

FCC and ISED Test Report

Apple Inc
Model: A2780

In accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN
(2.4 GHz Bluetooth, 2.4 GHz WLAN, 5 GHz WLAN, 6 GHz WLAN and Narrowband)

Prepared for: Apple Inc
One Apple Park Way, Cupertino
California, 95014, USA

FCC ID: BCGA2780 IC: 579C-A2780

Add value.
Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document 75955429-11 Issue 01

SIGNATURE

NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Andrew Lawson	Chief Engineer, EMC	Authorised Signatory	24 November 2022

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Report Generation	Hollie Marshall	24 November 2022	

FCC Accreditation
90987 Octagon House, Fareham Test Laboratory ISED Accreditation
12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2020, ICES-003: Issue 7: 2020 and ISED RSS-GEN: Issue 5 (04-2018) + A2 (2021-02) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2022 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD
is a trading name of TUV SUD Ltd
Registered in Scotland at East Kilbride,
Glasgow G75 0QF, United Kingdom
Registered number: SC215164

TUV SUD Ltd is a
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100
Fax: +44 (0) 1489 558101
www.tuvsud.com/en

TÜV SÜD
Octagon House
Concorde Way
Fareham
Hampshire PO15 5RL
United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record.....	2
1.2	Introduction.....	2
1.3	Brief Summary of Results	3
1.4	Product Information	4
1.5	Deviations from the Standard.....	4
1.6	EUT Modification Record	5
1.7	Test Location.....	5
2	Test Details	6
2.1	Conducted Disturbance at Mains Terminals	6
2.2	Radiated Disturbance.....	11
3	Test Equipment Information	18
3.1	General Test Equipment Used.....	18
4	Incident Reports	19
5	Measurement Uncertainty	20

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	24 November 2022

Table 1

1.2 Introduction

Applicant	Apple Inc
Manufacturer	Apple Inc
Model Number(s)	A2780
Serial Number(s)	FWC3JLYYHC and G22LH9VX36
Hardware Version(s)	REV 1.0
Software Version(s)	TBC
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 15B: 2020 ICES-003: Issue 7: 2020 ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021)
Order Number	0540246998
Start of Test	22-September-2022
Finish of Test	09-November-2022
Name of Engineer(s)	Connor Lee, Nicolae Mihailiuc, Ioan-Alexandru Bogatu and Mohammad Malik
Related Document(s)	ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN is shown below.

Section	Specification Clause			Test Description	Result	Comments/Base Standard
	FCC Part 15	ICES-003	RSS-GEN			
Configuration and Mode: AC Powered - Transmitter Idle						
2.1	15.107	3.1	8.8	Conducted Disturbance at Mains Terminals	Pass	ANSI C63.4: 2014
2.2	15.109	3.2	7.1	Radiated Disturbance	Pass	ANSI C63.4: 2014

Table 2

1.4 Product Information

1.4.1 Technical Description

The equipment under test was an Apple laptop computer with Bluetooth® and IEEE 802.11 a/b/g/n/ac/ax Wi-Fi capabilities in the 2.4 GHz, 5 GHz and 6 GHz bands.

1.4.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Type	Screened
Configuration and Mode: 120 V AC Powered - Transmitter Idle				
AC Power Port - Live Line	2 m	Mains power to the EUT's AC/DC adapter	AC/DC adapter with USB-C output to EUT	No
AC Power Port - Neutral Line	2 m	Mains power to the EUT's AC/DC adapter	AC/DC adapter with USB-C output to EUT	No

Table 3

1.4.3 Test Configuration

Configuration	Description
120 V AC Powered	The EUT was powered from an AC/DC adapter using a USB-C output. The AC/DC adapter was supplied from a 120 V 60 Hz supply. A set of headphones was used to terminate the EUT's 3.5 mm audio jack port. A supplied support keyboard and cable were used to terminate the EUT's left hand side USB-C port. A mouse and adaptor were used to terminate the additional USB-C port on the right hand side of the EUT. A monitor was used to terminate the HDMI port.

Table 4

1.4.4 Modes of Operation

Mode	Description
Transmitter Idle	The EUT's intentional transmitters were turned OFF. The EUT was configured to display video on the EUT screen, whilst playing audio through the headphones. The display was set to maximum brightness and sleep mode was disabled.

Table 5

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
Model: A2780, Serial Number: G22LH9VX36			
0	As supplied by the customer	Not Applicable	Not Applicable
Model: A2780, Serial Number: FWC3JLYYHC			
0	As supplied by the customer	Not Applicable	Not Applicable

Table 6

1.7 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: 120 V AC Powered - Transmitter Idle		
Conducted Disturbance at Mains Terminals	Connor Lee	UKAS

Table 7

Office Address:

TÜV SÜD
Octagon House
Concorde Way
Fareham
Hampshire
PO15 5RL
United Kingdom

TÜV SÜD conducted the following tests at our Concorde Park Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: 120 V AC Powered - Transmitter Idle		
Radiated Disturbance	Nicolae Mihailiuc, Ioan-Alexandru Bogatu and Mohammad Malik	UKAS

Table 8

Office Address:

TÜV SÜD
Concorde Park
Concorde Way
Fareham
Hampshire
PO15 5FG
United Kingdom

2 Test Details

2.1 Conducted Disturbance at Mains Terminals

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.107
ICES-003, Clause 3.1
ISED RSS-GEN, Clause 8.8

2.1.2 Equipment Under Test and Modification State

A2780, S/N: G22LH9VX36 - Modification State 0

2.1.3 Date of Test

07-November-2022

2.1.4 Test Method

The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.

The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

2.1.5 Example Calculation

Quasi-Peak level (dB μ V) = Receiver level (dB μ V) + Correction Factor (dB)
Margin (dB) = Quasi-Peak level (dB μ V) - Limit (dB μ V)

CISPR Average level (dB μ V) = Receiver level (dB μ V) + Correction Factor (dB)
Margin (dB) = CISPR Average level (dB μ V) - Limit (dB μ V)

2.1.6 Test Setup Diagram

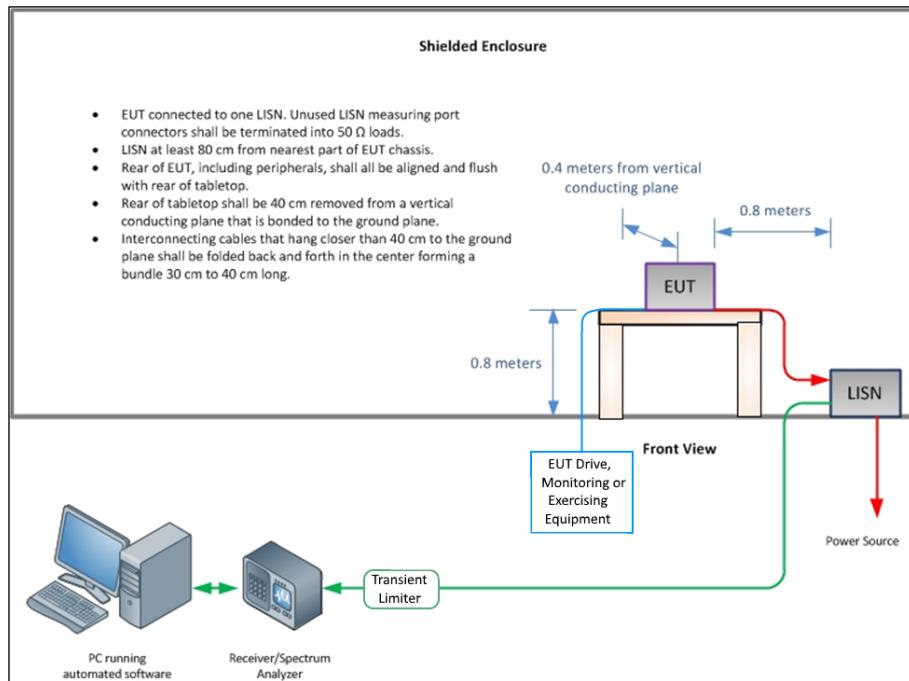


Figure 1 - Conducted Emissions – Example Test Setup Diagram

2.1.7 Environmental Conditions

Ambient Temperature 18.9 °C
Relative Humidity 63.7 %
Atmospheric Pressure 995.0 mbar

2.1.8 Specification Limits

Required Specification Limits - Class B			
Line Under Test	Frequency Range (MHz)	Quasi-Peak Test Limit (dB μ V)	CISPR Average Test Limit (dB μ V)
AC Power Port	0.15 to 0.5	66 to 56 ⁽¹⁾	56 to 46 ⁽¹⁾
	0.5 to 5	56	46
	5 to 30	60	50

Supplementary information:
Note 1. Decreases with the logarithm of the frequency.

Table 9

2.1.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitter Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

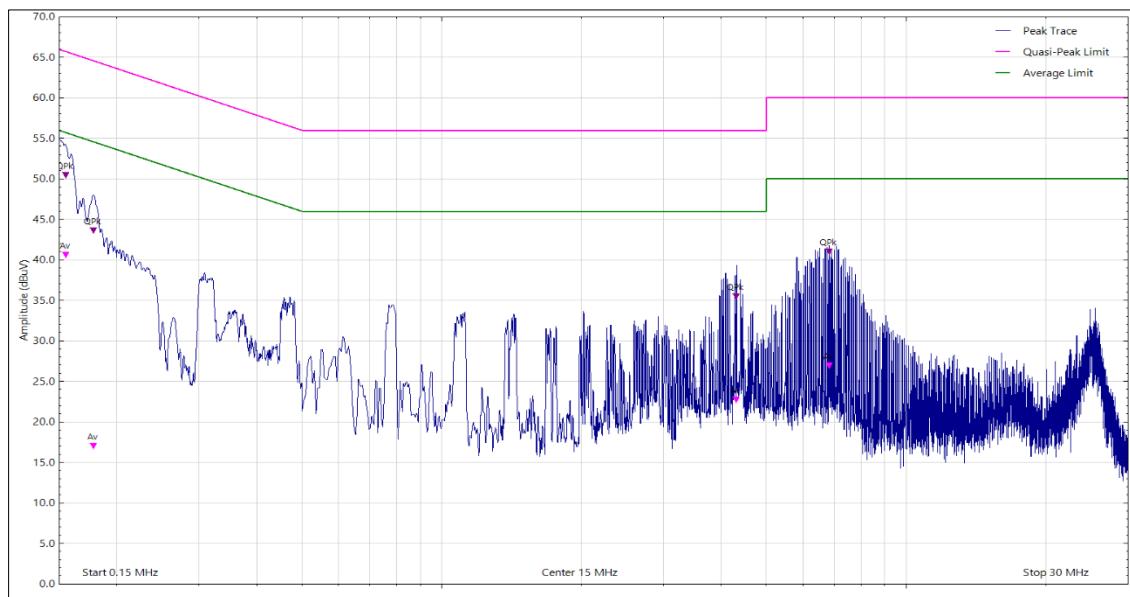
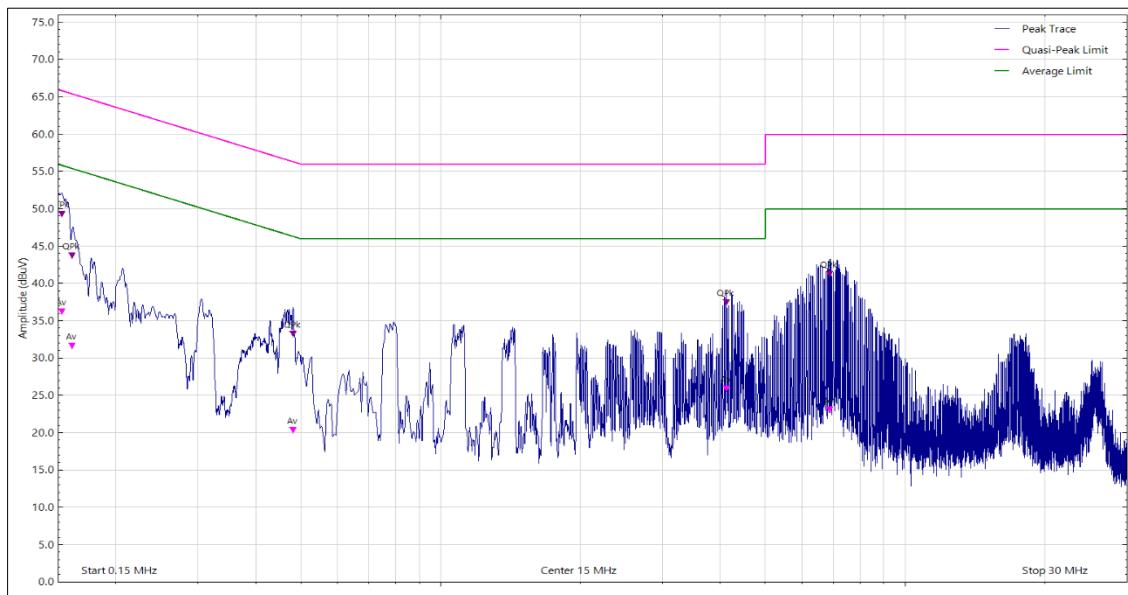



Figure 2 - Graphical Results - Live Line

Frequency (MHz)	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
0.155	49.88	65.70	-15.82	Q-Peak
0.155	40.03	55.70	-15.67	CISPR Avg
0.178	16.45	54.60	-38.15	CISPR Avg
0.178	43.04	64.60	-21.56	Q-Peak
4.313	34.92	56.00	-21.08	Q-Peak
4.313	22.12	46.00	-23.88	CISPR Avg
6.820	40.42	60.00	-19.58	Q-Peak
6.820	26.41	50.00	-23.59	CISPR Avg

Table 10

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 6 dB below the CISPR Average test limit.

Figure 3 - Graphical Results - Neutral Line

Frequency (MHz)	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
0.153	48.64	65.80	-17.16	Q-Peak
0.153	35.61	55.80	-20.19	CISPR Avg
0.161	43.11	65.40	-22.29	Q-Peak
0.161	31.00	55.40	-24.40	CISPR Avg
0.482	32.59	56.30	-23.71	Q-Peak
0.482	19.70	46.30	-26.60	CISPR Avg
4.121	36.84	56.00	-19.16	Q-Peak
4.121	25.29	46.00	-20.71	CISPR Avg
6.883	40.68	60.00	-19.32	Q-Peak
6.883	22.48	50.00	-27.52	CISPR Avg

Table 11

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 6 dB below the CISPR Average test limit.

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Screened Room (12)	MVG	EMC-3	5621	36	11-Aug-2023
Emissions Software	TÜV SUD	EmX V3.1.4	5125	-	Software
Test Receiver	Rohde & Schwarz	ESU40	3506	12	25-Mar-2023
Transient Limiter	Hewlett Packard	11947A	2377	12	28-Feb-2023
Load (50ohm, 30W)	Weinschel	50T-054-201	5468	12	02-Mar-2023
Cable (SMA to SMA, 2 m)	Rhophase	3PS-1801A-2000-3PS	4113	12	27-Jan-2023
Cable (N-Type to N-Type, 8 m)	Scott Cables	FSB800-NMNM-08.00M	6054	6	23-Dec-2022
LISN (CISPR 16, Single Phase)	Chase	MN 2050	336	12	04-Jul-2023
LISN (CISPR 16, Single Phase)	Rohde & Schwarz	ESH3-Z5	1390	12	31-Jan-2023

Table 12

2.2 Radiated Disturbance

2.2.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109
ICES-003, Clause 3.2
ISED RSS-GEN, Clause 7.1

2.2.2 Equipment Under Test and Modification State

A2780, S/N: FWC3JLYYHC - Modification State 0

2.2.3 Date of Test

22-September-2022 to 09-November-2022

2.2.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.2.5 Example Calculation

Below 1 GHz:

$$\begin{aligned}\text{Quasi-Peak level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{Quasi-Peak level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

Above 1 GHz:

$$\begin{aligned}\text{CISPR Average level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{CISPR Average level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

$$\text{Peak level (dB}\mu\text{V/m)} = \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)}$$

2.2.6 Test Setup Diagram

Figure 4 – Radiated Emissions – Example Test Setup Diagram

2.2.7 Environmental Conditions

Ambient Temperature 22.0 - 23.0 °C

Relative Humidity 38.2 - 54.1 %

Atmospheric Pressure 1001.0 mbar

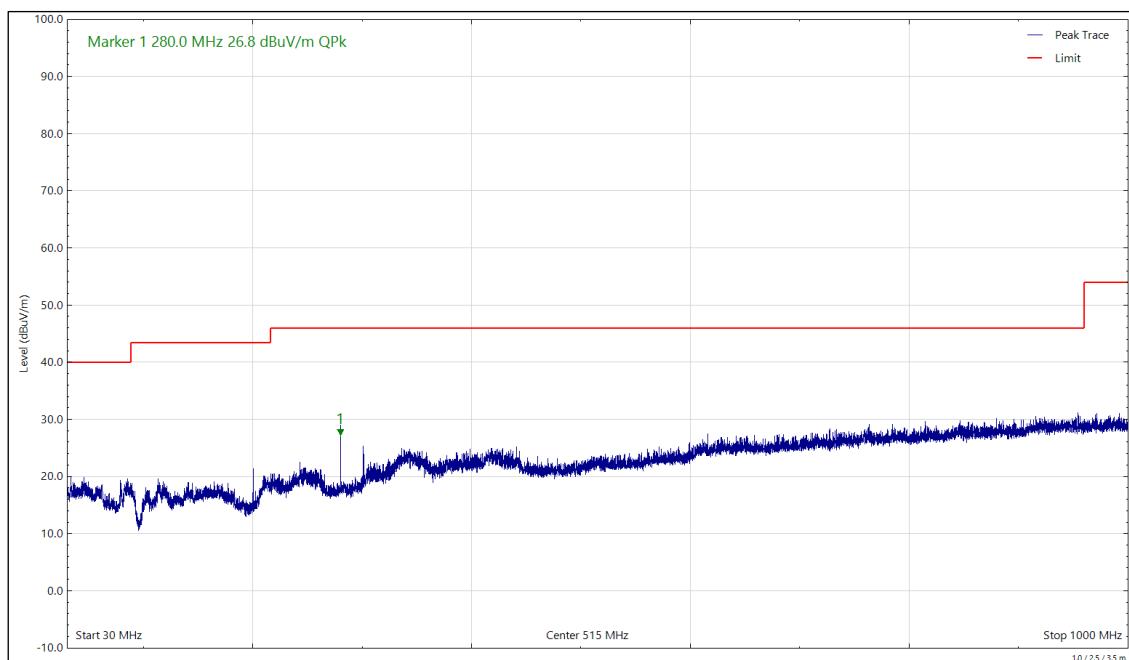
2.2.8 Specification Limits

Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance		
Frequency Range (MHz)	Test Limit (µV/m)	Test Limit (dBµV/m)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Supplementary information:
 Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz.
 Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.
 Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 13

2.2.9 Test Results


Results for Configuration and Mode: 120 V AC Powered - Transmitter Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 7125 MHz
Which necessitates an upper frequency test limit of: 40 GHz

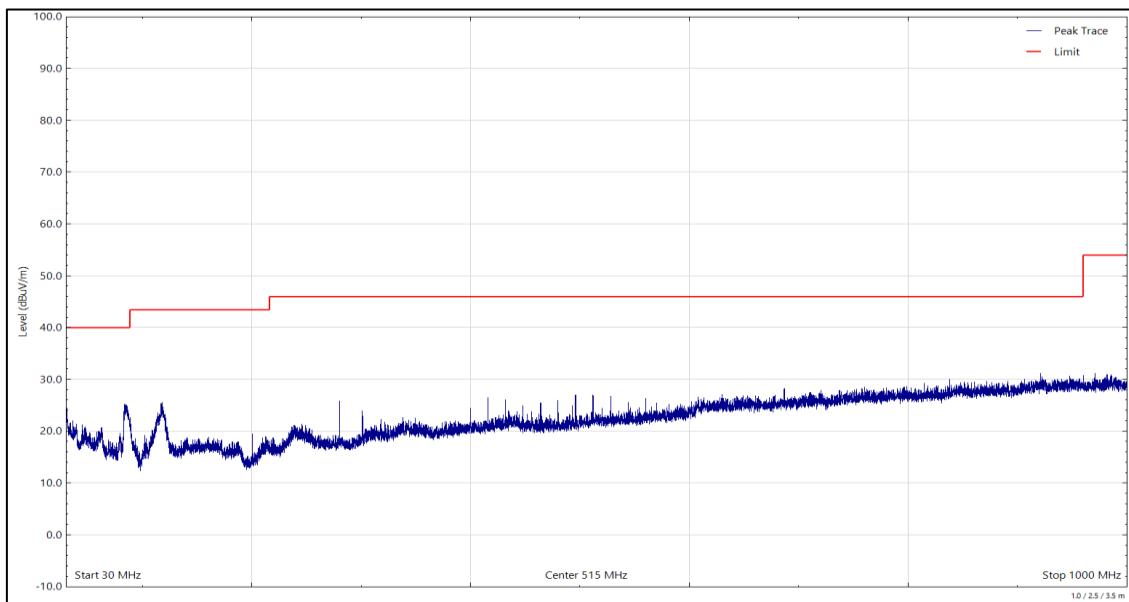


Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
279.995	26.81	46.00	-19.19	Q-Peak	90	100	Horizontal

Table 14

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

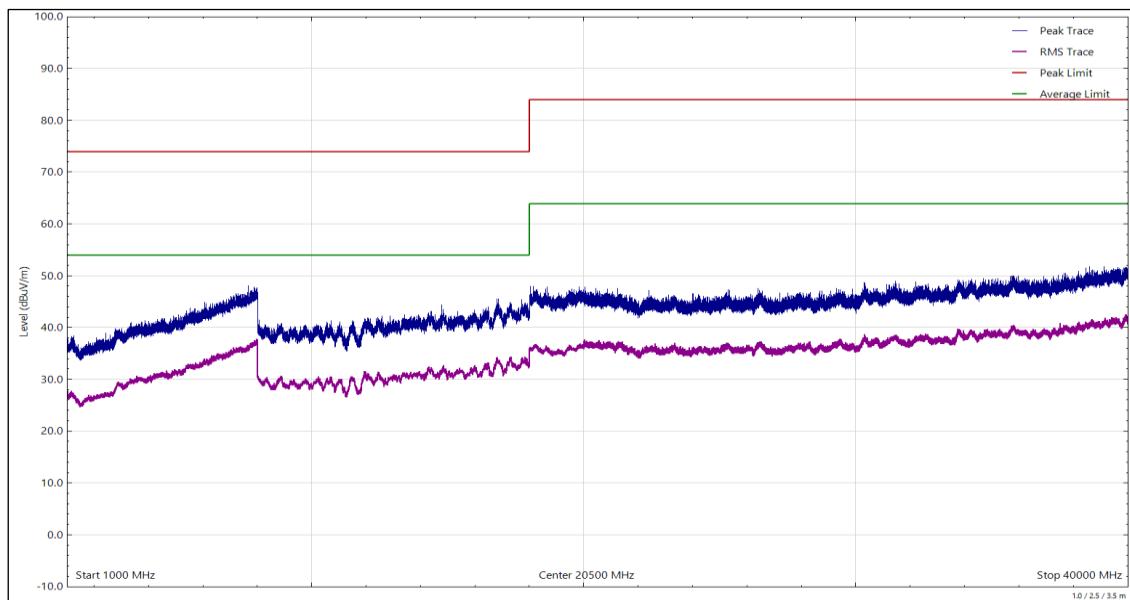


Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 15

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

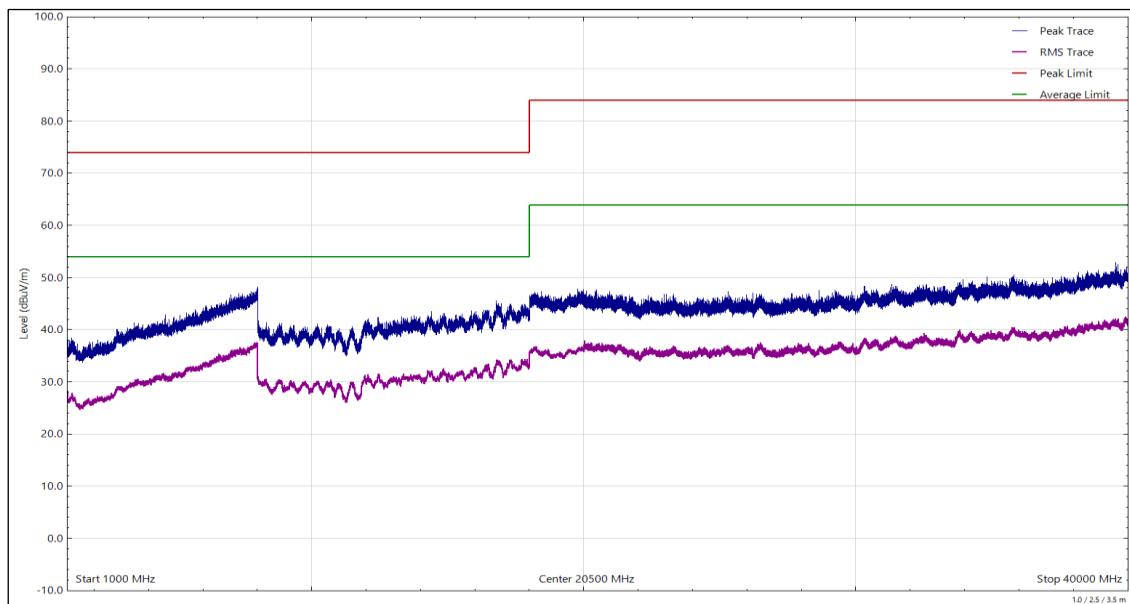


Figure 7 - 1 GHz to 40 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 16

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 8 - 1 GHz to 40 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 17

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

2.2.10 Test Location and Test Equipment Used

This test was carried out in RF Chamber 16.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
3m Semi-Anechoic Chamber	Schaffner	RF Chamber 16	5972	36	24-May-2025
Emissions Software	TÜV SUD	EmX V3.1.4	5125	-	Software
Test Receiver	Rohde & Schwarz	ESW44	5914	12	21-Feb-2023
SAC Switch Unit	TÜV SUD	SSU002	6190	12	08-Aug-2023
Mast & Turntable Controller	Maturo GmbH	FCU3.0	5973	-	TU
Tilt Antenna Mast	Maturo GmbH	BAM4.5-P	5974	-	TU
Turntable	Maturo GmbH	TT1.5SI	5975	-	TU
Cable (18GHz)	Junkosha	MWX221-04000NMSNMS/B	5262	12	04-Aug-2023
Cable (18 GHz)	Junkosha	MWX221-04000NMSNMS/B	5263	12	24-Jan-2023
Cable (K Type 2m)	Junkosha	MWX241-02000KMSKMS/B	5935	12	14-May-2023
Cable (SMA to SMA 1m)	Junkosha	MWX221-01000AMSAMS/A	6018	12	06-Jun-2023
Cable (SMA to SMA 3m)	Junkosha	MWX221-03000AMSAMS/A	6021	12	06-Jun-2023
Cable (N to N 3m)	Junkosha	MWX221-03000NMSNMS/A	6025	12	05-Jun-2023
Cable (N to N 6m)	Junkosha	MWX221-06000NMSNMS/B	6027	12	05-Jun-2023
Cable (SMA to SMA 20cm)	TÜV SUD	MH-FH 8-18	6220	12	10-Aug-2023
Pre-Amp 8 - 18 GHz	Wright Technologies	APS06 0061	6200	0	19-Jul-2023
Attenuator 4dB	Pasternack	PE7074-4	6203	24	16-Jul-2024
TRILOG Super Broadband Test Antenna	Schwarzbeck	VULB 9168	5944	24	03-Feb-2024
Horn Antenna (1-10 GHz)	Schwarzbeck	BBHA9120B	6142	12	26-Jun-2023
DRG Horn Antenna (7.5-18GHz)	Schwarzbeck	HWRD750	5940	12	29-May-2023
Double Ridge Active Horn Antenna (18-40 GHz)	Com-Power	AHA-840	6188	24	02-Jun-2024

Table 18

TU – Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
1500W (300V 12A) AC Power Supply	iTech	IT7324	5957	-	O/P Mon
Digital Multimeter	Fluke	115	6146	12	16-Jun-2023
Humidity & Temperature meter	R.S Components	1364	6148	12	17-Jun-2023

Table 19

O/P Mon – Output Monitored with Calibrated Equipment

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Conducted Disturbance at Mains Terminals	150 kHz to 30 MHz, LISN, ± 3.7 dB
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ± 5.2 dB 1 GHz to 40 GHz, Horn Antenna, ± 6.3 dB

Table 20

Worst case error for both Time and Frequency measurement 12 parts in 10^6 .

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.