

# FCC and ISED Test Report



Apple Inc  
Model: A3247

In accordance with FCC 47 CFR Part 15B and  
ICES-003 and ISED RSS-GEN

Prepared for: Apple Inc  
One Apple Park Way  
Cupertino  
California  
95014  
USA

FCC ID: BCGA3247 | IC: 579C-A3247

COMMERCIAL-IN-CONFIDENCE

Document 75960488-11 | Issue 01

| <b>SIGNATURE</b><br> |                 |                      |              |
|--------------------------------------------------------------------------------------------------------|-----------------|----------------------|--------------|
| NAME                                                                                                   | JOB TITLE       | RESPONSIBLE FOR      | ISSUE DATE   |
| John Laydon                                                                                            | General Manager | Authorised Signatory | 16 July 2024 |

#### ENCLOSURE STATEMENT

**ENGINEERING STATEMENT**  
The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ICES-003 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

| RSS-GEN: The sample tested was found to comply with the requirements defined in the applied rules. |                 |              |                                                                                       |
|----------------------------------------------------------------------------------------------------|-----------------|--------------|---------------------------------------------------------------------------------------|
| RESPONSIBLE FOR                                                                                    | NAME            | DATE         | SIGNATURE                                                                             |
| Testing                                                                                            | Matthew Dawkins | 16 July 2024 |  |
| Testing                                                                                            | Connor Lee      | 16 July 2024 |  |

FCC Accreditation  
492497/UK2010 Octagon House, Fareham Test Laboratory

ISED Accreditation  
12669A Octagon House, Fareham Test Laboratory

## EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN: 2023, Issue 7: 2020 and Issue 5 and A2 (2021-02) for the tests detailed in section 1.3.



## DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

## RELATIONSHIP TO THE **ACCREDITATION**

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited). Results of tests covered by our Flexible UKAS Accreditation Schedule are marked FS (Flexible Scope).

TÜV SÜD  
is a trading name of TUV SUD Ltd  
Registered in Scotland at East Kilbride,  
Glasgow G75 0QF, United Kingdom  
Registered number: SC215164

TUV SUD Ltd is a  
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100  
Fax: +44 (0) 1489 558101  
[www.tuvsud.com/en](http://www.tuvsud.com/en)

TÜV SÜD  
Octagon House  
Concorde Way  
Fareham  
Hampshire PO15 5RL  
United Kingdom

TÜV SÜD

TM®



## Contents

|          |                                                |           |
|----------|------------------------------------------------|-----------|
| <b>1</b> | <b>Report Summary .....</b>                    | <b>2</b>  |
| 1.1      | Report Modification Record.....                | 2         |
| 1.2      | Introduction.....                              | 2         |
| 1.3      | Brief Summary of Results .....                 | 3         |
| 1.4      | Product Information .....                      | 4         |
| 1.5      | Deviations from the Standard.....              | 4         |
| 1.6      | Identification of the EUT .....                | 5         |
| 1.7      | EUT Modification Record .....                  | 5         |
| 1.8      | Test Location.....                             | 5         |
| <b>2</b> | <b>Test Details .....</b>                      | <b>6</b>  |
| 2.1      | Conducted Disturbance at Mains Terminals ..... | 6         |
| 2.2      | Radiated Disturbance.....                      | 11        |
| <b>3</b> | <b>Incident Reports .....</b>                  | <b>19</b> |
| <b>4</b> | <b>Measurement Uncertainty .....</b>           | <b>20</b> |



## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 16 July 2024  |

**Table 1**

### 1.2 Introduction

|                               |                                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------|
| Applicant                     | Apple Inc                                                                                        |
| Manufacturer                  | Apple Inc                                                                                        |
| EUT/Sample Identification     | Refer to section 1.6                                                                             |
| Test Specification/Issue/Date | FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN: 2023, Issue 7: 2020 and Issue 5 and A2 (2021-02) |
| Start of Test                 | 12-June-2024                                                                                     |
| Finish of Test                | 14-June-2024                                                                                     |
| Name of Engineer(s)           | Matthew Dawkins and Connor Lee                                                                   |
| Related Document(s)           | ANSI C63.4: 2014                                                                                 |



### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003 and ISED RSS-GEN is shown below.

| Section                                               | Specification Clause | Test Description                         | Result | Comments/Base Standard |
|-------------------------------------------------------|----------------------|------------------------------------------|--------|------------------------|
| Configuration and Mode: AC Powered - Transmitter Idle |                      |                                          |        |                        |
| 2.1                                                   | 15.107, 3.1 and 8.8  | Conducted Disturbance at Mains Terminals | Pass   | ANSI C63.4: 2014       |
| 2.2                                                   | 15.109, 3.2 and 7.1  | Radiated Disturbance                     | Pass   | ANSI C63.4: 2014       |

**Table 2**



## 1.4 Product Information

### 1.4.1 Technical Description

The equipment under test (EUT) was a desktop computer.

### 1.4.2 EUT Port/Cable Identification

| Port                                                  | Max Cable Length specified | Usage | Type                                                 | Screened |
|-------------------------------------------------------|----------------------------|-------|------------------------------------------------------|----------|
| Configuration and Mode: AC Powered - Transmitter Idle |                            |       |                                                      |          |
| AC Power                                              | 3 m                        | Power | AC/DC converter power brick with mag safe connector. | No       |
| USB 1 Port                                            | 1 m                        | Data  | USB Type C                                           | No       |
| USB 2 Port                                            | 1 m                        | Data  | USB Type C                                           | No       |
| Audio Jack Port                                       | Unterminated               | Data  | Audio Jack 3.5mm                                     | No       |

**Table 3**

### 1.4.3 Test Configuration

| Configuration | Description                                                                                                                                                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Powered    | The EUT was powered from a 120 V 60 Hz AC supply.<br>A 3.5 mm audio jack port was unterminated.<br>A mouse was used to terminate a USB-C port.<br>A keyboard was used to terminate a USB-C port.<br>PSU model: A2388 |

**Table 4**

### 1.4.4 Modes of Operation

| Mode             | Description                                     |
|------------------|-------------------------------------------------|
| Transmitter Idle | The EUT had all internal transmitters disabled. |

**Table 5**

## 1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.



## 1.6 Identification of the EUT

The table below details identification of the EUT(s) that have been used to carry out the testing within this report.

| Model: A3247  |                  |                  |                                          |
|---------------|------------------|------------------|------------------------------------------|
| Serial Number | Hardware Version | Software Version | Firmware                                 |
| L9L40D9RHJ    | REV1.0           | 24A81452a        | WLAN: 23.30.16<br>Bluetooth: 22.1.65.459 |

**Table 6**

## 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State                      | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification Fitted |
|-----------------------------------------|-------------------------------------------------|------------------------|--------------------------|
| Model: A3247, Serial Number: L9L40D9RHJ |                                                 |                        |                          |
| 0                                       | As supplied by the customer                     | Not Applicable         | Not Applicable           |

**Table 7**

## 1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

| Test Name                                             | Name of Engineer(s)            | Accreditation |
|-------------------------------------------------------|--------------------------------|---------------|
| Configuration and Mode: AC Powered - Transmitter Idle |                                |               |
| Conducted Disturbance at Mains Terminals              | Matthew Dawkins                | UKAS          |
| Radiated Disturbance                                  | Matthew Dawkins and Connor Lee | UKAS          |

**Table 8**

Office Address:

TÜV SÜD  
Octagon House  
Concorde Way  
Fareham  
Hampshire  
PO15 5RL  
United Kingdom



## 2 Test Details

### 2.1 Conducted Disturbance at Mains Terminals

#### 2.1.1 Specification Reference

FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN, Clause 15.107, 3.1 and 8.8

#### 2.1.2 Equipment Under Test and Modification State

A3247, S/N: L9L40D9RHJ - Modification State 0

#### 2.1.3 Date of Test

12-June-2024

#### 2.1.4 Test Method

The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.

The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

#### 2.1.5 Example Calculation

Quasi-Peak level (dB $\mu$ V) = Receiver level (dB $\mu$ V) + Correction Factor (dB)  
Margin (dB) = Quasi-Peak level (dB $\mu$ V) - Limit (dB $\mu$ V)

CISPR Average level (dB $\mu$ V) = Receiver level (dB $\mu$ V) + Correction Factor (dB)  
Margin (dB) = CISPR Average level (dB $\mu$ V) - Limit (dB $\mu$ V)

## 2.1.6 Example Test Setup Diagram

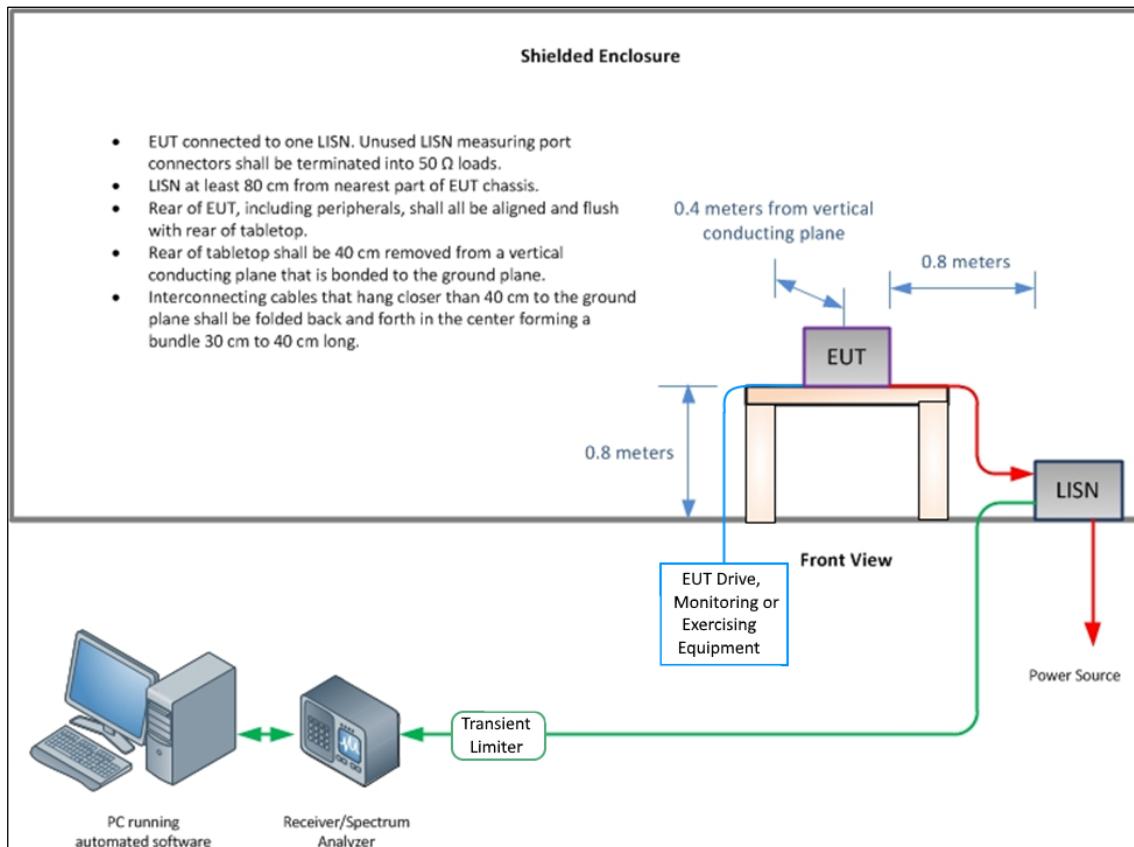



Figure 1 - Conducted Disturbance

## 2.1.7 Environmental Conditions

Ambient Temperature 19.8 °C  
Relative Humidity 50.7 %  
Atmospheric Pressure 1004.0 mbar

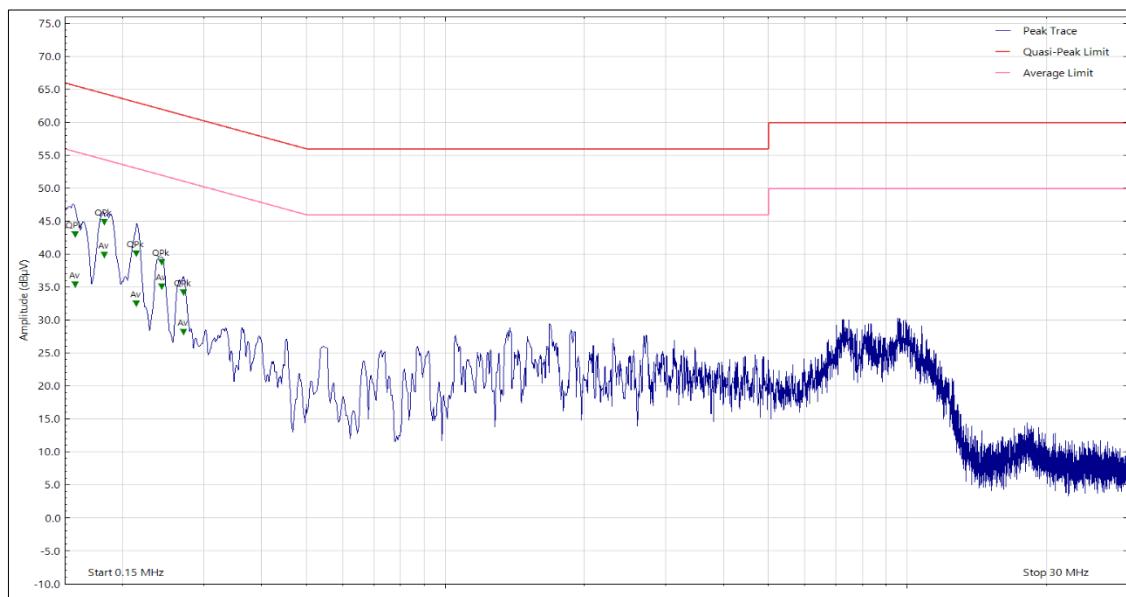
## 2.1.8 Specification Limits

| Required Specification Limits - Class B |                       |                                    |                                       |
|-----------------------------------------|-----------------------|------------------------------------|---------------------------------------|
| Line Under Test                         | Frequency Range (MHz) | Quasi-Peak Test Limit (dB $\mu$ V) | CISPR Average Test Limit (dB $\mu$ V) |
| AC Power Port                           | 0.15 to 0.5           | 66 to 56 <sup>(1)</sup>            | 56 to 46 <sup>(1)</sup>               |
|                                         | 0.5 to 5              | 56                                 | 46                                    |
|                                         | 5 to 30               | 60                                 | 50                                    |

**Supplementary information:**  
Note 1. Decreases with the logarithm of the frequency.

Table 9



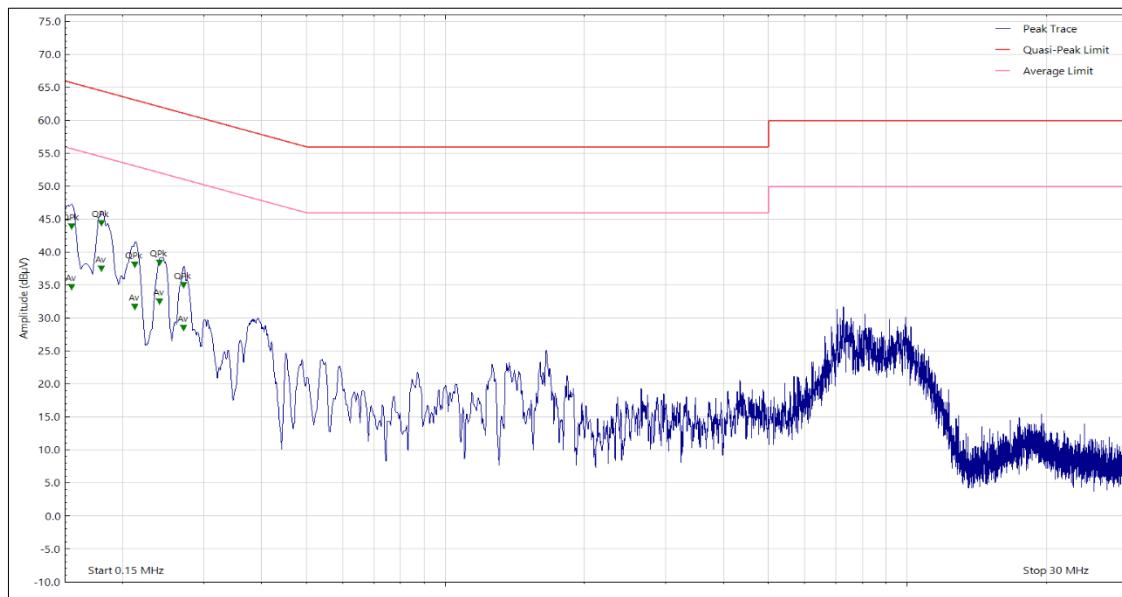

## 2.1.9 Test Results

**Results for Configuration and Mode: AC Powered - Transmitter Idle.**

**This test was performed to the requirements of the Class B limits.**

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.




**Figure 2 - Graphical Results - Live Line**

| Frequency (MHz) | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Detector  |
|-----------------|--------------------|--------------------|-------------|-----------|
| 0.158           | 42.29              | 65.60              | -23.31      | Q-Peak    |
| 0.158           | 34.65              | 55.60              | -20.95      | CISPR Avg |
| 0.183           | 44.16              | 64.30              | -20.14      | Q-Peak    |
| 0.183           | 39.21              | 54.30              | -15.09      | CISPR Avg |
| 0.214           | 39.39              | 63.00              | -23.61      | Q-Peak    |
| 0.214           | 31.82              | 53.00              | -21.18      | CISPR Avg |
| 0.243           | 38.09              | 62.00              | -23.91      | Q-Peak    |
| 0.243           | 34.43              | 52.00              | -17.57      | CISPR Avg |
| 0.271           | 27.47              | 51.10              | -23.63      | CISPR Avg |
| 0.271           | 33.45              | 61.10              | -27.65      | Q-Peak    |

**Table 10**

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 6 dB below the CISPR Average test limit.



**Figure 3 - Graphical Results - Neutral Line**

| Frequency (MHz) | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Detector  |
|-----------------|--------------------|--------------------|-------------|-----------|
| 0.155           | 43.22              | 65.70              | -22.48      | Q-Peak    |
| 0.155           | 34.02              | 55.70              | -21.68      | CISPR Avg |
| 0.180           | 43.73              | 64.50              | -20.77      | Q-Peak    |
| 0.180           | 36.78              | 54.50              | -17.72      | CISPR Avg |
| 0.213           | 37.35              | 63.10              | -25.75      | Q-Peak    |
| 0.213           | 31.01              | 53.10              | -22.09      | CISPR Avg |
| 0.241           | 31.79              | 52.00              | -20.21      | CISPR Avg |
| 0.241           | 37.69              | 62.00              | -24.31      | Q-Peak    |
| 0.271           | 34.34              | 61.10              | -26.76      | Q-Peak    |
| 0.271           | 27.81              | 51.10              | -23.29      | CISPR Avg |

**Table 11**

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 6 dB below the CISPR Average test limit.



## 2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                    | Manufacturer    | Type No              | TE No | Calibration Period (months) | Calibration Expires |
|-------------------------------|-----------------|----------------------|-------|-----------------------------|---------------------|
| Transient Limiter             | Hewlett Packard | 11947A               | 15    | 12                          | 24-Oct-2024         |
| LISN (CISPR 16, Single Phase) | Rohde & Schwarz | ESH3-Z5              | 1390  | 12                          | 01-Feb-2025         |
| Emissions Software            | TUV SUD         | EmX V3.2.0           | 5125  | -                           | Software            |
| Thermo-Hygro-Barometer        | PCE Instruments | PCE-THB 40           | 5478  | 12                          | 13-May-2025         |
| EMI Test Receiver             | Rohde & Schwarz | ESW44                | 5527  | 12                          | 15-Jun-2024         |
| 3m Semi-Anechoic Chamber      | MVG             | EMC Chamber 12       | 5621  | 36                          | 07-Aug-2026         |
| Cable (N-Type, 10 Hz-18 GHz)  | Junkosha        | MWX221-02000AMSAMS   | 5724  | 6                           | 17-Aug-2024         |
| Cable (N-Type to N-Type, 8 m) | Junkosha        | MWX221-08000NMSNMS/B | 6321  | 12                          | 04-Feb-2025         |

Table 12



## 2.2 Radiated Disturbance

### 2.2.1 Specification Reference

FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN, Clause 15.109, 3.2 and 7.1

### 2.2.2 Equipment Under Test and Modification State

A3247, S/N: L9L40D9RHJ - Modification State 0

### 2.2.3 Date of Test

12-June-2024 to 14-June-2024

### 2.2.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonably be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

### 2.2.5 Example Calculation

Below 1 GHz:

$$\begin{aligned}\text{Quasi-Peak level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{Quasi-Peak level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

Above 1 GHz:

$$\begin{aligned}\text{CISPR Average level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{CISPR Average level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

$$\begin{aligned}\text{Peak level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{Peak level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

## 2.2.6 Example Test Setup Diagram

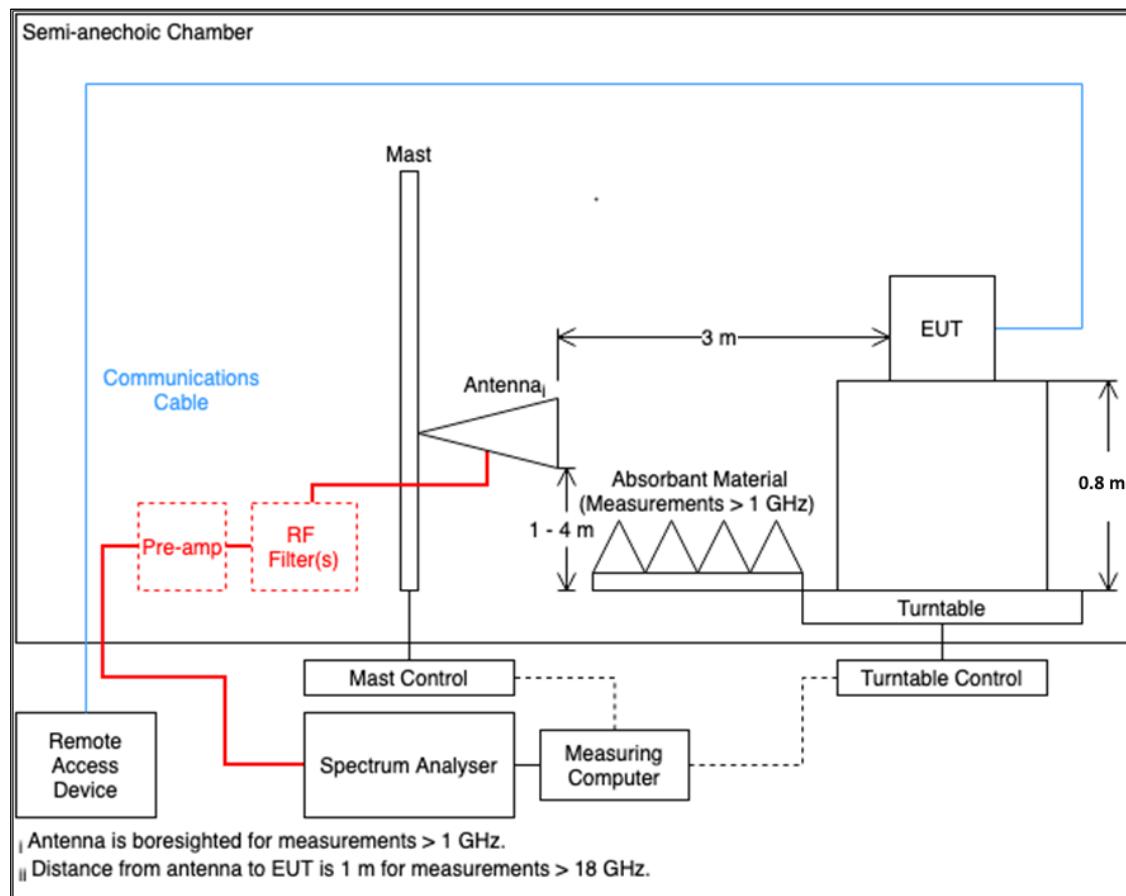



Figure 4 - Radiated Disturbance Example Test Setup

## 2.2.7 Environmental Conditions

|                      |                      |
|----------------------|----------------------|
| Ambient Temperature  | 19.8 – 22.6 °C       |
| Relative Humidity    | 40.2 – 50.7%         |
| Atmospheric Pressure | 1001.0 - 1006.0 mbar |



## 2.2.8 Specification Limits

| Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance |                            |                              |
|--------------------------------------------------------------------------------------------------|----------------------------|------------------------------|
| Frequency Range (MHz)                                                                            | Test Limit<br>( $\mu$ V/m) | Test Limit<br>(dB $\mu$ V/m) |
| 30 to 88                                                                                         | 100                        | 40.0                         |
| 88 to 216                                                                                        | 150                        | 43.5                         |
| 216 to 960                                                                                       | 200                        | 46.0                         |
| Above 960                                                                                        | 500                        | 54.0                         |

**Supplementary information:**

Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz.

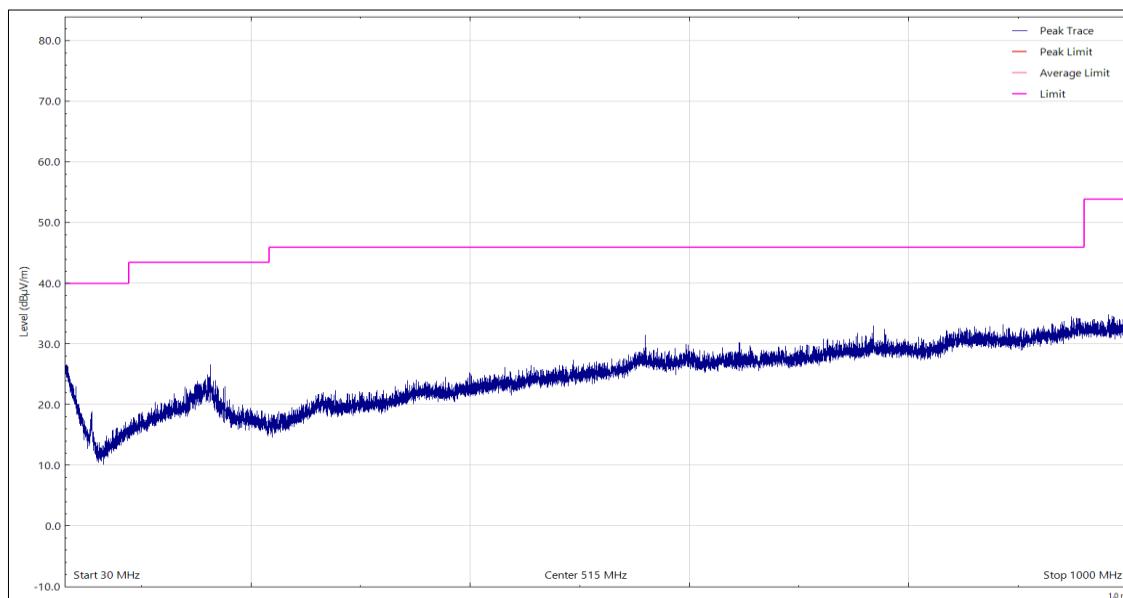
Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.

Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

**Table 13**



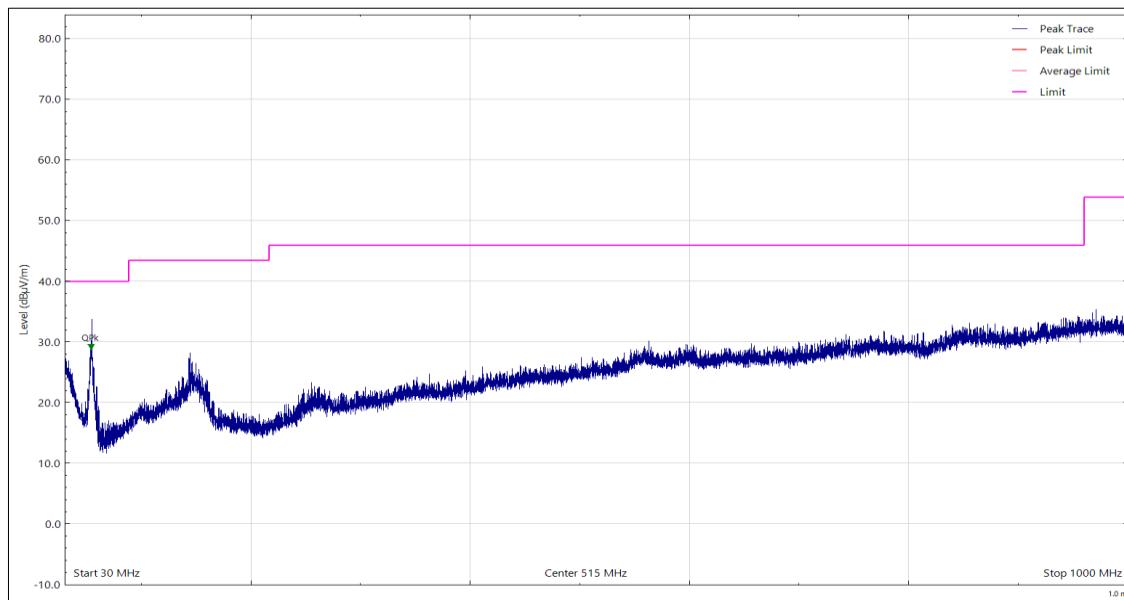
## 2.2.9 Test Results


**Results for Configuration and Mode: AC Powered - Transmitter Idle.**

**This test was performed to the requirements of the Class B limits.**

Performance assessment of the EUT made during this test: Pass

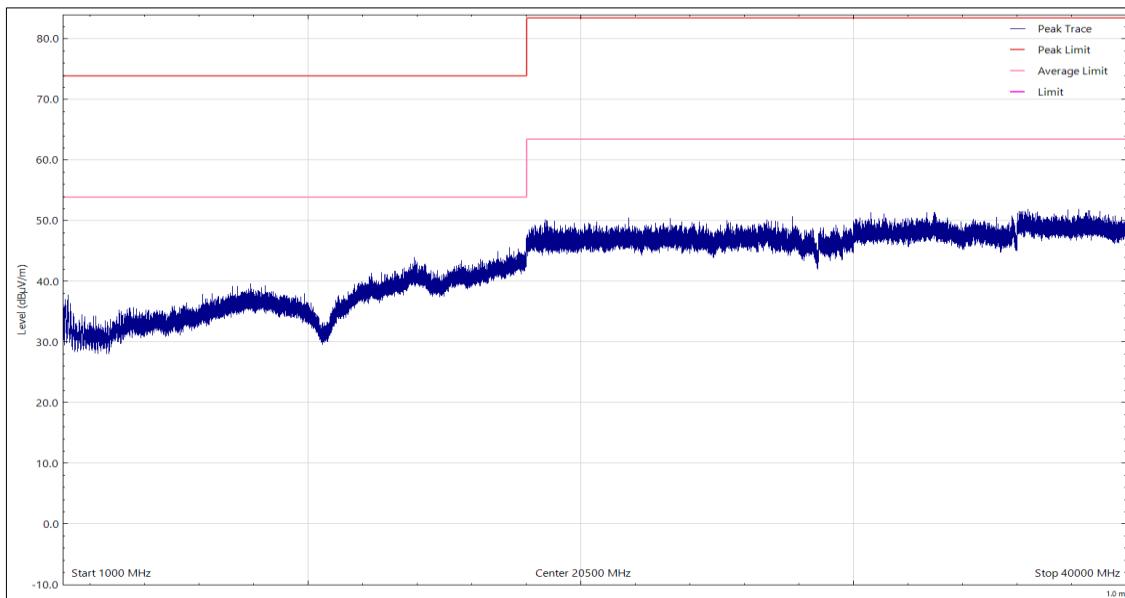
Detailed results are shown below.


Highest frequency generated or used within the EUT: 6 GHz  
Which necessitates an upper frequency test limit of: 40 GHz



**Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal**

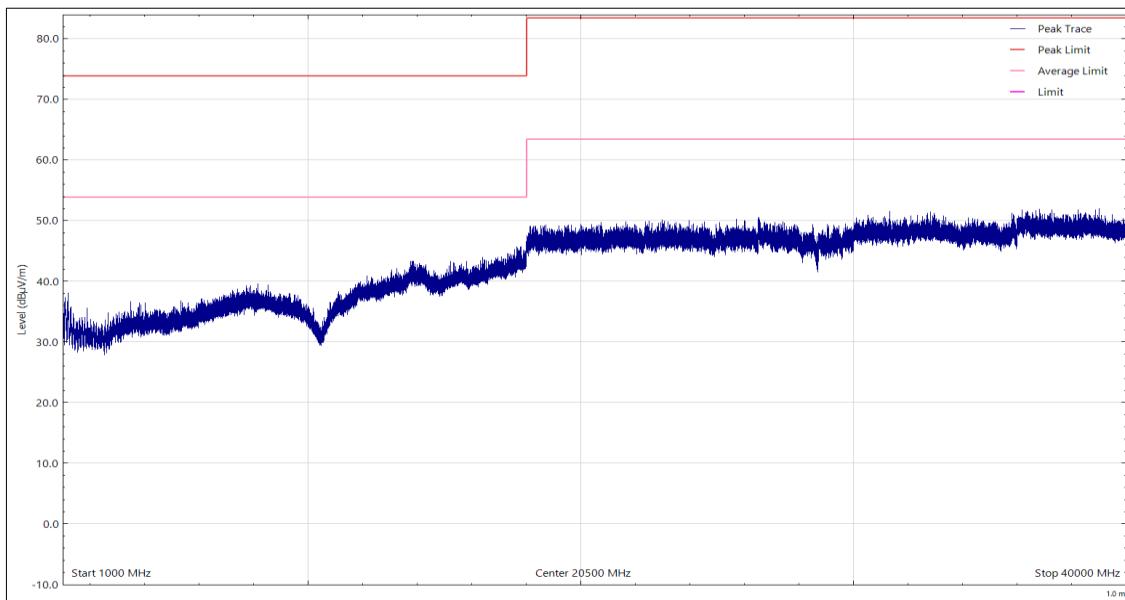
| Frequency (MHz) | Level (dBµV/m) | Limit (dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|----------------|----------------|-------------|----------|-----------|-------------|--------------|
| *               |                |                |             |          |           |             |              |


\*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.



**Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Vertical**

| Frequency (MHz) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|----------------------|----------------------|-------------|----------|-----------|-------------|--------------|
| 54.068          | 28.43                | 40.00                | -11.57      | Q-Peak   | 266       | 110         | Vertical     |


No other final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.



**Figure 7 - 1 GHz to 40 GHz, Horizontal**

| Frequency (MHz) | Level (dBµV/m) | Limit (dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|----------------|----------------|-------------|----------|-----------|-------------|--------------|
| *               |                |                |             |          |           |             |              |

\*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.



**Figure 8 - 1 GHz to 40 GHz, Vertical**

| Frequency (MHz) | Level (dBµV/m) | Limit (dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|-----------------|----------------|----------------|-------------|----------|-----------|-------------|--------------|
| *               |                |                |             |          |           |             |              |

\*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.



## 2.2.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                        | Manufacturer      | Type No               | TE No | Calibration Period (months) | Calibration Expires |
|-----------------------------------|-------------------|-----------------------|-------|-----------------------------|---------------------|
| Antenna (DRG, 18 GHz to 40 GHz)   | Link Microtek Ltd | AM180HA-K-TU2         | 230   | 24                          | 23-Sep-2024         |
| Pre-Amplifier (18 GHz to 40 GHz)  | Phase One         | PSO4-0087             | 1534  | 12                          | 13-Feb-2025         |
| Emissions Software                | TÜV SUD           | EmX V3.2.0            | 5125  | -                           | Software            |
| Pre-Amplifier (1 GHz to 18 GHz)   | Schwarzbeck       | BBV 9718 C            | 5350  | 12                          | 01-Dec-2024         |
| Thermo-Hygro-Barometer            | PCE Instruments   | PCE-THB 40            | 5478  | 12                          | 13-May-2025         |
| Cable (K-Type to K-Type, 1 m)     | Junkosha          | MWX241-01000KMSKMS/A  | 5512  | 12                          | 23-May-2025         |
| EMI Test Receiver                 | Rohde & Schwarz   | ESW44                 | 5527  | 12                          | 15-Jun-2024         |
| Antenna (DRG, 1 GHz to 10.5 GHz)  | Schwarzbeck       | BBHA9120B             | 5611  | 12                          | 15-Oct-2024         |
| Turntable & Mast Controller       | Maturo GmbH       | NCD/498/2799.01       | 5612  | -                           | TU                  |
| Tilt Antenna Mast                 | Maturo GmbH       | TAM 4.0-P             | 5613  | -                           | TU                  |
| Antenna (Bi-Log, 30 MHz to 1 GHz) | Teseq             | CBL6111D              | 5615  | 24                          | 15-Mar-2025         |
| 3m Semi-Anechoic Chamber          | MVG               | EMC Chamber 12        | 5621  | 36                          | 07-Aug-2026         |
| Cable (N-Type to N-Type, 2 m)     | Junkosha          | MWX221-02000AMSAAMS/B | 5729  | 6                           | 21-Jun-2024         |
| Cable (K-Type to K-Type, 2 m)     | Junkosha          | MWX241-02000KMSKMS/B  | 5934  | 12                          | 18-Jun-2024         |
| Cable (SMA to SMA 1m)             | Junkosha          | MWX221/B              | 5998  | 12                          | 24-Oct-2024         |
| Cable (N-Type to N-Type, 8 m)     | Junkosha          | MWX221-08000NMSNMS/B  | 6321  | 12                          | 04-Feb-2025         |

Table 14

TU - Traceability Unscheduled



### 3 Incident Reports

No incidents reports were raised.



## 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                                | Measurement Uncertainty                                                                                                                                                                                       |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted Disturbance at Mains Terminals | 150 kHz to 30 MHz, LISN, $\pm 3.7$ dB                                                                                                                                                                         |
| Radiated Disturbance                     | 30 MHz to 1 GHz, Bilog Antenna, SAC, $\pm 5.2$ dB<br>1 GHz to 6 GHz, Horn Antenna, SAC, $\pm 5.1$ dB<br>6 GHz to 18 GHz, Horn Antenna, SAC, $\pm 4.9$ dB<br>18 GHz to 40 GHz, Horn Antenna, SAC, $\pm 6.3$ dB |

**Table 15**

Worst case error for both Time and Frequency measurement 12 parts in  $10^6$ .

### Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.