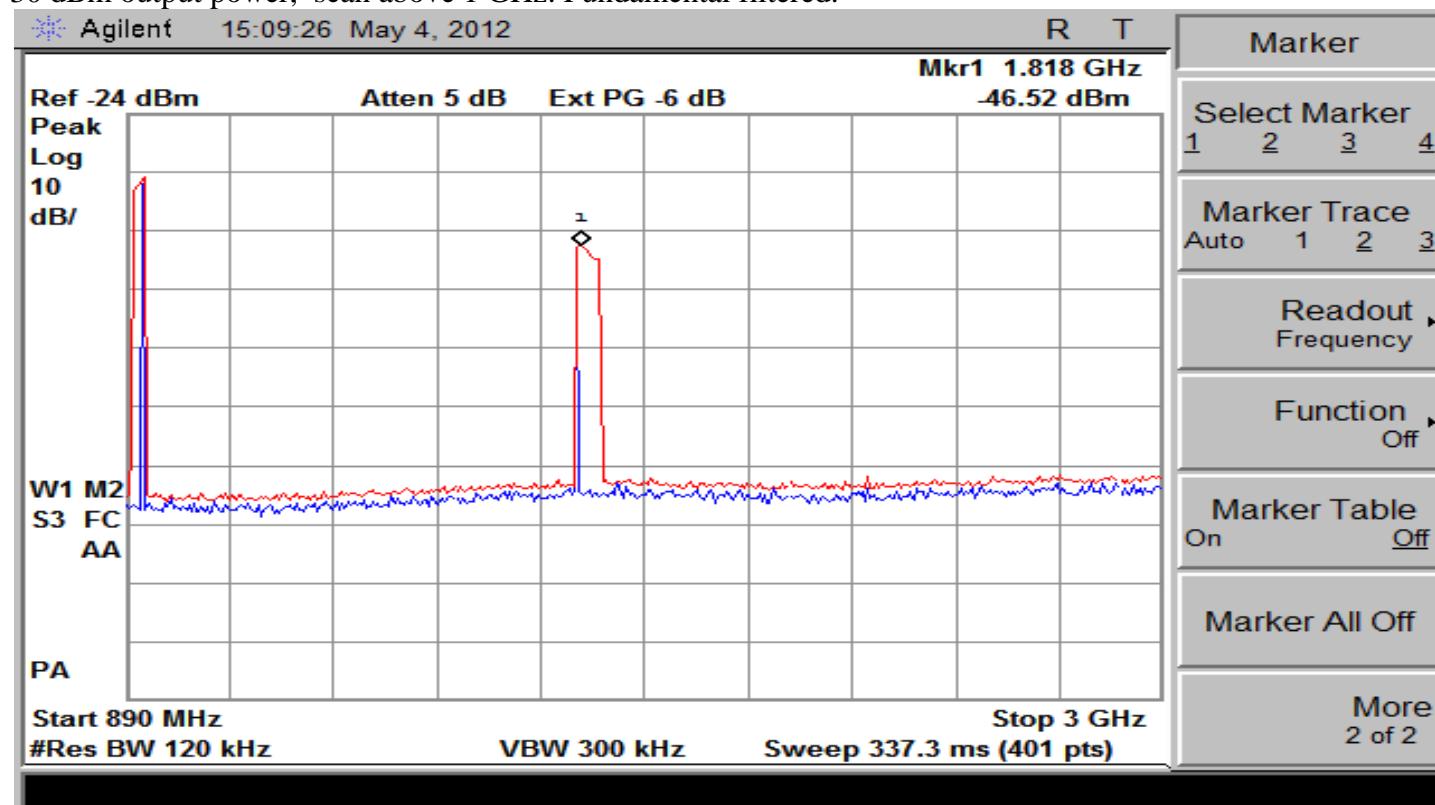


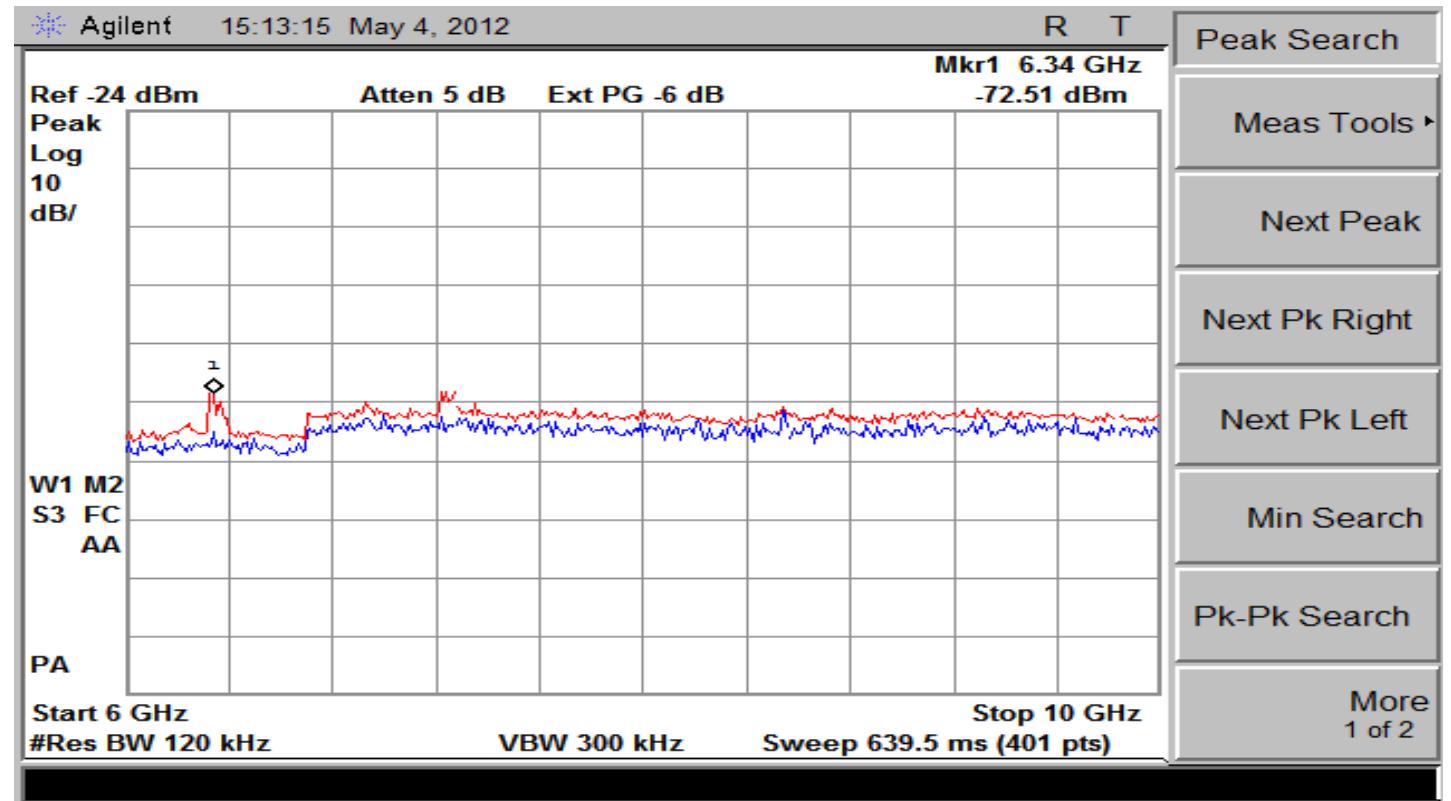

### 3.14 Spurious RF Conducted Emissions, 15.247 (d)

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

The following plots shows that there are no emissions within 20 dB of the inband signal in any 100 kHz band from 30 MHz all the way to the 10th harmonic.

RF output goes to 6 dB attenuator then either a low pass or high pass filter to reduce the fundamental in order increase the dynamic range.



30 dBm output power, Below 1 GHz




FCC ID: BVCIDX8000NA

IC: 3506AIDX8000NA

30 dBm output power, scan above 1 GHz. Fundamental filtered.

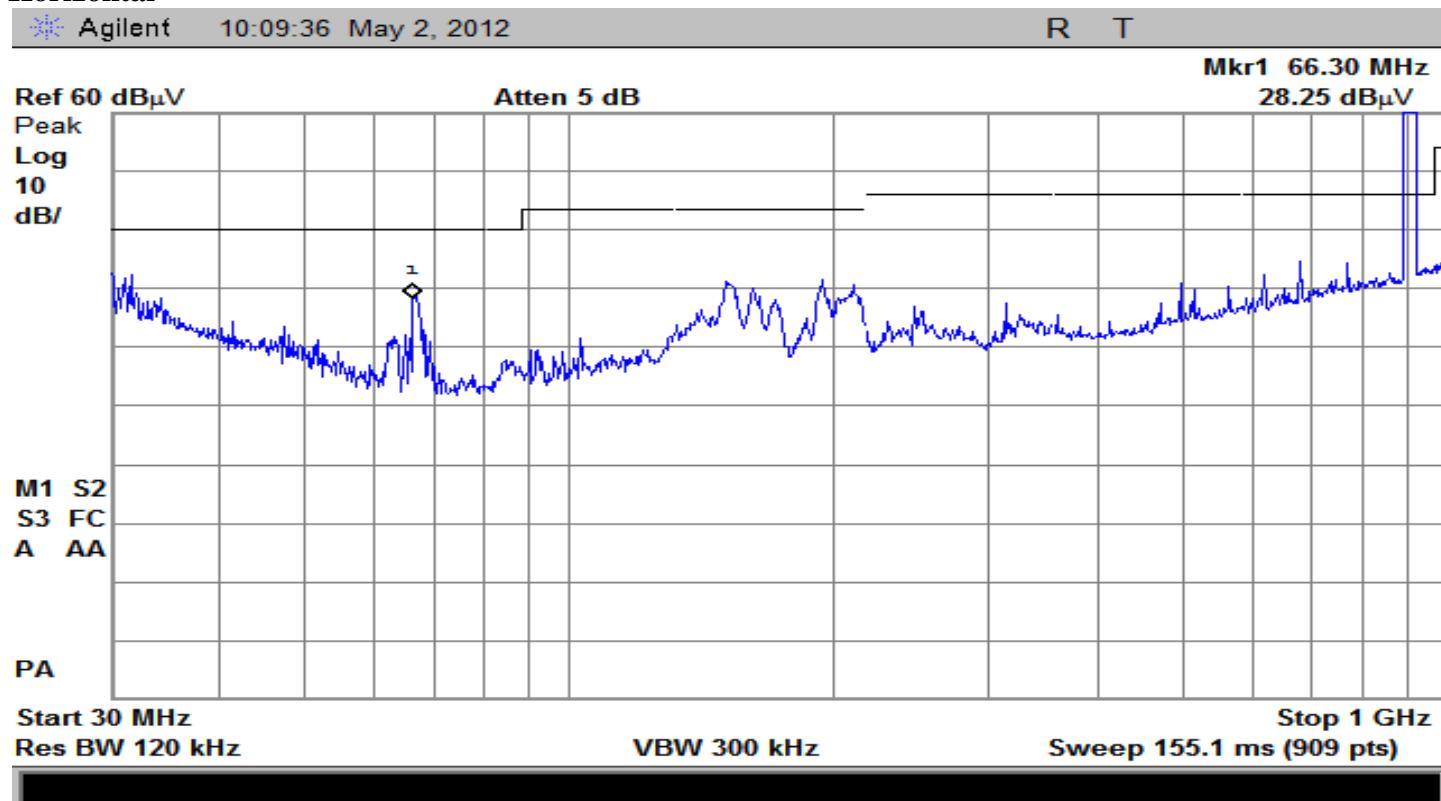




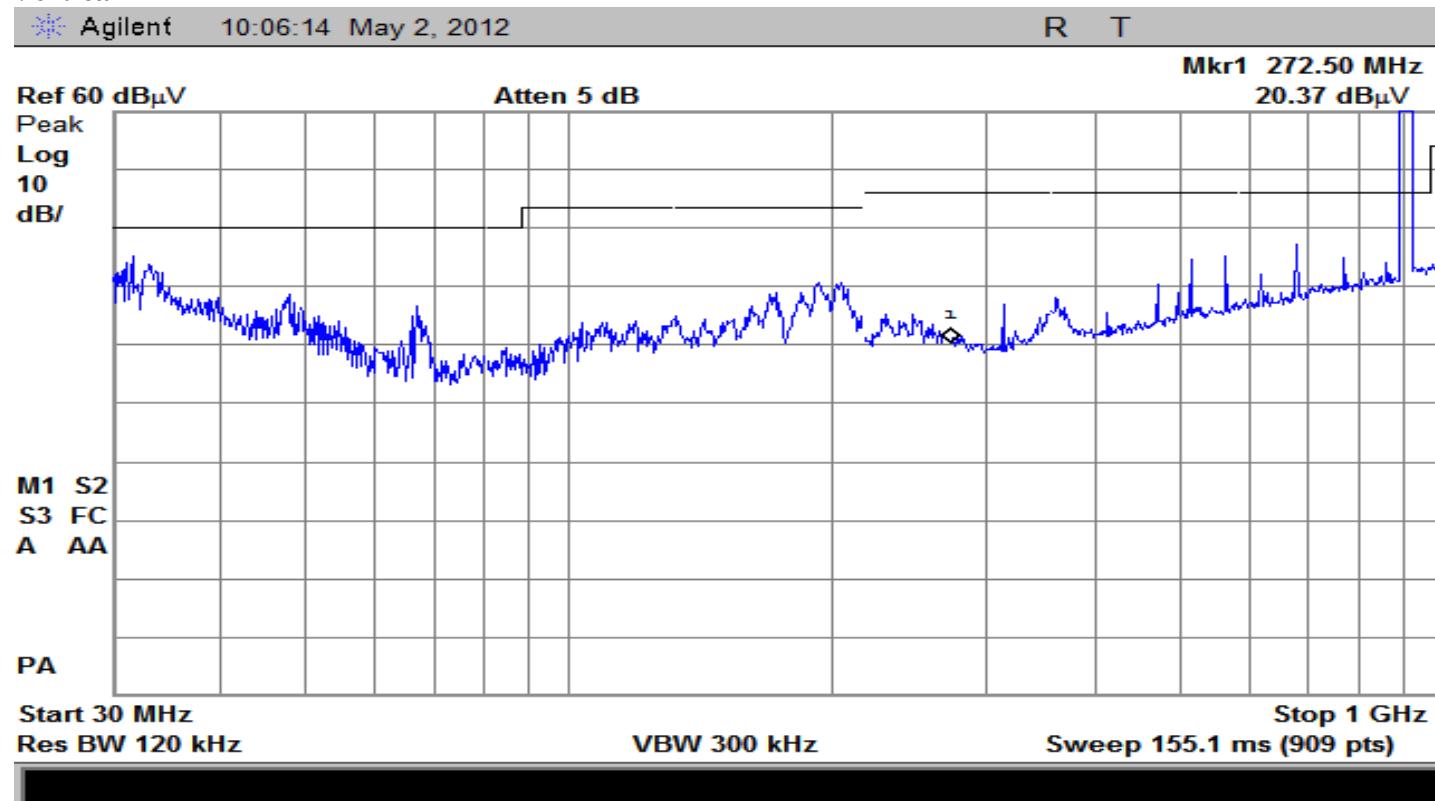
### 3.15 Spurious Radiated Emissions, 15.247 (d), 15.205, 15.209

The EUT was prescreened in the semi-anechoic chamber at Sensormatic per the guidelines in ANSI C63.4-2003. Each port was compared to determine which had the worst case emissions.

In addition, each antenna type was compared in prescreens to determine the worst case antenna for measurement.

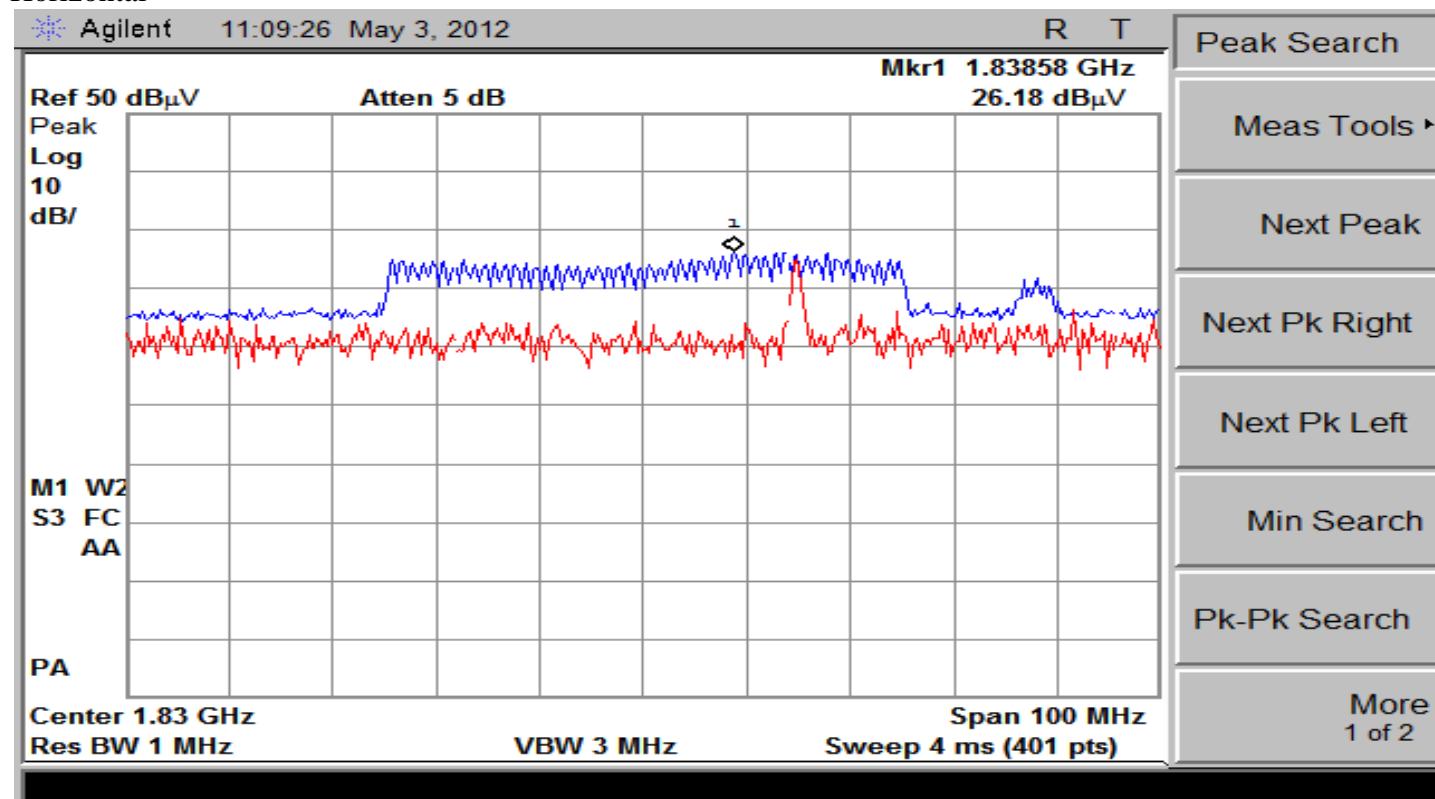

Equipment list asset numbers: 6, 8, 5, 156, 41, 12, 37, 104, 107.

#### OATS measurements

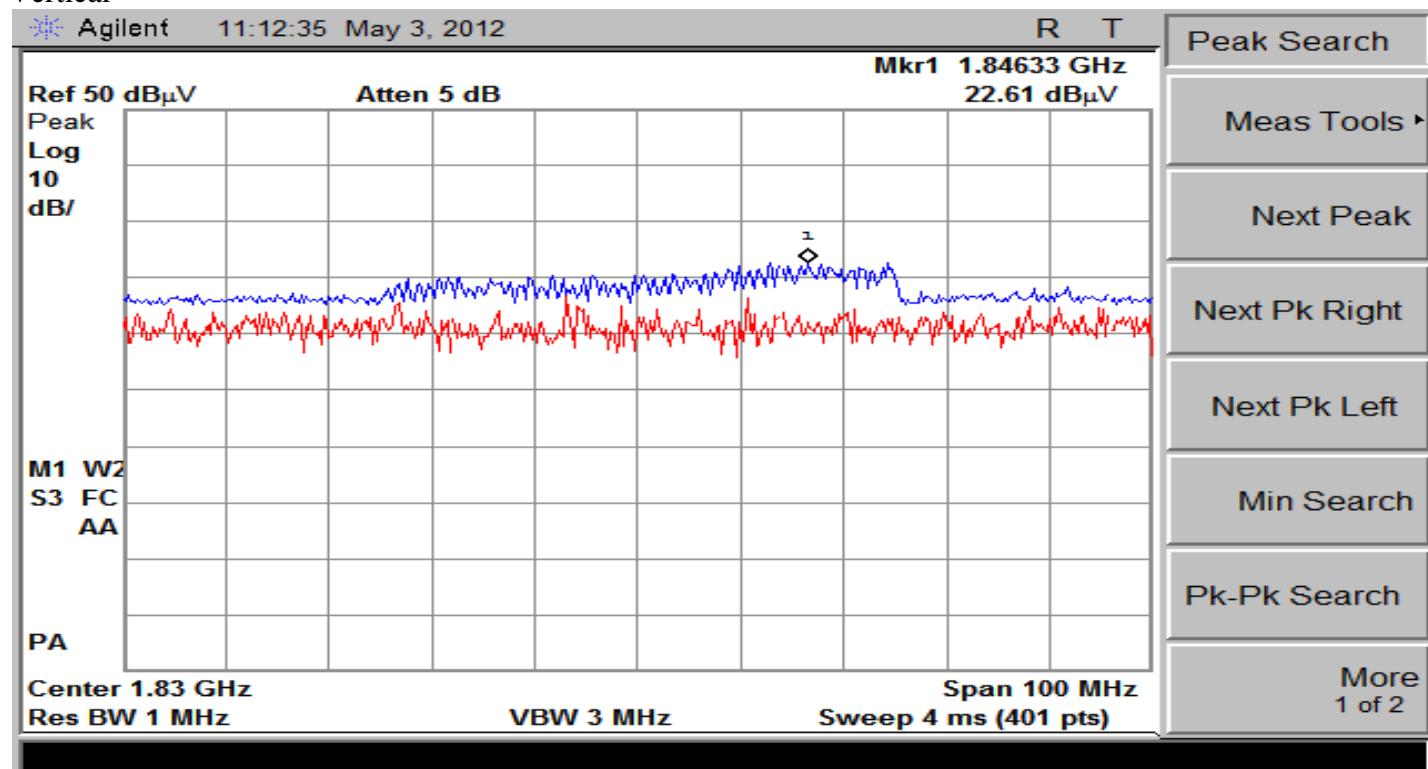

| Freq (MHz) | QP (dB $\mu$ V) | Antenna   | Polarity | ant fac | cable fac | PA     | Corrected | Class B | Margin |
|------------|-----------------|-----------|----------|---------|-----------|--------|-----------|---------|--------|
| 163.9      | 13.9            | Bi-con #1 | Horz     | 12.96   | 2.31      | 0      | 29.17     | 43.50   | 14.33  |
| 163.9      | 13.28           | Bi-con #1 | Vert     | 12.82   | 2.31      | 0      | 28.41     | 43.50   | 15.09  |
| 64.8       | 12.4            | Bi-con #1 | Vert     | 9.41    | 1.28      | 0      | 23.09     | 40.00   | 16.91  |
| 64.8       | 7.9             | Bi-con #1 | Horz     | 9.10    | 1.28      | 0      | 18.28     | 40.00   | 21.72  |
| 200        | 9.1             | Bi-con #1 | Horz     | 14.86   | 2.67      | 0      | 26.63     | 43.50   | 16.87  |
| 200        | 6.4             | Bi-con #1 | Vert     | 15.21   | 2.67      | 0      | 24.28     | 43.50   | 19.22  |
| 1844       | 21.9            | EMCO Horn | Horz     | 25.09   | 12.76     | -28.57 | 31.17     | 54.00   | 22.83  |

Pre-compliance scans in chamber.

#### Horizontal

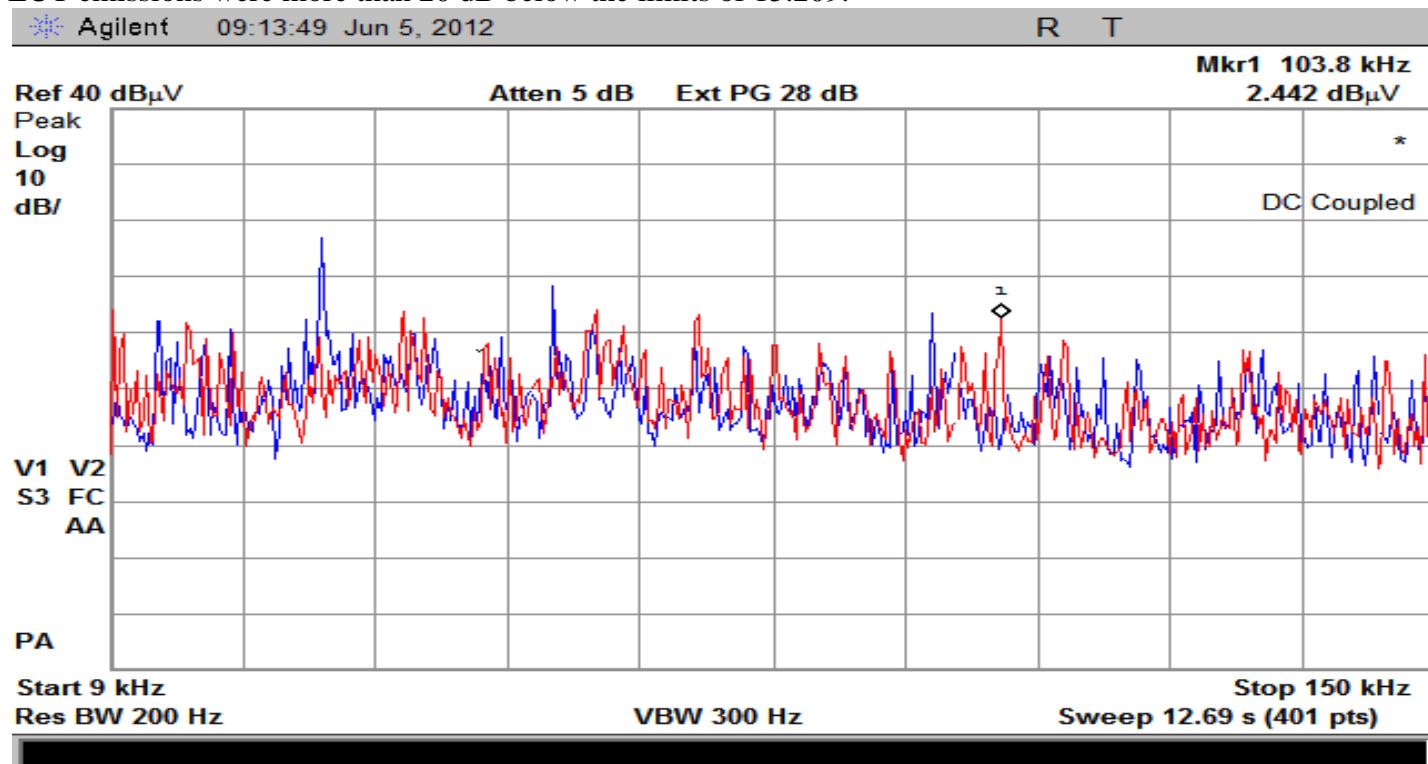


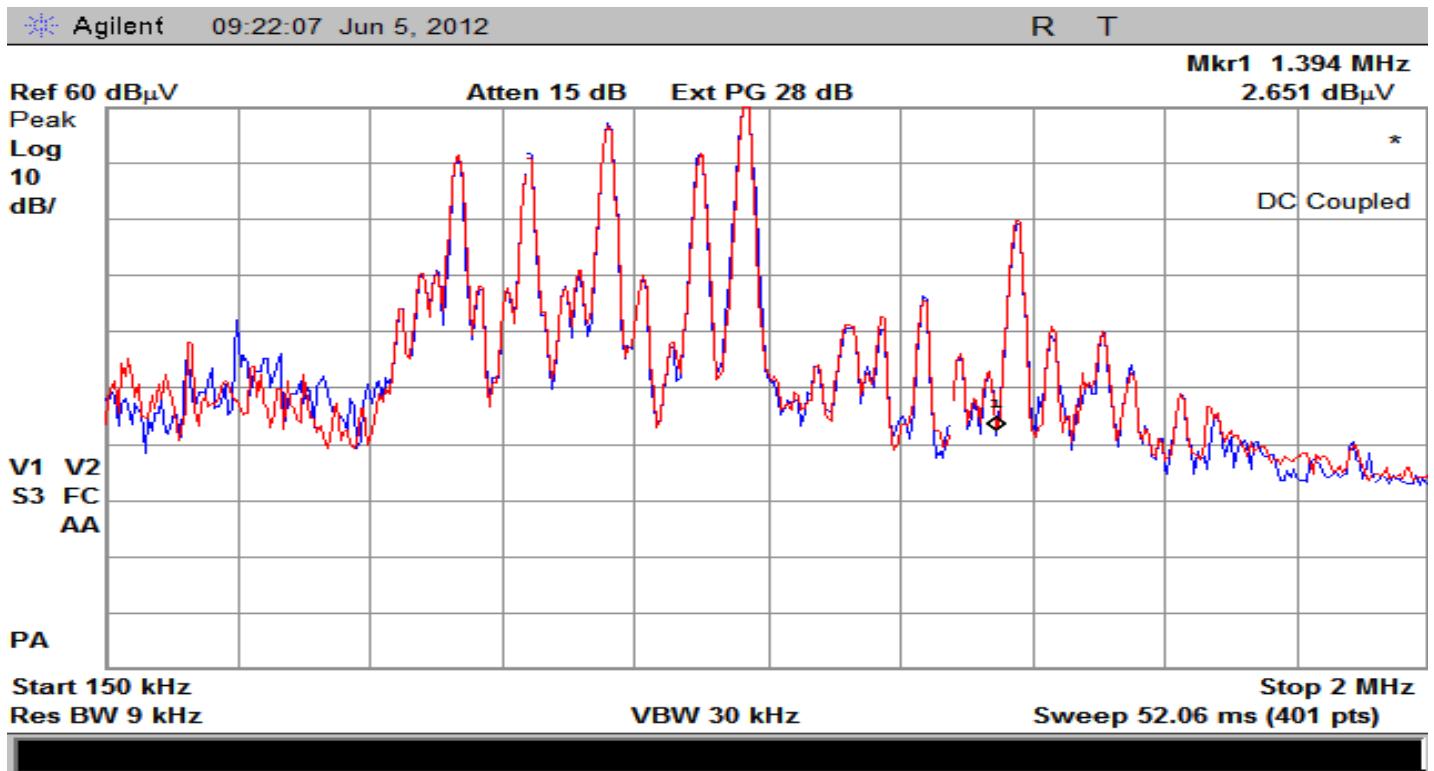

Vertical



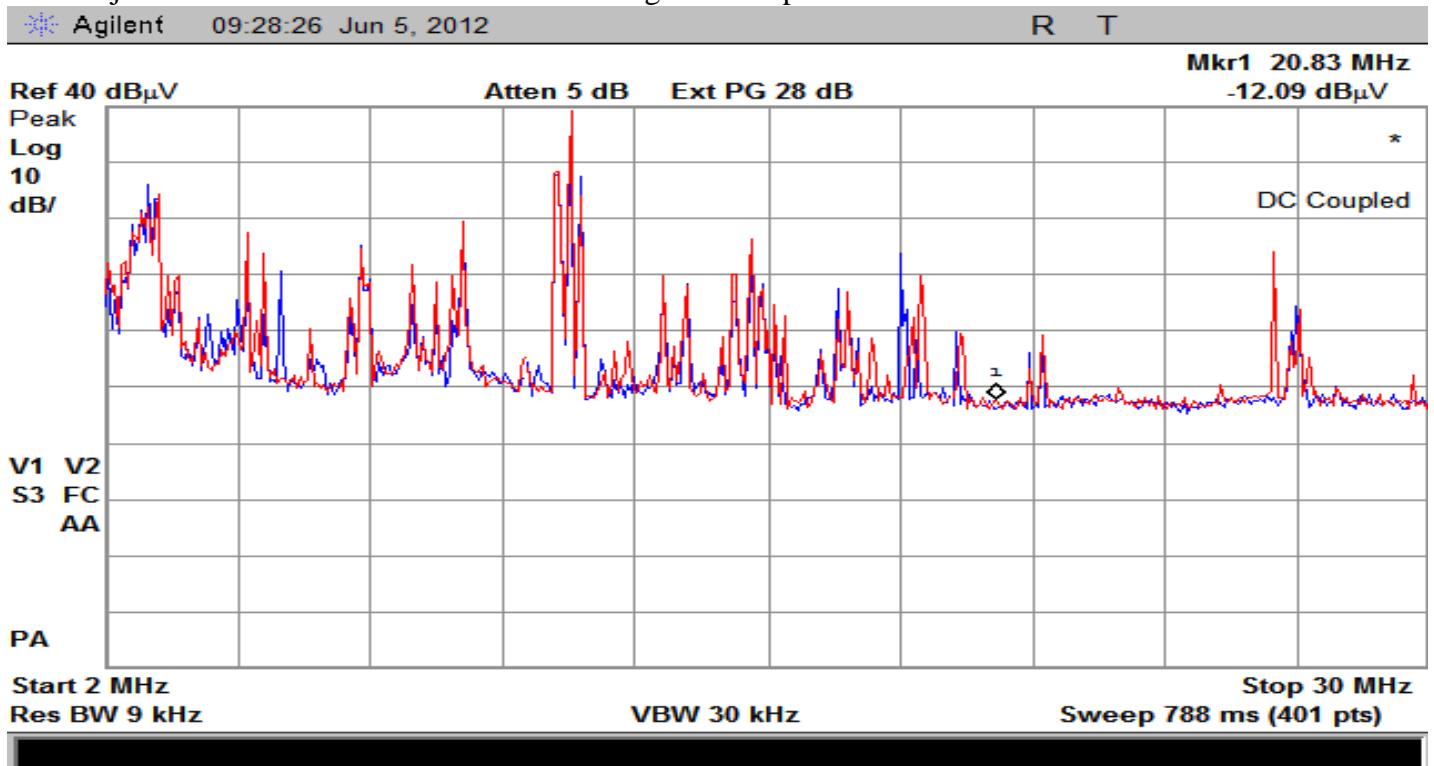

Above 1 GHz the only detectable emission is the 2<sup>nd</sup> harmonic.

Horizontal





Vertical




### 3.15.1 Spurious Radiated Emissions below 30 MHz – H-field.

Blue is ambient – EUT off. Red is EUT on. No Emissions could be correlated to EUT. EUT emissions were more than 20 dB below the limits of 15.209.





Limit adjusted to 10 meters is 39 dB $\mu$ V in this range. These peaks are ambient emissions.



#### 4 Test Equipment List

| Asset | Description                  | Manufacturer        | Model          | Serial #   | Last Cal  | Due Date  |
|-------|------------------------------|---------------------|----------------|------------|-----------|-----------|
| 1     | 5kv VA AC Power Source       | California Inst.    | 5001ix         | 54328      | 10-Dec-11 | 10-Dec-12 |
| 2     | Power Analyzer & Cond System | California Inst.    | PACS-1         | 72376      | 10-Dec-11 | 10-Dec-12 |
| 4     | 58 kHz Filter                | In House            | unique         | N/A        | 30-Aug-11 | 30-Aug-12 |
| 5     | Double-Ridge Waveguide Horn  | EMCO                | 3115           | 3006       | 31-Mar-11 | 30-Mar-13 |
| 6     | Biconical Antenna            | Electro Metrics     | 3110B          | 1017       | 18-May-12 | 18-May-14 |
| 7     | Biconical Antenna            | ETS                 | 3110B          | 3380       | 31-Aug-11 | 30-Aug-12 |
| 8     | Log Periodic Antenna         | EMCO                | 3146           | 3909       | 31-Aug-11 | 30-Aug-12 |
| 9     | Log Periodic Antenna         | EMCO                | 3146           | 4731       | 18-May-12 | 18-May-14 |
| 10    | Transient Limiter            | Electro Metrics     | EM 7600        | 187        | 13-Jan-12 | 12-Jan-13 |
| 11    | Line Imp Stable Network      | EMCO                | 3816/2NM       | 1018       | 08-Feb-12 | 07-Feb-13 |
| 12    | Loop Antenna                 | Electro Metrics     | ALP -70        | 163        | 30-Aug-11 | 29-Aug-12 |
| 13    | Directional Coupler          | Werlatone           | C3910          | 6706       | 13-Jan-12 | 12-Jan-13 |
| 14    | RF Power Meter               | Boonton             | 4231-30        | 53701      | 21-Mar-12 | 21-Mar-13 |
| 16    | Directional Coupler          | Werlatone           | C5673          | 11481      | 13-Jan-12 | 12-Jan-13 |
| 17    | Radiation Meter              | Narda               | EMR-200        | AN-0055    | 21-Jan-11 | 21-Jan-12 |
| 18    | EFT Generator                | Haefely Trench      | PEFT Junior    | 083 180-16 | 08-Feb-12 | 07-Feb-15 |
| 19    | RF Absorbing Clamp           | FCC                 | F-201          | 174        | 09-Jun-09 | 08-Jun-12 |
| 20    | Coupling Decoupling Netwk    | FCC                 | FCC-801-M3-16  | 58         | 08-Feb-12 | 07-Feb-13 |
| 21    | Coupling Decoupling Netwk    | FCC                 | FCC-801-M3-16  | 59         | 08-Feb-12 | 07-Feb-13 |
| 22    | RF Current Probe             | FCC                 | F-33-1         | 304        | 24-Nov-11 | 24-Nov-12 |
| 24    | RF Injection Clamp           | FCC                 | F-20311        | 30         | 24-Nov-11 | 24-Nov-12 |
| 27    | Surge Coupler/Decoupler      | Key Tek             | CE50           | 9507535    | 27-Jul-11 | 26-Jul-12 |
| 29    | Log Periodic Antenna         | EMCO                | 3146           | 3576       | 29-Apr-10 | 28-Apr-15 |
| 30    | Spectrum Analyzer            | HP                  | 8562A          | 2712A00534 | 29-Jul-11 | 28-Jul-12 |
| 32    | Spectrum Analyzer            | HP                  | 8591EM         | 3649A01066 | 26-Jul-11 | 25-Jul-12 |
| 36    | Coupling Decoupling Netwk    | FCC                 | FCC-801-M3-16A | 2036       | 08-Feb-12 | 07-Feb-13 |
| 37    | Line Imp Stable Network      | EMCO                | 3816/2NM       | 1064       | 08-Feb-12 | 07-Feb-13 |
| 38    | Coupling Decoupling Netwk    | FCC                 | FCC-801-M3-16A | 2037       | 08-Feb-12 | 07-Feb-13 |
| 39    | Biconical Antenna            | EMCO                | 3104C          | 4334       | 03-Apr-10 | 02-Apr-12 |
| 40    | Spectrum Analyzer            | HP                  | E7401A         | US39110103 | 08-Feb-12 | 07-Feb-13 |
| 41    | Pre-Amp .009-1300MHz         | HP                  | 8447F          | 2805A03473 | 08-Feb-12 | 07-Feb-13 |
| 42    | Pre-Amp .009-1300MHz         | HP                  | 8447F          | 3113A06072 | 29-Jul-11 | 28-Jul-12 |
| 43    | BiLog Antenna (Immunity)     | Schaffner Chase     | CBL6141        | 4112       | 26-Aug-98 | 25-Aug-03 |
| 44    | Loop Antenna (Immunity)      | Solar Elect         | 7334-1         | 73626      | 02-Jan-08 | 31-Dec-12 |
| 104   | Spectrum Analyzer            | Agilent             | E7405A         | MY49510099 | 28-Jul-11 | 27-Jul-12 |
| 105   | Spectrum Analyzer            | Agilent             | E7405A         | MY49510320 | 08-Jun-11 | 07-Jun-12 |
| 107   | AC Power Source              | Pacific             | 120ASX         | 1513_05894 | 26-May-10 | 25-May-12 |
| 121   | ESD Generator                | NoiseKen            | ESS-2000       | 170053     | 02-Oct-12 | 02-Oct-13 |
| 152   | Dipole Antenna               | EMCO                | 3121C          | 9701-1262  | 28-Dec-11 | 28-Dec-12 |
| 153   | Signal Generator             | Agilent             | N5183A         | MY50140589 | 08-Feb-12 | 07-Feb-13 |
| 154   | Horn Antenna                 | ETS Lindgren        | 3115           | 00135941   | 11-Apr-11 | 10-Apr-12 |
| 155   | Horn Antenna                 | ETS Lindgren        | 3116B          | 00122502   | 03-Feb-11 | 03-Feb-12 |
| 156   | Loop Antenna                 | ETS Lindgren        | 6512           | 00123860   | 22-Nov-11 | 22-Nov-12 |
| 157   | Antenna                      | Teseq               | T800           | 28620      | 10-Jun-11 | 09-Jun-12 |
| 175   | EMI Power Sensor             | Boonton Electronics | 51011-EMC      | 35804      | 21-Mar-12 | 21-Mar-13 |

## 5 Antenna Factors.

Customer Name: Tyco Safety Products - Sensormatic

Antenna Manufacturer: Electro-Metrics

Antenna Model: ALP-70 Loop

Antenna Serial No.: 163

Temperature (Deg C): 21.0

Humidity (%): 50.0

Measurement Distance in Meters = 1.0

NOTES: ACF valid to 10 meters per NIST methods.

CAL CERT #: 2009042912

| Freq<br>(MHz) | E-field<br>ACF (dB) | H-field<br>ACF (dB) |
|---------------|---------------------|---------------------|
| 0.01          | 75.6                | 24.1                |
| 0.02          | 71.6                | 20.2                |
| 0.03          | 68.3                | 16.9                |
| 0.04          | 65.5                | 14.0                |
| 0.05          | 63.6                | 12.2                |
| 0.06          | 61.1                | 9.7                 |
| 0.07          | 59.6                | 8.2                 |
| 0.08          | 58.5                | 7.0                 |
| 0.09          | 57.8                | 6.4                 |
| 0.10          | 56.8                | 5.4                 |
| 0.20          | 51.8                | 0.4                 |
| 0.30          | 48.5                | -3.0                |
| 0.40          | 46.3                | -5.1                |
| 0.50          | 45.0                | -6.5                |
| 0.60          | 43.6                | -7.8                |
| 0.70          | 42.8                | -8.6                |
| 0.80          | 41.6                | -9.8                |
| 0.90          | 41.1                | -10.3               |
| 1.00          | 40.5                | -11.0               |
| 2.00          | 38.2                | -13.3               |
| 3.00          | 37.2                | -14.3               |
| 4.00          | 37.0                | -14.4               |
| 5.00          | 36.7                | -14.8               |
| 6.00          | 37.6                | -13.8               |
| 7.00          | 37.7                | -13.8               |
| 8.00          | 37.7                | -13.7               |
| 9.00          | 37.6                | -13.9               |
| 10.00         | 37.6                | -13.8               |
| 15.00         | 37.4                | -14.0               |
| 20.00         | 37.2                | -14.2               |
| 25.00         | 36.2                | -15.2               |
| 30.00         | 37.4                | -14.1               |

FCC ID: BVCIDX8000NA

IC: 3506AIDX8000NA

Customer Name: Tyco Safety Products - Sensormatic

Antenna Manufacturer: EMCO

Antenna Model: 3104C Biconical

Antenna Serial No.: 9009-4334

Temperature (Deg C). 3

Humidity (%). 65

Measurement Distance in Meters = 3

Antenna Polarization = VERT / HORZ

CAL CERT #: 2009033120

| Freq<br>(MHz) | Vert<br>ACF<br>(dB) | Horz<br>ACF<br>(dB) |
|---------------|---------------------|---------------------|
| 20.0          | 17.7                | 20.6                |
| 21.0          | 17.4                | 20.0                |
| 22.0          | 16.4                | 18.6                |
| 23.0          | 16.1                | 18.1                |
| 24.0          | 15.3                | 16.9                |
| 25.0          | 14.9                | 16.4                |
| 26.0          | 14.2                | 15.5                |
| 27.0          | 13.6                | 15.0                |
| 28.0          | 13.0                | 14.3                |
| 29.0          | 12.3                | 13.7                |
| 30.0          | 11.9                | 13.3                |
| 31.0          | 11.3                | 12.7                |
| 32.0          | 11.0                | 12.4                |
| 33.0          | 10.5                | 11.9                |
| 34.0          | 10.3                | 11.7                |
| 35.0          | 9.9                 | 11.3                |
| 36.0          | 9.8                 | 11.3                |
| 37.0          | 9.6                 | 11.0                |
| 38.0          | 9.6                 | 11.0                |
| 39.0          | 9.5                 | 10.8                |
| 40.0          | 9.5                 | 10.7                |
| 40.0          | 9.5                 | 10.7                |
| 41.0          | 9.6                 | 10.7                |
| 42.0          | 9.7                 | 10.7                |
| 43.0          | 9.9                 | 10.6                |
| 44.0          | 10.0                | 10.6                |
| 45.0          | 10.2                | 10.7                |
| 46.0          | 10.4                | 10.7                |
| 47.0          | 10.5                | 10.7                |
| 48.0          | 10.7                | 10.7                |
| 49.0          | 11.0                | 10.8                |
| 50.0          | 11.2                | 10.8                |
| 51.0          | 11.4                | 10.8                |
| 52.0          | 11.6                | 10.8                |
| 53.0          | 11.9                | 10.9                |
| 54.0          | 12.0                | 10.9                |
| 55.0          | 12.1                | 11.0                |
| 56.0          | 11.9                | 10.9                |
| 57.0          | 11.9                | 11.0                |
| 58.0          | 11.4                | 10.9                |
| 59.0          | 11.2                | 10.9                |
| 60.0          | 10.8                | 10.8                |
| 61.0          | 10.5                | 10.8                |
| 62.0          | 10.0                | 10.5                |
| 63.0          | 9.7                 | 10.4                |
| 64.0          | 9.2                 | 10.1                |

|       |      |      |
|-------|------|------|
| 65.0  | 8.9  | 9.9  |
| 66.0  | 8.5  | 9.5  |
| 67.0  | 8.2  | 9.3  |
| 68.0  | 7.8  | 8.9  |
| 69.0  | 7.6  | 8.6  |
| 70.0  | 7.3  | 8.2  |
| 71.0  | 7.2  | 7.9  |
| 72.0  | 7.0  | 7.5  |
| 73.0  | 7.0  | 7.3  |
| 74.0  | 6.8  | 7.0  |
| 75.0  | 6.8  | 6.8  |
| 75.0  | 6.8  | 6.8  |
| 76.0  | 6.7  | 6.5  |
| 77.0  | 6.7  | 6.4  |
| 78.0  | 6.6  | 6.3  |
| 79.0  | 6.7  | 6.3  |
| 80.0  | 6.7  | 6.3  |
| 81.0  | 6.9  | 6.3  |
| 82.0  | 7.2  | 6.4  |
| 83.0  | 7.4  | 6.5  |
| 84.0  | 7.6  | 6.7  |
| 85.0  | 7.9  | 6.8  |
| 86.0  | 8.2  | 7.1  |
| 87.0  | 8.3  | 7.2  |
| 88.0  | 8.7  | 7.6  |
| 89.0  | 8.8  | 7.7  |
| 90.0  | 9.1  | 8.0  |
| 91.0  | 9.2  | 8.1  |
| 92.0  | 9.5  | 8.5  |
| 93.0  | 9.5  | 8.6  |
| 94.0  | 9.8  | 8.9  |
| 95.0  | 9.9  | 9.0  |
| 96.0  | 10.2 | 9.4  |
| 97.0  | 10.6 | 9.9  |
| 98.0  | 11.4 | 11.2 |
| 99.0  | 11.7 | 12.0 |
| 100.0 | 11.7 | 11.7 |
| 101.0 | 11.4 | 11.3 |
| 102.0 | 11.6 | 11.4 |
| 103.0 | 11.5 | 11.2 |
| 104.0 | 11.8 | 11.5 |
| 105.0 | 11.9 | 11.5 |
| 106.0 | 12.1 | 11.8 |
| 107.0 | 12.2 | 11.8 |
| 108.0 | 12.5 | 12.1 |
| 109.0 | 12.6 | 12.2 |
| 110.0 | 12.9 | 12.6 |
| 111.0 | 13.1 | 12.7 |
| 112.0 | 13.5 | 13.2 |

|       |      |      |
|-------|------|------|
| 113.0 | 13.8 | 13.5 |
| 114.0 | 14.3 | 14.2 |
| 115.0 | 14.8 | 14.9 |
| 116.0 | 15.6 | 15.7 |
| 117.0 | 16.3 | 15.8 |
| 118.0 | 16.3 | 15.3 |
| 119.0 | 15.6 | 14.5 |
| 120.0 | 15.0 | 14.1 |
| 121.0 | 14.3 | 13.6 |
| 122.0 | 14.1 | 13.5 |
| 123.0 | 13.8 | 13.3 |
| 124.0 | 13.6 | 13.3 |
| 125.0 | 13.4 | 13.2 |
| 126.0 | 13.4 | 13.3 |
| 127.0 | 13.2 | 13.1 |
| 128.0 | 13.1 | 13.2 |
| 129.0 | 12.9 | 13.0 |
| 130.0 | 13.0 | 13.2 |
| 131.0 | 12.8 | 13.0 |
| 132.0 | 12.8 | 13.2 |
| 133.0 | 12.7 | 13.0 |
| 134.0 | 12.8 | 13.1 |
| 135.0 | 12.7 | 13.0 |
| 136.0 | 12.8 | 13.0 |
| 137.0 | 12.8 | 13.0 |
| 138.0 | 12.8 | 13.1 |
| 139.0 | 12.8 | 13.0 |
| 140.0 | 12.8 | 13.0 |
| 141.0 | 12.8 | 13.0 |
| 142.0 | 12.9 | 13.1 |
| 143.0 | 13.0 | 13.1 |
| 144.0 | 13.0 | 13.2 |
| 145.0 | 13.2 | 13.3 |
| 146.0 | 13.3 | 13.4 |
| 147.0 | 13.5 | 13.6 |
| 148.0 | 13.7 | 13.8 |
| 149.0 | 14.0 | 14.1 |
| 150.0 | 14.2 | 14.2 |
| 151.0 | 14.4 | 14.3 |
| 152.0 | 14.3 | 14.2 |
| 153.0 | 14.5 | 14.1 |
| 154.0 | 14.5 | 13.9 |
| 155.0 | 14.6 | 13.9 |
| 156.0 | 14.7 | 13.8 |
| 157.0 | 14.8 | 13.8 |
| 158.0 | 14.7 | 13.7 |
| 159.0 | 14.8 | 13.8 |
| 160.0 | 14.8 | 13.8 |
| 161.0 | 15.0 | 14.0 |

|       |      |      |
|-------|------|------|
| 162.0 | 15.1 | 14.0 |
| 163.0 | 15.3 | 14.2 |
| 164.0 | 15.4 | 14.2 |
| 165.0 | 15.7 | 14.4 |
| 166.0 | 15.7 | 14.4 |
| 167.0 | 16.0 | 14.7 |
| 168.0 | 15.9 | 14.7 |
| 169.0 | 16.1 | 14.9 |
| 170.0 | 16.1 | 15.0 |
| 171.0 | 16.1 | 15.2 |
| 172.0 | 16.1 | 15.2 |
| 173.0 | 16.2 | 15.4 |
| 174.0 | 16.3 | 15.5 |
| 175.0 | 16.4 | 15.7 |
| 176.0 | 16.5 | 15.8 |
| 177.0 | 16.7 | 16.0 |
| 178.0 | 16.8 | 16.1 |
| 179.0 | 16.9 | 16.3 |
| 180.0 | 17.0 | 16.4 |
| 181.0 | 17.1 | 16.6 |
| 182.0 | 17.1 | 16.7 |
| 183.0 | 17.2 | 16.9 |
| 184.0 | 17.2 | 17.0 |
| 185.0 | 17.3 | 17.1 |
| 186.0 | 17.3 | 17.2 |
| 187.0 | 17.5 | 17.3 |
| 188.0 | 17.6 | 17.5 |
| 189.0 | 17.8 | 17.6 |
| 190.0 | 17.8 | 17.7 |
| 191.0 | 17.9 | 17.7 |
| 192.0 | 17.8 | 17.5 |
| 193.0 | 17.8 | 17.5 |
| 194.0 | 17.7 | 17.3 |
| 195.0 | 17.8 | 17.4 |
| 196.0 | 17.7 | 17.4 |
| 197.0 | 17.9 | 17.5 |
| 198.0 | 17.8 | 17.4 |
| 199.0 | 17.7 | 17.5 |
| 200.0 | 17.6 | 17.3 |
| 201.0 | 17.7 | 17.4 |
| 202.0 | 17.6 | 17.3 |
| 203.0 | 17.5 | 17.3 |
| 204.0 | 17.4 | 17.3 |
| 205.0 | 17.4 | 17.3 |
| 206.0 | 17.2 | 17.2 |
| 207.0 | 17.2 | 17.2 |
| 208.0 | 17.2 | 17.2 |
| 209.0 | 17.2 | 17.2 |
| 210.0 | 17.1 | 17.1 |

|       |      |      |
|-------|------|------|
| 211.0 | 17.0 | 17.2 |
| 212.0 | 16.9 | 17.0 |
| 213.0 | 16.9 | 17.0 |
| 214.0 | 16.8 | 16.9 |
| 215.0 | 16.7 | 16.9 |
| 216.0 | 16.6 | 16.8 |
| 217.0 | 16.5 | 16.7 |
| 218.0 | 16.5 | 16.7 |
| 219.0 | 16.4 | 16.5 |
| 220.0 | 16.5 | 16.4 |
| 221.0 | 16.5 | 16.3 |
| 222.0 | 16.4 | 16.2 |
| 223.0 | 16.4 | 16.1 |
| 224.0 | 16.2 | 16.1 |
| 225.0 | 16.2 | 15.9 |
| 226.0 | 16.0 | 16.0 |
| 227.0 | 16.1 | 16.0 |
| 228.0 | 16.1 | 15.9 |
| 229.0 | 16.0 | 15.8 |
| 230.0 | 16.1 | 15.7 |
| 231.0 | 16.1 | 15.7 |
| 232.0 | 16.2 | 15.7 |
| 233.0 | 16.2 | 15.6 |

|       |      |      |
|-------|------|------|
| 234.0 | 16.3 | 15.7 |
| 235.0 | 16.3 | 15.6 |
| 236.0 | 16.5 | 15.7 |
| 237.0 | 16.6 | 15.7 |
| 238.0 | 16.6 | 15.7 |
| 239.0 | 16.6 | 15.7 |
| 240.0 | 16.7 | 15.7 |
| 241.0 | 16.7 | 15.8 |
| 242.0 | 16.8 | 15.9 |
| 243.0 | 16.8 | 15.9 |
| 244.0 | 16.9 | 16.0 |
| 245.0 | 17.0 | 16.0 |
| 246.0 | 17.0 | 16.1 |
| 247.0 | 17.2 | 16.2 |
| 248.0 | 17.2 | 16.3 |
| 249.0 | 17.4 | 16.4 |
| 250.0 | 17.4 | 16.5 |
| 251.0 | 17.5 | 16.6 |
| 252.0 | 17.5 | 16.7 |
| 253.0 | 17.5 | 16.8 |
| 254.0 | 17.5 | 17.0 |
| 255.0 | 17.5 | 17.1 |
| 256.0 | 17.6 | 17.3 |

|       |      |      |
|-------|------|------|
| 257.0 | 17.7 | 17.4 |
| 258.0 | 17.9 | 17.5 |
| 259.0 | 18.1 | 17.6 |
| 260.0 | 18.2 | 17.7 |
| 261.0 | 18.4 | 17.9 |
| 262.0 | 18.5 | 18.0 |
| 263.0 | 18.5 | 18.1 |
| 264.0 | 18.6 | 18.3 |
| 265.0 | 18.6 | 18.4 |
| 266.0 | 18.6 | 18.6 |
| 267.0 | 18.7 | 18.7 |
| 268.0 | 18.7 | 18.8 |
| 269.0 | 18.7 | 19.0 |
| 270.0 | 18.8 | 19.1 |
| 271.0 | 18.9 | 19.2 |
| 272.0 | 18.9 | 19.3 |
| 273.0 | 19.1 | 19.4 |
| 274.0 | 19.2 | 19.5 |
| 275.0 | 19.3 | 19.5 |
| 276.0 | 19.4 | 19.6 |
| 277.0 | 19.5 | 19.7 |
| 278.0 | 19.6 | 19.7 |
| 279.0 | 19.8 | 19.8 |

|       |      |      |
|-------|------|------|
| 280.0 | 19.9 | 19.9 |
| 281.0 | 20.1 | 20.0 |
| 282.0 | 20.1 | 20.1 |
| 283.0 | 20.1 | 20.2 |
| 284.0 | 20.1 | 20.3 |
| 285.0 | 20.1 | 20.4 |
| 286.0 | 20.2 | 20.6 |
| 287.0 | 20.2 | 20.7 |
| 288.0 | 20.3 | 21.0 |
| 289.0 | 20.3 | 21.2 |
| 290.0 | 20.5 | 21.3 |
| 291.0 | 20.6 | 21.5 |
| 292.0 | 20.6 | 21.7 |
| 293.0 | 20.6 | 21.8 |
| 294.0 | 20.7 | 21.8 |
| 295.0 | 20.6 | 21.9 |
| 296.0 | 20.6 | 22.0 |
| 297.0 | 20.7 | 22.1 |
| 298.0 | 20.7 | 22.2 |
| 299.0 | 20.8 | 22.3 |
| 300.0 | 20.8 | 22.4 |

Customer Name: Tyco Safety Products - Sensormatic

Antenna Manufacturer: EMCO

Antenna Model: 3146 – Log periodic

Antenna Serial No.: 9303-3576

Temperature (Deg C). 3

Humidity (%). 65

Measurement Distance in Meters = 3

Antenna Polarization = VERT / HORZ

CAL CERT #: 2009033116

| Freq<br>(MHz) | Vert<br>ACF<br>(dB) | Horz<br>ACF<br>(dB) |
|---------------|---------------------|---------------------|
| 200.0         | 11.7                | 12.1                |
| 205.0         | 11.6                | 12.1                |
| 210.0         | 11.7                | 11.9                |
| 215.0         | 11.6                | 11.7                |
| 220.0         | 11.5                | 11.5                |
| 225.0         | 11.2                | 11.4                |
| 230.0         | 11.1                | 11.4                |
| 235.0         | 11.5                | 11.6                |
| 240.0         | 11.8                | 11.9                |
| 245.0         | 12.2                | 12.1                |
| 250.0         | 12.6                | 12.4                |
| 255.0         | 12.6                | 12.6                |
| 260.0         | 12.8                | 13.0                |
| 265.0         | 12.9                | 13.2                |
| 270.0         | 13.0                | 13.5                |
| 275.0         | 13.3                | 13.6                |
| 280.0         | 13.6                | 13.7                |
| 285.0         | 13.9                | 13.8                |
| 290.0         | 14.1                | 14.0                |
| 295.0         | 14.1                | 14.1                |
| 300.0         | 14.2                | 14.3                |
| 305.0         | 14.5                | 14.8                |
| 310.0         | 14.8                | 15.2                |
| 315.0         | 14.8                | 15.1                |
| 320.0         | 14.7                | 14.8                |
| 325.0         | 14.7                | 14.6                |
| 330.0         | 14.6                | 14.6                |
| 335.0         | 14.3                | 14.7                |
| 340.0         | 14.1                | 14.9                |
| 345.0         | 14.2                | 14.9                |
| 350.0         | 14.5                | 14.9                |
| 355.0         | 14.8                | 14.8                |
| 360.0         | 15.0                | 14.9                |
| 365.0         | 15.3                | 15.0                |
| 370.0         | 15.2                | 15.1                |
| 375.0         | 15.1                | 15.2                |
| 380.0         | 15.0                | 15.3                |
| 385.0         | 15.4                | 15.5                |
| 390.0         | 15.7                | 15.8                |
| 395.0         | 15.5                | 15.9                |
| 400.0         | 15.4                | 16.1                |
| 405.0         | 15.5                | 16.0                |
| 410.0         | 15.7                | 15.9                |
| 415.0         | 16.0                | 16.1                |

|       |      |      |
|-------|------|------|
| 420.0 | 16.0 | 16.2 |
| 425.0 | 15.9 | 16.4 |
| 430.0 | 15.8 | 16.5 |
| 435.0 | 15.9 | 16.5 |
| 440.0 | 16.1 | 16.4 |
| 445.0 | 16.4 | 16.5 |
| 450.0 | 16.7 | 16.7 |
| 455.0 | 16.9 | 16.9 |
| 460.0 | 16.9 | 17.2 |
| 465.0 | 16.9 | 17.3 |
| 470.0 | 16.9 | 17.3 |
| 475.0 | 17.1 | 17.4 |
| 480.0 | 17.2 | 17.4 |
| 485.0 | 17.5 | 17.5 |
| 490.0 | 17.7 | 17.6 |
| 495.0 | 17.9 | 17.9 |
| 500.0 | 17.9 | 17.9 |
| 505.0 | 18.0 | 18.2 |
| 510.0 | 18.3 | 18.6 |
| 515.0 | 18.5 | 19.0 |
| 520.0 | 18.3 | 18.8 |
| 525.0 | 18.0 | 18.6 |
| 530.0 | 17.7 | 18.5 |
| 535.0 | 17.6 | 18.6 |
| 540.0 | 17.6 | 18.4 |
| 545.0 | 17.9 | 18.3 |
| 550.0 | 18.2 | 18.3 |
| 555.0 | 18.3 | 18.6 |
| 560.0 | 18.2 | 18.7 |
| 565.0 | 18.1 | 18.8 |
| 570.0 | 18.0 | 18.9 |
| 575.0 | 18.2 | 18.7 |
| 580.0 | 18.4 | 18.6 |
| 585.0 | 18.7 | 18.8 |
| 590.0 | 18.8 | 19.1 |
| 595.0 | 18.7 | 19.2 |
| 600.0 | 18.7 | 19.2 |
| 605.0 | 18.7 | 19.1 |
| 610.0 | 18.8 | 19.3 |
| 615.0 | 19.0 | 19.5 |
| 620.0 | 19.2 | 19.4 |
| 625.0 | 19.4 | 19.4 |
| 630.0 | 19.2 | 19.4 |
| 635.0 | 19.2 | 19.4 |
| 640.0 | 19.5 | 19.7 |
| 645.0 | 19.7 | 19.9 |
| 650.0 | 19.9 | 20.0 |

|       |      |      |
|-------|------|------|
| 655.0 | 20.1 | 20.1 |
| 660.0 | 20.3 | 20.3 |
| 665.0 | 20.4 | 20.4 |
| 670.0 | 20.5 | 20.6 |
| 675.0 | 20.5 | 20.7 |
| 680.0 | 20.5 | 20.9 |
| 685.0 | 20.4 | 20.9 |
| 690.0 | 20.4 | 21.1 |
| 695.0 | 20.4 | 21.0 |
| 700.0 | 20.5 | 21.0 |
| 705.0 | 20.6 | 21.0 |
| 710.0 | 20.5 | 21.0 |
| 715.0 | 20.5 | 21.0 |
| 720.0 | 20.5 | 21.2 |
| 725.0 | 20.7 | 21.3 |
| 730.0 | 20.7 | 21.2 |
| 735.0 | 20.7 | 21.2 |
| 740.0 | 20.6 | 21.1 |
| 745.0 | 20.6 | 21.2 |
| 750.0 | 20.6 | 21.4 |
| 755.0 | 20.6 | 21.4 |
| 760.0 | 20.7 | 21.3 |
| 765.0 | 20.7 | 21.4 |
| 770.0 | 20.7 | 21.4 |
| 775.0 | 20.7 | 21.4 |
| 780.0 | 20.7 | 21.4 |
| 785.0 | 20.7 | 21.4 |
| 790.0 | 20.8 | 21.5 |
| 795.0 | 20.9 | 21.6 |
| 800.0 | 21.1 | 21.6 |
| 805.0 | 21.0 | 21.7 |
| 810.0 | 21.1 | 21.7 |
| 815.0 | 21.1 | 21.8 |
| 820.0 | 21.3 | 22.0 |
| 825.0 | 21.4 | 22.1 |
| 830.0 | 21.5 | 22.1 |
| 835.0 | 21.6 | 22.2 |
| 840.0 | 21.7 | 22.3 |
| 845.0 | 21.7 | 22.4 |
| 850.0 | 21.8 | 22.4 |
| 855.0 | 21.9 | 22.5 |
| 860.0 | 22.2 | 22.7 |
| 865.0 | 22.4 | 22.9 |
| 870.0 | 22.5 | 23.0 |
| 875.0 | 22.6 | 23.1 |
| 880.0 | 22.6 | 23.1 |
| 885.0 | 22.5 | 23.2 |

|        |      |      |
|--------|------|------|
| 890.0  | 22.6 | 23.1 |
| 895.0  | 22.6 | 23.1 |
| 900.0  | 22.7 | 23.3 |
| 905.0  | 22.7 | 23.3 |
| 910.0  | 22.8 | 23.3 |
| 915.0  | 22.8 | 23.2 |
| 920.0  | 22.6 | 23.3 |
| 925.0  | 22.6 | 23.4 |
| 930.0  | 22.6 | 23.4 |
| 935.0  | 22.7 | 23.4 |
| 940.0  | 22.7 | 23.5 |
| 945.0  | 22.7 | 23.6 |
| 950.0  | 22.6 | 23.5 |
| 955.0  | 22.7 | 23.6 |
| 960.0  | 22.9 | 23.7 |
| 965.0  | 22.9 | 23.9 |
| 970.0  | 23.1 | 23.8 |
| 975.0  | 23.1 | 23.8 |
| 980.0  | 23.1 | 23.9 |
| 985.0  | 23.2 | 23.9 |
| 990.0  | 23.3 | 24.1 |
| 995.0  | 23.5 | 24.4 |
| 1000.0 | 23.6 | 24.4 |

Customer Name: Tyco Safety Products - Sensormatic

Antenna Manufacturer: EMCO

Antenna Model: 3115 Horn

Antenna Serial No.: 3006

Temperature (Deg C): 20.0

Humidity (%): 37.0

Measurement Distance in Meters = 3.0

Antenna Polarization = VERT / HORZ

NOTES: Observed Pin Depth: -0.0003" from typical.

CAL CERT #: 2009033119

| Freq    | Vert<br>ACF | Horz<br>ACF |
|---------|-------------|-------------|
| (MHz)   | (dB)        | (dB)        |
| 1000.0  | 23.377      | 23.524      |
| 1500.0  | 25.067      | 25.087      |
| 2000.0  | 27.357      | 27.365      |
| 2500.0  | 29.000      | 29.024      |
| 3000.0  | 30.277      | 30.385      |
| 3500.0  | 31.557      | 31.512      |
| 4000.0  | 32.827      | 32.580      |
| 4500.0  | 32.593      | 32.499      |
| 5000.0  | 33.481      | 33.288      |
| 5500.0  | 34.467      | 34.421      |
| 6000.0  | 34.894      | 34.639      |
| 6500.0  | 34.730      | 34.612      |
| 7000.0  | 35.473      | 35.489      |
| 7500.0  | 36.832      | 36.780      |
| 8000.0  | 37.271      | 37.207      |
| 8500.0  | 37.649      | 37.600      |
| 9000.0  | 37.956      | 37.940      |
| 9500.0  | 37.858      | 37.743      |
| 10000.0 | 38.517      | 38.433      |
| 10500.0 | 38.992      | 39.004      |
| 11000.0 | 40.566      | 40.541      |
| 11500.0 | 39.704      | 39.684      |
| 12000.0 | 39.424      | 39.396      |
| 12500.0 | 38.797      | 38.822      |
| 13000.0 | 39.622      | 39.615      |
| 13500.0 | 40.408      | 40.394      |
| 14000.0 | 41.209      | 41.203      |
| 14500.0 | 41.665      | 41.584      |
| 15000.0 | 40.325      | 40.233      |
| 15500.0 | 38.024      | 38.049      |
| 16000.0 | 37.320      | 37.358      |
| 16500.0 | 38.400      | 38.340      |
| 17000.0 | 41.136      | 40.903      |
| 17500.0 | 42.866      | 42.522      |
| 18000.0 | 44.717      | 44.269      |