

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A. TEL (410) 290-6652 • FAX (410) 290-6654 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE

LG Electronics Inc. - DID Division 184, Kongdan-dong, Kumi, Kyoungsangbuk-do, KOREA Attn: Mr. Do-Hyung Kim, Engineer Dates of Tests: October 16-17, 2000 Test Report S/N: B.201009504.BEJ Test Site: PCTEST Lab., MD U.S.A.

FCC ID

BEJCB795D

APPLICANT

LG ELECTRONICS INC.

Rule Part(s): FCC Part 15 Subpart B

Equipment Class: Class B Peripheral Device (JBP)

EUT Type: 17" CRT Color Monitor

Max. Resolution: 1600 x 1200 Non-Interlaced @ 75Hz

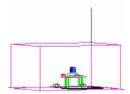
Trade Name(s): LG®
Model(s): CB795D

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992 (Note Codes: #19, #37).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President & Chief Engineer



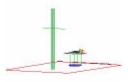


TABLE OF CONTENTS

ATTACHMENT A:	COVER LETTER(S)	
ATTACHMENT B:	ATTESTATION STATEMENT(S)	
ATTACHMENT C:	TEST REPORT	
1.1 SCOPE		1
2.1 INTRODUCTION	ON (SITE DESCRIPTION)	2
3.1 PRODUCTION	N INFORMATION	3
4.1 DESCRIPTION	N OF TESTS (CONDUCTED)	4
4.3 DESCRIPTION	N OF TESTS (RADIATED)	5
5.1 LIST OF SUPP	PORT EQUIPMENT	6
6.1 TEST DATA (CONDUCTED)	7
7.1 TEST DATA (I	RADIATED)	8
8.1 SAMPLE CAL	CULATIONS	9
9.1 ACCURACY C	OF MEASUREMENT	10
10.1 LIST OF TEST	EQUIPMENT	11
11.1 TEST SOFTW	ARE USED	12
12.1 CONCLUSION	N	13
ATTACHMENT D:	TEST PLOTS	
ATTACHMENT E:	FCC ID LABEL & LOCATION	
ATTACHMENT F:	BLOCK DIAGRAM(S)	
ATTACHMENT G:	SCHEMATIC DIAGRAM(S)	
ATTACHMENT H:	TEST SETUP PHOTOGRAPHS	
ATTACHMENT I:	EXTERNAL PHOTOGRAPHS	
ATTACHMENT J:	INTERNAL PHOTOGRAPHS	
ATTACHMENT K:	USER'S MANUAL	

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

Applicant Name: LG ELECTRONICS INC. - DID Division

Address: 184, Kongdan-dong, Kumi,

Kyoungbuk, Korea

Contact Person: Do-Hyung Kim, Engineer

Product Engineering Dept., Safety & EMC Team

FCC ID: BEJCB795D

Equipment Class: B Digital Device / Peripheral (JBP)

EUT Type: 17" CRT Color Monitor

LG® Trade Name(s):

LB680A-EA Model(s):

Max. Resolution: 1600 x 1200 Non-Interlaced @ 75Hz

H-Sync: 30kHz –96kHz V-Sync: 50Hz – 160Hz Frequency Range:

Cable(s): Shielded D-Sub (with ferrite on both ends)

Power Cord: **Unshielded AC**

Rule Part(s): FCC Part 15 Subpart B Test Procedure(s): ANSI C63.4 (1992) Dates of Tests: October 16-17, 2000

Place of Tests: PCTEST Lab, Columbia, MD U.S.A.

B.201009504.BEJ Test Report S/N:

2.1 INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-1992) was used in determining radiated and conducted emissions emanating from LG Electronics Inc. 17" CRT Color Monitor FCC ID: BEJCB795D.

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

2.2 PCTEST Location

The map at right shows the location of the PCTEST Lab, its proximity to the FCC Lab, the Columbia vicinity area, the Baltimore-Washington International (BWI) airport, and the city of Baltimore, and the Washington, D.C. area. (see Figure 1).

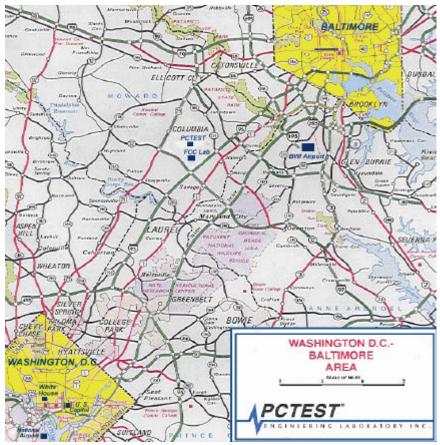


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

3.1 Product Information

3.2 Equipment Description

The Equipment Under Test (EUT) is the LG Electronics Inc. (LG Model: LB680A-EA) 17" CRT Color Monitor FCC ID: BEJCB795D.

Maximum Resolution(s): 1600 x 1200 Non-interlaced @ 75Hz

Frequency Range(s): H-Sync: 30kHz – 96kHz

V-Sync: 50Hz - 160Hz

Display Type: 17-inch CRT

Anti-Reflective Anti-Static coating, U-coating

Pixel Pitch: 0.26mm dot pitch

Power Supply: Output: (Max: 130W)

Input: AC 100-240V 50/60Hz 2.0A

Power Cord(s): Unshielded AC power cord

Port(s)/Input Connector(s): (1) 15-pin D-Sub Connector

Cable(s): Shielded D-Sub (with ferrite on both ends)

Dimensions (WxHxD): 41.6 x 43.2 x 44.0 cm

Weight (Net): 18 kg

4.1 Description of Tests

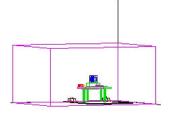
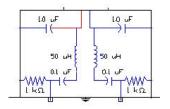



Fig. 2. Shielded Enclosure Line-Conducted Test Facility

ig. 3. LISN Schematic Diagram

4.2 Powerline Conducted RFI (150kHz- 30MHz)

The powerline conducted RFI measurements were performed according to CISPR 22. The EUT was placed on a non-conducting 1.0 by 1.5 meter table which is 0.8 meters in height and 0.40 meters away from the vertical wall of the shielded enclosure (see Figure 2). Power to the EUT is provided through a Rohde & Schwarz 50 Ω / 50 uH Line Impedance Stabilization Network (LISN) and the support equipment through a separate Solar 50 Ω / 50 uH Line- Conducted Test Facility LISN. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME. The spectrum was scanned from 150kHz to 30 MHz. Each maximum EME was remeasured using an EMI receiver. The detector function of the receiver was set to CISPR quasi- peak and average mode with the bandwidth set to 9 kHz. Each emission was maximized consistent with the typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum Diagram emission. Excess cable lengths were bundled at the centre with 30- 40cm. in length. The worst-case configuration is noted in the test report and the photographs are attached. Each EME reported was calibrated using the Rohde & Schwarz SMX signal generator and are listed on Table 1.

RFI Conducted	FCC Class B	CISPR 22 Class B		
	Limits dB[uV/m]	Limits dB[uV/m]		
Freq. Range	FCC Class B	CISPR 22	CISPR 22	
	Quasi-Peak	Quasi-Peak	Average	
150 kHz – 0.5 MHz	48*	66 – 56**	56 – 46**	
0.5 MHz – 5 MHz	48	56	46	
5 MHz – 30 MHz	48	60 50		

^{*} FCC Class B limits starts from 450 kHz.

Table 1. CISPR 22 Class B RFI Conducted Limits

^{**} Limit decreases linearly with the logarithm of frequency.

4.1 Description of Tests (Continued)

4.3 Radiated Emissions

Fig. 4. Radiated Test @ 10-meters

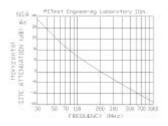


Fig. 5. NSA Theoretical Attenuation Curves (Horiz. Pol.)

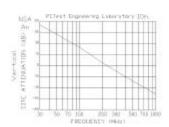


Fig. 6. NSA Theoretical Attenuation Curves (Vert. Pol.)

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The spectrum was scanned from 30 to 200 MHz using biconical antenna, 200 to 1000 MHz using log-spiral antenna, and above 1 GHz using linearly polarized horn antennas. Final measurements were made outdoors at 10meter test range using RobertsTM Dipole antennas (see Figure 4) and EMI receiver. For frequencies above 1 GHz, horn antennas were used. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The EMI receiver detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120 kHz. The EUT, support equipment, and interconnecting cables were arranged to the configuration that produces the maximum EME emission found during preliminary scan. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission (see Figure 4). Horizontal and vertical antenna polarizations were checked. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/ or support equipment, and powering the monitor the computer aux AC outlet, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Appendix A. Each EME reported was calibrated using the Rohde & Schwarz SMX signal generator.

ITE Radiated Limits				
Frequency (MHz)	FCC Limit @ 3m. Quasi- Peak dB[μV/m]	FCC Limit @ 10m.* Quasi – Peak dB[μV/m]	CISPR Limit @ 10m. Quasi-Peak dB[μV/m]	
30-88	40.0	29.5	30.0	
88-216	43.5	33.0	30.0	
216-230	46.0	35.6	30.0	
230-960	46.0	35.6	37.0	
960-1000	54.0	43.5	37.0	
> 1000	54.0	43.5	No Specified limit	
* Limit extrapolated 20 dB/decade				

Table 2. Radiated Class B limits @ 10-meters

5.1 Support Equipment Used

1. LG Electronics 17" FCC ID: BEJCB795D (EUT) S/N: 010KG00001

StudioWorks Monitor 1.8 m. unshielded AC power cord

1.5 m. shielded D-sub cable (with ferrite on both ends)

2. GATEWAY Mid Tower Model: P55C-200 S/N: 007078699

1.8 m. unshielded AC power cord NUMBER NINE PCI Card Model: IMAGINE 128

3. H/P Printer FCC ID: BS46XU2225C S/N: 2633560396

1.8 m. unshielded AC power cord 1.0 m. shielded printer cable

4. GATEWAY Mouse FCC ID: D7J2196003-XX S/N: 03400409

1.6 m. shielded cable

5. GATEWAY Keyboard Model: MOSXK S/N: PCT387

1.6 m. shielded cable

6. GOLDSTAR Modem FCC ID: BEJ3JXGSM2400 S/N: 164

1.8 m. unshielded DC power cord 1.2 m. shielded serial cable

(See "Attachment H - Test Setup Photographs" for actual system test setup.)

6.1 LINE-CONDUCTED TEST DATA

6.2 Conducted Emissions

(See Data under PLOTS - Attachment D)

NOTES:

- 1. All modes of operation were investigated and the worst-case emissions are reported.
- 2. The CISPR RFI conducted limits are listed on Table 1 (Page 4).
- 3. Line A = Phase Line B = Neutral
- 4. Deviations to the Specifications: None

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} Measurements using CISPR quasi-peak mode.

7.1 RADIATED TEST DATA

7.2 Radiated Emissions

FREQ. (MHz)	Level* (dBμV/m)	AFCL** (dB)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (dBμV/m)	Margin*** (dB)
162.4	11.05	14.44	V	2.6	70	25.5	- 4.5
254.3	11.24	18.95	Н	2.1	115	30.2	- 6.8
277.4	10.01	19.78	Н	1.9	130	29.8	- 7.2
346.3	6.72	22.17	V	1.6	125	28.9	- 8.1
352.7	8.12	22.37	Н	1.2	85	30.5	- 6.5
416.2	6.61	24.08	Н	1.2	165	30.7	- 6.3

Table 3. Radiated Measurements at 10-meters.

1600 x 1200- Non-interlaced @ 75Hz

NOTES:

- 1. All modes of operation were investigated, and the worst-case emissions are reported.
- 2. The radiated limits are listed on Table 2 (Page 5).

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} AFCL = Antenna Factor (Roberts dipole) and Cable Loss (30 ft. RG58C/U).

^{***} Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

8.1 Sample Calculations

 $dB\mu V = 20 \log_{10} (\mu V/m)$ $dB\mu V = dBm + 107$

8.2 Example 1:

@ 20.3 MHz

Class B limit = $250 \,\mu\text{V} = 47.96 \,dB\mu\text{V}$ Reading = $-67.8 \,dBm$ (calibrated level) Convert to $db\mu\text{V}$ = $-67.8 + 107 = 39.2 \,dB\mu\text{V}$

 $10^{(39.2/20)}$ = 91.2 μ V

Margin = 39.2 - 47.96 = -8.76

= 8.8 dB below limit

8.3 Example 2:

@ 66.7 MHz

Class B limit = $100 \,\mu\text{V/m} = 47.96 \,dB\mu\text{V/m}$ Reading = $-76.0 \,dBm$ (calibrated level) Convert to $db\mu\text{V/m}$ = $-76.0 + 107 = 31.0 \,dB\mu\text{V/m}$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 dB\mu V/m$

Margin = 36.8 - 40.0 = -3.2

= 3.2 dB below limit

9.1 Accuracy of Measurement

9.2 Measurement Uncertainty Calculations:

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

Contribution	Probability	Uncertainty (± dB)	
(Line Conducted)	Distribution	9kHz-150MHz	150-30MHz
Receiver specification	Rectangular	1.5	1.5
LISN coupling specification	Rectangular	1.5	1.5
Cable and input attenuator calibration	Normal (k=2)	0.3	0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$			
LISN VRC $\Gamma_R = 0.8 \text{ (9kHz) } 0.2 \text{ (30MHz)}$	U-Shaped	0.2	0.35
Uncertainty limits 20Log(1 $\pm \Gamma_1 \Gamma_R$)			
System repeatability	Std. deviation	0.2	0.05
Repeatability of EUT		=	-
Combined standard uncertainty	Normal	1.26	1.30
Expanded uncertainty	Normal (k=2)	2.5	2.6

Calculations for 150kHz to 30MHz:

$$u_{C}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{\frac{1.5^{2} + 1.5^{2}}{3} + (\frac{0.5}{2})^{2} + 0.35} = \pm 1.298dB$$

$$U = 2U_{C}(y) = \pm 2.6dB$$

Contribution	Probability	Uncertainties (± dB)		
(Radiated Emissions)	Distribution	3 m	10 m	
Ambient Signals		-	=	
Antenna factor calibration	Normal (k=2)	± 1.0	± 1.0	
Cable loss calibration	Normal (k=2)	± 0.5	± 0.5	
Receiver specification	Rectangular	± 1.5	±1.5	
Antenna directivity	Rectangular	+ 0.5 / - 0	+ 0.5	
Antenna factor variation with height	Rectangular	± 2.0	± 0.5	
Antenna phase centre variation	Rectangular	0.0	± 0.2	
Antenna factor frequency interpolation	Rectangular	±. 0.25	± 0.25	
Measurement distance variation	Rectangular	± 0.6	± 0.4	
Site imperfections	Rectangular	± 2.0	± 2.0	
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67 (Bi) 0.3 (Lp) Uncertainty limits 20Log(1 $\pm \Gamma_1 \Gamma_R$)	U-Shaped	+ 1.1 - 1.25	± 0.5	
System repeatability	Std. Deviation	± 0.5	± 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+ 2.19 / - 2.21	+ 1.74 / - 1.72	
Expanded uncertainty U	Normal (k=2)	+ 4.38 / - 4.42	+ 3.48 / - 3.44	

Calculations for 3m biconical antenna. Coverage factor of k=2 will ensure that the level of confidence will be approximately 95%, therefore:

$$U=2u_C(y) = 2 x \pm 2.19 = \pm 4.38dB$$

10.1 Test Equipment

10.2 Type	Model	Cal. Due Date	S/N	
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	12/05/00 3638A0	18713	
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)		70710	
Spectrum Analyzer/Tracking Gen.	HP 8591A (9kHz-1.8GHz)	06/02/01	3144A02458	
Spectrum Analyzer	HP 8591A (9kHz-1.8GHz)	10/15/01	3108A02053	
Spectrum Analyzer	HP 8594A (9kHz-2.9GHz)	11/02/00	3051A00187	
Signal Generator*	HP 8640B (500Hz-1GHz)	06/02/01	2232A19558	
Signal Generator*	HP 8640B (500Hz-1GHz)	06/02/01	1851A09816	
Signal Generator*	Rohde & Schwarz (0.1-1000N		894215/012	
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MH		0792-03271	
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/01	0805-03334	
Ailtech/Eaton Receiver	NM 17/27A (O.1-32MHz)	09/17/01	0608-03241	
Quasi-Peak Adapter	HP 85650A	08/09/01	2043A00301	
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapt	er 03/11/01	0194-04082	
RG58 Coax Test Cable	No. 167		n/a	
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)		3531A00115	
Broadband Amplifier (2)	HP 8447D		1145A00470, 1937A03348	
Broadband Amplifier	HP 8447F		2443A03784	
Transient Limiter	HP 11947A (9kHz-200MHz)		2820A00300	
Horn Antenna	EMCO Model 3115 (1-18GHz)		9704-5182	
Horn Antenna	EMCO Model 3115 (1-18GHz)		9205-3874	
Horn Antenna	EMCO Model 3116 (18-40GHz) 9203-2178			
Biconical Antenna (4)	Eaton 94455/Eaton 94455-		Design 1295, 1332, 0355	
Log-Spiral Antenna (3)	Ailtech/Eaton 93490-1		0608, 1103, 1104	
Roberts Dipoles	Compliance Design (1 set) A10	00	5118	
Ailtech Dipoles	DM-105A (1 set)		33448-111	
EMCO LISN (2)	3816/2		1077, 1079	
EMCO LISN	3725/2		2009	
Microwave Preamplifier 40dB Gain	HP 83017A (0.5-26.5GHz)		3123A00181	
Microwave Cables	MicroCoax (1.0-26.5GHz)			
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271	
Spectrum Analyzer	HP 8591A		3034A01395	
Modulation Analyzer	HP 8901A		2432A03467	
NTSC Pattern Generator	Leader 408		0377433	
Noise Figure Meter	HP 8970B		3106A02189	
Noise Figure Meter	Ailtech 7510		TE31700	
Noise Generator	Ailtech 7010		1473	
Microwave Survey Meter	Holaday Model 1501 (2.4500	iHz)	80931	
Digital Thermometer	Extech Instruments 421305		426966	
Attenuator	HP 8495A (0-70dB) DC-4G			
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz	<u>z</u>)		
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)	
Shielded Semi-Anechoic Chamber	Ray Proof Model S81		R2437 (PCT278)	
Environmental Chamber	Associated Systems Model 1	025 (Temperature/Humidity)	PC1285	

* Calibration traceable to the National Institute of Standards and Technology (NIST).

11.1 Test Software Used

- 10 CLS: LCD 7,0
- 20 FOR I = 1 TO 80
- 30 PRINT H;
- 40 NEXT I
- 50 FOR K= 1 TO 25
- 60 LPRINT H;
- 70 NEXT K
- 80 OPEN COM1:1200,N,8,1,CS0,DS0" FOR OUTPUT AS #1
- 90 PRINT#1,ATDT,0123456789"
- 100 CLOSE: GOTO 20

NOTE: This is a sample of the basic program used during the test. However, during testing, a different software program may be used; whichever determines the worst-case condition. In addition, the program used also depends on the number and type of devices being tested.

Actual program used is the "H" pattern in Notepad under Windows environment. All resolution modes (1600x1200, 1280x1024, 1024x768, 800x600, 640x480 Non-interlaced) were investigated and tested.

12.1 Conclusion

The data collected shows that the **LG Electronics Inc. 17" CRT Color Monitor FCC ID: BEJCB795D** complies with §15.107 and §15.109 of the FCC Rules.

No modifications were made to the device.