

Report Number: F690501/RF-RTL013638-1

Page: 48

TEST REPORT

of

FCC Part 22 Subpart H, Part 24 Subpart E, Part 27 Subpart C/L FCC ID: BEJTM05GTJN

Equipment Under Test : Car Telematics Device

: TA4HEB-N Model Name

: LG Electronics USA **Applicant**

: LG Electronics USA Manufacturer

Date of Receipt : 2018.08.01

: 2018.08.02 ~ 2019.03.22 Date of Test(s)

: 2019.04.12 Date of Issue

In the configuration tested, the EUT complied with the standards specified above.

Tested By: Date: 2019.04.12 **Technical** 2019.04.12 Date: Manager:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Hyunchae You

TABLE OF CONTENTS

	Page
1. General Information	3
2. RF radiated output power & spurious radiated emission	8
3. Conducted Output Power	17
4. Occupied Bandwidth 99 %	20
5. Peak-Average Ratio	26
6. Spurious Emissions At Antenna Terminal	32
7. Band Edge	41
8. Frequency Stability	45

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

+82 31 688 0901 Phone No. Fax No. +82 31 688 0921

1.2. Details of Applicant

Applicant LG Electronics USA

Address 1000 Sylvan Avenue, Englewood Cliffs, New Jersey, United States, 07632

Contact Person : Han, Kyung-su Phone No. +2 201 472 2623

1.3. Details of Manufacturer

: LG Electronics Inc. Company

Address 10, Magokjungang 10-ro, Gangseo-gu, Seoul, Korea, 07796

1.4. Description of EUT

Kind of Product	Car Telematics Device
Model Name	TA4HEB-N
Power Supply	DC 12 V
	GSM 850: 33 dB m
Rated Power	GSM 1 900: 30 dB m
Rated I Owel	WCDMA 2,4,5: 23 dB m
	LTE Band 2, 4, 5, 7, 12, 26: 23 dB m
	GSM 850: 824 Mb ~ 849 Mb
	GSM 1 900: 1 850 Mb ~ 1 910 Mb WCDMA 2: 1 850 Mb ~ 1 910 Mb
	WCDMA 4: 1 710 Mb ~ 1 755 Mb
	WCDMA 5: 824 Mtz ~ 849 Mtz
Frequency Range	LTE Band 2: 1 850 Mlz ~ 1 910 Mlz
Frequency Kange	LTE Band 4: 1 710 Mb ~ 1 755 Mb
	LTE Band 5: 824 Mb ~ 849 Mb
	LTE Band 7: 2 500 Mlz ~ 2 570 Mlz
	LTE Band 12: 699 Mb ~ 716 Mb
	LTE Band 26: 824 Mb ~ 849 Mb
	GSM 850: 243KGXW (Voice) / 245KG7W (EDGE)
	GSM 1900: 241KGXW (Voice) / 242KG7W (EDGE)
	WCDMA 2: 4M17F9W
	WCDMA 4: 4M14F9W WCDMA 5: 4M14F9W
	LTE Band 2 (1.4 Nb): 1M10G7D (QPSK) / 1M10W7D (16QAM)
	LTE Band 2 (3 Mb): 2M69G7D (QPSK) / 2M69W7D (16QAM)
	LTE Band 2 (5 Mb): 4M52G7D (QPSK) / 4M52W7D (16QAM)
	LTE Band 2 (10 Mb): 8M97G7D (QPSK) / 8M97W7D (16QAM)
	LTE Band 2 (15 吨): 13M5G7D (QPSK) / 13M5W7D (16QAM)
	LTE Band 2 (20 Mb): 18M0G7D (QPSK) / 17M9W7D (16QAM)
	LTE Band 4 (1.4 順): 1M10G7D (QPSK) / 1M10W7D (16QAM)
	LTE Band 4 (3 吨): 2M69G7D (QPSK) / 2M69W7D (16QAM)
	LTE Band 4 (5 Mb): 4M52G7D (QPSK) / 4M52W7D (16QAM)
	LTE Band 4 (10 Mb): 8M94G7D (QPSK) / 8M97W7D (16QAM)
	LTE Band 4 (15 Mb): 13M5G7D (QPSK) / 13M5W7D (16QAM)
Emission Designator	LTE Band 4 (20 Mb): 18M0G7D (QPSK) / 18M0W7D (16QAM)
Ellission Designator	LTE Band 5 (1.4 吨): 1M10G7D (QPSK) / 1M10W7D (16QAM) LTE Band 5 (3 吨): 2M69G7D (QPSK) / 2M69W7D (16QAM)
	LTE Band 5 (5 Mb): 4M52G7D (QPSK) / 4M52W7D (16QAM)
	LTE Band 5 (10 Mb): 8M97G7D (QPSK) / 8M97W7D (16QAM)
	LTE Band 7 (5 Mb): 4M52G7D (QPSK) / 4M52W7D (16QAM)
	LTE Band 7 (10 Mb): 8M94G7D (QPSK) / 8M94W7D (16QAM)
	LTE Band 7 (15 Mb): 13M5G7D (QPSK) / 13M5W7D (16QAM)
	LTE Band 7 (20 Mb): 17M9G7D (QPSK) / 18M0W7D (16QAM)
	LTE Band 12 (1.4 舢): 1M10G7D (QPSK) / 1M10W7D (16QAM)
	LTE Band 12 (3 M位): 2M69G7D (QPSK) / 2M69W7D (16QAM)
	LTE Band 12 (5 吨): 4M52G7D (QPSK) / 4M52W7D (16QAM)
	LTE Band 12 (10 吨): 8M97G7D (QPSK) / 8M94W7D (16QAM)
	LTE Band 26 (1.4 舢): 1M10G7D (QPSK) / 1M10W7D (16QAM)
	LTE Band 26 (3 Mb): 2M69G7D (QPSK) / 2M69W7D (16QAM)
	LTE Band 26 (5 Mb): 4M53G7D (QPSK) / 4M52W7D (16QAM)
	LTE Band 26 (10 Mb): 8M97G7D (QPSK) / 8M97W7D (16QAM)
	LTE Band 26 (15 吨): 13M5G7D (QPSK) / 13M5W7D (16QAM)

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due.
Signal Generator	Agilent	E8257D	MY51501169	Jul. 03, 2018	Annual	Jul. 03, 2019
Spectrum Analyzer	R&S	FSV30	103102	Jun. 11, 2018	Annual	Jun. 11, 2019
Mobile Test Unit	R&S	CMW500	144035	Feb. 19, 2019	Annual	Feb. 19, 2020
Power Meter	Anritsu	ML2495A	1223004	Jun. 12, 2018	Annual	Jun. 12, 2019
Power Sensor	Anritsu	MA2411B	1207272	Jun. 12, 2018	Annual	Jun. 12, 2019
Directional Coupler	KRYTAR	152613	140972	Jun. 14, 2018	Annual	Jun. 14, 2019
Temperature Chamber	ESPEC CORP.	PL-1J	15000793	Jun. 14, 2018	Annual	Jun. 14, 2019
High Pass Filter	Wainwright Instrument GmbH	WHKX10-900-1000-180 00-40SS	7	Mar. 12, 2019	Annual	Mar. 12, 2020
High Pass Filter	Wainwright Instrument GmbH	WHKX2.2/12.75G-10SS	8	Mar. 12, 2019	Annual	Mar. 12, 2020
DC Power Supply	R&S	HMP2020	019258024	Nov. 06, 2018	Annual	Nov. 06, 2019
Preamplifier	H.P.	8447F	2944A03909	Aug. 07, 2018	Annual	Aug. 07, 2019
Preamplifier	Agilent	8449B	3008A01932	Feb. 22, 2019	Annual	Feb. 22, 2020
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 13, 2018	Annual	May 13, 2019
Test Receiver	R&S	ESU26	100109	Jan. 31, 2019	Annual	Jan. 31, 2020
Loop Antenna	SCHWARZBECK MESSELEKTRONIK	FMZB 1519	1519-039	Aug. 23, 2017	Biennial	Aug. 23, 2019
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	01126	Mar. 26, 2018	Biennial	Mar. 26, 2020
Horn Antenna	R&S	HF906	100326	Feb. 14, 2018	Biennial	Feb. 14, 2020
Horn Antenna	SCHWARZBECK MESSELEKTRONIK	BBHA9170	BBHA9170223	Sep. 10, 2018	Biennial	Sep. 10, 2020
Antenna Master	Innco systems GmbH	MM4000	N/A	N.C.R.	N/A	N.C.R.
Turn Table	Innco systems GmbH	DS 1200S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.4 m)	N/A	N.C.R.	N/A	N.C.R.

▶ Support Equipment

Description	Manufacturer	Model	Serial Number
N/A	-	-	-

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 2, 22, 24 and 27							
Section	Test Item	Result					
§2.1046 §22.913(a)(5) §24.232(c) §27.50(d)(4)	RF Radiated Output Power	Complied					
§22.917(a) §24.238(a) §27.53(h)(1)	Spurious Radiated Emission	Complied					
§2.1046	Conducted Output Power	Complied					
§2.1049	Occupied Bandwidth	Complied					
§22.913(d) §24.232(d) §27.50(d)(5)	Peak-Average Ratio	Complied					
§22.917(a) §24.238(a) §27.53(h)(1)	Spurious Emission at Antenna Terminal	Complied					
§22.917(a) §24.238(a) §27.53(h)(1)	Band Edge	Complied					
§2.1055 §22.355 §24.235 §27.54	Frequency Stability	Complied					

1.7. Test Report Revision

Revision	Report number	Date of Issue	Description	
0	F690501/RF-RTL013638	2019.03.28	Initial	
1	F690501/RF-RTL013638-1	2019.04.12	Deleted IC standards	

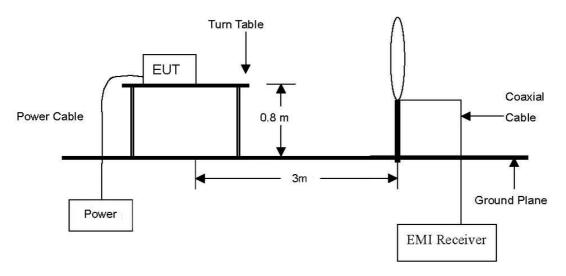
1.8. Sample Calculation for Offset

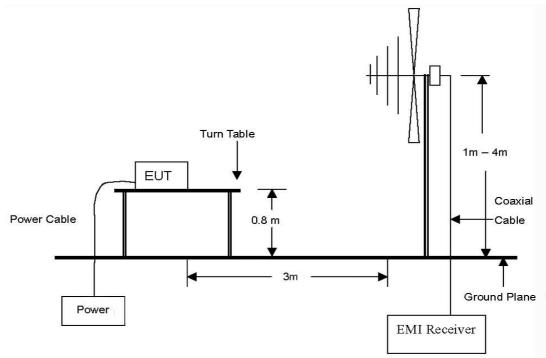
Where relevant, the following sample calculation is provided:

1.8.1. Conducted Test

Offset value (dB) = Directional Coupler (dB) + Cable loss (dB)

1.8.2. Radiation Test

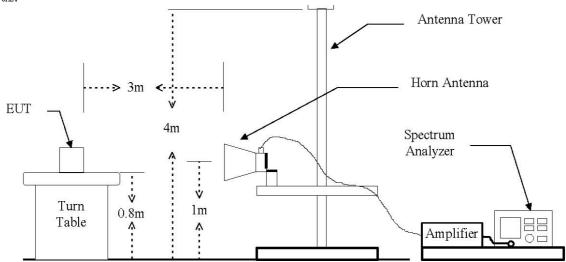

E.R.P. = [S.G level + Amp.] (dB m) - Cable loss (dB) + Ant. gain (dB d)


2. RF Radiated Output Power & Spurious Radiated Emission

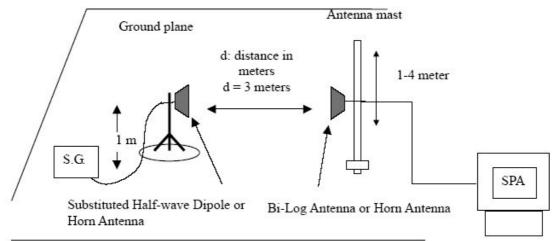
2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 klb to 30 Mb emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\mathrm{Mz}$ to 1 $\,\mathrm{GHz}$.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \times to 20 \times .

The diagram below shows the test setup for substituted method.

2.2. Limit

2.2.1. Limit of radiated output power

- §22.913(a)(5), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.
- §24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means to limiting power to the minimum necessary for successful communications.
- §27.50(d)(4), fixed, mobile, and portable (hand-held) stations operating in the 1 710-1 755 Mb band and mobile and portable stations operating in the 1 695-1 710 Mb and 1 755-1 780 Mb bands are limited to 1 watt EIRP.

2.2.2. Limit of spurious radiated emission

- §22.917(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.
- §24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- $\frac{-\$27.53(h)(1)}{1}$, for operations in the 1 695-1 710 Mb, 1 710-1 755 Mb, 1 755-1 780 Mb, 1 915-1 920 Mb, 1 995-2 000 Mb, 2 000-2 020 Mb, 2 110-2 155 Mb, 2 155-2 180 Mb, and 2 180-2 200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.

2.3. Test procedure: Based on ANSI/TIA 603E: 2016

- 1. On a test site, the EUT shall be placed at 80 cm height on a turn table, and in the position close to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions occupied bandwidth, RBW = 1-5 % of the OBW (not to exceed 1 Mb), VBW ≥ 3 x RBW. Detector = power averaging (rms), sweep time = auto, trace average at least 100 traces in power averaging (rms) mode, per the guidelines of KDB 971168 D01 v03r01.
- 5. Radiated spurious emissions measurement method was set as follows: RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz, VBW ≥ 3 x RBW, Detector = Peak, trace mode = max hold, per the guidelines of KDB 971168 D01 v03r01.
- 6. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 7. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 8. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 9. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 10. The maximum signal level detected by the measuring receiver shall be noted.
- 11. The EUT was replaced by half-wave dipole (1 🖫 below) or horn antenna (1 🖫 above) connected to a signal generator.
- 12. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 15. The input level to the substitution antenna shall be recorded as power level in dB m, corrected for any change of input attenuator setting of the measuring receiver.
- 16. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

2.4. Test result for RF radiated output power

Ambient temperature : **(23** ± **1)** ℃ Relative humidity : 47 % R.H.

WCDMA 2

Frequency	Ant. Pol.	S.G level	Cable loss	Ant. gain	E.I.R.P.		
(MHz)	(H/V)	+ Amp. (dB m)). (dB) (dB i)		(dB m)	(mW)	
1 852.40	Н	12.59	4.33	8.54	16.80	47.86	
1 852.40	V	15.29	4.33	8.54	19.50	89.13	
1 880.00	Н	13.47	4.34	8.63	17.76	59.70	
1 880.00	V	16.52	4.34	8.63	20.81	120.50	
1 907.60	Н	13.38	4.36	8.62	17.64	58.08	
1 907.60	V	13.68	4.36	8.62	17.94	62.23	

WCDMA 4

Frequency	Ant. Pol.	S.G level	Cable loss	Ant. gain	E.I.R.P.		
(MHz)	(H/V)	+ Amp. (dB)		(dB i)	(dB m)	(Wm)	
1 712.40	Н	10.60	4.14	8.51	14.97	31.41	
1 712.40	V	14.28	4.14	8.51	18.65	73.28	
1 732.60	Н	10.39	4.18	8.48	14.69	29.44	
1 732.60	V	14.80	4.18	8.48	19.10	81.28	
1 752.60	Н	10.09	4.21	8.44	14.32	27.04	
1 752.60	V	15.84	4.21	8.44	20.07	101.62	

WCDMA 5

Frequency	Ant. Pol.	S.G level	Cable loss	Ant. gain	E.R.P.		
(MHz)	(H/V)	+ Amp. (dB m)	(dB)	(dB d)	(dB m)	(mW)	
826.40	Н	22.78	3.31	-5.18	14.29	26.85	
826.40	V	25.31	3.31	-5.18	16.82	48.08	
836.60	Н	22.47	3.45	-5.14	13.88	24.43	
836.60	V	26.06	3.45	-5.14	17.47	55.85	
846.60	Н	22.68	3.51	-4.25	14.92	31.05	
846.60	V	25.57	3.51	-4.25	17.81	60.39	

Remark;

1. E.R.P. & E.I.R.P. = [S.G level + Amp.] (dB m) - Cable loss (dB) + Ant. gain (dB d/dB i)

2.5. Spurious radiated emission

- Measured output Power: 20.81 dB m = 0.1205 W

- Modulation Signal: WCDMA 2

- Distance: 3 meters

- Limit: $43 + 10 \log_{10}(W) = 33.81 \text{ dB c}$

Frequency (Mb)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB i)	E.I.R.P. (dB m)	Limit (dB m)	Margin (dB)			
Low Channe	Low Channel (1 852.4 吨)									
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			
Middle Chan	nel (1 880.0 l	Mz)								
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			
High Channe	High Channel (1 907.6 ଐ₺)									
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			

- Measured output Power: 20.07 dB m = 0.101 6 W

- Modulation Signal: WCDMA 4

- Distance: 3 meters

- Limit: $43 + 10 \log_{10}(W) = 33.07 \text{ dB c}$

Frequency (脈)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB i)	E.I.R.P. (dB m)	Limit (dB m)	Margin (dB)			
Low Channe	Low Channel (1 712.4 Mb)									
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			
Middle Chan	nel (1 732.6 l	Hz)								
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			
High Channe	High Channel (1 752.6 №z)									
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			

- Measured output Power: 17.81 dB m = 0.060 4 W

- Modulation Signal: WCDMA 5

- Distance: 3 meters

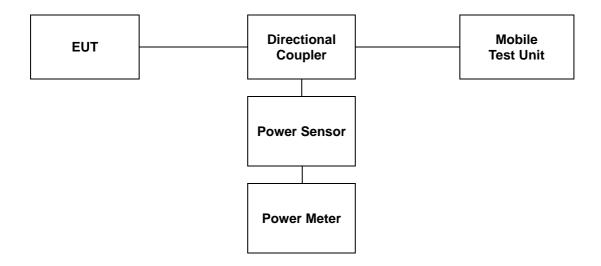
- Limit: $43 + 10 \log_{10}(W) = 30.81 \text{ dB c}$

Frequency (Mb)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB d)	E.R.P. (dB m)	Limit (dB m)	Margin (dB)			
Low Channe	Low Channel (826.4 Mb)									
Below 1 000.00	-	-	-	-	Not detected	-	-			
Above 1 000.00	-	-	-	-	Not detected	-	-			
Middle Chan	nel (836.6 Mb))								
2 512.14	Н	-48.02	4.83	6.96	-45.89	-13	32.89			
2 513.40	V	-53.26	4.83	6.96	-51.13	-13	38.13			
High Channe	High Channel (846.6 №)									
2 536.15	Н	-46.41	4.86	6.91	-44.36	-13	31.36			
2 536.34	V	-51.05	4.86	6.91	-49.00	-13	36.00			

Remark;

1. E.R.P. & E.I.R.P. = S.G level (dB m) - Cable loss (dB) + Ant. gain (dB d/dB i)

3. Conducted Output Power


3.1. **Limit**

CFR 47, Section FCC §2.1046.

3.2. Test Procedure

Output power shall be measured at the RF output terminals for all configurations.

- 1. The RF output of the transmitter was connected to the input of the mobile test unit in order to establish communication with the EUT.
- 2. The EUT was set up for the max. output power with pseudo random data modulation by using mobile test unit parameters.
- 3. The measurement performed using a wideband RF power meter.
- 4. This EUT was tested under all configurations and the highest power was investigated and reported.

3.3. Test Result

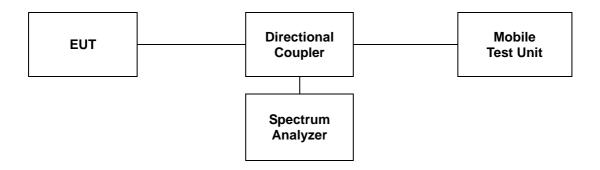
Ambient temperature : **(23** ± **1)** ℃ Relative humidity : 47 % R.H.

Band	3GPP Release Version	Channel		9262	9400	9538
Ballu		Frequency (쌘)		1 852.4	1 880.0	1 907.6
	99	WCDMA	RMC	22.69	22.65	22.78
	5	HSDPA	Subtest 1	21.60	21.60	21.74
2	5		Subtest 2	21.60	21.62	21.76
	5		Subtest 3	21.20	21.17	21.29
	5		Subtest 4	21.20	21.16	21.28
	6	HSUPA	Subtest 1	21.68	21.66	21.75
	6		Subtest 2	19.70	19.67	19.78
	6		Subtest 3	20.67	20.71	20.73
	6		Subtest 4	19.76	19.62	19.79
	6		Subtest 5	21.67	21.53	21.79

Donal	3GPP Release Version	Channel		1312	1413	1513
Band		Frequency (Mb)		1 712.4	1 732.6	1 752.6
	99	WCDMA	RMC	22.66	22.52	22.52
	5	- HSDPA	Subtest 1	21.61	21.45	21.47
4	5		Subtest 2	21.61	21.48	21.48
	5		Subtest 3	21.16	21.00	21.01
	5		Subtest 4	21.15	20.99	21.01
	6	HSUPA	Subtest 1	21.66	21.43	21.53
	6		Subtest 2	19.60	19.52	19.59
	6		Subtest 3	20.63	20.46	20.52
	6		Subtest 4	19.69	19.56	19.51
	6		Subtest 5	21.46	21.50	21.51

Band	3GPP Release Version	Channel		4132	4182	4233
		Frequency (舢)		826.4	836.6	846.6
	99	WCDMA	RMC	22.29	22.36	22.45
	5	- HSDPA	Subtest 1	21.25	21.32	21.39
5	5		Subtest 2	21.24	21.31	21.38
	5		Subtest 3	20.73	20.87	20.90
	5		Subtest 4	20.75	20.82	20.93
	6	HSUPA	Subtest 1	21.18	21.31	21.40
	6		Subtest 2	19.22	19.34	19.38
	6		Subtest 3	20.23	20.26	20.39
	6		Subtest 4	19.23	19.32	19.31
	6		Subtest 5	21.20	21.29	21.30

4. Occupied Bandwidth 99 %


4.1. Limit

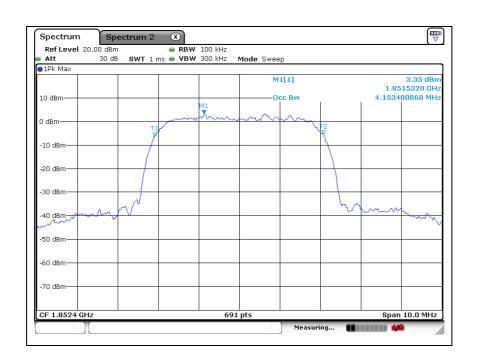
CFR 47, Section FCC §2.1049

4.2. Test Procedure

The test follows section 4.2 of FCC KDB Publication 971168 D01 v03r01.

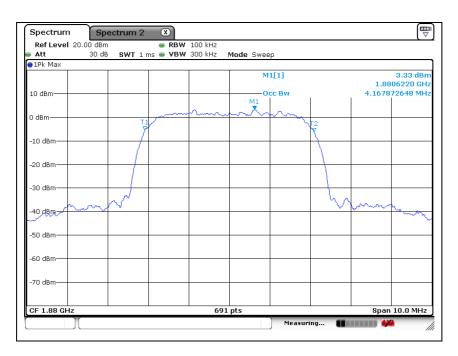
- a. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation. products including the emission skirts (typically a span of 1.5 x OBW is sufficient).
- b. The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be set \geq 3 × RBW.
- c. Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
- d. Set the detection mode to peak, and the trace mode to max-hold.
- e. If the instrument does not have a 99 % OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5 % of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5 % of the total is reached and record that frequency as the upper OBW frequency. The 99 % power OBW can be determined by computing the difference these two frequencies.
- f. The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

4.3 Test Results

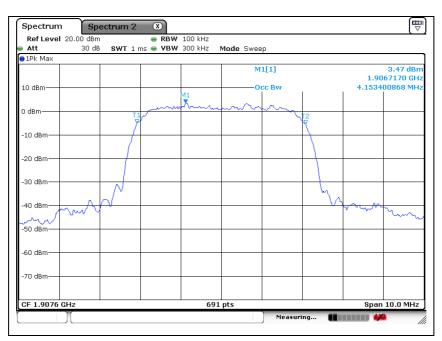

Ambient temperature : **(23** ± 1) ℃ Relative humidity : 47 % R.H.

- WCDMA

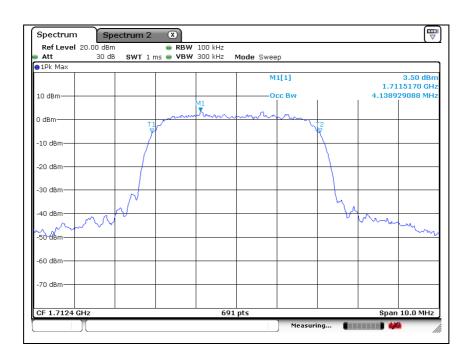
Band	Mode	Frequency (쌘)	Occupied Bandwidth (咃)
		1 852.4	4.153
2	RMC	1 880.0	4.168
		1 907.6	4.153
		1 712.4	4.139
4	RMC	1 732.6	4.139
		1 752.6	4.139
		826.4	4.139
5	RMC	836.6	4.139
		846.6	4.124


WCDMA 2

Low Channel



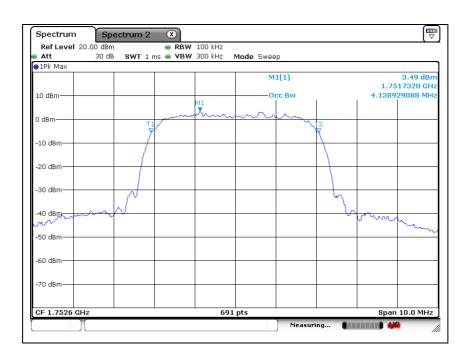
Middle Channel


High Channel

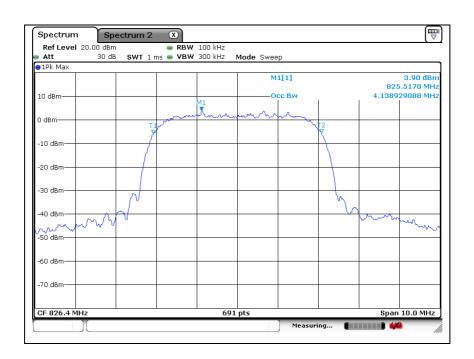


WCDMA 4

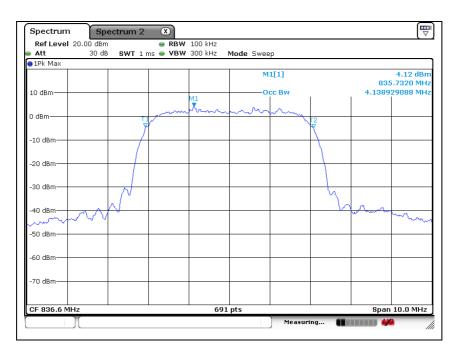
Low Channel



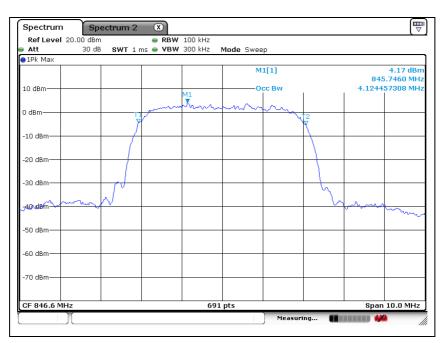
Middle Channel



High Channel


WCDMA 5

Low Channel



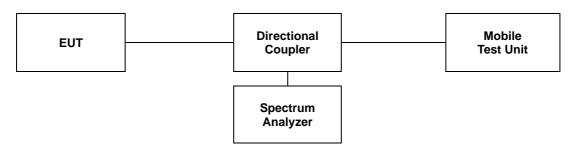
Middle Channel

High Channel

5. Peak-Average Ratio

5.1. Limit

- §22.913(d) Measurement of the ERP of Cellular base transmitters and repeaters must be made using an average power measurement technique. The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.


- §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.
- §27.50(d)(5), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

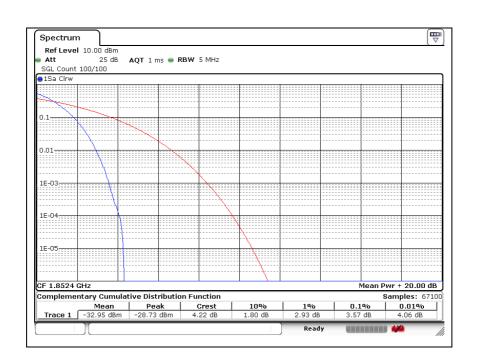
5.2. Test Procedure

The test follows section 5.7.2 of FCC KDB Publication 971168 D01 v03r01.

See instrumentation-specific application literature for further guidance regarding use of the CCDF capability. The following guidelines are offered for performing a CCDF measurement.

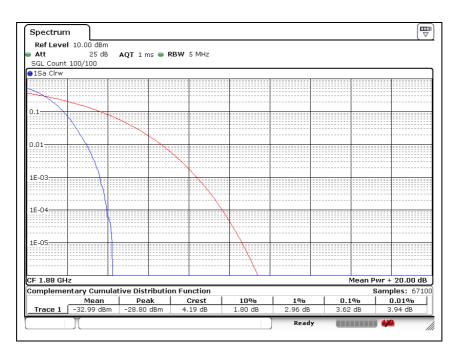
- a. Set resolution/measurement bandwidth ≥ OBW or specified reference bandwidth.
- b. Set the number of counts to a value that stabilizes the measured CCDF curve.
- c. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to greater of [10 x (number of points in sweep) x (transmission symbol period)] or 1 ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
 - 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- d. Record the maximum PAPR level associated with a probability of 0.1 %.
- e. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

5.3 Test Results

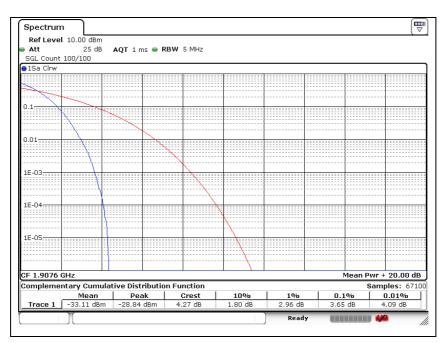

Ambient temperature : **(23** ± 1) ℃ Relative humidity : 47 % R.H.

- WCDMA

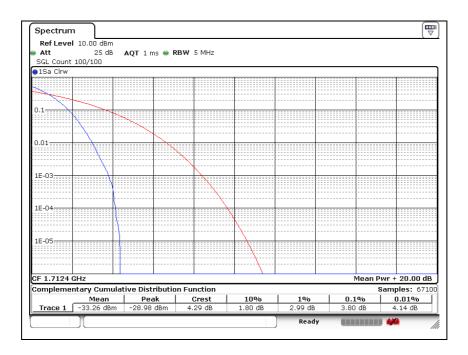
Band	Mode	Frequency (쌘)	PAR (dB)
		1 852.4	3.57
2	RMC	1 880.0	3.62
		1 907.6	3.65
		1 712.4	3.80
4	RMC	1 732.6	3.57
		1 752.6	3.57
		826.4	3.59
5	RMC	836.6	3.59
		846.6	3.48

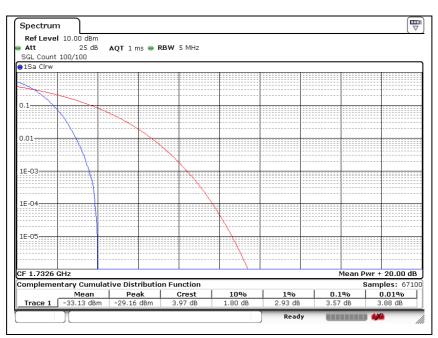

WCDMA 2

Low Channel



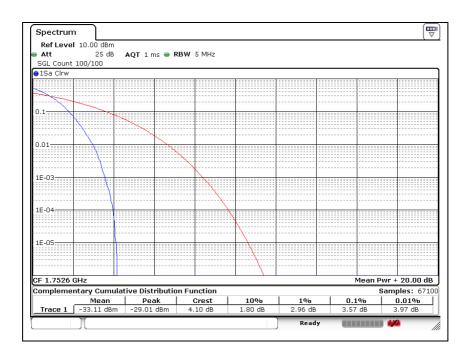
Middle Channel


High Channel

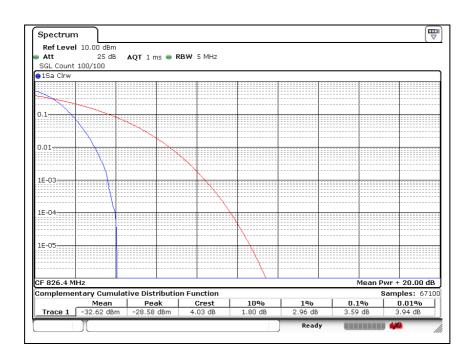


WCDMA 4

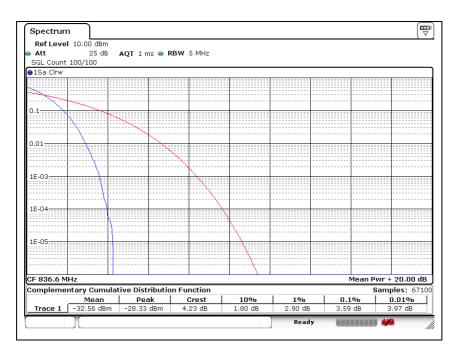
Low Channel



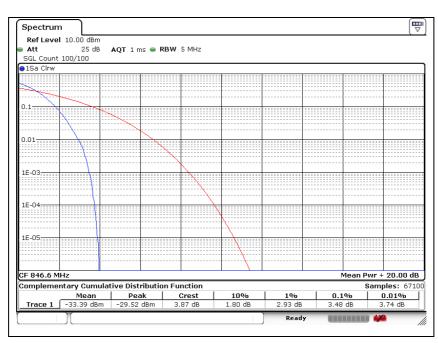
Middle Channel



High Channel


WCDMA 5

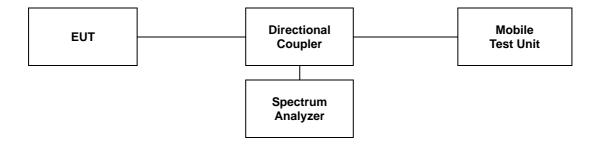
Low Channel



Middle Channel

High Channel

6. Spurious Emissions at Antenna Terminal


6.1. Limit

- §22.917(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.
- §24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- §27.53(h)(1), for operations in the 1 695-1 710 Mb, 1 710-1 755 Mb, 1 755-1 780 Mb, 1 915-1 920 Mb, 1 995-2 000 Mb, 2 000-2 020 Mb, 2 110-2 155 Mb, 2 155-2 180 Mb, and 2 180-2 200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P) dB$.

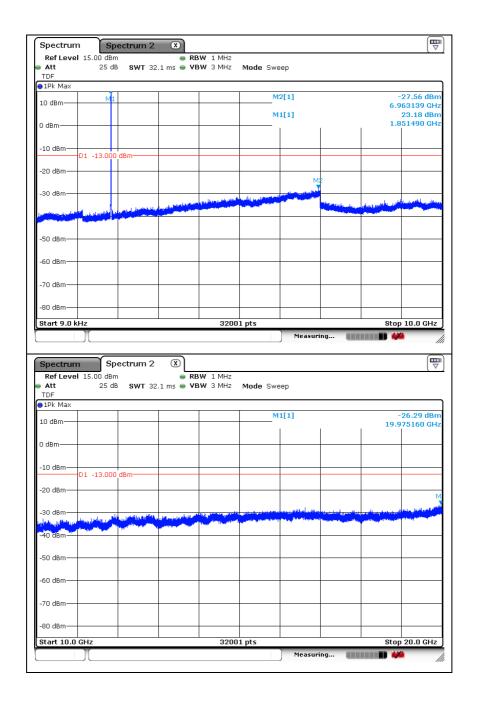
6.2. Test Procedure

The test follows section 6 of FCC KDB Publication 971168 D01 v03r01.

- 1. Start frequency was set to 9 klb and stop frequency was set to at least 10* the fundamental frequency.
- 2. Detector = Peak.
- 3. Trace mode = Max hold.
- 4. Sweep time = Auto couple.
- 5. The trace was allowed to stabilize.
- 6. Please see notes below for RBW and VBW settings.
- 7. For plots showing conducted spurious emissions from 9 klb to 9 Glb, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as correction factor.

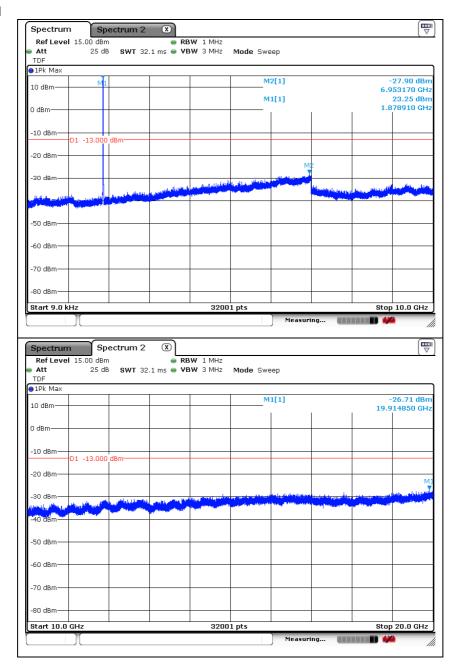
Note;

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 klb or greater for frequencies less than 1 Glb and frequencies greater than 1 Glb. However, in the 1 Mb bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two point, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

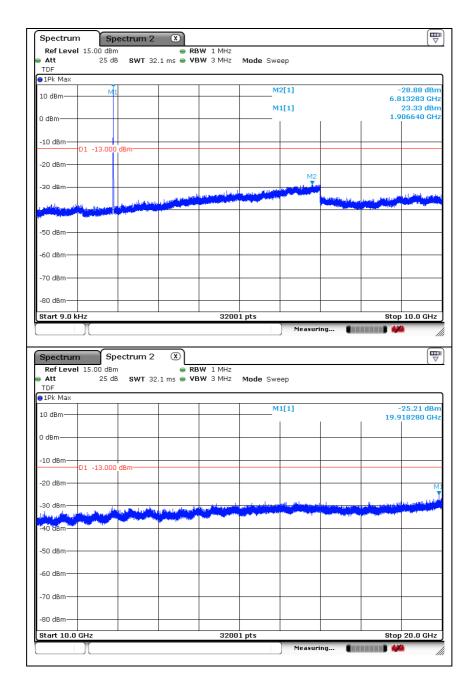


6.3. Test Results

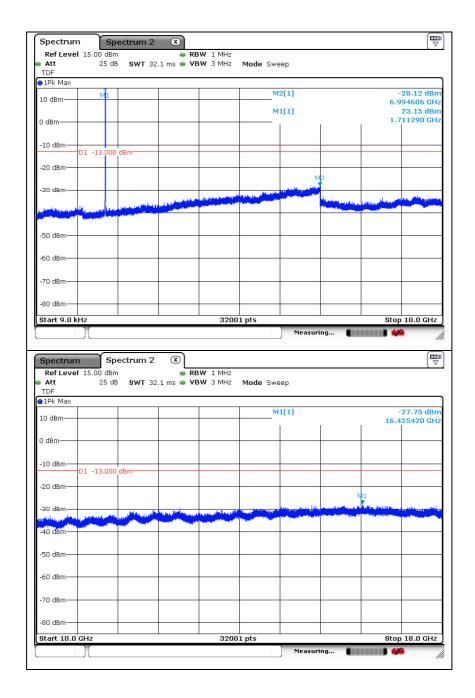
Ambient temperature : **(23** ± 1) ℃ Relative humidity : 47 % R.H.


WCDMA 2

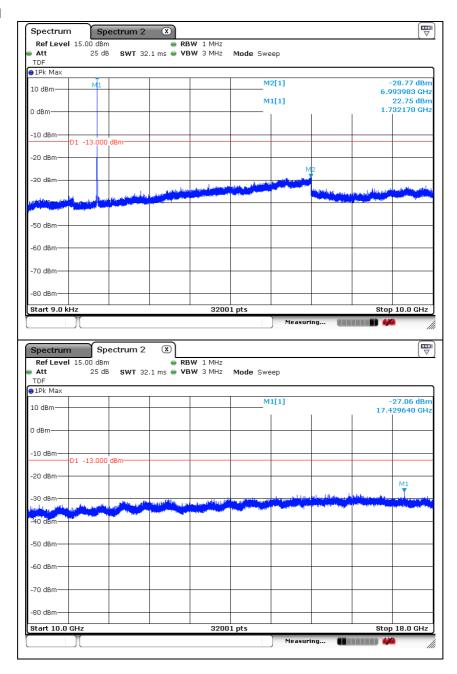
Low Channel



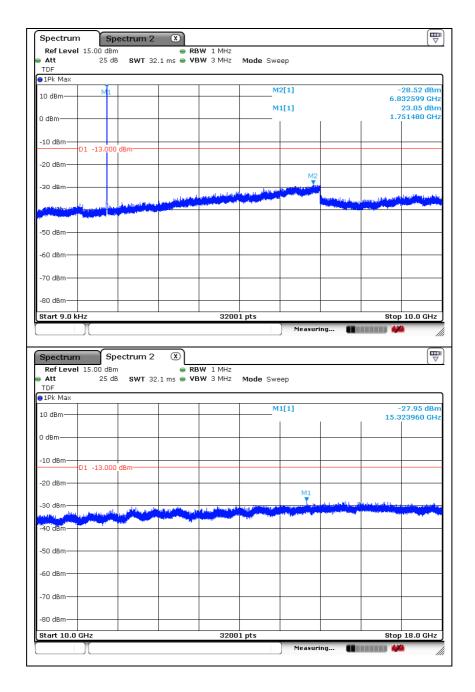
Middle Channel


High Channel

WCDMA 4

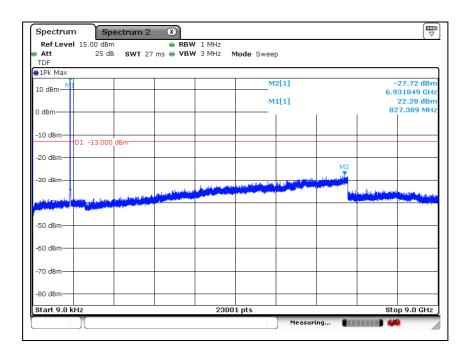

Low Channel

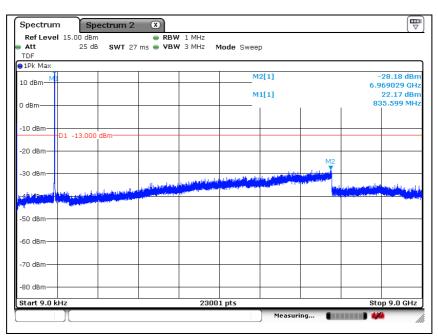
Report Number: F690501/RF-RTL013638-1 Page: of 48 37


Middle Channel

Report Number: F690501/RF-RTL013638-1 Page: of 48 38

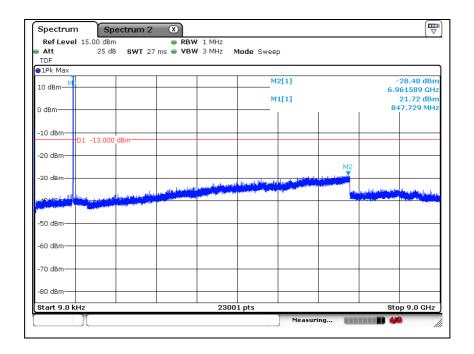
High Channel




Report Number: F690501/RF-RTL013638-1 Page: 48 39 of

WCDMA 5

Low Channel

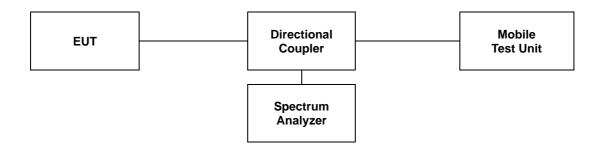

Middle Channel

Report Number: F690501/RF-RTL013638-1 Page: 40 of 48

High Channel

Report Number: F690501/RF-RTL013638-1 Page: of 48

7. Band Edge

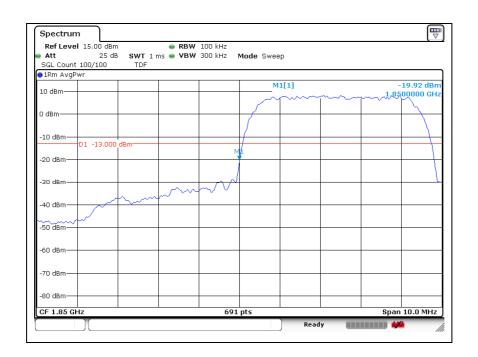

7.1. Limit

- <u>\$22.917(a)</u>, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.
- <u>\$24.238(a)</u>, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- \$27.53(h)(1), for operations in the 1 695-1 710 MHz, 1 710-1 755 MHz, 1 755-1 780 MHz, 1 915-1 920 MHz, 1 995-2 000 Mb, 2 000-2 020 Mb, 2 110-2 155 Mb, 2 155-2 180 Mb, and 2 180-2 200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 \log_{10} (P) dB.

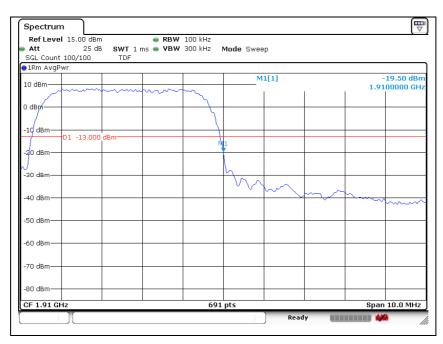
7.2. Test Procedure

The test follows section 6.0 of FCC KDB Publication 971168 D01 v03r01.

- a. Span was set large enough so as to capture all out of band emissions near the band edge.
- b. RBW ≥ 1 % of OBW
- c. $VBW \ge 3 \times RBW$.
- d. Detector = RMS.
- e. Trace mode = Average.
- f. Sweep time = Auto.
- g. The trace was allowed to stabilize.
- h. All path loss of frequency range was investigated and compensated to spectrum analyzer as TDF function.


Report Number: F690501/RF-RTL013638-1 Page: 42 48 of

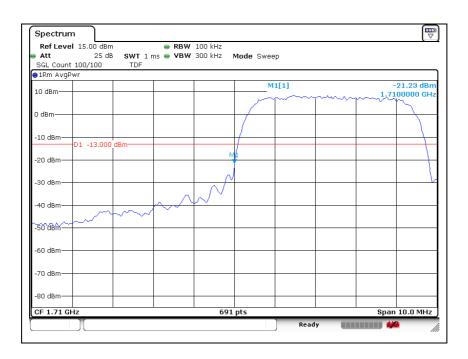
7.3. Test Results


Ambient temperature : **(23** ± **1)** ℃ Relative humidity % R.H. : 47

WCDMA 2

Low Channel

High Channel

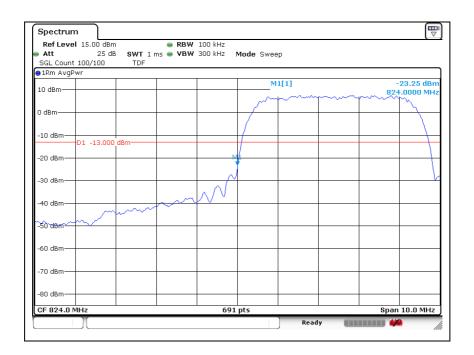


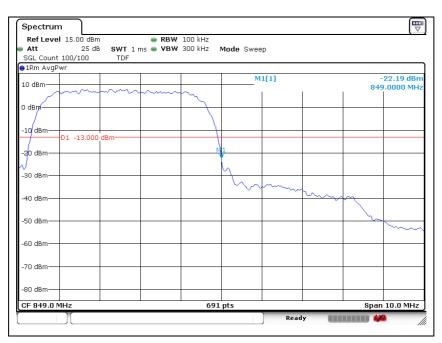

Report Number: F690501/RF-RTL013638-1 Page: 48 43 of

WCDMA 4

Low Channel

High Channel




Report Number: F690501/RF-RTL013638-1 Page: 44 of 48

WCDMA 5

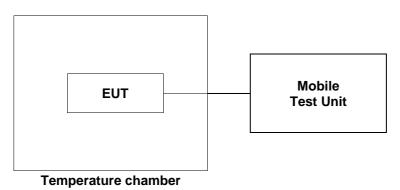
Low Channel

High Channel

Report Number: F690501/RF-RTL013638-1 Page: 45 of 48

8. Frequency Stability

8.1. Limit


- § 2.1055 (a), § 2.1055 (d) & following:
- <u>§22.355</u>, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table of this section.

For Mobile devices operating in the 824 to 849 Mb band at a power level less than or equal to 3 Watts, the limit specified in Table C-1 is +/- 2.5 ppm.

- §24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.
- §27.54, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

8.2. Test Procedure

- 1. Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Mobile Test Unit via feed-through attenuators.
- 2. The EUT was placed inside the temperature chamber.
- 3. After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from Mobile Test Unit.

Report Number: F690501/RF-RTL013638-1 48 Page: 46 of

8.3. Test Results

Ambient temperature : **(23** ± 1) ℃ Relative humidity : 47 % R.H.

WCDMA 2 mode at middle channel

Reference Frequency: 1 880.0 Mb

Frequency Stability versus Temperature

Environment Power Temperature (℃) Supplied (V _{dc})	Frequency Measure with Time Elapse		
	Supplied (V _{dc})	Frequency Error (Hz)	ppm
50	12.0	4	0.002 1
40		5	0.002 7
30		-2	-0.001 1
23		3	0.001 6
10		1	0.000 5
0		-2	-0.001 1
-10		-2	-0.001 1
-20		1	0.000 5
-30		4	0.002 1

Frequency Stability versus Power Supply

Environment Temperature (℃)	Power Supplied (V _{dc})	Frequency Measure with Time Elapse	
		Frequency Error (Hz)	ppm
23	13.8	3	0.001 6
	10.2	-1	-0.000 5

Report Number: F690501/RF-RTL013638-1 Page: 48 47 of

WCDMA 4 mode at middle channel

Reference Frequency: 1 732.6 Mb

Frequency Stability versus Temperature

Environment Temperature (℃)	Power	Frequency Measure with Time Elapse	
	Supplied (V _{dc})	Frequency Error (Hz)	ppm
50	12.0	1	0.000 6
40		5	0.002 9
30		3	0.001 7
23		-4	-0.002 3
10		2	0.001 2
0		-5	-0.002 9
-10		2	0.001 2
-20		3	0.001 7
-30		-3	-0.001 7

Frequency Stability versus Power Supply

Environment Temperature (℃)	Power Supplied (V _{dc})	Frequency Measure with Time Elapse	
		Frequency Error (Hz)	ppm
23	13.8	-2	-0.001 2
	10.2	-2	-0.001 2

Report Number: F690501/RF-RTL013638-1 Page: 48 48 of

WCDMA 5 mode at middle channel

Reference Frequency: 836.6 Mb

Frequency Stability versus Temperature

Environment Temperature (℃)	Power Supplied (V _{dc})	Frequency Measure with Time Elapse	
		Frequency Error (Hz)	ppm
50		2	0.001 2
40		-3	-0.001 7
30	12.0	1	0.000 6
23		-2	-0.001 2
10		4	0.002 3
0		-1	-0.000 6
-10		2	0.001 2
-20		-3	-0.001 7
-30		2	0.001 2

Frequency Stability versus Power Supply

Environment Temperature (℃)	Power Supplied (V _{dc})	Frequency Measure with Time Elapse	
		Frequency Error (Hz)	ppm
23	13.8	-3	-0.001 7
	10.2	1	0.000 6

- End of the Test Report -