

Parameter	Results		
U-NII Band	8	8	8
Channel Number	207	207	207
Bandwidth (MHz)	160	160	160
DUT Centre Frequency (MHz)	6985	6985	6985
AWGN Centre Frequency (MHz)	7060	7060	7060
AWGN Signal Power (dBm)	-62.99	-62.59	-60.36
Antenna Gain (dBi)	2.10	2.10	2.10
Adjusted Power (dBm)	-65.09	-64.69	-62.46
Detection Limit (dBm)	-62.0	-62.0	-62.0
EUT Tx Status (OFF/Minimal/ON)	ON	Minimal	OFF

Table 364 - U-NII-8, Maximum Bandwidth (AWGN High)

Figure 359 - U-NII-8, Minimum Bandwidth (AWGN High)

FCC 47 CFR Part 15.407 (d)(6)

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

KDB 987594, Limit Clause I

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contention-based protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

2.9.8 Test Location and Test Equipment Used

This test was carried out in Shielded Laboratory 1.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
EXA Signal Analyser	Keysight Technologies	N9010B	4968	24	29-Jan-2026
3.5 mm 2m Cable	Junkosha	MWX221-02000DMS	5430	12	16-May-2025
3.5mm Cable (1m)	Junkosha	MWX221/B	5838	12	29-Jul-2025
WiFi 6E Tri-Band Gaming Router	Asus	GT-AXE110000	5926	-	TU
Cable (K Type 2m)	Junkosha	MWX241-02000KMSKMS/B	5936	12	23-May-2025
Cable (K Type 2m)	Junkosha	MWX241-02000KMSKMS/B	5938	12	23-May-2025
Thermohygrometer	R.S Components	1364	6352	12	13-Jun-2025
Test Coupling Network	TUV SUD	TUV_RxTest_001	6387	12	06-Sep-2025
Vector Signal Generator (7.5GHz)	Rohde & Schwarz	SMM100A	6532	36	11-Apr-2026

Table 365

TU - Traceability Unscheduled

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Emission Bandwidth	± 3.91 MHz
Dual Client Test	± 1.38 dB
Transmit Power Control	± 1.49 dB
Maximum Conducted Output Power	± 1.38 dB
Maximum Conducted Power Spectral Density	± 1.49 dB
Authorised Band Edges	± 6.3 dB
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Unwanted Emissions within the 5925-7125 MHz band	± 3.45 dB
Contention Based Protocol	Time: 0.30% Interferer BW: 267.98 kHz Interferer Level: 0.80 dB

Table 366

Measurement Uncertainty Decision Rule – Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.