

APPENDIX A: SAR TEST DATA

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN020Q7LC

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 824.2 MHz; Duty Cycle: 1:4.15

Medium: 835 Body Medium parameters used (interpolated):

$f = 824.2 \text{ MHz}$; $\sigma = 0.978 \text{ S/m}$; $\epsilon_r = 54.588$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-17-2020; Ambient Temp: 21.3°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 824.2 MHz; Calibrated: 3/20/2020

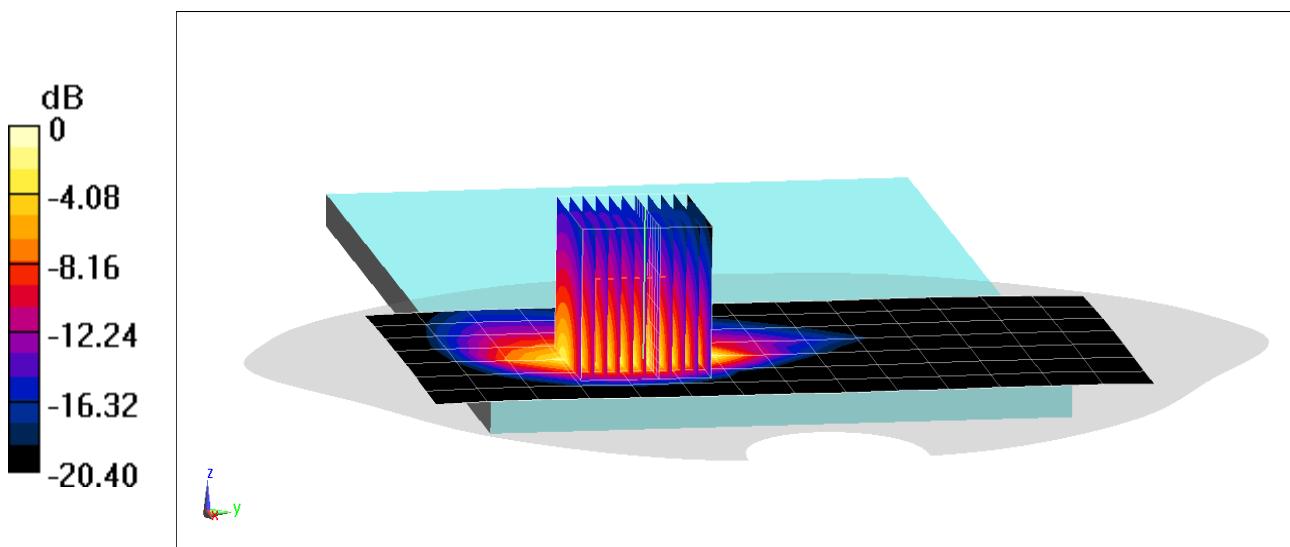
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Antenna D, Body SAR, Back side, Low.ch, 2 Tx Slots


Area Scan (8x15x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (11x11x8)/Cube 0: Measurement grid: $dx=3.8\text{mm}$, $dy=3.8\text{mm}$, $dz=1.4\text{mm}$; Graded Ratio: 1.4

Reference Value = 34.01 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.509 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02HQ7L9

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:4.15

Medium: 1900 Body Medium parameters used:

$f = 1910$ MHz; $\sigma = 1.591$ S/m; $\epsilon_r = 51.867$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-10-2020; Ambient Temp: 22.8°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1909.8 MHz; Calibrated: 4/20/2020

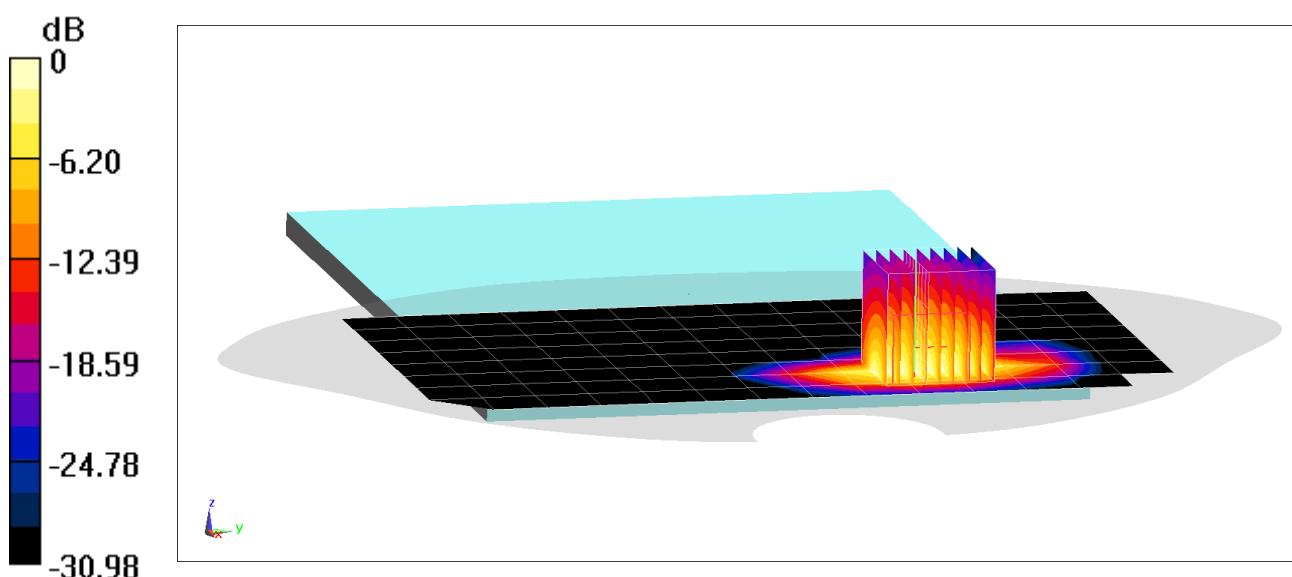
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Antenna C, Body SAR, Back side, High.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 25.40 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.23 W/kg

SAR(1 g) = 0.904 W/kg; SAR(10 g) = 0.407 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN020Q7LC

Communication System: UID 0, UMTS; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 826.4$ MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 54.609$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-15-2020; Ambient Temp: 22.1°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 826.4 MHz; Calibrated: 3/20/2020

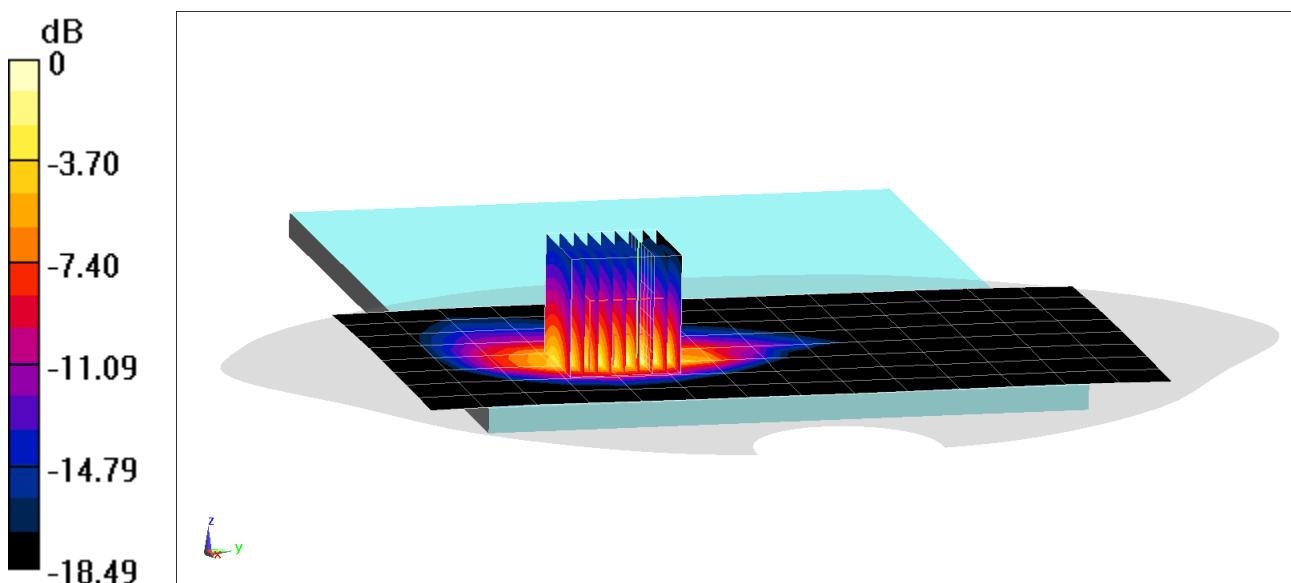
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Antenna D, Body SAR, Back side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.9mm, dy=3.9mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 33.63 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.508 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02HQ7L9

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: 1750 Body Medium parameters used (interpolated):

$f = 1732.4$ MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 51.64$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-15-2020; Ambient Temp: 23.3.°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7427; ConvF(7.92, 7.92, 7.92) @ 1732.4 MHz; Calibrated: 2/19/2020

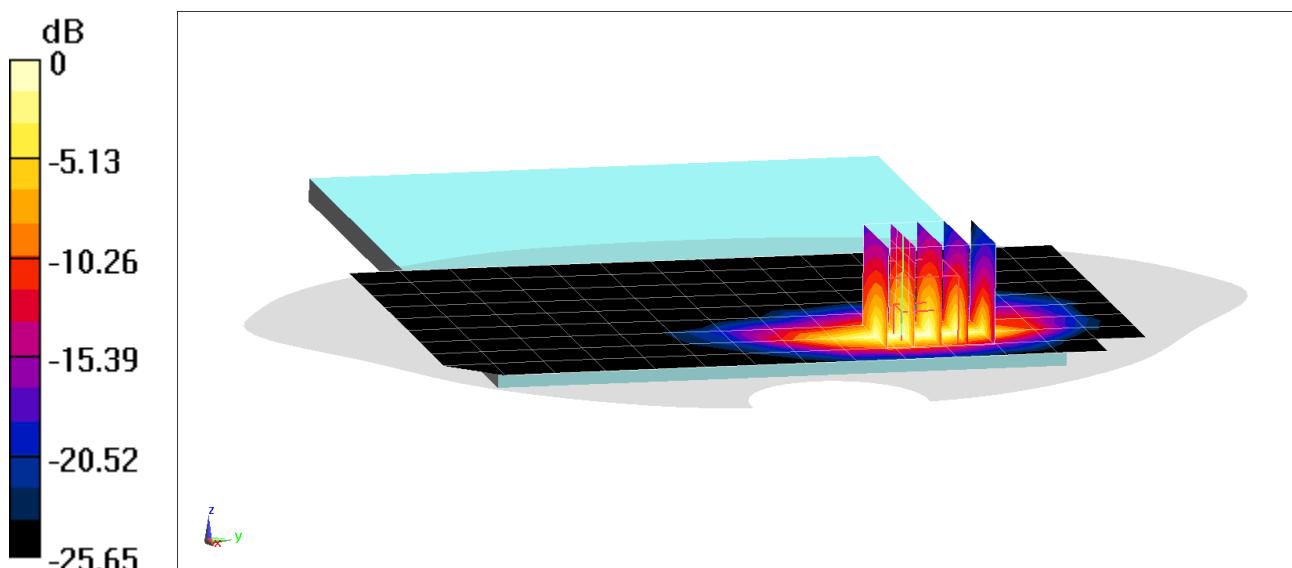
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Antenna C, Body SAR, Back side, Mid.ch


Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.82 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 0.899 W/kg; SAR(10 g) = 0.419 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02HQ7L9

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1907.6$ MHz; $\sigma = 1.589$ S/m; $\epsilon_r = 51.875$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-10-2020; Ambient Temp: 22.8°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1907.6 MHz; Calibrated: 4/20/2020

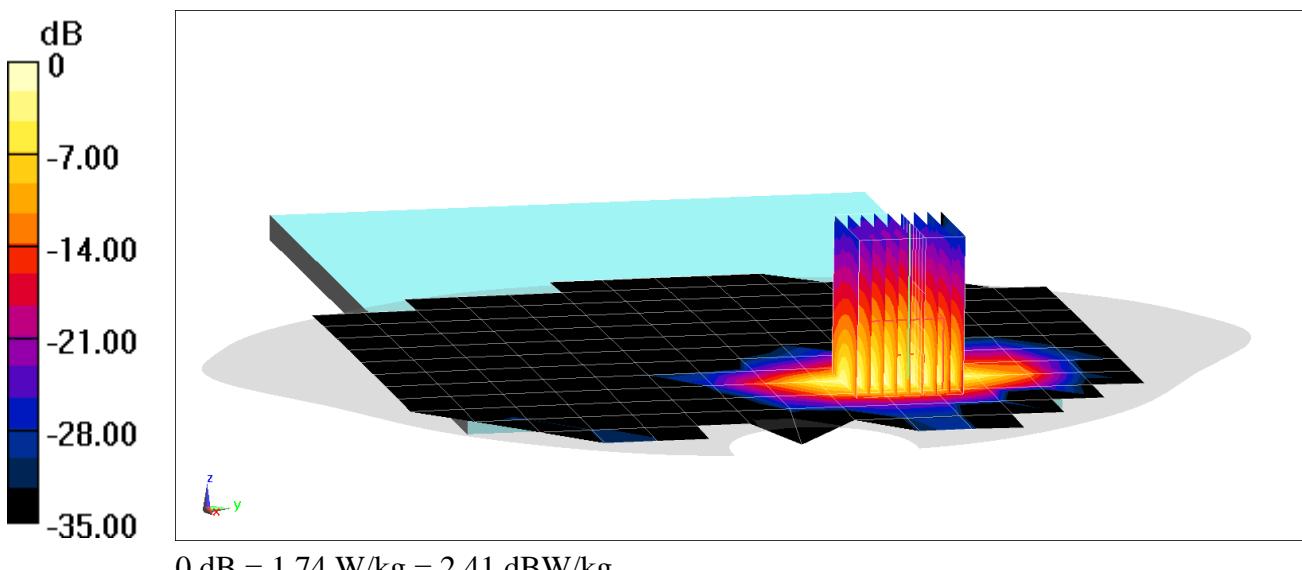
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Antenna C, Body SAR, Back side, High.ch


Area Scan (15x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 26.62 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.39 W/kg

SAR(1 g) = 0.982 W/kg; SAR(10 g) = 0.444 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN00HQ7LC

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium: 750 Body Medium parameters used (interpolated):

$f = 707.5$ MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 53.582$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-16-2020; Ambient Temp: 21.0°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 707.5 MHz; Calibrated: 4/20/2020

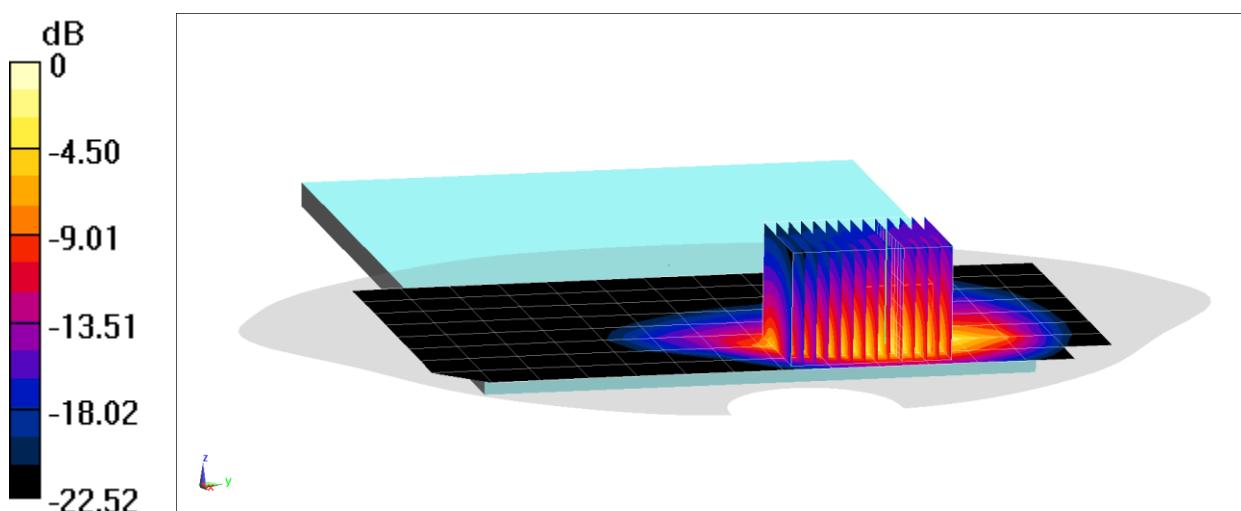
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Mode: LTE Band 12, Antenna C, Body SAR, Back side, Mid.ch,
10 MHz Bandwidth, QPSK, 25 RB, 0 RB Offset**


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (11x14x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 28.39 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.90 W/kg

SAR(1 g) = 0.899 W/kg; SAR(10 g) = 0.429 W/kg

0 dB = 1.77 W/kg = 2.48 dBW/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02QQ7L9

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1

Medium: 750 Body Medium parameters used (interpolated):

$f = 782$ MHz; $\sigma = 0.987$ S/m; $\epsilon_r = 53.41$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-16-2020; Ambient Temp: 21.0°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 782 MHz; Calibrated: 4/20/2020

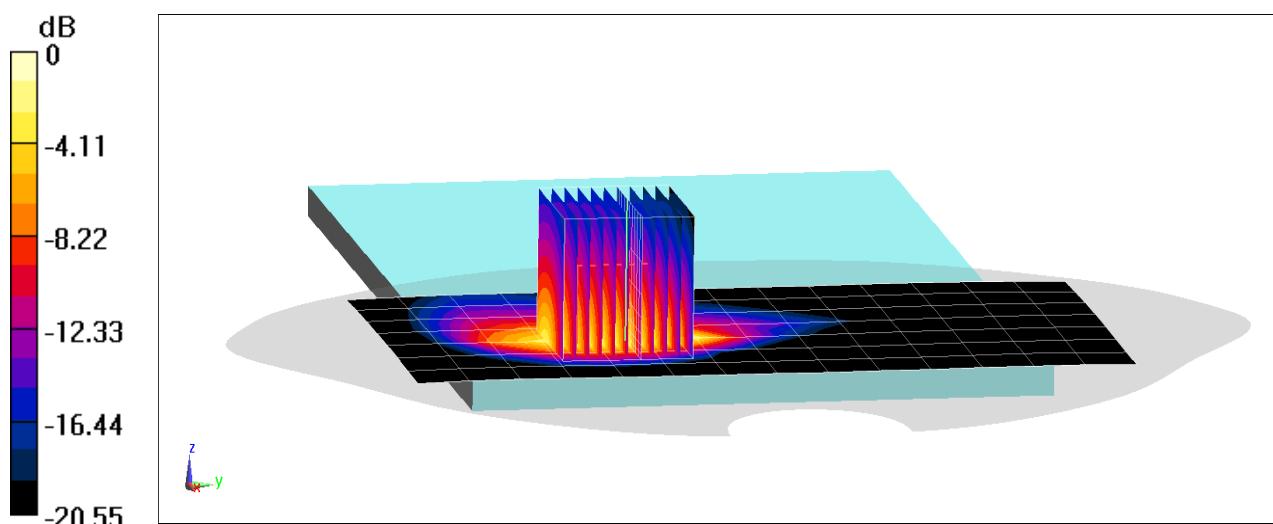
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Mode: LTE Band 13, Antenna D, Body SAR, Back side, Mid.ch,
10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset**


Area Scan (8x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (11x11x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 27.03 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.96 W/kg

SAR(1 g) = 0.873 W/kg; SAR(10 g) = 0.425 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02HQ7L9

Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1

Medium: 750 Body Medium parameters used (interpolated):

$f = 793$ MHz; $\sigma = 0.991$ S/m; $\epsilon_r = 53.378$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-16-2020; Ambient Temp: 21.0°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 793 MHz; Calibrated: 4/20/2020

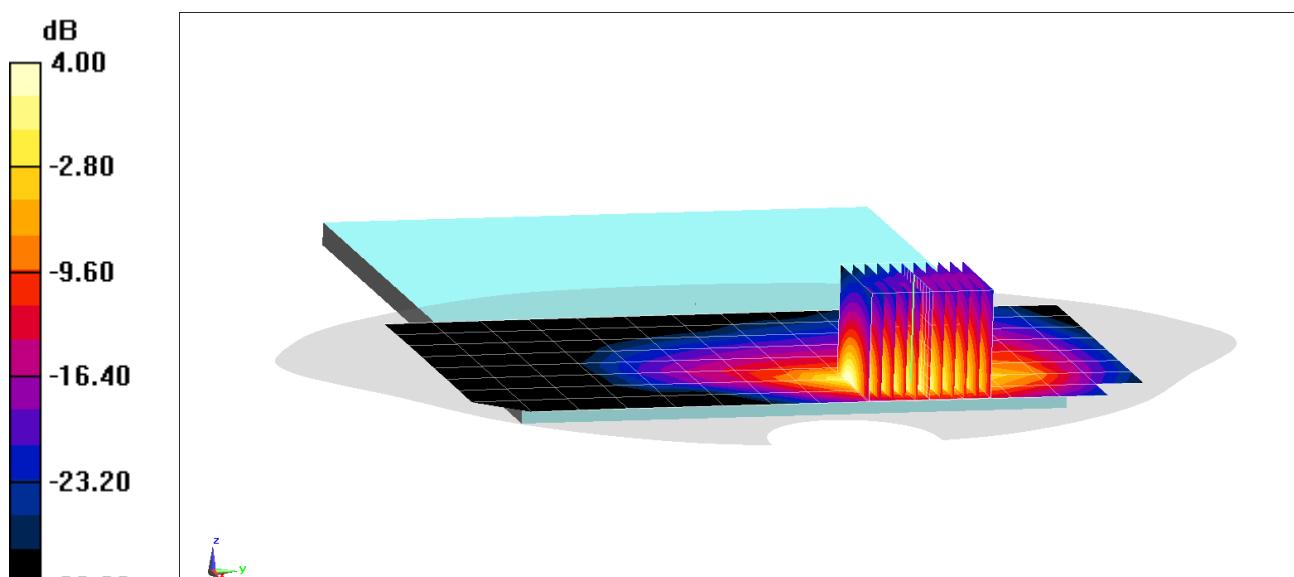
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Mode: LTE Band 14, Antenna C, Body SAR, Back side, Mid.ch,
10 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset**


Area Scan (9x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (11x11x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 28.73 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 0.760 W/kg; SAR(10 g) = 0.375 W/kg

0 dB = 1.54 W/kg = 1.88 dBW/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02TQ7L9

Communication System: UID 0, _LTE Band 26; Frequency: 819 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 819$ MHz; $\sigma = 0.974$ S/m; $\epsilon_r = 54.542$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-10-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 819 MHz; Calibrated: 3/20/2020

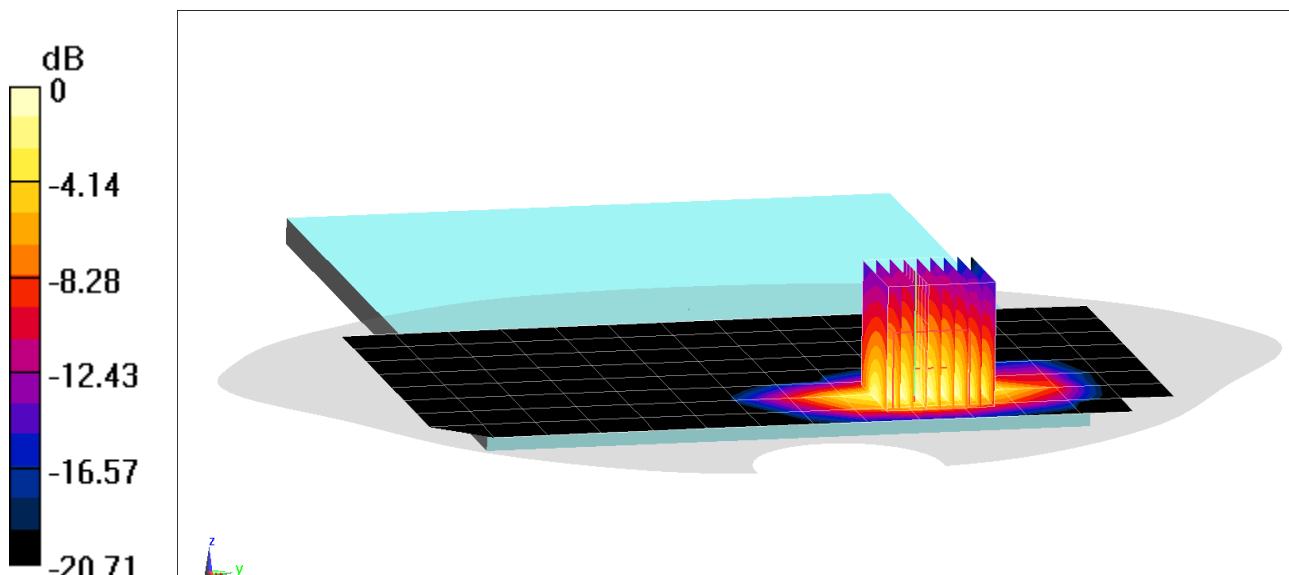
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 26 (Cell.), Antenna C, Body SAR, Back side, Low.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.99 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.514 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02QQ7L9

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.5$ MHz; $\sigma = 0.985$ S/m; $\epsilon_r = 53.382$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-04-2020; Ambient Temp: 23.4°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 836.5 MHz; Calibrated: 3/20/2020

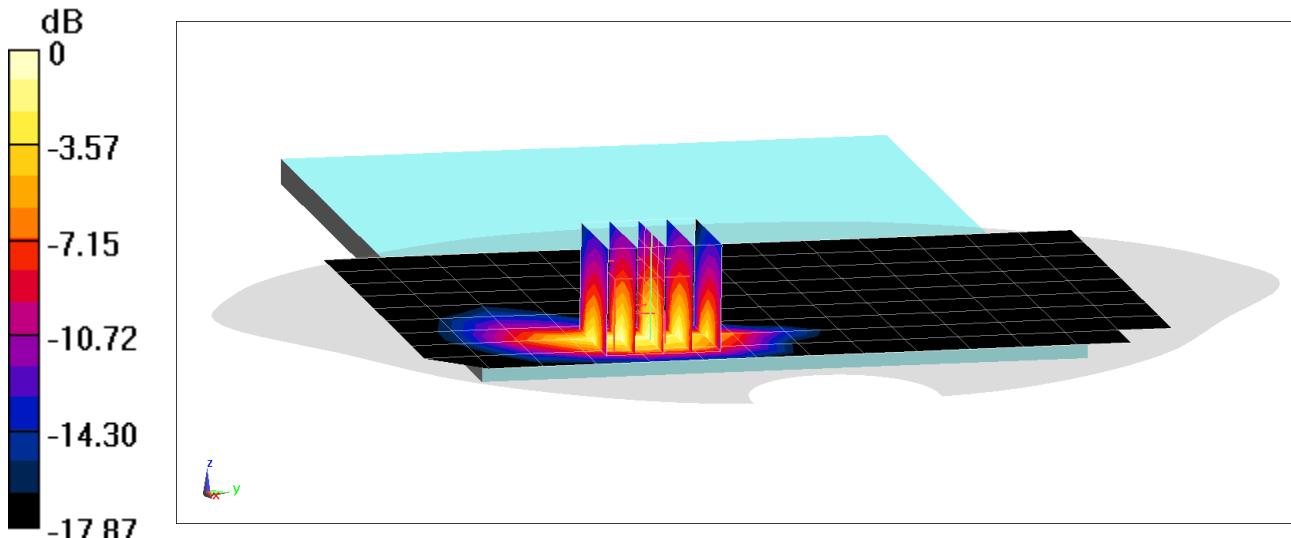
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Antenna D, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset


Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.67 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.478 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN00JQ7LC

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1

Medium: 1750 Body Medium parameters used (interpolated):

$f = 1770$ MHz; $\sigma = 1.55$ S/m; $\epsilon_r = 51.527$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-15-2020; Ambient Temp: 23.3.°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7427; ConvF(7.92, 7.92, 7.92) @ 1770 MHz; Calibrated: 2/19/2020

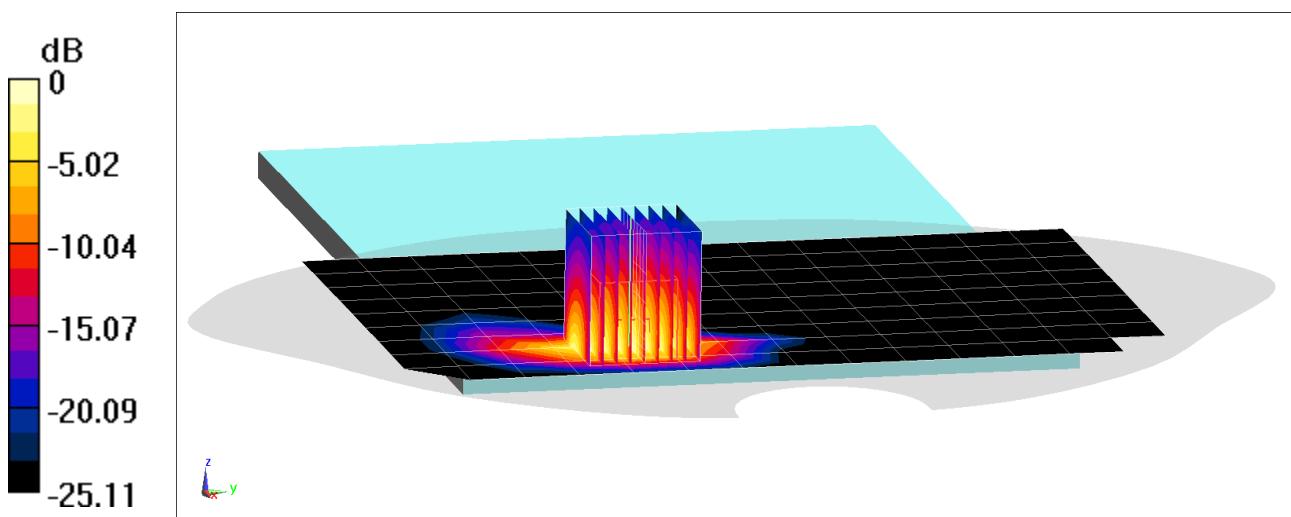
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Antenna D, Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset


Area Scan (10x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 26.14 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 0.905 W/kg; SAR(10 g) = 0.388 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02HQ7L9

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1905 \text{ MHz}$; $\sigma = 1.527 \text{ S/m}$; $\epsilon_r = 51.687$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-08-2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1905 MHz; Calibrated: 4/20/2020

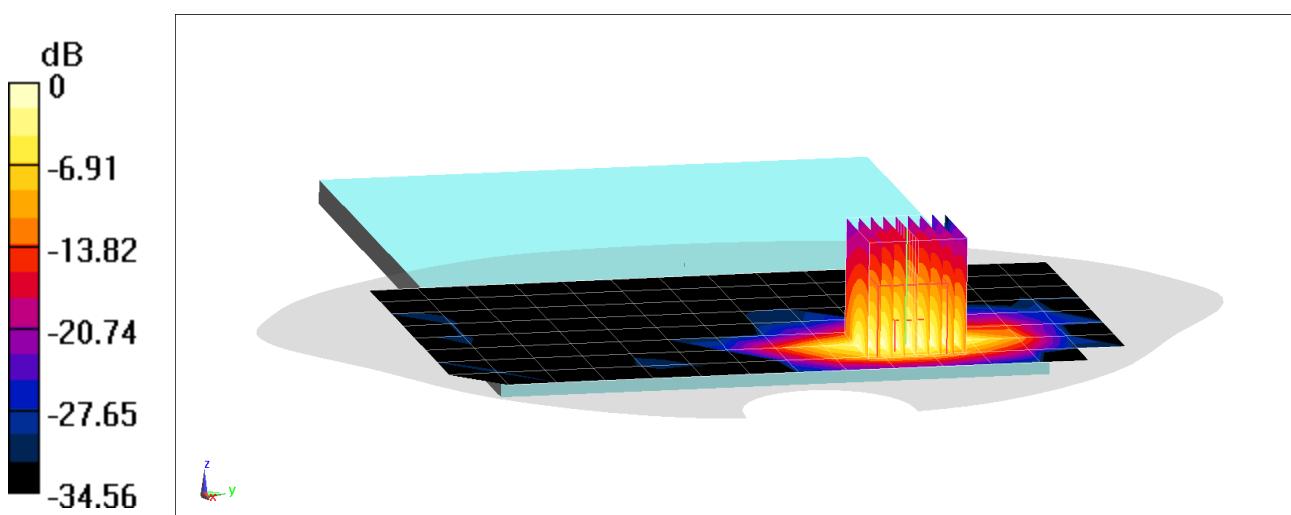
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Mode: LTE Band 25 (PCS), Antenna C, Body SAR, Back side,
High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset**


Area Scan (9x15x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (9x9x8)/Cube 0: Measurement grid: $dx=3.8\text{mm}$, $dy=3.8\text{mm}$, $dz=1.4\text{mm}$; Graded Ratio: 1.4

Reference Value = 26.08 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.46 W/kg

SAR(1 g) = 0.971 W/kg; SAR(10 g) = 0.436 W/kg

0 dB = 1.74 W/kg = 2.41 dBW/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02SQ7L9

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1

Medium: 2300 Body Medium parameters used:

$f = 2310 \text{ MHz}$; $\sigma = 1.904 \text{ S/m}$; $\epsilon_r = 52.569$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-15-2020; Ambient Temp: 20.8°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7532; ConvF(7.79, 7.79, 7.79) @ 2310 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Antenna C, Body SAR, Top Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: $dx=5\text{mm}$, $dy=12\text{mm}$

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 20.84 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.337 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN020Q7LC

Communication System: UID 0, LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1

Medium: 2450-2600 MHz Body Medium parameters used (interpolated):

$f = 2560$ MHz; $\sigma = 2.177$ S/m; $\epsilon_r = 51.343$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-23-2020; Ambient Temp: 23.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3949; ConvF(7.69, 7.69, 7.69) @ 2560 MHz; Calibrated: 8/29/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

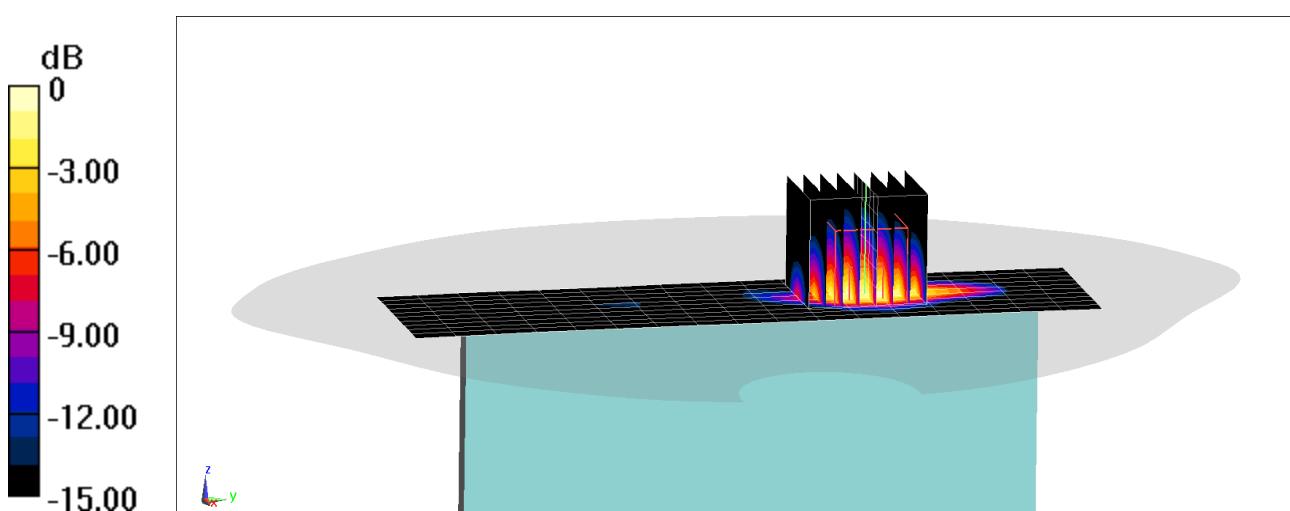
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7 ULCA, Antenna C, Body SAR, Top Edge,

PCC: 20 MHz Bandwidth, QPSK, Ch.21350, 1RB, 0RB Offset

SCC: 20 MHz Bandwidth, QPSK, Ch.21152, 1 RB, 99 RB Offset


Area Scan (11x18x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.87 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.366 W/kg

0 dB = 1.52 W/kg = 1.82 dBW/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02TQ7L9

Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2549.5 MHz; Duty Cycle: 1:1.58

Medium: 2450-2600 MHz Medium parameters used:

$f = 2550$ MHz; $\sigma = 2.146$ S/m; $\epsilon_r = 51.972$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-18-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7491; ConvF(7.45, 7.45, 7.45) @ 2549.5 MHz; Calibrated: 7/16/2019

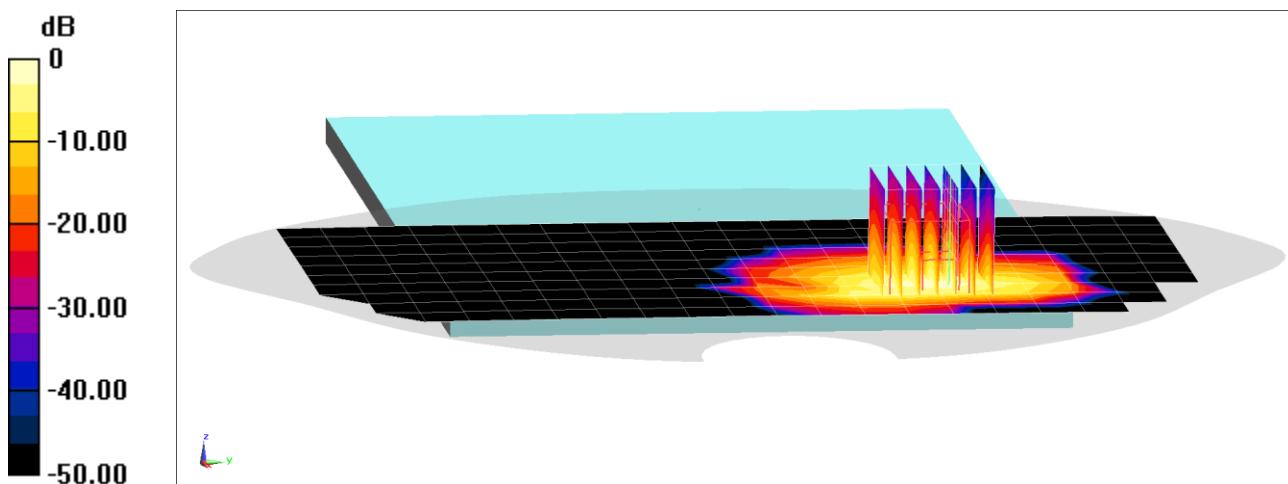
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1402; Calibrated: 7/10/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41, Antenna C, Body SAR, Back side, Low-Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset


Area Scan (11x21x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.75 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.414 W/kg

0 dB = 1.70 W/kg = 2.30 dBW/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN00JQ7LC

Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Body Medium parameters used (interpolated):

$f = 2437$ MHz; $\sigma = 1.981$ S/m; $\epsilon_r = 51.335$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-20-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2437 MHz; Calibrated: 8/29/2019

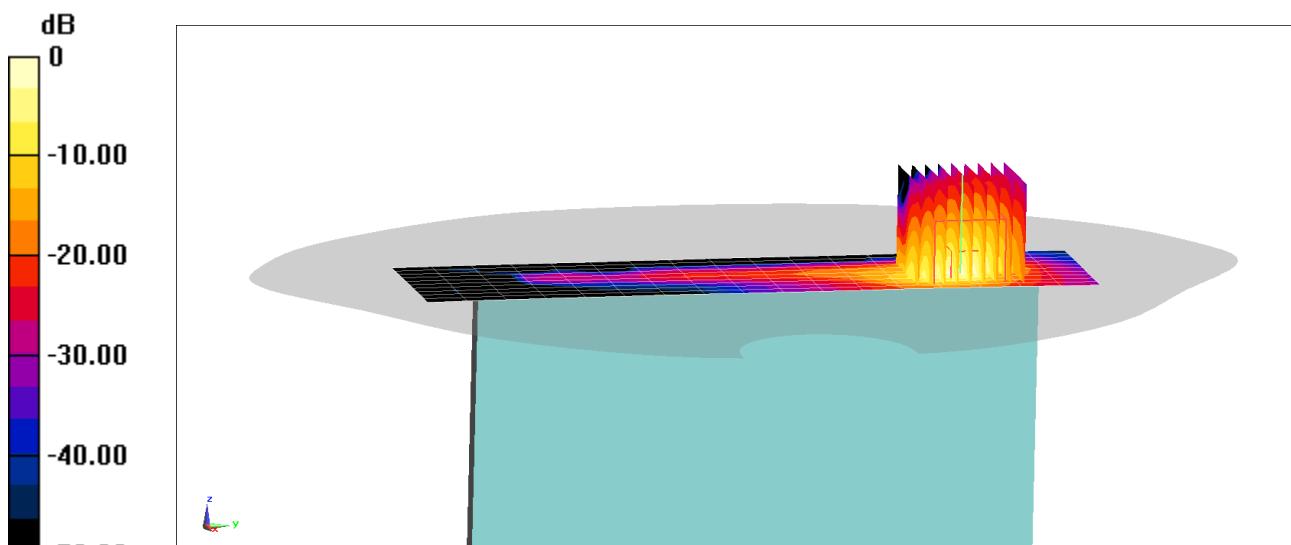
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

**Mode: IEEE 802.11b, Antenna A Variant 2, 22 MHz Bandwidth,
Body SAR, Ch 6, 1 Mbps, Bottom Edge**


Area Scan (11x18x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (9x9x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 19.87 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 0.714 W/kg; SAR(10 g) = 0.228 W/kg

0 dB = 1.63 W/kg = 2.12 dBW/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02QQ7L9

Communication System: UID 0, _IEEE 802.11ac; Frequency: 5690 MHz; Duty Cycle: 1:1

Medium: 5GHz Body Medium parameters used (interpolated):

$f = 5690$ MHz; $\sigma = 6.096$ S/m; $\epsilon_r = 46.897$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-07-2020; Ambient Temp: 23.7°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7420; ConvF(4.28, 4.28, 4.28) @ 5690 MHz; Calibrated: 11/21/2019

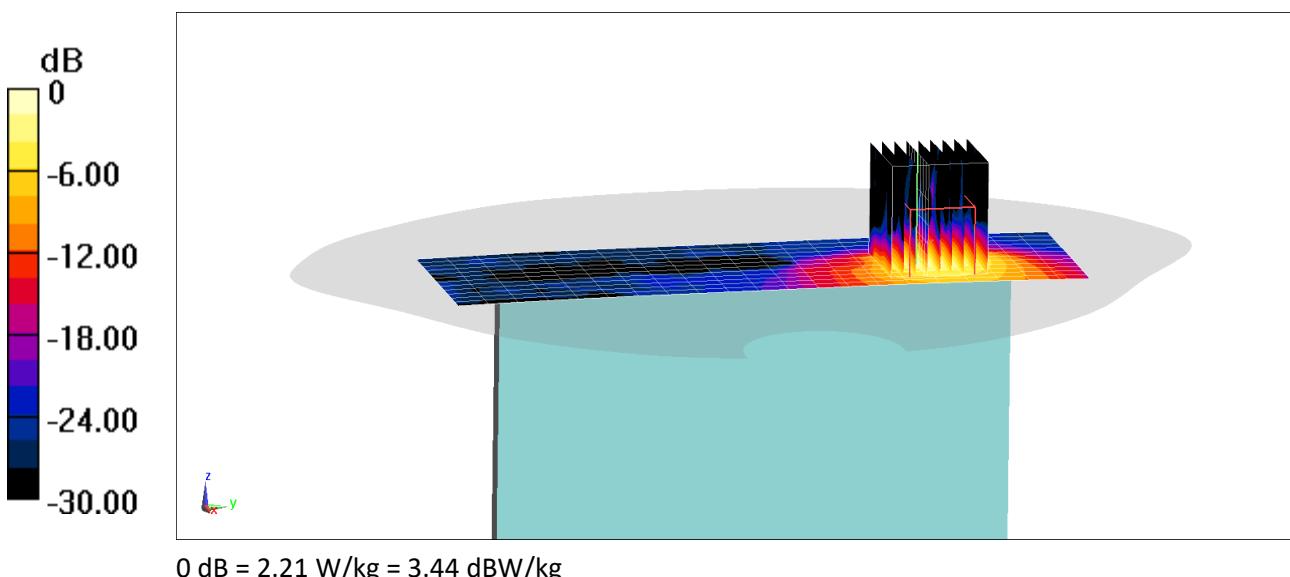
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11ac, Antenna A Variant 1, U-NII-2C, 80 MHz Bandwidth, Body SAR, Ch 138, 29.3 Mbps, Bottom Edge


Area Scan (13x22x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 12.68 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 3.80 W/kg

SAR(1 g) = 0.836 W/kg; SAR(10 g) = 0.283 W/kg

PCTEST

DUT: BCGA2429; Type: Tablet Device; Serial: F9FCN02QQ7L9

Communication System: UID 0, Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1.297

Medium: 2450 MHz Body Medium parameters used (interpolated):

$f = 2402$ MHz; $\sigma = 1.93$ S/m; $\epsilon_r = 51.437$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 06-21-2020; Ambient Temp: 21.2°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2402 MHz; Calibrated: 8/29/2019

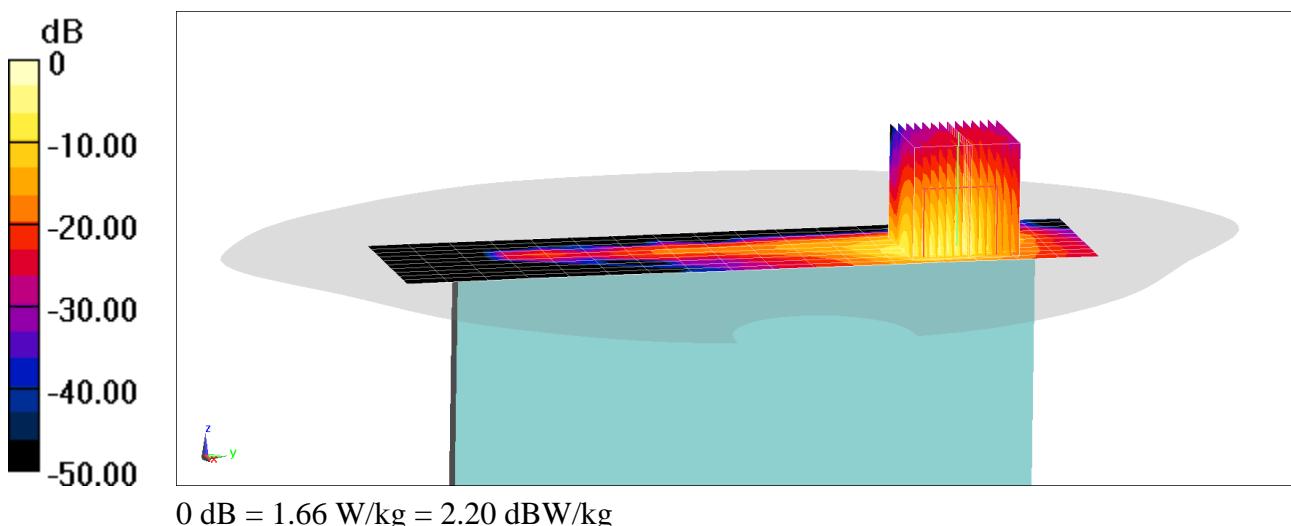
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Antenna A Variant 1, Body SAR, Ch 0, 1 Mbps, Bottom Edge


Area Scan (11x18x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (14x14x8)/Cube 0: Measurement grid: dx=2.4mm, dy=2.4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 22.37 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 2.47 W/kg

SAR(1 g) = 0.740 W/kg; SAR(10 g) = 0.240 W/kg

APPENDIX B: SYSTEM VERIFICATION

PCTEST

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1057

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: 750 Body Medium parameters used (interpolated):

$f = 750$ MHz; $\sigma = 0.976$ S/m; $\epsilon_r = 53.494$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 06-16-2020; Ambient Temp: 21.0°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7532; ConvF(10.43, 10.43, 10.43) @ 750 MHz; Calibrated: 4/20/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.79 W/kg; SAR(10 g) = 1.19 W/kg

Deviation(1 g) = 3.59%

PCTEST

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d040

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.99 \text{ S/m}$; $\epsilon_r = 54.391$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 06-10-2020; Ambient Temp: 21.9°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 835 MHz; Calibrated: 3/20/2020

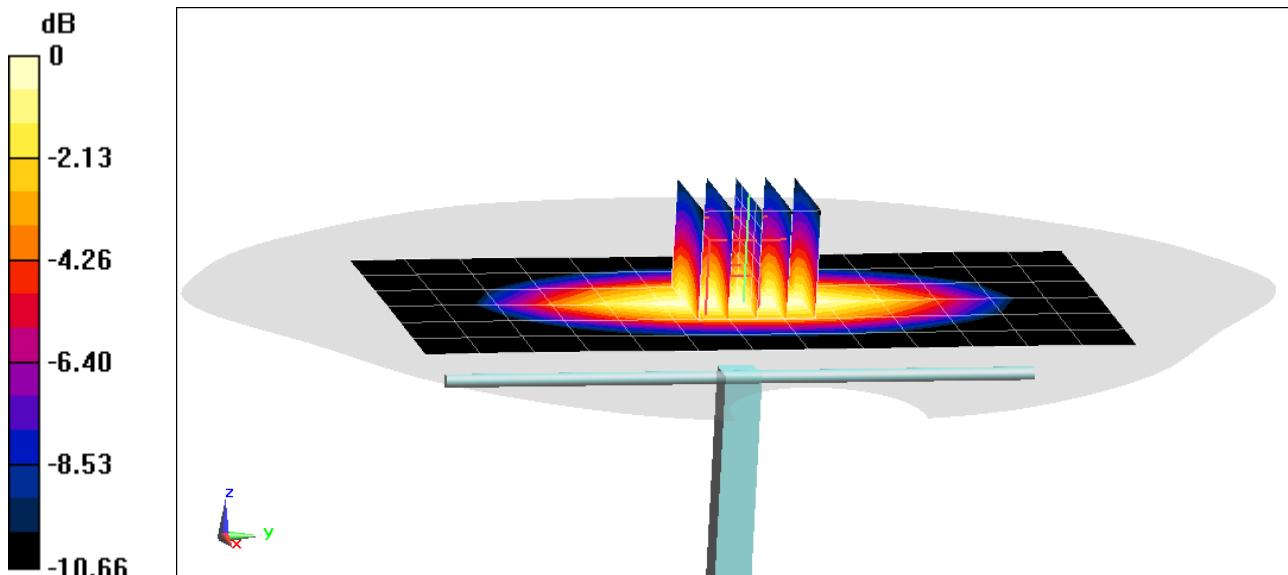
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 3.00 W/kg

SAR(1 g) = 1.99 W/kg; SAR(10 g) = 1.31 W/kg

Deviation(1 g) = 4.41%

PCTEST

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d040

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.984 \text{ S/m}$; $\epsilon_r = 54.529$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 06-15-2020; Ambient Temp: 22.1°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 835 MHz; Calibrated: 3/20/2020

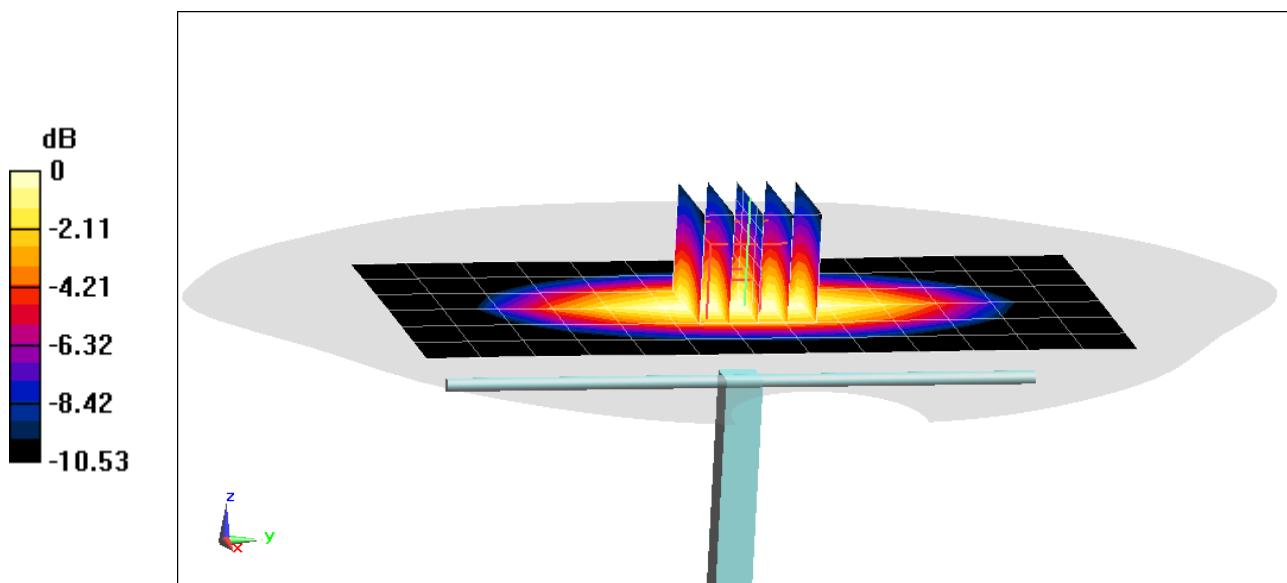
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 3.05 W/kg

SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.34 W/kg

Deviation(1 g) = 7.03%

0 dB = 2.70 W/kg = 4.31 dBW/kg

PCTEST

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d180

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835$ MHz; $\sigma = 0.989$ S/m; $\epsilon_r = 54.479$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 06-17-2020; Ambient Temp: 21.3°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 835 MHz; Calibrated: 3/20/2020

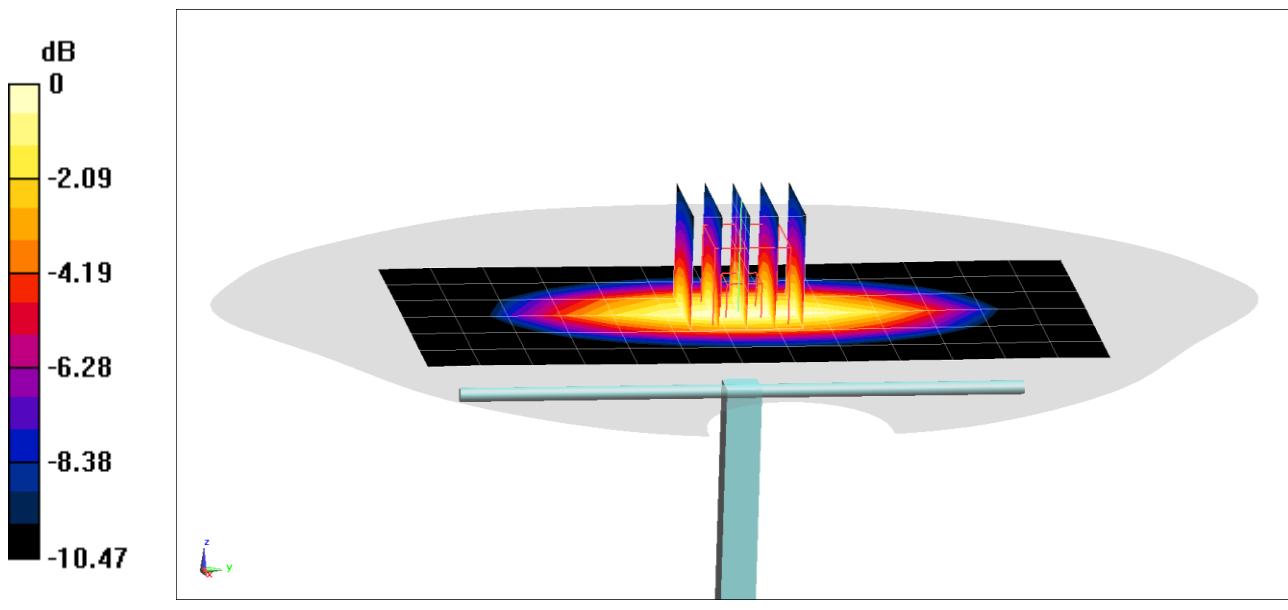
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.05 W/kg

SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.34 W/kg

Deviation(1 g) = 5.84%

PCTEST

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d180

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.984 \text{ S/m}$; $\epsilon_r = 53.393$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-04-2020; Ambient Temp: 23.4°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7421; ConvF(9.42, 9.42, 9.42) @ 835 MHz; Calibrated: 3/20/2020

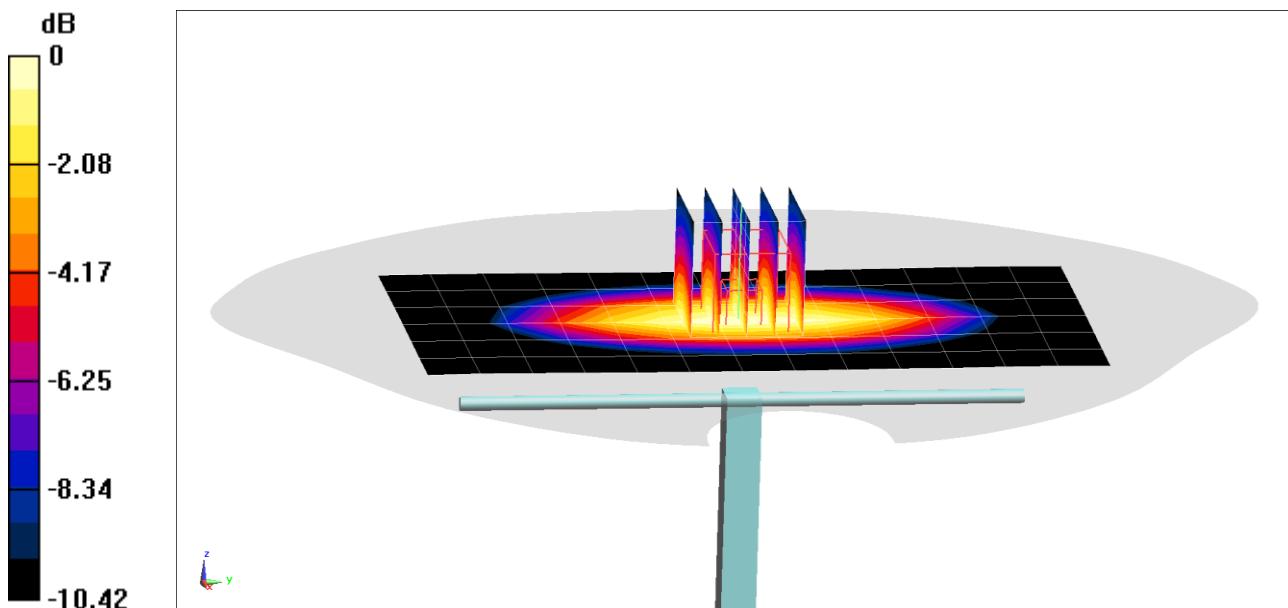
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/19/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 3.00 W/kg

SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.34 W/kg

Deviation(1 g) = 6.36%

0 dB = 2.69 W/kg = 4.30 dBW/kg

PCTEST

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1104

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1750 Body Medium parameters used:

$f = 1750$ MHz; $\sigma = 1.532$ S/m; $\epsilon_r = 51.596$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-15-2020; Ambient Temp: 23.3.°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7427; ConvF(7.92, 7.92, 7.92) @ 1750 MHz; Calibrated: 2/19/2020

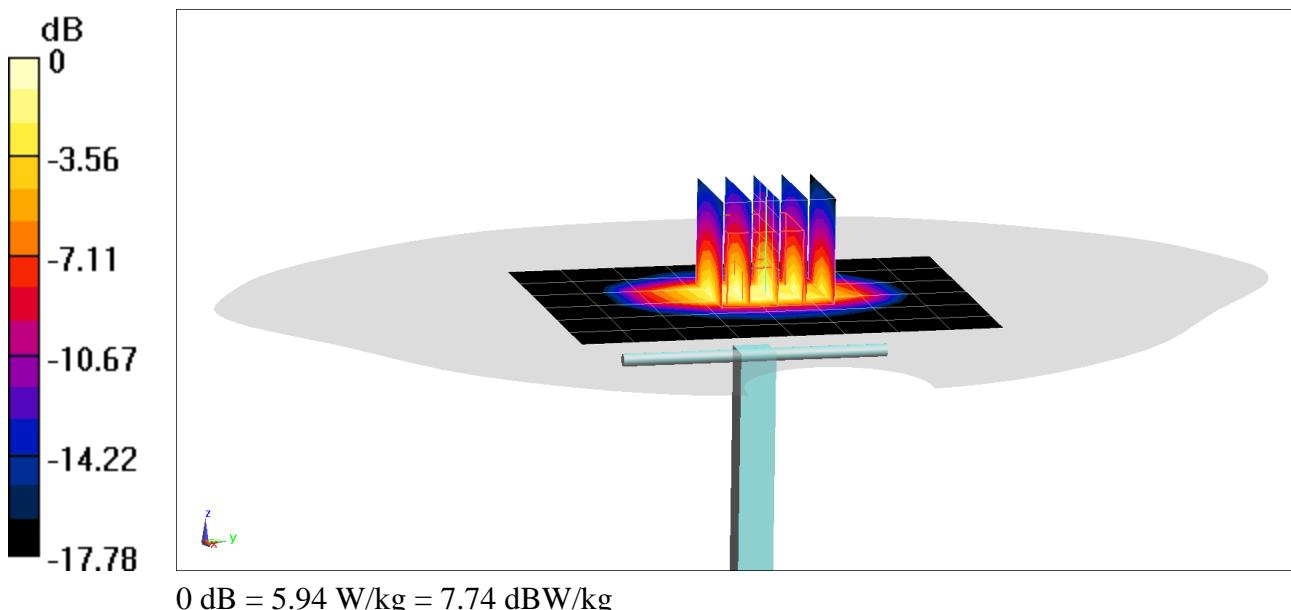
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2020

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.07 W/kg

SAR(1 g) = 3.93 W/kg; SAR(10 g) = 2.07 W/kg

Deviation(1 g) = 7.38%

PCTEST

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d026

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1900$ MHz; $\sigma = 1.521$ S/m; $\epsilon_r = 51.702$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-08-2020; Ambient Temp: 22.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 4/20/2020

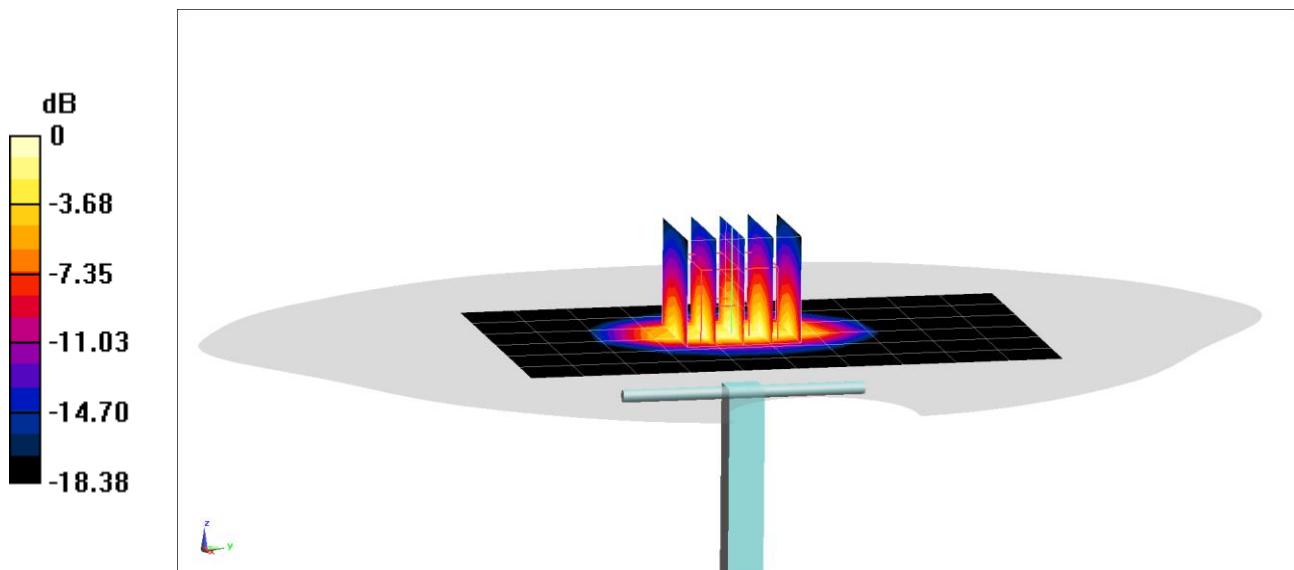
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.58 W/kg

SAR(1 g) = 4.03 W/kg; SAR(10 g) = 2.07 W/kg

Deviation(1 g) = 1.00%

PCTEST

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d180

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1900$ MHz; $\sigma = 1.581$ S/m; $\epsilon_r = 51.899$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-10-2020; Ambient Temp: 22.8°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7532; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 4/20/2020

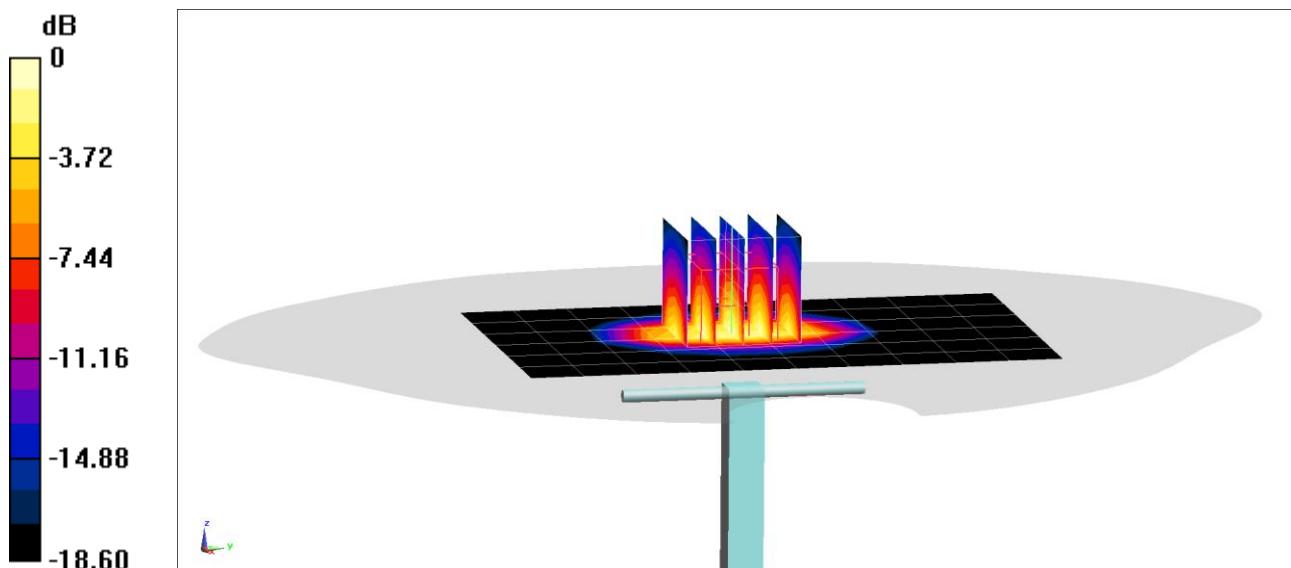
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.71 W/kg

SAR(1 g) = 4.08 W/kg; SAR(10 g) = 2.08 W/kg

Deviation(1 g) = 3.29%

PCTEST

DUT: Dipole 2300 MHz; Type: D2300V3; Serial: 1038

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium: 2300 Body Medium parameters used:

$f = 2300$ MHz; $\sigma = 1.893$ S/m; $\epsilon_r = 52.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-15-2020; Ambient Temp: 20.8°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7532; ConvF(7.79, 7.79, 7.79) @ 2300 MHz; Calibrated: 4/20/2020

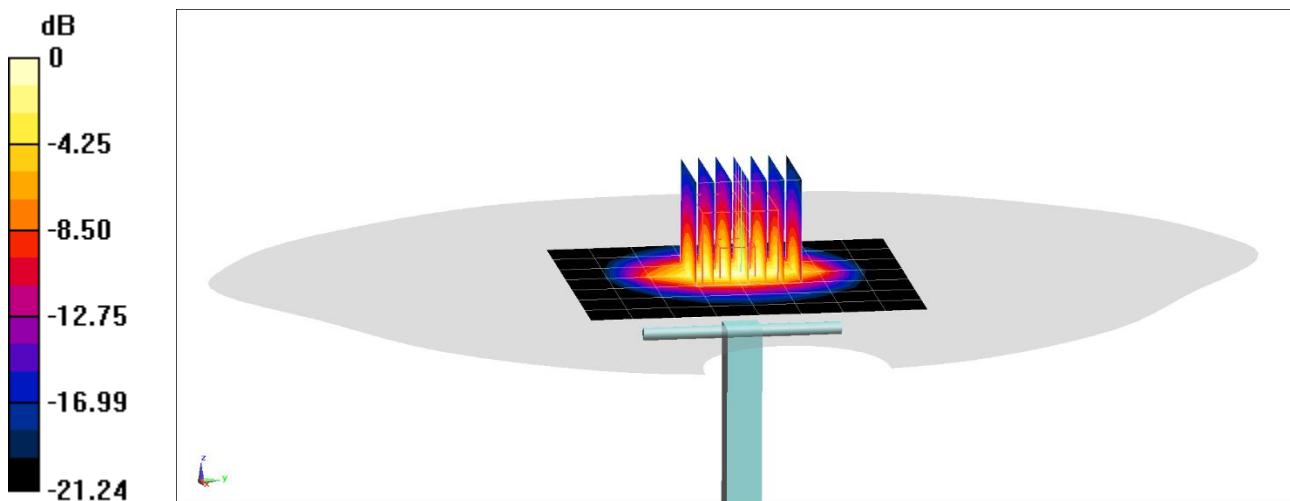
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/15/2020

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 8.97 W/kg

SAR(1 g) = 4.48 W/kg; SAR(10 g) = 2.12 W/kg

Deviation(1 g) = -4.07%

0 dB = 7.33 W/kg = 8.65 dBW/kg

PCTEST

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2400 MHz Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 2.003$ S/m; $\epsilon_r = 52.345$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-18-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7491; ConvF(7.57, 7.57, 7.57) @ 2450 MHz; Calibrated: 7/16/2019

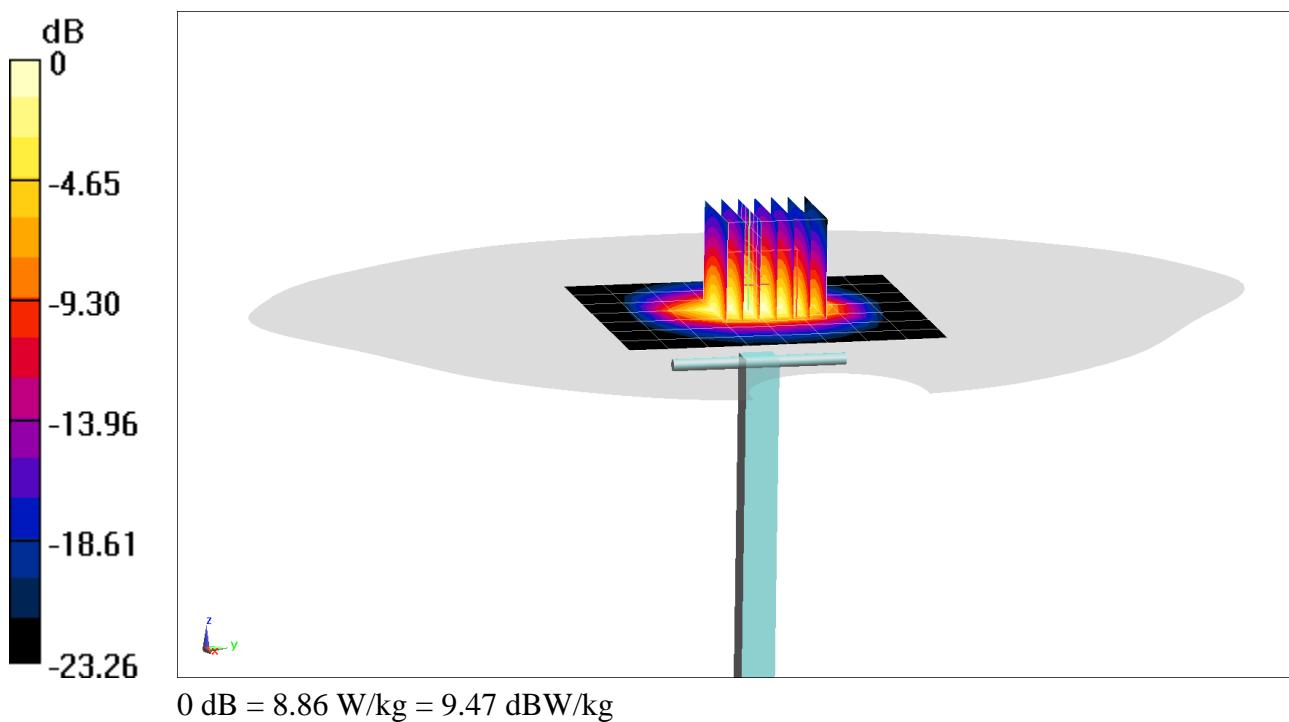
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1402; Calibrated: 7/10/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.1 W/kg

SAR(1 g) = 5.33 W/kg; SAR(10 g) = 2.44 W/kg

Deviation(1 g) = 4.92%

PCTEST

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2400 MHz Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 51.242$; $\rho = 1000$ kg/m³

Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 06-21-2020; Ambient Temp: 21.2°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 8/29/2019

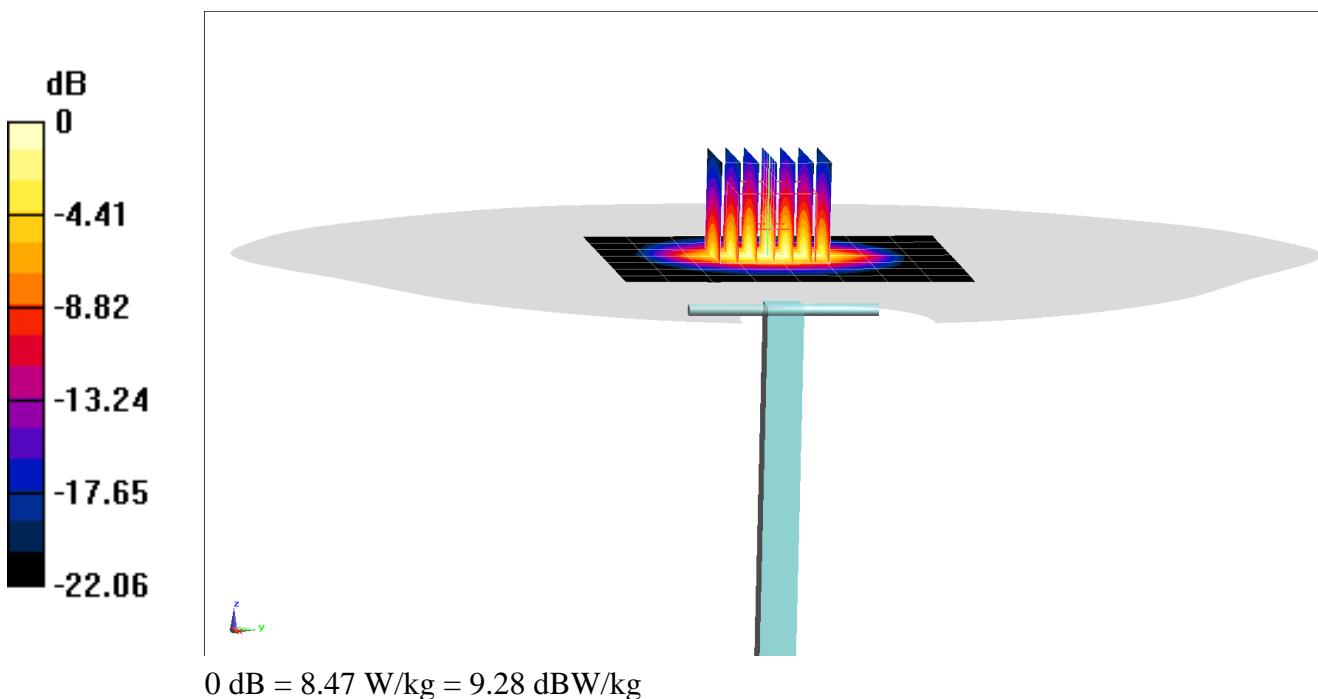
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0 ; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.5 W/kg

SAR(1 g) = 4.98 W/kg; SAR(10 g) = 2.28 W/kg

Deviation(1 g) = -1.97%

PCTEST

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2400 MHz Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 2.025$ S/m; $\epsilon_r = 51.793$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-23-2020; Ambient Temp: 23.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 8/29/2019

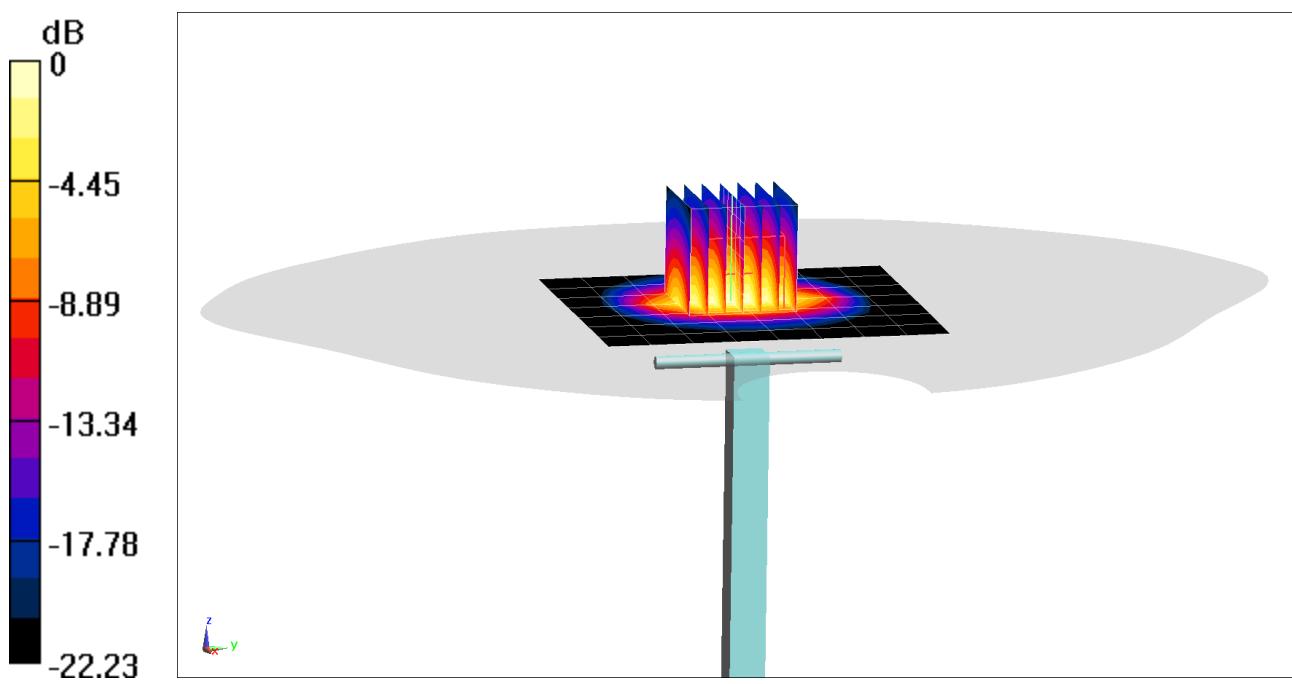
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.8 W/kg

SAR(1 g) = 5.25 W/kg; SAR(10 g) = 2.43 W/kg

Deviation(1 g) = 3.35%

PCTEST

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2400 MHz Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.997$ S/m; $\epsilon_r = 51.287$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3949; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 8/29/2019

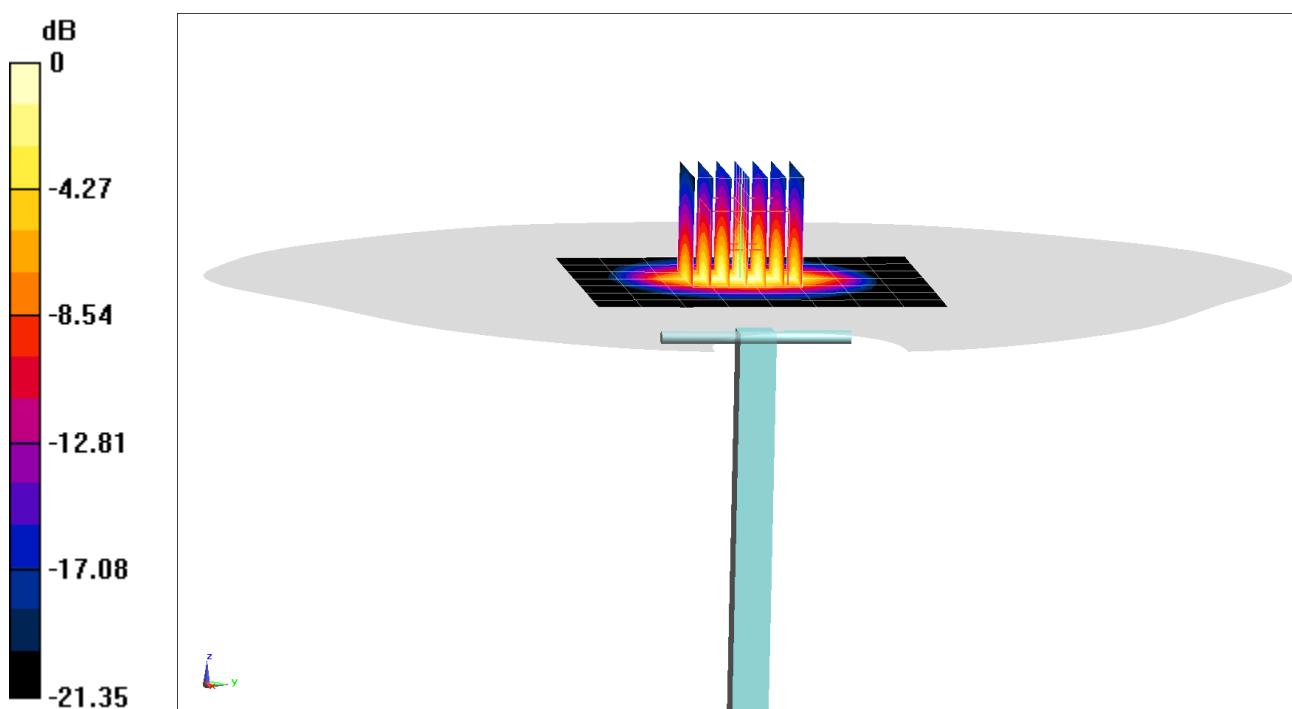
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.8 W/kg

SAR(1 g) = 5.29 W/kg; SAR(10 g) = 2.48 W/kg

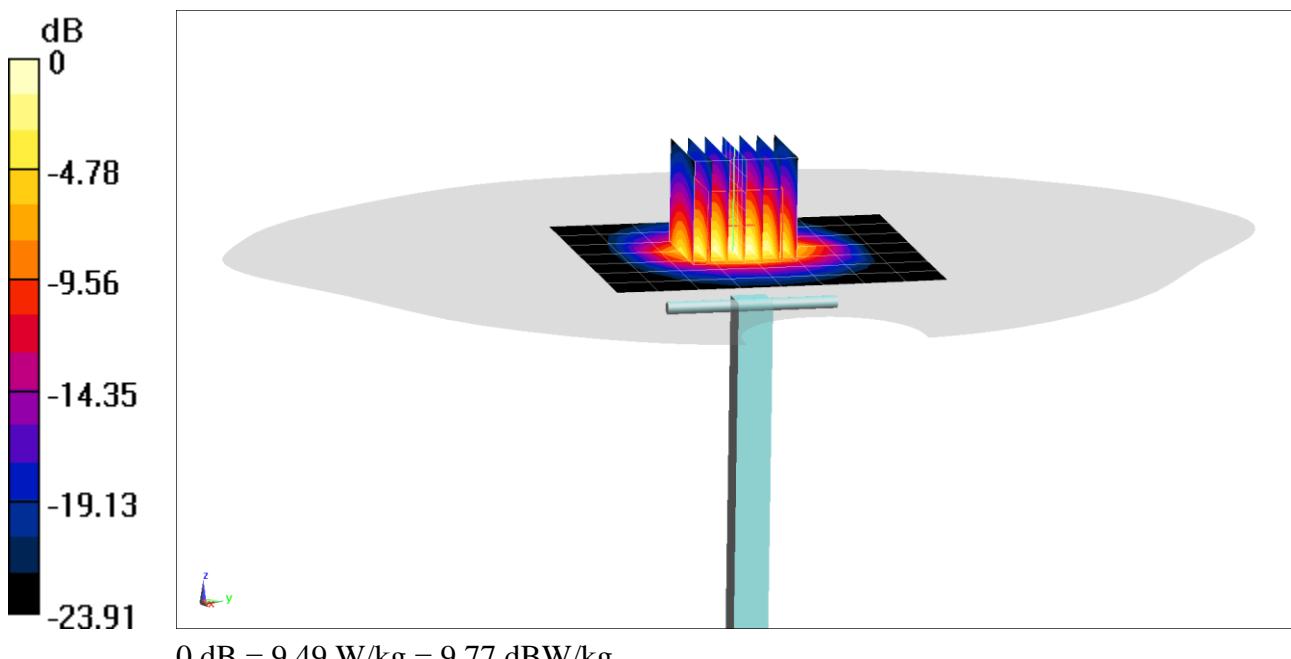
Deviation (1 g) = 4.13%

0 dB = 8.73 W/kg = 9.41 dBW/kg

PCTEST

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1
Medium: 2600 Body MHz Medium parameters used:
 $f = 2600$ MHz; $\sigma = 2.221$ S/m; $\epsilon_r = 51.804$; $\rho = 1000$ kg/m³
Phantom section: Flat Section; Space: 1.0 cm


Test Date: 06-18-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7491; ConvF(7.45, 7.45, 7.45) @ 2600 MHz; Calibrated: 7/16/2019
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1402; Calibrated: 7/10/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 12.2 W/kg
SAR(1 g) = 5.38 W/kg; SAR(10 g) = 2.35 W/kg
Deviation(1 g) = -2.71%

PCTEST

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2600 MHz Body Medium parameters used:

$f = 2600$ MHz; $\sigma = 2.229$ S/m; $\epsilon_r = 51.15$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-23-2020; Ambient Temp: 23.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN3949; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 8/29/2019

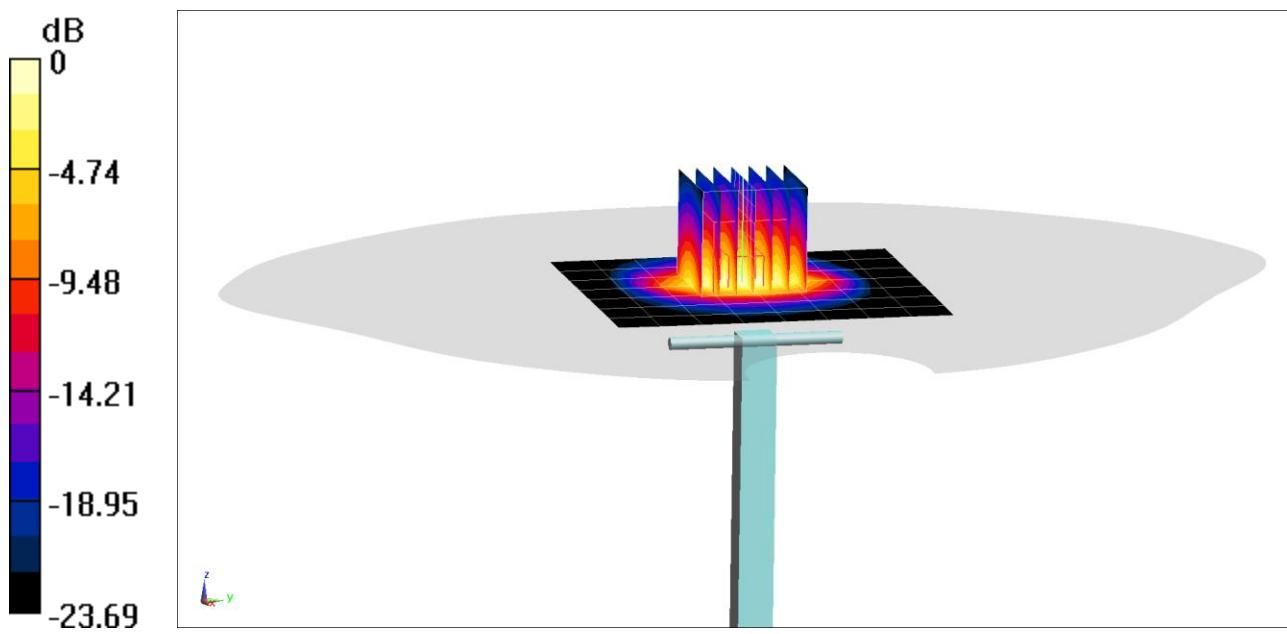
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/12/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.8 W/kg

SAR(1 g) = 5.85 W/kg; SAR(10 g) = 2.57 W/kg

Deviation(1 g) = 5.79%

PCTEST

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1163

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: 5GHz Body Medium parameters used (interpolated):

$f = 5250$ MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.634$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-07-2020; Ambient Temp: 23.7°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7420; ConvF(4.8, 4.8, 4.8) @ 5250 MHz; Calibrated: 11/21/2019

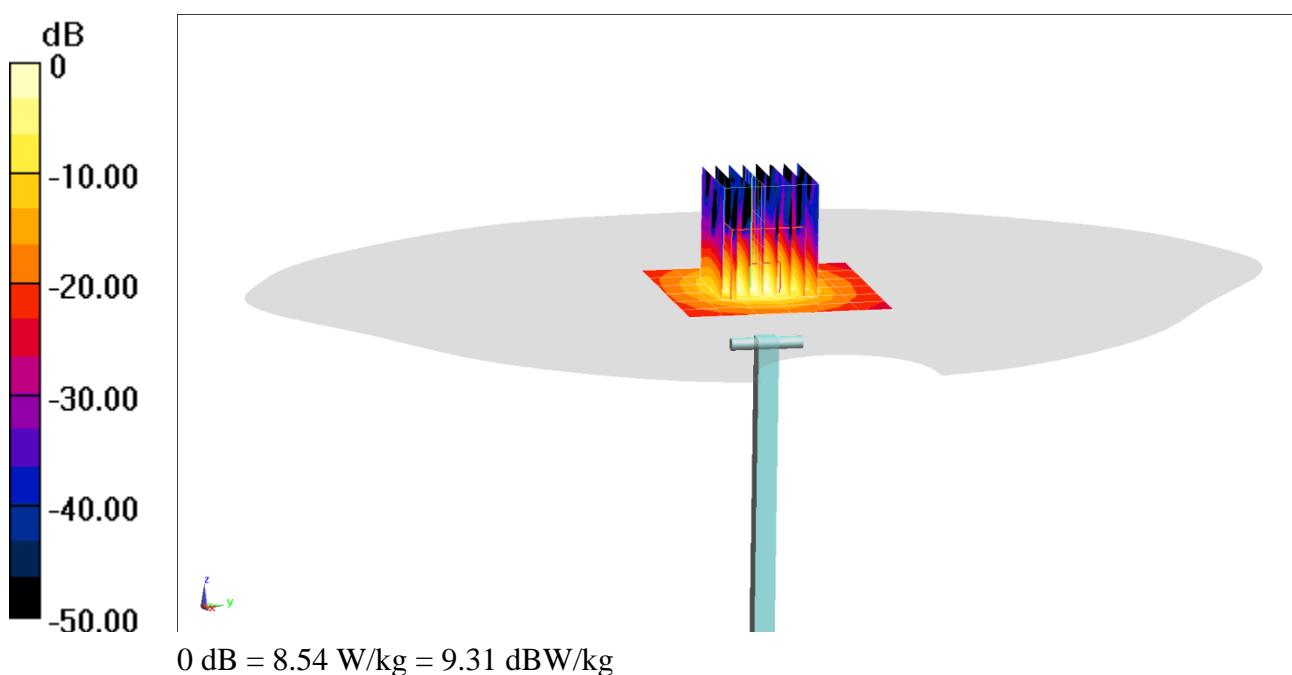
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.7 W/kg

SAR(1 g) = 3.59 W/kg; SAR(10 g) = 0.993 W/kg

Deviation(1 g) = -7.59%

PCTEST

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1163

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: 5GHz Body Medium parameters used:

$f = 5600$ MHz; $\sigma = 5.971$ S/m; $\epsilon_r = 47.05$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-07-2020; Ambient Temp: 23.7°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7420; ConvF(4.1, 4.1, 4.1) @ 5600 MHz; Calibrated: 11/21/2019

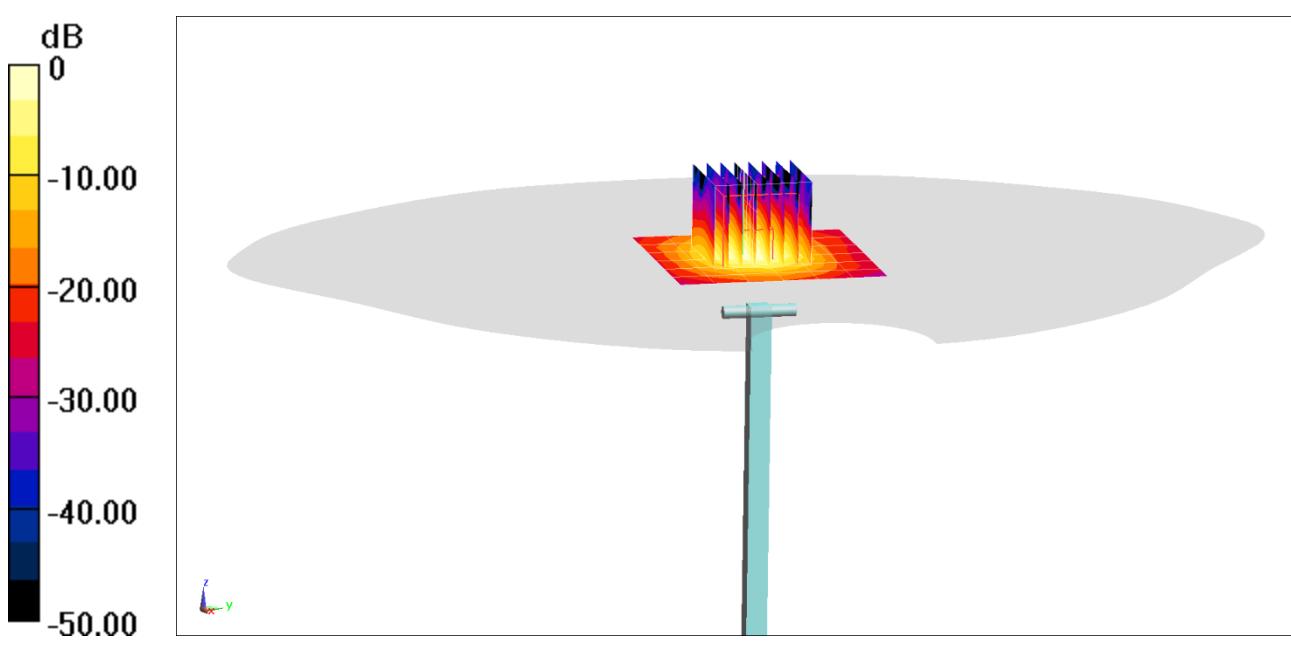
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 4.16 W/kg; SAR(10 g) = 1.15 W/kg

Deviation(1 g) = 3.87%

PCTEST

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1163

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: 5GHz Body Medium parameters used (interpolated):

$f = 5750$ MHz; $\sigma = 6.181$ S/m; $\epsilon_r = 46.766$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-07-2020; Ambient Temp: 23.7°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7420; ConvF(4.28, 4.28, 4.28) @ 5750 MHz; Calibrated: 11/21/2019

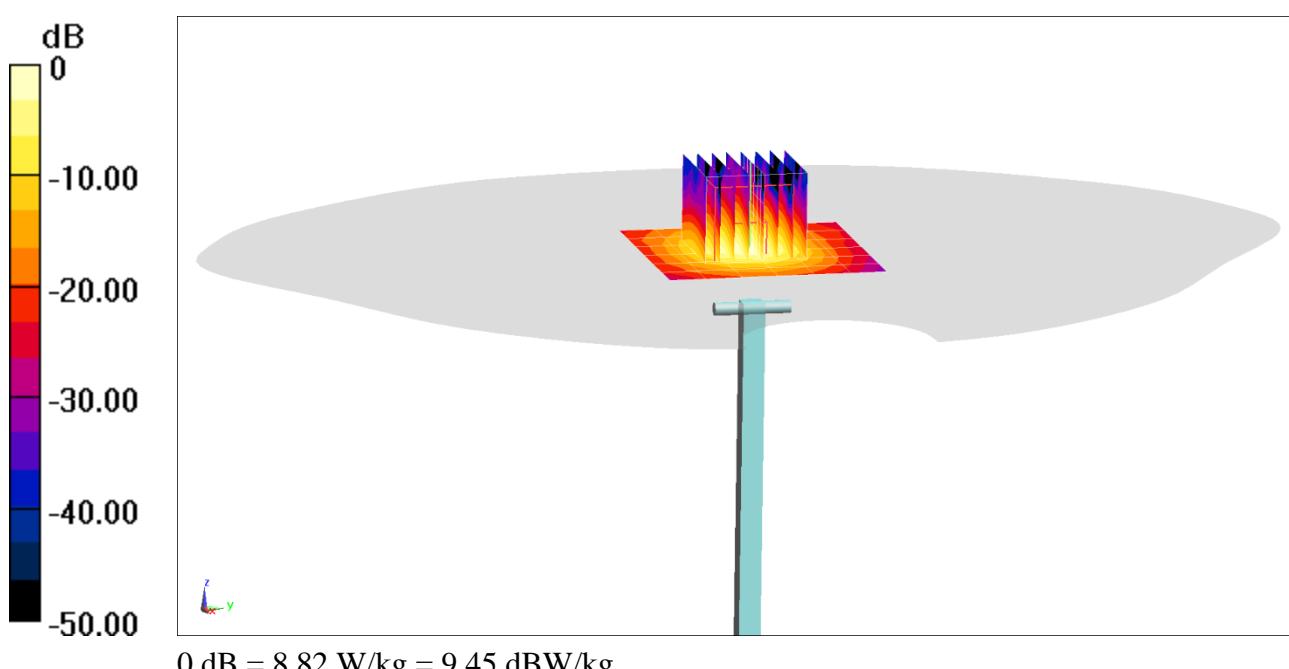
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 11/13/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 3.59 W/kg; SAR(10 g) = 0.994 W/kg

Deviation(1 g) = -7.71%

APPENDIX C: SAR TISSUE SPECIFICATIONS

FCC ID: BCGA2429	PCTEST Proud to be part of	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device		APPENDIX C: Page 1 of 3

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\epsilon_r\epsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp[-j\omega r(\mu_0\epsilon_r\epsilon_0)^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

CAS: 107-21-1 EINECS: 203-473-3 Reg.nr.: 01-2119456816-28-0000	Ethanediol STOT RE 2, H373; Acute Tox. 4, H302	>1.0-4.9%
CAS: 68608-26-4 EINECS: 271-781-5 Reg.nr.: 01-2119527859-22-0000	Sodium petroleum sulfonate Eye Irrit. 2, H319	< 2.9%
CAS: 107-41-5 EINECS: 203-489-0 Reg.nr.: 01-2119539582-35-0000	Hexylene Glycol / 2-Methyl-pentane-2,4-diol Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.9%
CAS: 68920-66-1 NLP: 500-236-9 Reg.nr.: 01-2119489407-26-0000	Alkoxylated alcohol, > C₁₆ Aquatic Chronic 2, H411; Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.0%

Additional information:

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: BCGA2429	PCTEST Proud to be part of Element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device		APPENDIX C: Page 2 of 3

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 181029-1)
Manufacturer	SPEAG

Measurement Method

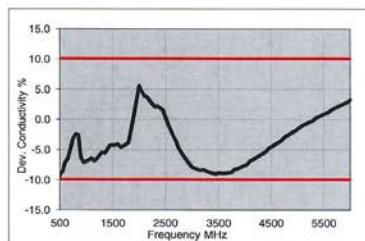
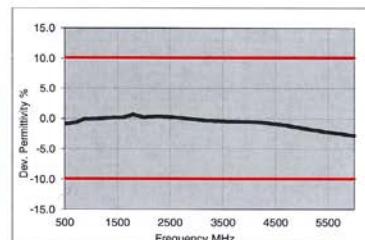
TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.

Test Condition

Ambient Condition 22°C ; 30% humidity
 TSL Temperature 22°C
 Test Date 30-Oct-18
 Operator CL



Additional Information

TSL Density

TSL Heat-capacity

Results

f (MHz)	Measured			Target			Diff. to Target (%)	
	ϵ'	ϵ''	σ	ϵ'	ϵ''	σ	$\Delta\epsilon'$	$\Delta\sigma$
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1	
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0	
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5	
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0	
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7	
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7	
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6	
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5	
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4	
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3	
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3	
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2	
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9	
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1	
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0	
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9	
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3	
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6	
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3	
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7	
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3	
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3	
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5	
2100	53.3	14.4	1.68	53.2	1.62	0.2	3.7	
2150	53.3	14.4	1.72	53.1	1.66	0.4	3.6	
2200	53.2	14.4	1.76	53.0	1.71	0.3	2.9	
2250	53.1	14.4	1.81	53.0	1.76	0.2	2.8	
2300	53.1	14.4	1.85	52.9	1.81	0.4	2.2	
2350	53.0	14.5	1.89	52.8	1.85	0.3	2.2	
2400	52.9	14.5	1.94	52.8	1.90	0.2	2.1	
2450	52.9	14.5	1.98	52.7	1.95	0.4	1.5	
2500	52.8	14.6	2.03	52.6	2.02	0.3	0.5	
2550	52.7	14.6	2.07	52.6	2.09	0.2	-1.0	
2600	52.6	14.7	2.12	52.5	2.16	0.2	-1.9	

3500	51.1	15.5	3.02	51.3	3.31	-0.4	-8.8
3700	50.8	15.7	3.24	51.1	3.55	-0.5	-8.8
5200	48.1	18.2	5.27	49.0	5.30	-1.8	-0.6
5250	48.0	18.3	5.34	49.0	5.36	-1.9	-0.4
5300	47.9	18.4	5.41	48.9	5.42	-2.0	-0.2
5500	47.5	18.6	5.70	48.6	5.65	-2.2	0.8
5600	47.3	18.8	5.84	48.5	5.77	-2.3	1.3
5700	47.1	18.9	5.99	48.3	5.68	-2.5	1.8
5800	47.0	19.0	6.14	48.2	6.00	-2.6	2.3

TSL Dielectric Parameters

1

Figure C-2
600 – 5800 MHz Body Tissue Equivalent Matter

FCC ID: BCGA2429	PCTEST Proud to be part of	SAR EVALUATION REPORT						Approved by:
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device							Quality Manager APPENDIX C: Page 3 of 3

APPENDIX D: SAR SYSTEM VALIDATION

FCC ID: BCGA2429	PCTEST Proud to be part of	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device		APPENDIX D: Page 1 of 2

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements.

Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D-1
SAR System Validation Summary – 1g

SAR SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE CAL. POINT	COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
					(σ)	(ϵ_r)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
AMB	750	5/27/2020	7532	750	Body	0.942	52.946	PASS	PASS	PASS	N/A	N/A
AM4	835	4/22/2020	7421	835	Body	0.992	54.556	PASS	PASS	PASS	GMSK	PASS
AM1	1750	4/10/2020	7427	1750	Body	1.483	52.52	PASS	PASS	PASS	N/A	N/A
AM8	1900	5/27/2020	7532	1900	Body	1.561	50.995	PASS	PASS	PASS	GMSK	PASS
AMB	2300	5/27/2020	7532	2300	Body	1.881	50.42	PASS	PASS	PASS	N/A	N/A
AM5	2450	8/14/2019	7491	2450	Body	1.972	51.904	PASS	PASS	PASS	OFDM/TDD	PASS
AM3	2450	9/4/2019	3949	2450	Body	1.955	52.22	PASS	PASS	PASS	OFDM/TDD	PASS
AM5	2600	8/13/2019	7491	2600	Body	2.11	51.64	PASS	PASS	PASS	TDD	PASS
AM3	2600	9/4/2019	3949	2600	Body	2.096	51.97	PASS	PASS	PASS	TDD	PASS
AM2	5250	12/3/2019	7420	5250	Body	5.5	48.38	PASS	PASS	PASS	OFDM	N/A
AM2	5600	12/3/2019	7420	5600	Body	5.974	47.79	PASS	PASS	PASS	OFDM	N/A
AM2	5750	12/3/2019	7420	5750	Body	6.18	47.556	PASS	PASS	PASS	OFDM	N/A

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04

FCC ID: BCGA2429	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device	APPENDIX D: Page 2 of 2

APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple component carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

Table 1 – Example of Exclusion Table for SISO Configurations

Index	CC	Supported Channel Bandwidth (MHz)		Restriction	Completely Covered by Measurement Superset
		CC1	CC2		
CC#1	CA_2C	5, 10, 20	5, 10, 20		CC#4
CC#2	CA_3A-5A	5, 10, 20, 30	5, 10, 20		CC#4
CC#3	CA_3A-6A	5, 10, 20, 30	5, 10, 20		CC#4
CC#4	CA_3A-22A	5, 10, 20	5, 10		CC#4
CC#5	CA_4A-6A	5, 10, 20, 30	5, 10, 20		CC#4
CC#6	CA_4A-12A	5, 10, 20	5, 10		CC#4
CC#7	CA_4A-22A	5, 10, 20	5, 10		CC#4
CC#8	CA_5A-6A	5, 10, 20, 30	5, 10, 20		CC#4
CC#9	CA_5A-12A	5, 10, 20	5, 10		CC#4
CC#10	CA_5A-22A	5, 10, 20	5, 10		CC#4
CC#11	CA_6A-12A	5, 10, 20	5, 10		CC#4
CC#12	CA_6A-22A	5, 10, 20	5, 10		CC#4
CC#13	CA_7A-12A	5, 10, 20	5, 10		CC#4
CC#14	CA_7A-22A	5, 10, 20	5, 10		CC#4
CC#15	CA_8A-12A	5, 10, 20	5, 10		CC#4
CC#16	CA_8A-22A	5, 10, 20	5, 10		CC#4
CC#17	CA_9A-12A	5, 10, 20	5, 10		CC#4
CC#18	CA_9A-22A	5, 10, 20	5, 10		CC#4
CC#19	CA_10A-12A	5, 10, 20	5, 10		CC#4
CC#20	CA_10A-22A	5, 10, 20	5, 10		CC#4
CC#21	CA_11A-12A	5, 10, 20	5, 10		CC#4
CC#22	CA_11A-22A	5, 10, 20	5, 10		CC#4
CC#23	CA_12A-22A	5, 10, 20	5, 10		CC#4
CC#24	CA_13A-22A	5, 10, 20	5, 10		CC#4
CC#25	CA_14A-22A	5, 10, 20	5, 10		CC#4
CC#26	CA_15A-22A	5, 10, 20	5, 10		CC#4
CC#27	CA_16A-22A	5, 10, 20	5, 10		CC#4
CC#28	CA_17A-22A	5, 10, 20	5, 10		CC#4
CC#29	CA_18A-22A	5, 10, 20	5, 10		CC#4
CC#30	CA_19A-22A	5, 10, 20	5, 10		CC#4
CC#31	CA_20A-22A	5, 10, 20	5, 10		CC#4
CC#32	CA_21A-22A	5, 10, 20	5, 10		CC#4
CC#33	CA_22A-22A	5, 10, 20	5, 10		CC#4
Index	CC	Supported Channel Bandwidth (MHz)		Restriction	Completely Covered by Measurement Superset
		CC1	CC2		
CC#34	CA_1A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#35	CA_2A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#36	CA_3A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#37	CA_4A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#38	CA_5A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#39	CA_6A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#40	CA_7A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#41	CA_8A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#42	CA_9A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#43	CA_10A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#44	CA_11A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#45	CA_12A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#46	CA_13A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#47	CA_14A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#48	CA_15A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#49	CA_16A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#50	CA_17A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#51	CA_18A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#52	CA_19A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#53	CA_20A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#54	CA_21A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#55	CA_22A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#56	CA_23A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#57	CA_24A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#58	CA_25A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#59	CA_26A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#60	CA_27A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#61	CA_28A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#62	CA_29A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#63	CA_30A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#64	CA_31A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#65	CA_32A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#66	CA_33A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#67	CA_34A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#68	CA_35A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#69	CA_36A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#70	CA_37A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#71	CA_38A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#72	CA_39A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#73	CA_40A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#74	CA_41A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#75	CA_42A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#76	CA_43A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#77	CA_44A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#78	CA_45A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#79	CA_46A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#80	CA_47A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#81	CA_48A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#82	CA_49A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#83	CA_50A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#84	CA_51A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#85	CA_52A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#86	CA_53A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#87	CA_54A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#88	CA_55A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#89	CA_56A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#90	CA_57A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#91	CA_58A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#92	CA_59A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#93	CA_60A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#94	CA_61A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#95	CA_62A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#96	CA_63A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#97	CA_64A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#98	CA_65A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#99	CA_66A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#100	CA_67A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#101	CA_68A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#102	CA_69A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#103	CA_70A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#104	CA_71A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#105	CA_72A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#106	CA_73A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#107	CA_74A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#108	CA_75A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#109	CA_76A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#110	CA_77A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#111	CA_78A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#112	CA_79A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#113	CA_80A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#114	CA_81A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#115	CA_82A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#116	CA_83A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#117	CA_84A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#118	CA_85A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#119	CA_86A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#120	CA_87A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#121	CA_88A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#122	CA_89A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#123	CA_90A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#124	CA_91A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#125	CA_92A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#126	CA_93A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#127	CA_94A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#128	CA_95A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#129	CA_96A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#130	CA_97A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#131	CA_98A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#132	CA_99A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#133	CA_100A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4
CC#134	CA_101A-19A-21A	5, 10, 20	5, 10, 20	5, 10, 20	CC#4</td

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1
DL CA Power Measurement Setup

FCC ID: BCGA2429	PCTEST Printed to be part of	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates: 06/07/2020-07/20/2020	DUT Type: Tablet Device		APPENDIX F: Page 2 of 6

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 12 as PCC

Table 1
Output Powers – Antenna C

1.3.2 LTE Band 13 as PCC

Table 2
Output Powers – Antenna D

Combination	PCC						SCC 1						SCC 2						SCC 3						Power	
	PCC Band	PCC BW [MHz]	PCC (UL) Ch. Freq. [MHz]	PCC (UL) BW [MHz]	Mod.	PCC UL/RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx Power with DL CA Enabled [dBm]	LTE Single Carrier Tx Power [dBm]				
CA_2A-16A-15A	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B2	20	900	1950	LTE B4	20	2175	2195.2	—	—	—	18.27	18.27				
CA_4A-14A-13A	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B4	20	2175	2195.2	LTE B6	10	2350	2150	—	—	—	18.29	18.29				
CA_2A-25A-13A-66A	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B2	20	900	1950	LTE B3	20	2100	1940	LTE B6B	20	68786	2145	18.30	18.30			
CA_2A-13A-66A-66A	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B2	20	900	1950	LTE B6	20	67786	2145	LTE B6A	20	67236	2190	18.30	18.30			
CA_2A-13A-66B	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B2	20	900	1950	LTE B6	20	67786	2145	LTE B6B	5	67168	2183.2	18.30	18.30			
CA_2A-13A-66B-66B	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B6	20	66786	2145	LTE B6B	5	67168	2183.2	LTE B6	15	67261	2192.5	18.27	18.30			
CA_13A-66A-66C	LTE B13	10	23230	782	QPSK	1	0	5230	751	LTE B6	20	66786	2145	LTE B6B	20	67038	2170.2	LTE B6	20	67236	2190	18.30	18.30			

1.3.3 LTE Band 14 as PCC

Table 3
Output Powers – Antenna D

Combination	PCC								SCC 1				SCC 2				SCC 3				Power		
	PCC Band	PCC BW [MHz]	PCC [UL] Ch.	PCC [UL] Freq. [MHz]	Mod.	PCC UL/F	PCC UL/R	PCC Offset	PCC [DL] Channel	PCC [DL] Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC [DL] Channel	SCC [DL] Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC [DL] Channel	SCC [DL] Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC [DL] Channel	SCC [DL] Freq. [MHz]	LTE Tx Power with DL CA Enabled [dBm]
CA 2A-2A-14A-66A	LTE B14	10	23300	793	16QAM	1	49	5330	763	LTE B2	20	900	1960	LTE B2	20	700	1940	LTE B66	10	66786	2145	17.81	18.03
CA 2A-14A-66A-66A	LTE B14	10	23300	793	16QAM	1	49	5330	763	LTE B2	20	900	1960	LTE B66	20	66786	2145	LTE B66	20	67236	2190	17.76	18.03
CA 14A-14A-30A-66A	LTE B14	10	23300	793	16QAM	1	49	5330	763	LTE B2	20	900	1960	LTE B30	10	9820	2355	LTE B66	20	66786	2145	17.81	18.03
CA 14A-30A-66A-66A	LTE B14	10	23300	793	16QAM	1	49	5330	763	LTE B30	10	9820	2355	LTE B66	20	66786	2145	LTE B66	20	67236	2190	17.77	18.03

1.3.4 LTE Band 5 as PCC

Table 4
Output Powers – Antenna D

1.3.5 LTE Band 26 as PCC

Table 5
Output Powers – Antenna C

Combination	PCC								SCC 1				SCC 2				Power		
	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_25A-26A	LTE B26	10	26740	819	640AM	1	0	8740	864	LTE B25	20	8365	1962.5	-	-	-	-	18.20	18.20
CA_25A-25A-26A	LTE B26	5	26715	816.5	640AM	1	0	8715	861.5	LTE B25	20	8365	1962.5	LTE B25	20	8590	1985	17.63	18.20

1.3.6 LTE Band 66 as PCC

Table 6
Output Powers – Antenna C

FCC ID: BCGA2429	PCTEST Proud to be part of Element	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates: 06/07/2020-07/20/2020	DUT Type: Tablet Device	APPENDIX F: Page 4 of 6	

1.3.7 LTE Band 25 as PCC

Table 7
Output Powers – Antenna C

Combination	PCC						SCC 1				SCC 2				Power				
	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx Power with DL CA Enabled [dBm]	LTE Single Carrier Tx Power [dBm]
CA_5A-25A	LTE B25	5	2606S	1852.5	QPSK	1	24	806S	1932.5	LTE B6	10	252S	881.5	-	-	-	-	13.06	13.10
CA_25A-26A	LTE B25	5	2606S	1852.5	QPSK	1	24	806S	1932.5	LTE B26	10	886S	876.5	-	-	-	-	12.99	13.10
CA_25A-26A	LTE B25	5	2606S	1852.5	QPSK	1	24	806S	1932.5	LTE B26	20	850Q	1095	LTE B26	6	896S	876.5	12.10	13.10

1.3.8 LTE Band 30 as PCC

Table 8
Output Powers – Antenna C

1.3.9 LTE Band 7 as PCC

Table 9
Output Powers – Antenna C

Combination	PCC						SCC 1			SCC 2			Power						
	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx-Power with DL CA Enabled	LTE Single Carrier Tx Power (dBm)
CA_5A-7A	LTE B7	10	21100	2535	16QAM	1	49	3100	2655	LTE B6	10	2525	881.5	-	-	-	-	12.40	12.36
CA_7B	LTE B7	15	21100	2535	16QAM	1	36	3100	2655	LTE B7	5	3007	2645.7	-	-	-	-	12.40	12.35
CA_7C(1)	LTE B7	10	21100	2535	16QAM	1	49	3100	2655	LTE B7	20	2956	2640.6	-	-	-	-	12.40	12.36
CA_7E-6A	LTE B7	5	21100	2535	64QAM	1	24	3100	2655	LTE B6	20	67686	2145	-	-	-	-	12.40	12.40
CA_4A-4A-7A(1)	LTE B7	5	21100	2535	64QAM	1	24	3100	2655	LTE B4	20	2175	2125.5	LTE B4	10	2350	2150	12.19	12.40
CA_4A-7A-7A	LTE B7	5	21100	2535	64QAM	1	24	3100	2655	LTE B7	20	2950	2630	LTE B4	20	2175	2132.5	12.20	12.40
CA_4A-7A-12A(1)	LTE B7	5	21100	2535	64QAM	1	24	3100	2655	LTE B4	20	2175	2125.5	LTE B12	10	5095	737.5	12.23	12.40

1.3.10 LTE Band 41 as PCC

Table 10
Output Powers – Antenna C

Output Powers – Antenna C																															
Combination	PCC						SCC 1						SCC 2						SCC 3						SCC 4						Power
	PCC Band	PCC BW [MHz]	PCC (U) Ch.	PCC (U) Freq. [MHz]	Mod.	PCC UL Freq.	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]						
CA_41A-41A_1(1)	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	41490	2680	-	-	-	-	-	-	-	-	-	-	-	15.39	15.40					
CA_41A-41C	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	41492	2680	2660.2	LTE_B41	20	41490	2680	-	-	-	-	-	-	-	15.34	15.40				
CA_41A-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	41492	2680	2660.2	LTE_B41	20	41490	2680	-	-	-	-	-	-	-	15.39	15.40				
CA_41A-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	41492	2680	2660.2	LTE_B41	20	41490	2680	-	-	-	-	-	-	-	15.34	15.40				
CA_41D-41A	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	41492	2680	2660.2	LTE_B41	20	41490	2680	-	-	-	-	-	-	-	15.39	15.40				
CA_41C-41C	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	40283	2693.3	LTE_B41	20	40281	2588.1	LTE_B41	20	41490	2680	-	-	-	-	-	-	15.31	15.40		
CA_41C-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	40283	2693.3	LTE_B41	20	40281	2588.1	LTE_B41	20	41490	2680	-	-	-	-	-	-	15.39	15.40		
CA_41D-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	40283	2693.3	LTE_B41	20	40281	2588.1	LTE_B41	20	41490	2680	-	-	-	-	-	-	15.34	15.40		
CA_41D-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	40283	2693.3	LTE_B41	20	40281	2588.1	LTE_B41	20	40779	2698.8	-	-	-	-	-	-	15.34	15.40		
CA_41D-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	40283	2693.3	LTE_B41	20	40281	2588.1	LTE_B41	20	41490	2680	-	-	-	-	-	-	15.34	15.40		
CA_41D-41D	LTE_B41	20	40185	2545.5	QPSK	1	0	40185	2545.9	LTE_B41	20	40283	2693.3	LTE_B41	20	40281	2588.1	LTE_B41	20	41490	2680	-	-	-	-	-	-	15.37	15.40		

FCC ID: BCGA2429	PCTEST Proud to be part of	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates: 06/07/2020-07/20/2020	DUT Type: Tablet Device		APPENDIX F: Page 5 of 6

1.4 Downlink Carrier Aggregation with CA_41C Uplink Carrier Aggregation enabled

This device supports uplink carrier aggregation (ULCA) with additional Carrier Aggregation configurations active in the downlink. Power measurements were performed with ULCA active and additional CA configurations active in the downlink for the configuration per Fall 2017 TCB Workshop Notes.

Per FCC Guidance, additional SAR measurements for these configurations were not required since their maximum output power was not more than 0.25 dB higher than the maximum output power for with only ULCA active.

1.4.1 DL Carrier Aggregation RF Conducted Powers

Table 11
Output Powers – Antenna

Combination	PCC Band	PCC						SCC 1						SCC 2						SCC 3						SCC 4						Power								
		PCC BW [MHz]	PCC (UL) Ch	PCC (UL) Freq. [MHz]	Mod.	PCC UL, UL Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (UL) Channel	SCC (UL) Freq. [MHz]	Mod	SCC UL, UL Offset	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (UL) Channel	SCC (UL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]												
CA_41C-41A	LTE B41	20	41400	2600	QPSK	1	0	41400	2600	LTE B41	20	41292	2600.2	QPSK	1	99	41292	2600.2	LTE B41	20	39750	2506	—	—	—	—	—	—	—	—	—	35.05								
CA_41D-41A	LTE B41	20	41400	2600	QPSK	1	0	41400	2600	LTE B41	20	41292	2600.2	QPSK	1	99	41292	2600.2	LTE B41	20	41094	2504.4	LTE B41	20	39750	2506	—	—	—	—	—	—	—	—	—	35.05				
CA_41D-41C	LTE B41	20	41400	2600	QPSK	1	0	41400	2600	LTE B41	20	41292	2600.2	QPSK	1	99	41292	2600.2	LTE B41	20	41094	2504.4	LTE B41	20	39750	2506	—	—	—	—	—	—	—	—	—	35.05				
CA_41E	LTE B41	20	41400	2600	QPSK	1	0	41400	2600	LTE B41	20	41292	2600.2	QPSK	1	99	41292	2600.2	LTE B41	20	41094	2504.4	LTE B41	20	40750	2506	—	—	—	—	—	—	—	—	—	35.05				
CA_41C-41D	LTE B41	20	41400	2600	QPSK	1	0	41400	2600	LTE B41	20	41292	2600.2	QPSK	1	99	41292	2600.2	LTE B41	20	40546	2504.4	LTE B41	20	39948	2523.8	LTE B41	20	39750	2506	—	—	—	—	—	—	—	—	—	35.05
CA_41D-41C	LTE B41	20	41400	2600	QPSK	1	0	41400	2600	LTE B41	20	41292	2600.2	QPSK	1	99	41292	2600.2	LTE B41	20	41094	2504.4	LTE B41	20	39750	2506	—	—	—	—	—	—	—	—	—	35.05				

FCC ID: BCGA2429	PCTEST Printed to be part of	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates: 06/07/2020-07/20/2020	DUT Type: Tablet Device		APPENDIX F: Page 6 of 6

APPENDIX G: POWER REDUCTION VERIFICATION

FCC ID: BCGA2429	PCTEST Proud to be part of Element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device		APPENDIX G Page 1 of 2

The device supports manufacturer's proprietary power reduction mechanism called "Detect Mode" for the Main Cellular Antenna. Details of this mechanism can be found in the Operational Description. When the device is being used "on-body" or "held in hand" by the user, the device will detect motion and reduce the power of the main antenna. Per the manufacturer, the mechanism is agnostic to different cellular air interfaces. Detect Mode operation was verified for two test cases, on-body and held in hand, for each supported cellular band. The power reduction verification results are below.

1.1 Main Antenna Power Reduction Verification Summary

Table G-1
Main Antenna Power Reduction Verification

Mode/Band	Antenna	Maximum Scenario Maximum Allowed Target Power [dBm]	Reduced Scenario Maximum Allowed Target Power [dBm]	Conducted Power [dBm]			
				Maximum	Test Case 1	Test Case 2	Verdict
GPRS 850 (2 Tx)	Antenna C	28.50 (± 0.75)	24.00 (± 0.75)	28.61	24.11	24.10	PASS
	Antenna D	26.50 (± 0.75)	24.75 (± 0.75)	26.55	24.91	24.92	PASS
GPRS 1900 (2 Tx)	Antenna C	28.00 (± 0.75)	18.20 (± 0.75)	27.98	18.11	18.10	PASS
	Antenna D	25.75 (± 0.75)	17.50 (± 0.75)	25.87	17.34	17.33	PASS
WCDMA B5	Antenna C	25.00 (± 0.5)	17.20 (± 0.5)	24.88	17.04	17.03	PASS
	Antenna D	24.00 (± 0.5)	18.70 (± 0.5)	23.87	18.56	18.57	PASS
WCDMA B4	Antenna C	25.00 (± 0.5)	12.80 (± 0.5)	24.67	12.41	12.40	PASS
	Antenna D	24.50 (± 0.5)	12.70 (± 0.5)	24.11	12.26	12.25	PASS
WCDMA B2	Antenna C	25.00 (± 0.5)	12.60 (± 0.5)	24.74	12.22	12.21	PASS
	Antenna D	24.50 (± 0.5)	11.50 (± 0.5)	24.01	11.05	11.02	PASS
LTE Band 12	Antenna C	25.00 (± 0.5)	17.00 (± 0.5)	24.78	17.26	17.25	PASS
	Antenna D	24.00 (± 0.5)	16.70 (± 0.5)	23.60	16.73	16.72	PASS
LTE Band 17	Antenna C	25.00 (± 0.5)	17.00 (± 0.5)	24.76	17.24	17.23	PASS
	Antenna D	24.00 (± 0.5)	16.70 (± 0.5)	23.67	16.85	16.86	PASS
LTE Band 13	Antenna C	25.00 (± 0.5)	17.60 (± 0.5)	24.72	17.72	17.73	PASS
	Antenna D	24.00 (± 0.5)	17.80 (± 0.5)	23.55	17.80	17.79	PASS
LTE Band 14	Antenna C	25.00 (± 0.5)	17.60 (± 0.5)	25.41	17.65	17.66	PASS
	Antenna D	24.00 (± 0.5)	17.80 (± 0.5)	23.55	17.70	17.71	PASS
LTE Band 26	Antenna C	25.00 (± 0.5)	17.70 (± 0.5)	24.56	17.66	17.67	PASS
	Antenna D	24.00 (± 0.5)	17.70 (± 0.5)	23.66	17.64	17.63	PASS
LTE Band 5	Antenna C	25.00 (± 0.5)	17.20 (± 0.5)	24.62	17.19	17.18	PASS
	Antenna D	24.00 (± 0.5)	18.70 (± 0.5)	23.77	18.70	18.71	PASS
LTE Band 66	Antenna C	25.00 (± 0.5)	12.80 (± 0.5)	24.81	12.33	12.30	PASS
	Antenna D	23.00 (± 0.5)	12.70 (± 0.5)	22.91	12.69	12.70	PASS
LTE Band 4	Antenna C	25.00 (± 0.5)	12.80 (± 0.5)	24.71	12.48	12.49	PASS
	Antenna D	23.00 (± 0.5)	12.70 (± 0.5)	22.87	12.81	12.80	PASS
LTE Band 25	Antenna C	25.00 (± 0.5)	12.60 (± 0.5)	25.11	12.61	12.62	PASS
	Antenna D	23.00 (± 0.5)	11.50 (± 0.5)	23.05	11.11	11.12	PASS
LTE Band 2	Antenna C	25.00 (± 0.5)	12.60 (± 0.5)	24.71	12.15	12.14	PASS
	Antenna D	23.00 (± 0.5)	11.50 (± 0.5)	23.10	11.21	11.22	PASS
LTE Band 30	Antenna C	21.30 (± 0.5)	12.70 (± 0.5)	20.91	13.11	13.10	PASS
	Antenna D	20.80 (± 0.5)	12.30 (± 0.5)	21.10	12.14	12.15	PASS
LTE Band 7	Antenna C	25.00 (± 0.5)	11.90 (± 0.5)	24.61	12.10	12.09	PASS
	Antenna D	22.75 (± 0.5)	11.90 (± 0.5)	22.80	12.31	12.30	PASS
LTE Band 41 (PC3)	Antenna C	25.00 (± 0.5)	14.90 (± 0.5)	25.30	15.04	15.05	PASS
	Antenna D	22.75 (± 0.5)	14.90 (± 0.5)	22.91	14.97	14.96	PASS
LTE Band 41 (PC2)	Antenna C	26.50 (± 0.5)	14.90 (± 0.5)	26.51	15.11	15.09	PASS
	Antenna D	24.25 (± 0.5)	14.90 (± 0.5)	24.12	15.21	15.20	PASS
LTE B7 ULCA	Antenna C	24.00 (± 1)	11.40 (± 1)	24.13	12.01	12.00	PASS
	Antenna D	21.75 (± 1)	11.40 (± 1)	22.03	11.87	11.86	PASS
LTE B41 (PC3) ULCA	Antenna C	24.00 (± 1)	14.40 (± 1)	24.30	14.77	14.75	PASS
	Antenna D	21.75 (± 1)	14.40 (± 1)	21.08	14.01	14.02	PASS

Test Case 1: Device Held in Hand

Test Case 2: Device Resting on Lap

Test Cases represent typical scenarios in which the device power would be reduced. In these scenarios detect mode has been verified to identify typical on-body use-cases including when thin objects, such as a magazine or newspaper, are placed between the body and the device. In the absence of detect mode output, the device defaults to the most conservative power.

FCC ID: BCGA2429	PCTEST Proud to be part of Element	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/07/2020 – 07/20/2020	DUT Type: Tablet Device		APPENDIX G Page 2 of 2

APPENDIX H: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrerdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client: PC Test

Certificate No: D750V3-1057 Jun19

CALIBRATION CERTIFICATE

Object: D750V3 - SN:1057

Calibration procedure(s): QA CAL-05 v.11
Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: June 20, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name	Function	Signature
	Manu Seltz	Laboratory Technician	
Approved by:	Kaja Pekovic	Technical Manager	

Issued: June 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	42.0 \pm 6 %	0.88 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.52 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	55.5 \pm 6 %	0.96 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.64 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.8 \Omega + 4.6 \text{ j} \Omega$
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.5 \Omega - 3.5 \text{ j} \Omega$
Return Loss	- 29.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.036 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 20.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1057

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

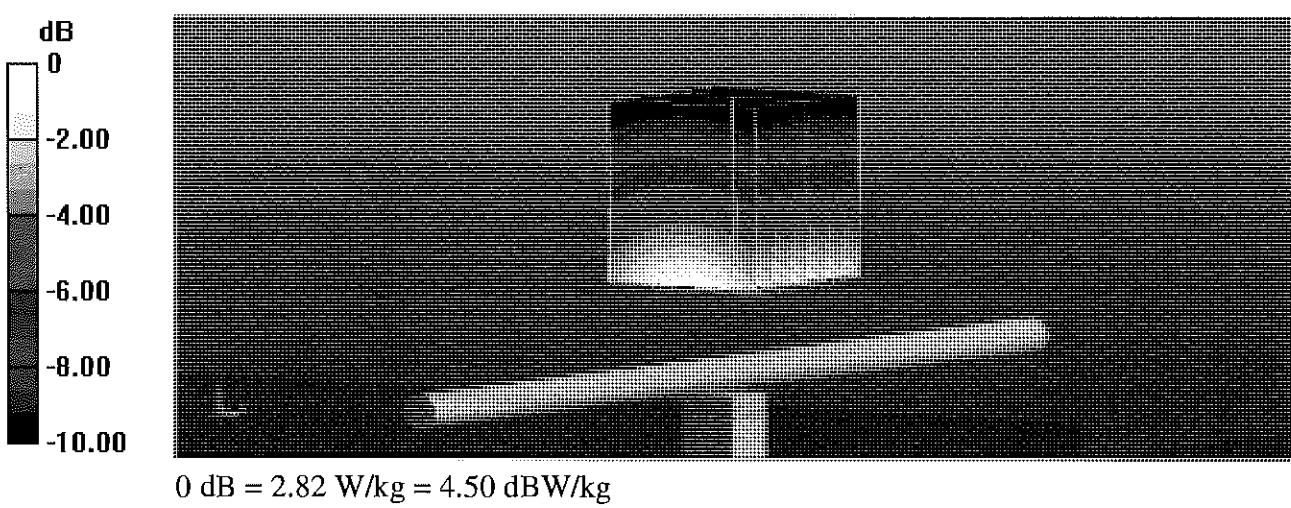
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

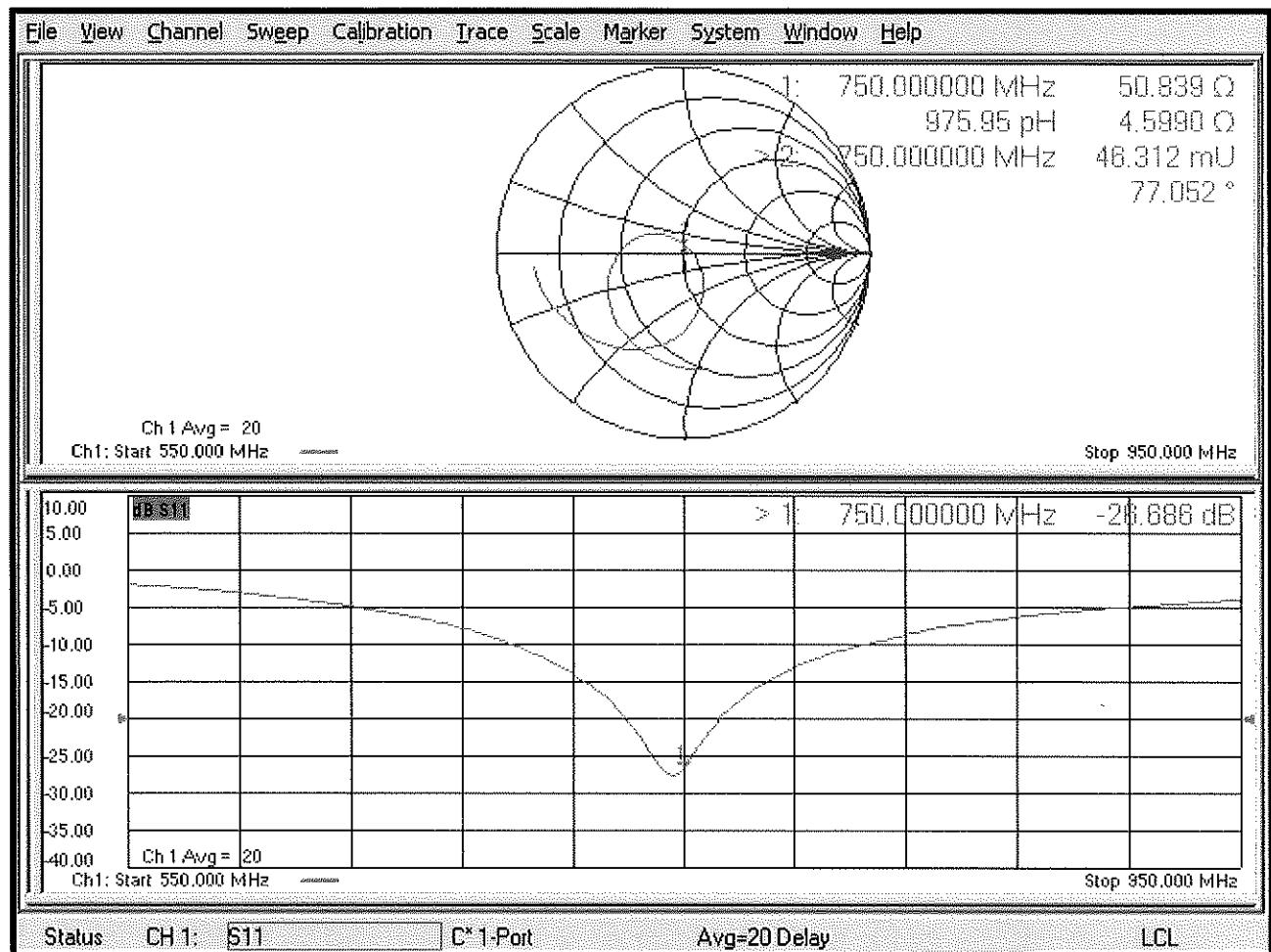
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 59.97 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.82 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1057

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

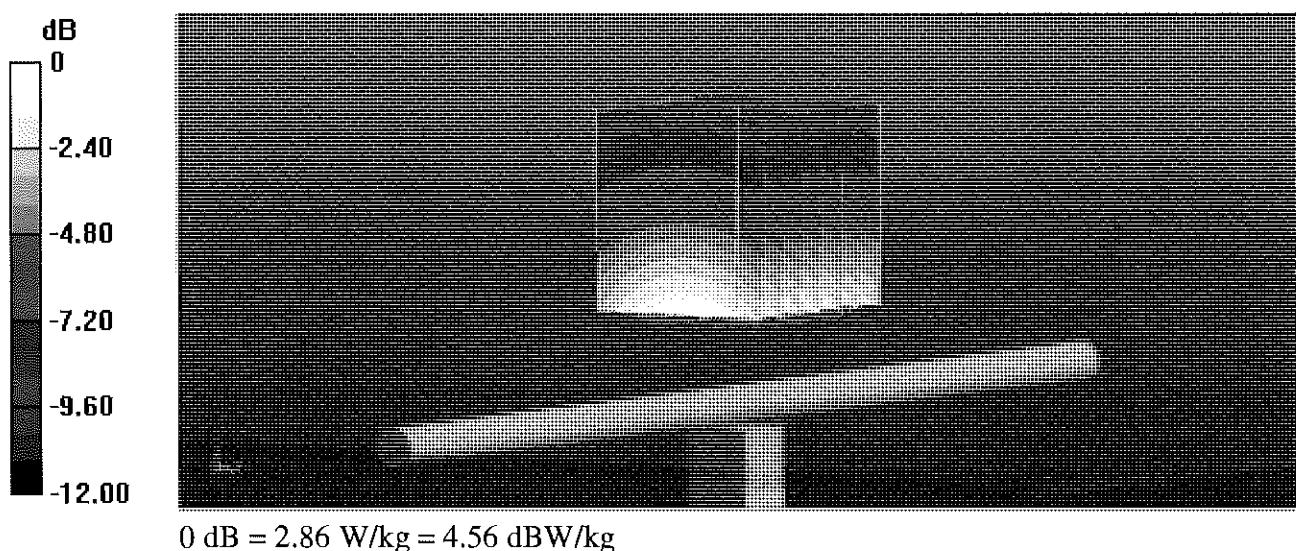
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

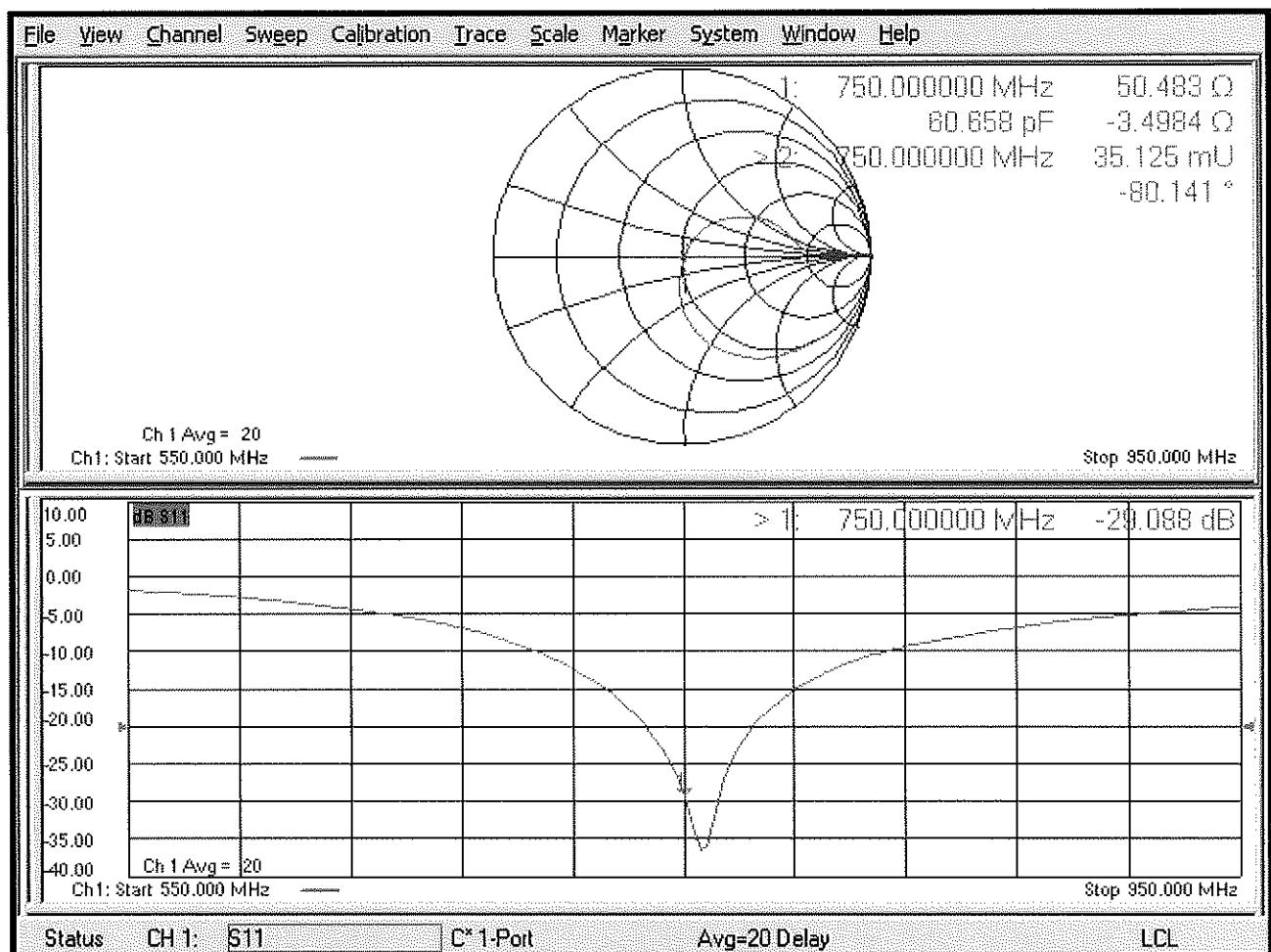
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.4, 10.4, 10.4) @ 750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.17 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.21 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 2.86 W/kg

Impedance Measurement Plot for Body TSL

Certification of Calibration

Object D750V3 – SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 20, 2020

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

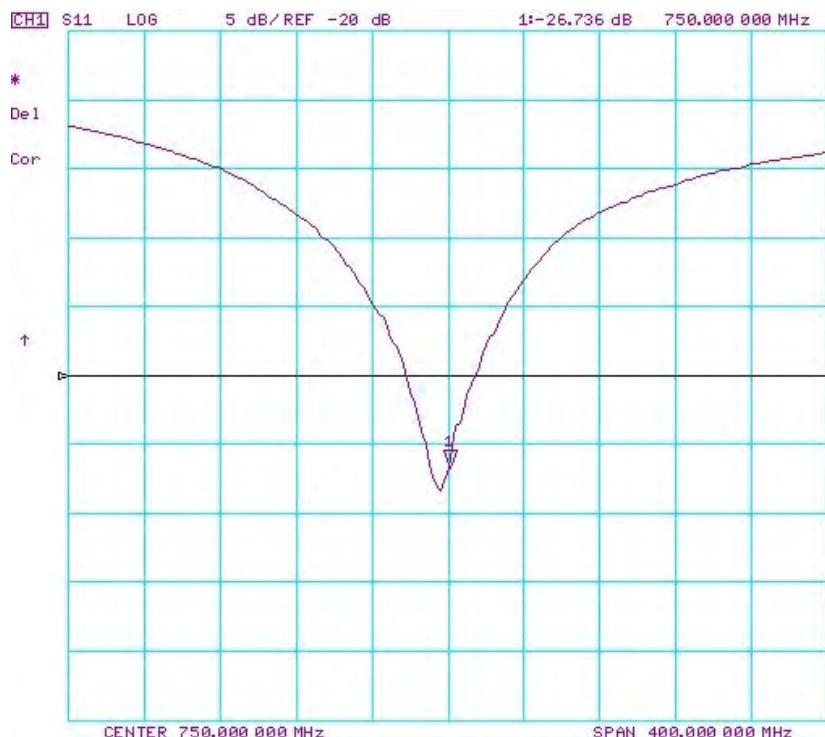
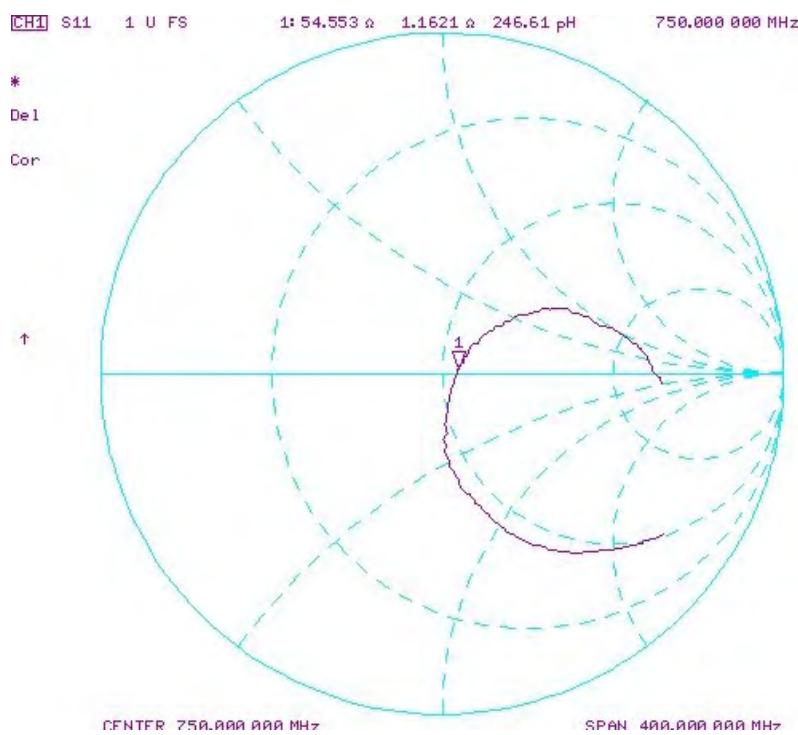
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/15/2020	Annual	4/15/2021	501
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837
SPEAG	EX3DV4	SAR Probe	4/20/2020	Annual	4/20/2021	7532

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Managing Director	<i>KOK</i>

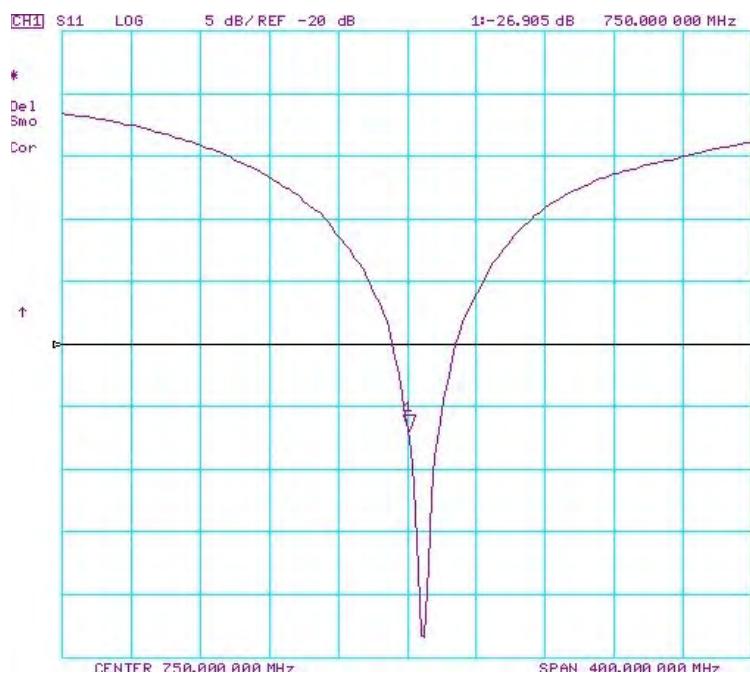
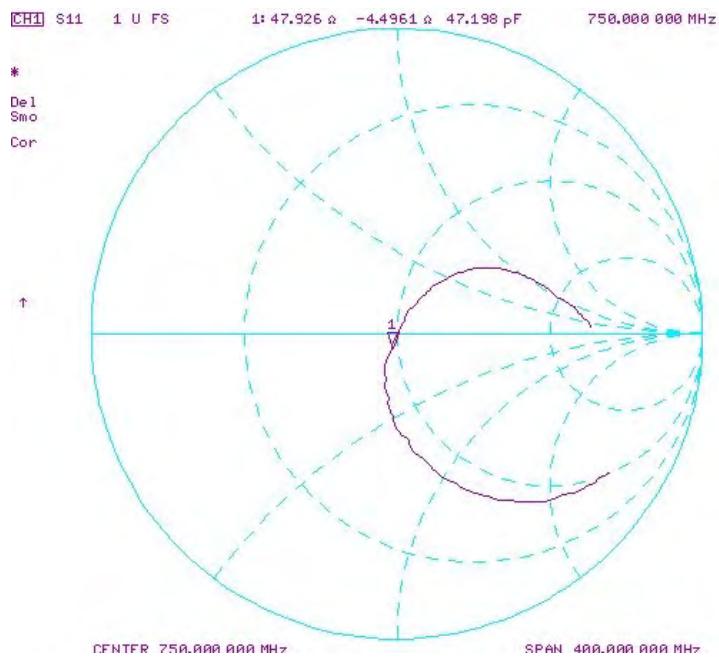
Object: D750V3 – SN: 1057	Date Issued: 6/20/2020	Page 1 of 4
------------------------------	---------------------------	-------------

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/20/2019	6/20/2020	1.036	1.704	1.68	-1.41%	1.104	1.1	-0.36%	50.8	54.6	3.8	4.6	1.2	3.4	-26.7	-26.7	0.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	Measured Body SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/20/2019	6/20/2020	1.036	1.728	1.79	3.59%	1.136	1.19	4.75%	50.5	47.9	2.6	-3.5	-4.5	1	-29.1	-26.9	7.60%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D750V3 – SN: 1057	Date Issued: 6/20/2020	Page 3 of 4
-------------------------------------	----------------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D750V3 – SN: 1057	Date Issued: 6/20/2020	Page 4 of 4
------------------------------	---------------------------	-------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D835V2-4d040 Jun19

CALIBRATION CERTIFICATE

Object D835V2 - SN:4d040

Calibration procedure(s) QA CAL-05.V11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 6/28/19

Calibration date: June 20, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name Manu Seltz	Function Laboratory Technician	Signature
Approved by:	Katja Pokovlo	Technical Manager	Signature

Issued: June 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.8 \pm 6 %	0.91 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.50 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	55.4 \pm 6 %	0.98 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.53 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.24 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 4.1 $j\Omega$
Return Loss	- 27.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 6.5 $j\Omega$
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 20.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

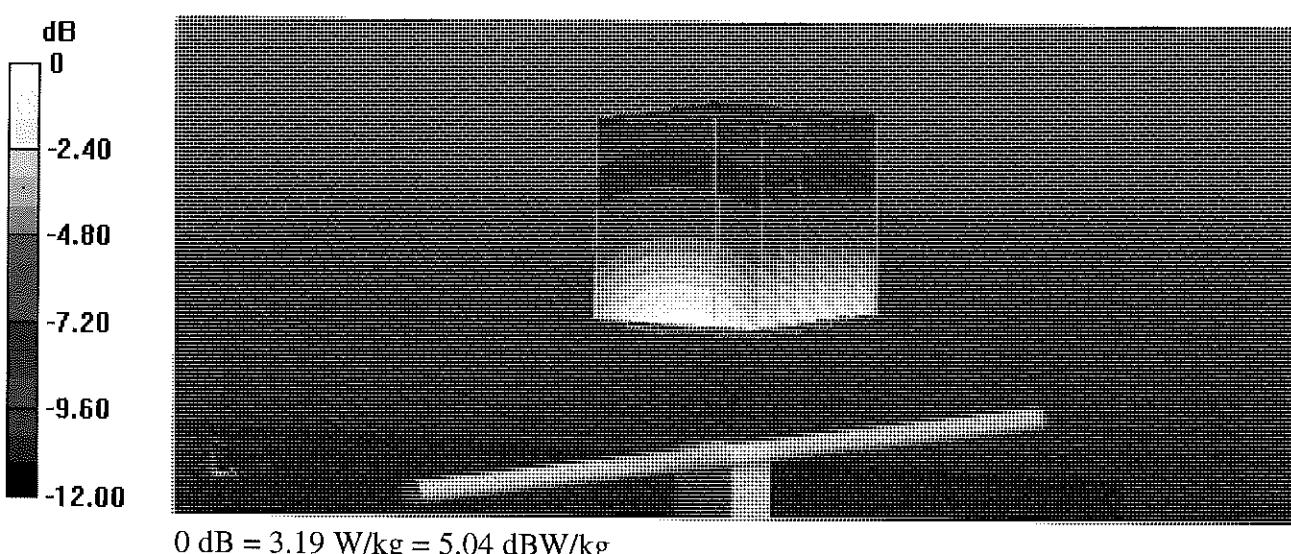
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

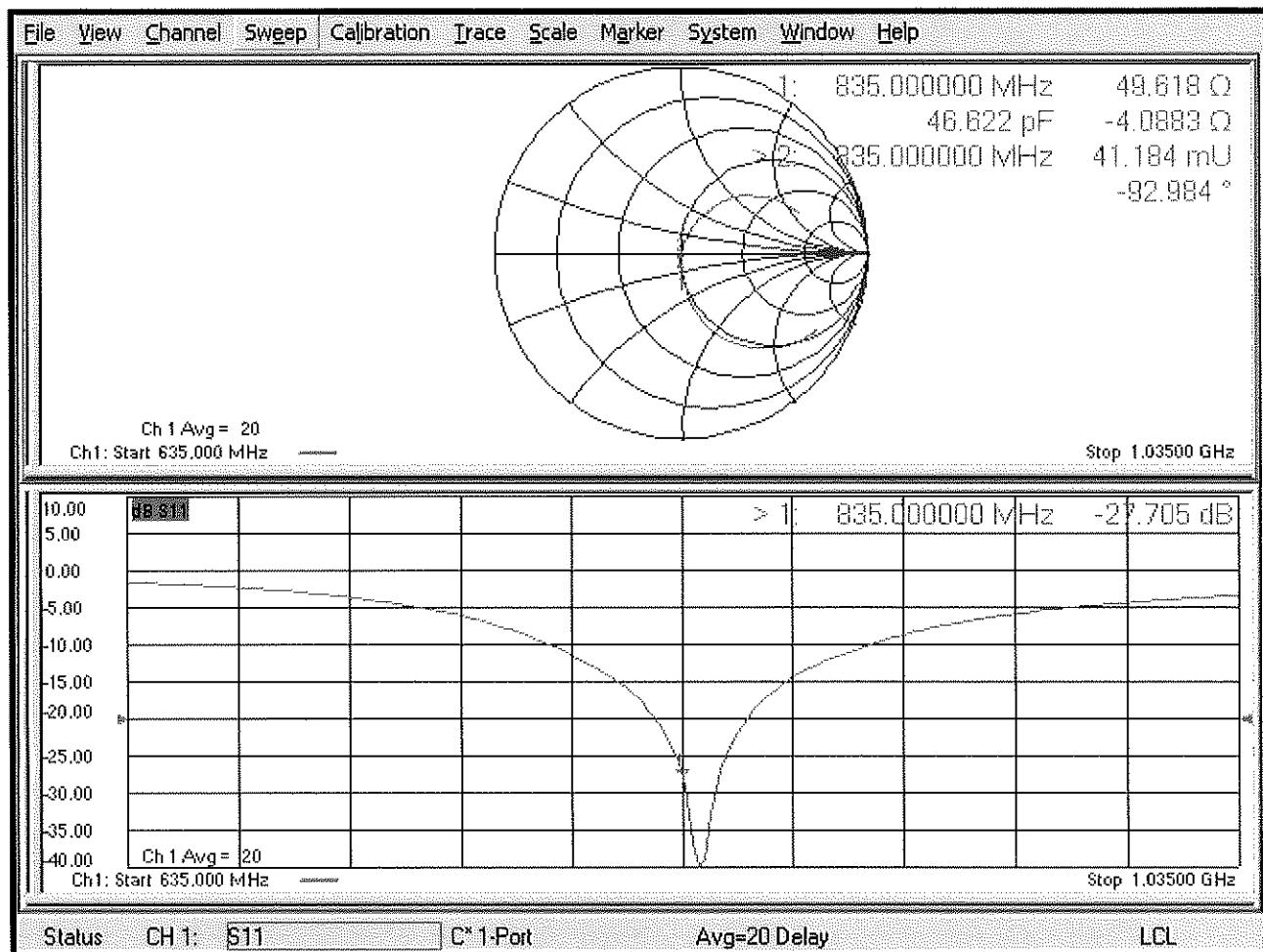
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.05 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.19 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

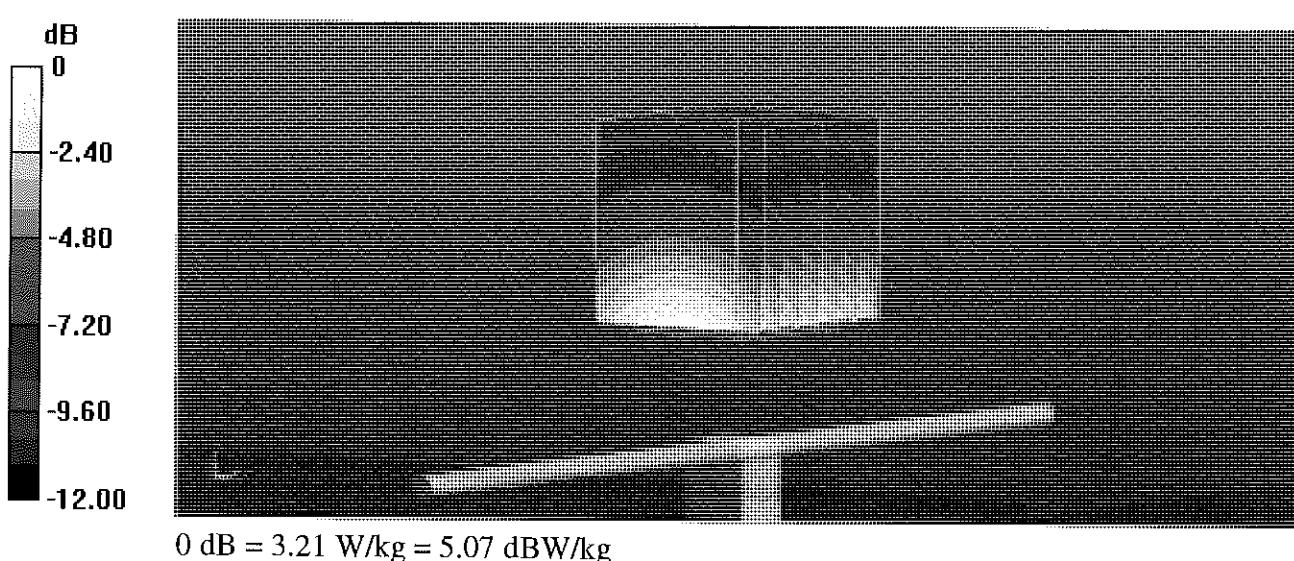
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

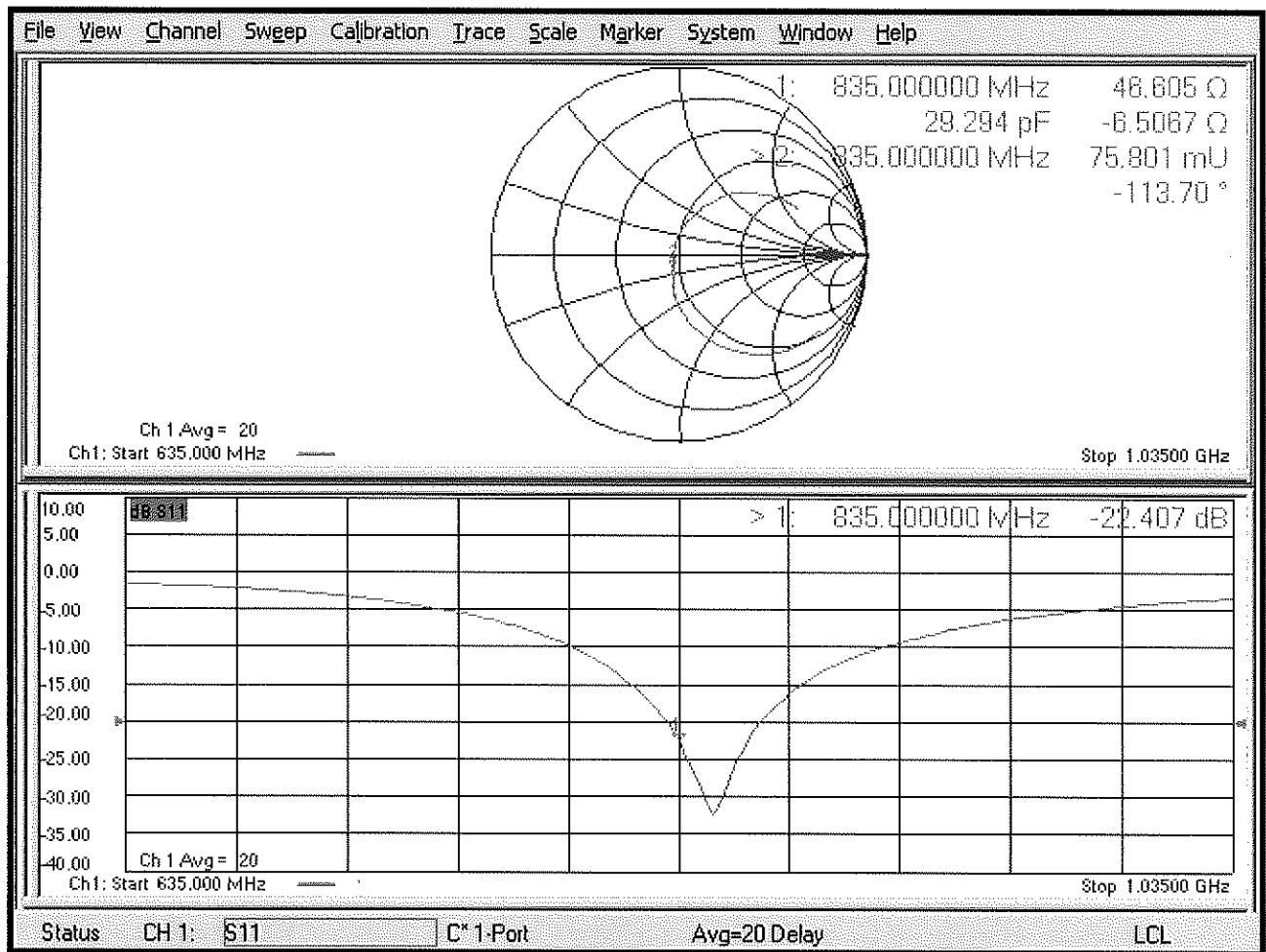
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.73 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.21 W/kg

Impedance Measurement Plot for Body TSL

Certification of Calibration

Object D835V2 – SN: 4d040

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 20, 2020

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

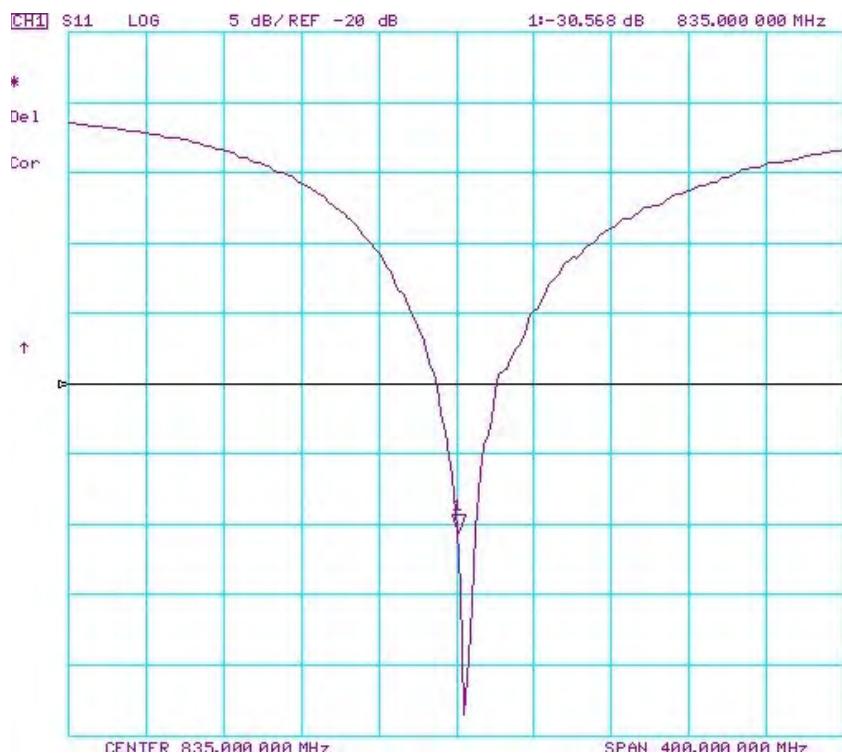
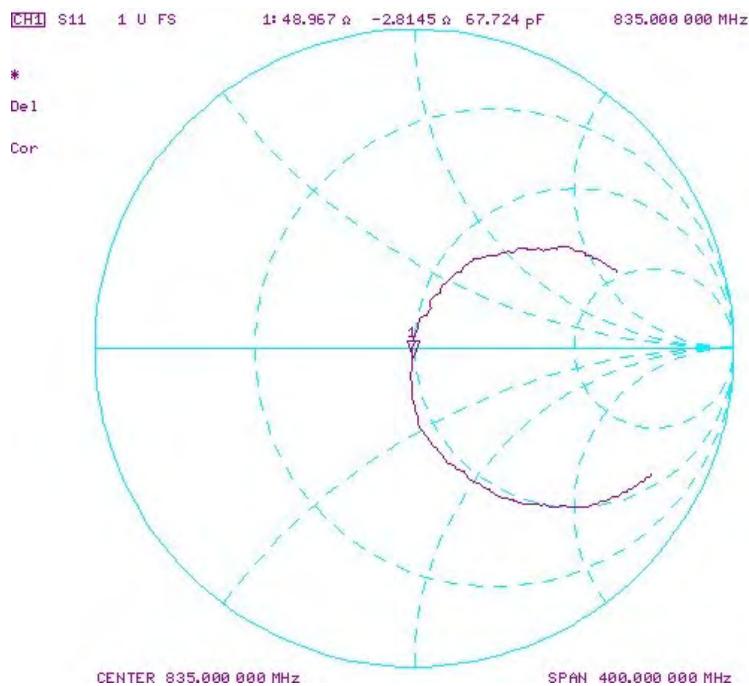
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Managing Director	<i>KOK</i>

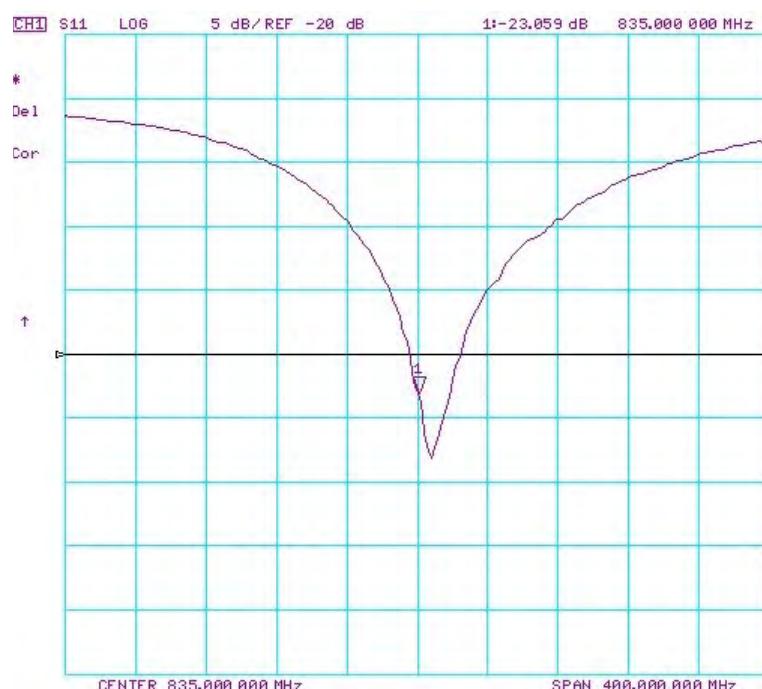
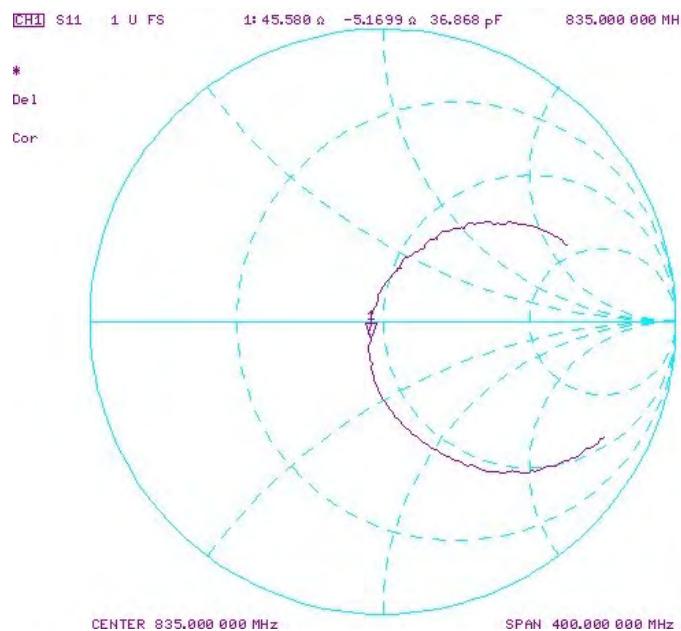
Object: D835V2 – SN: 4d040	Date Issued: 6/20/2020	Page 1 of 4
-------------------------------	---------------------------	-------------

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/20/2019	6/20/2020	1.393	1.900	2	5.26%	1.226	1.31	6.85%	49.6	49	0.6	-4.1	-2.8	1.3	-27.7	-30.6	-10.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	Measured Body SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/20/2019	6/20/2020	1.393	1.906	2.04	7.03%	1.248	1.34	7.37%	46.6	45.6	1	-6.5	-5.2	1.3	-22.4	-23.1	-3.10%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D835V2 – SN: 4d040	Date Issued: 6/20/2020	Page 3 of 4
-------------------------------	---------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D835V2 – SN: 4d040	Date Issued: 6/20/2020	Page 4 of 4
-------------------------------	---------------------------	-------------

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client

PC TEST

Certificate No.: **D835V2-4d180-May18**

CALIBRATION CERTIFICATE

Object	D835V2-4d180
Calibration procedure(s)	QDA-CA-105-V10 Calibration procedure for dipole validation kits above 700 MHz
Calibration date:	May 18, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB97480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (In house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (In house check Oct-17)	In house check: Oct-18

Calibrated by:	Name	Function	Signature
	Manu Salliz	Laboratory Technician	

Approved by:	Name	Function	Signature
	Kalle Pokovs	Technical Manager	

Issued: May 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.60 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.22 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.31 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω - 5.1 $j\Omega$
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω - 8.2 $j\Omega$
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.396 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2014

DASY5 Validation Report for Head TSL

Date: 17.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d180

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

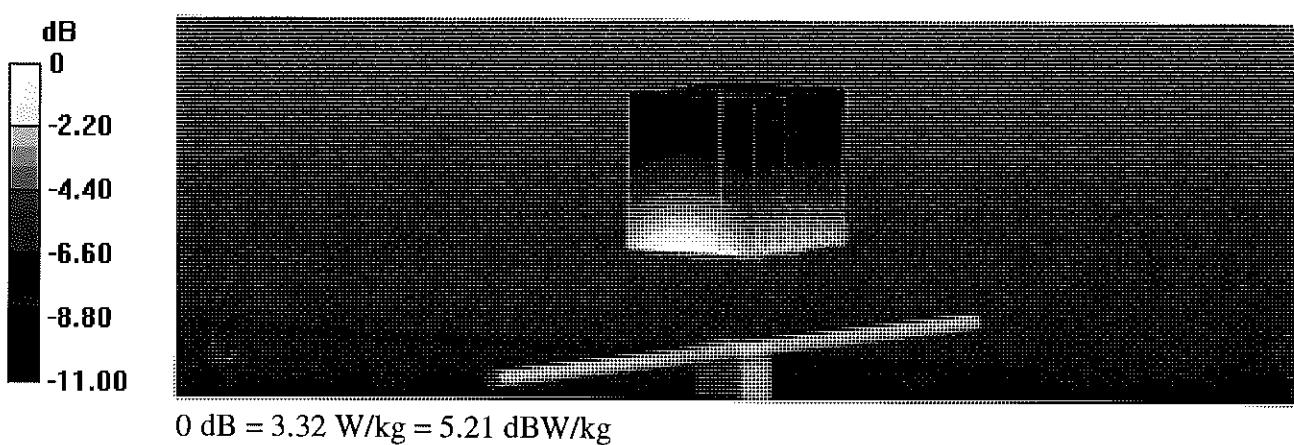
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

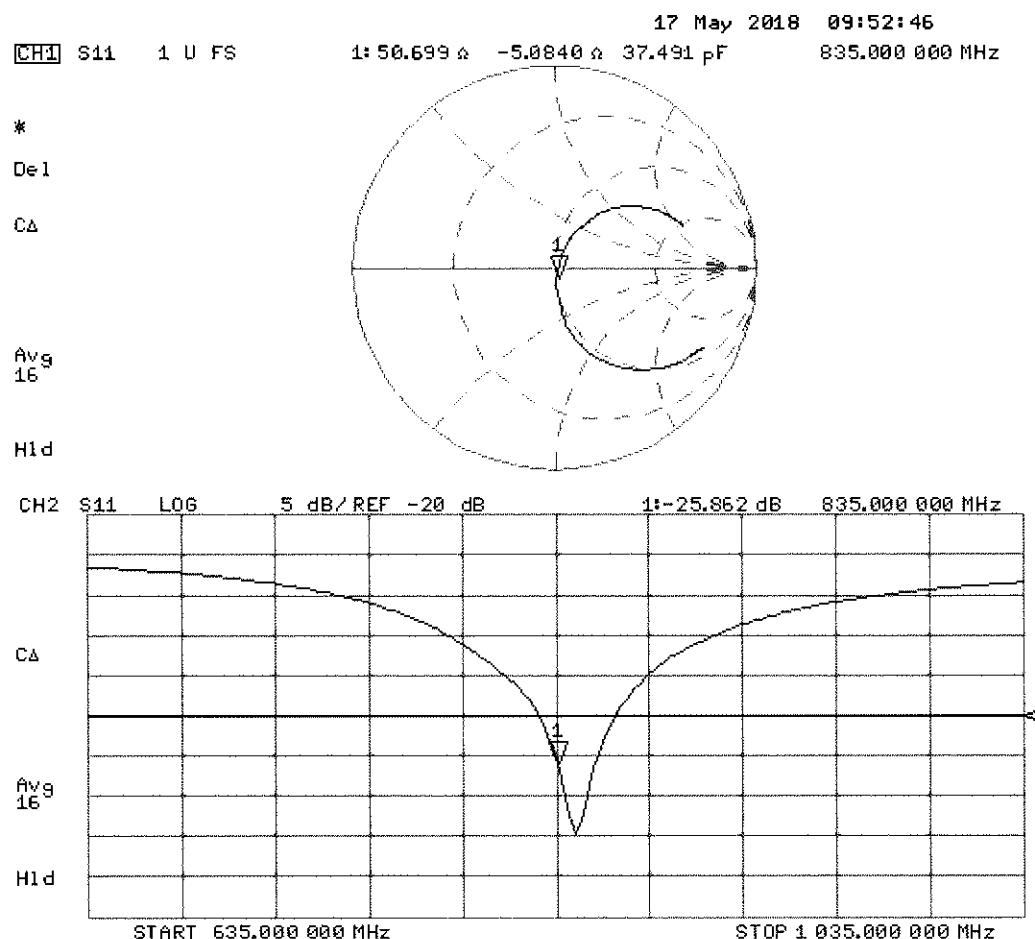
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.39 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.78 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.32 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d180

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

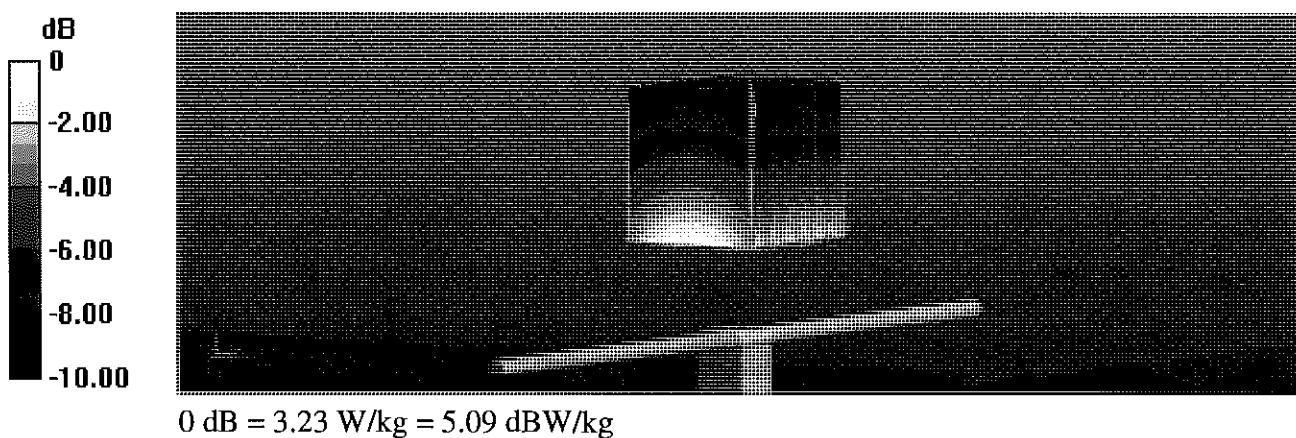
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

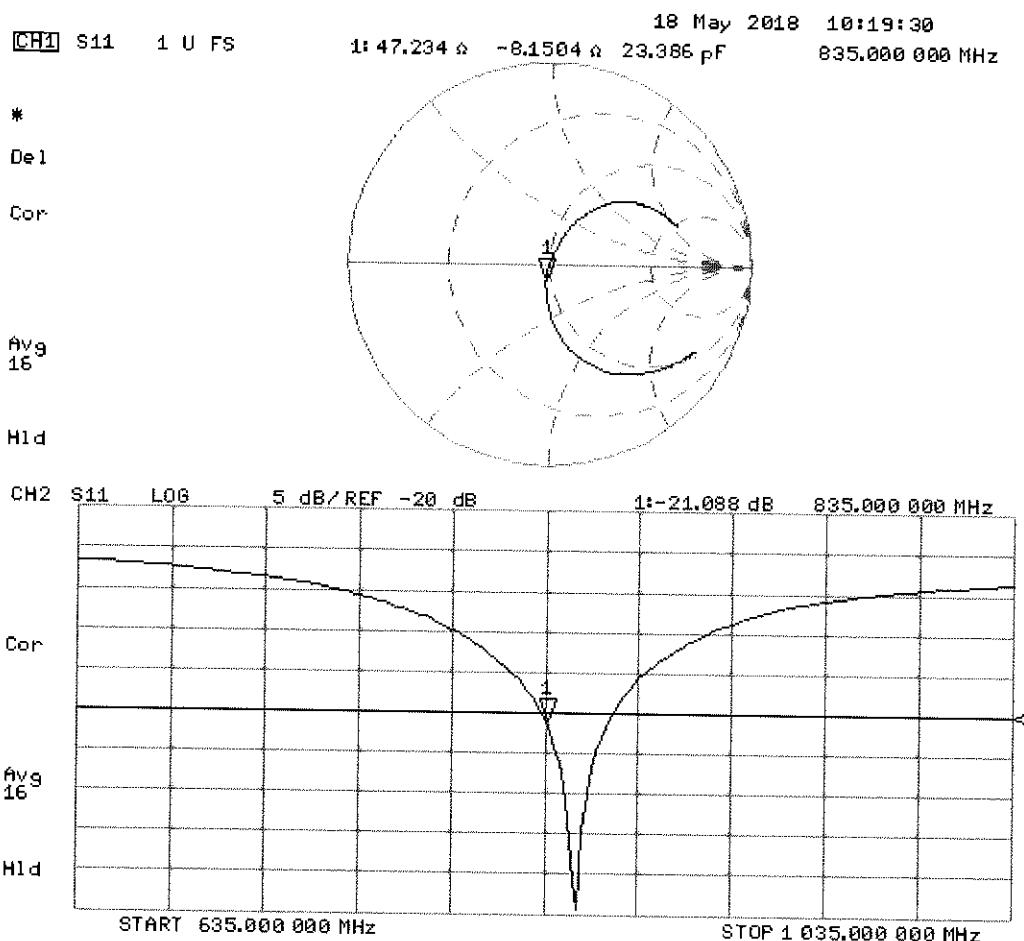
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.80 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.23 W/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object D835V2 – SN: 4d180

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 16, 2019

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402

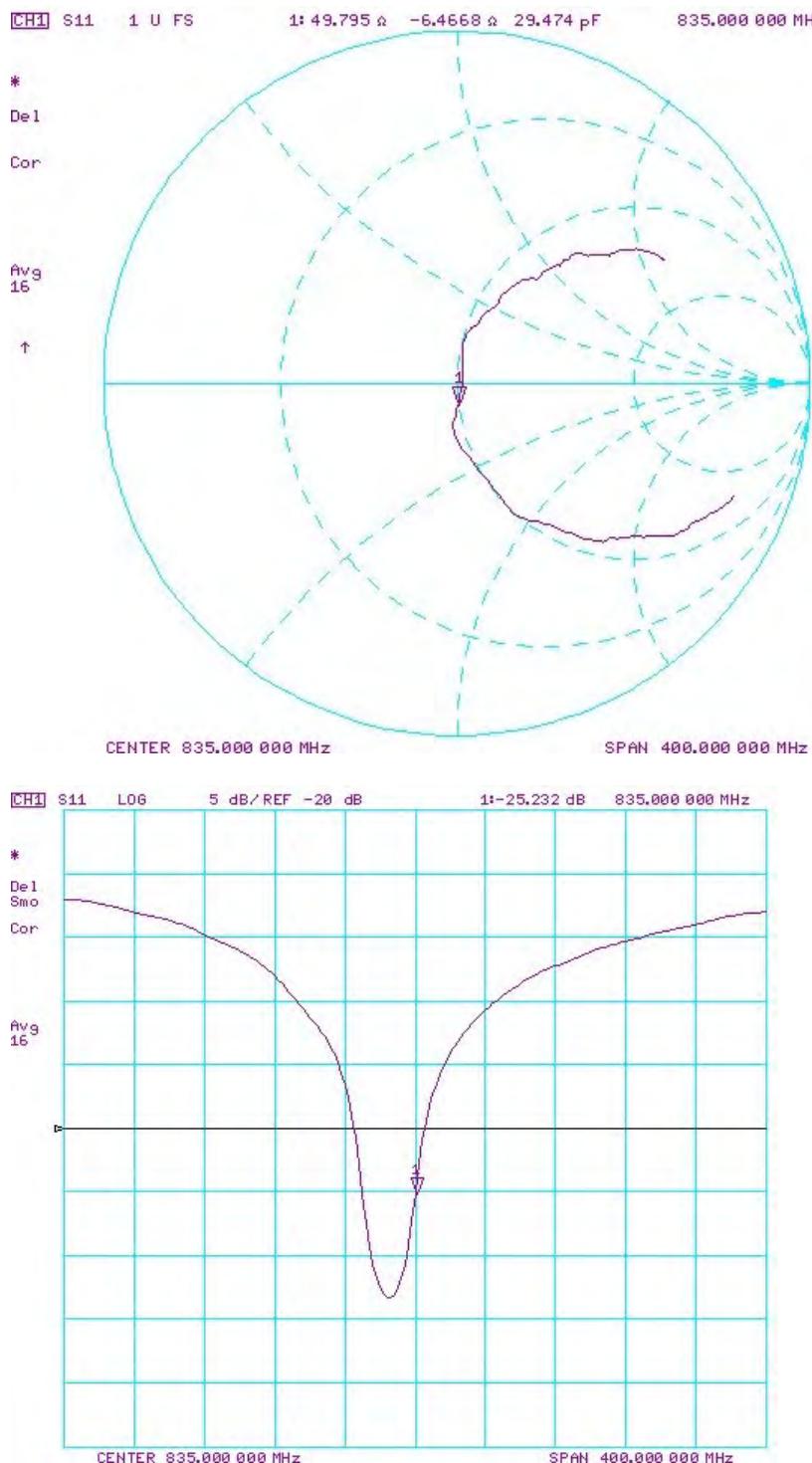
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 1 of 4
-------------------------------	----------------------------	-------------

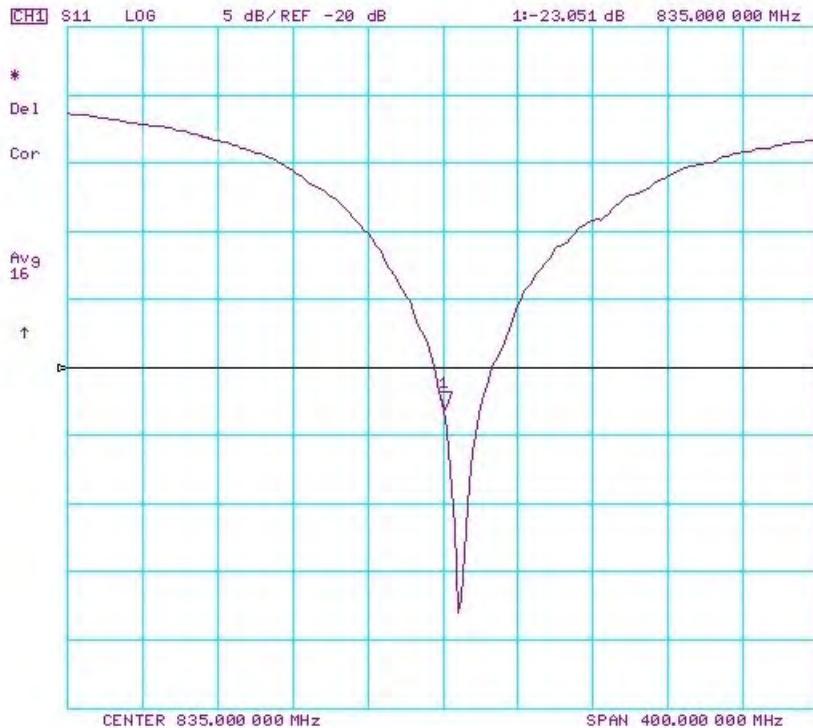
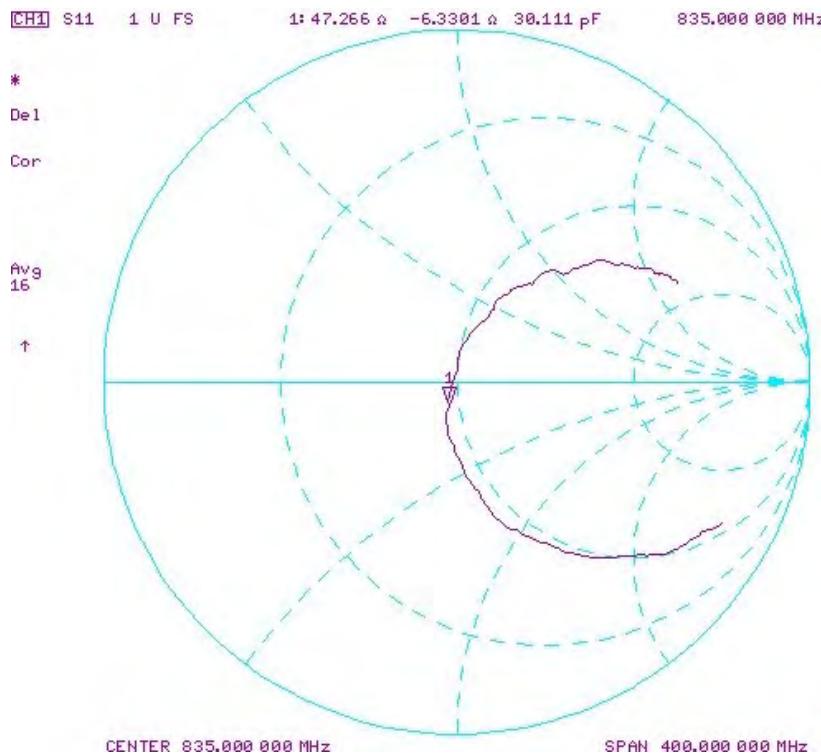
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL	
5/18/2018	5/16/2019	1.396	1.92	1.99	3.65%	1.244	1.3	4.50%	50.7	49.8	0.9	-5.1	-6.5	1.4	-25.9	-25.2	2.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	Measured Body SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL	
5/18/2018	5/16/2019	1.396	1.918	2.05	6.88%	1.262	1.34	6.18%	47.2	47.3	0.1	-8.2	-6.3	1.9	-21.1	-23.1	-9.20%	PASS



Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 2 of 4
--------------------------------------	-----------------------------------	-------------

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 3 of 4
-------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 4 of 4
-------------------------------	----------------------------	-------------

Certification of Calibration

Object D835V2 – SN: 4d180

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 18, 2020

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

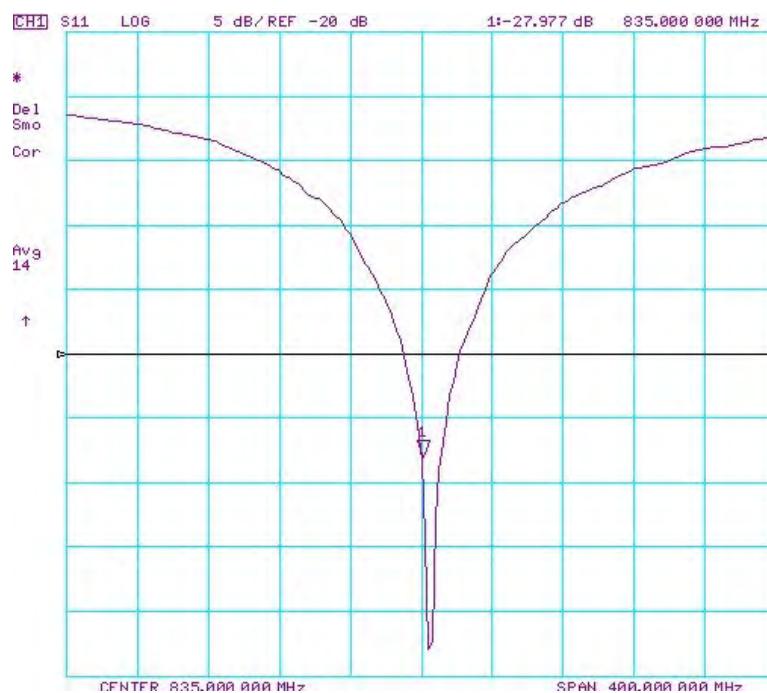
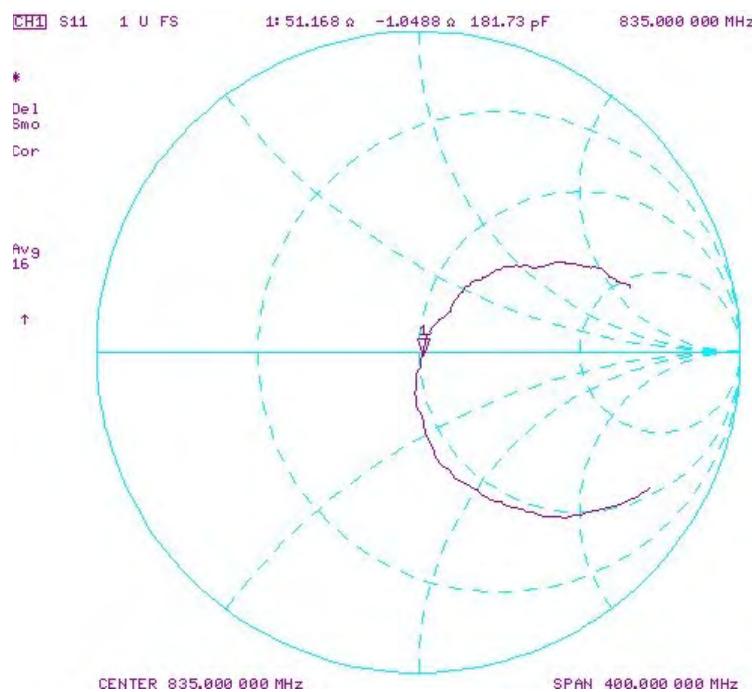
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/12/2019	Annual	8/12/2020	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	8/29/2019	Annual	8/29/2020	3949
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Managing Director	<i>KOK</i>

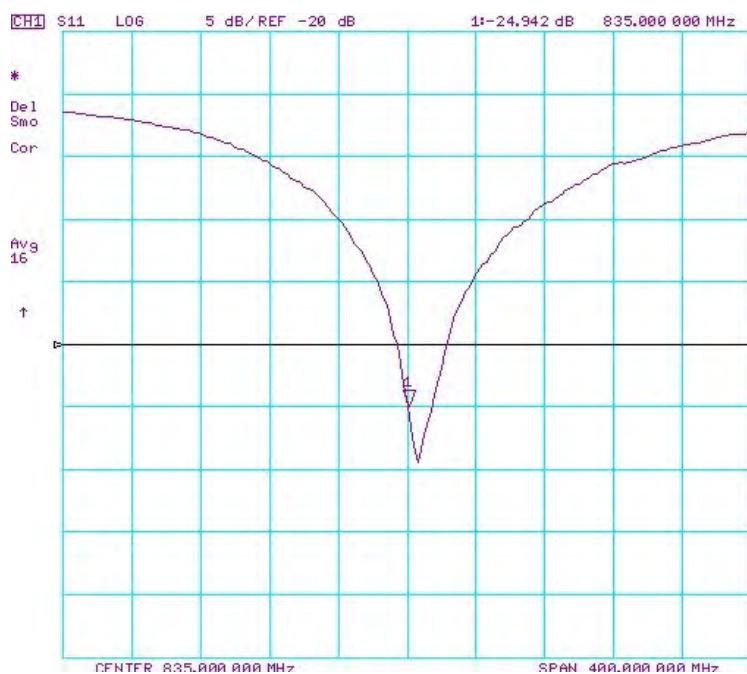
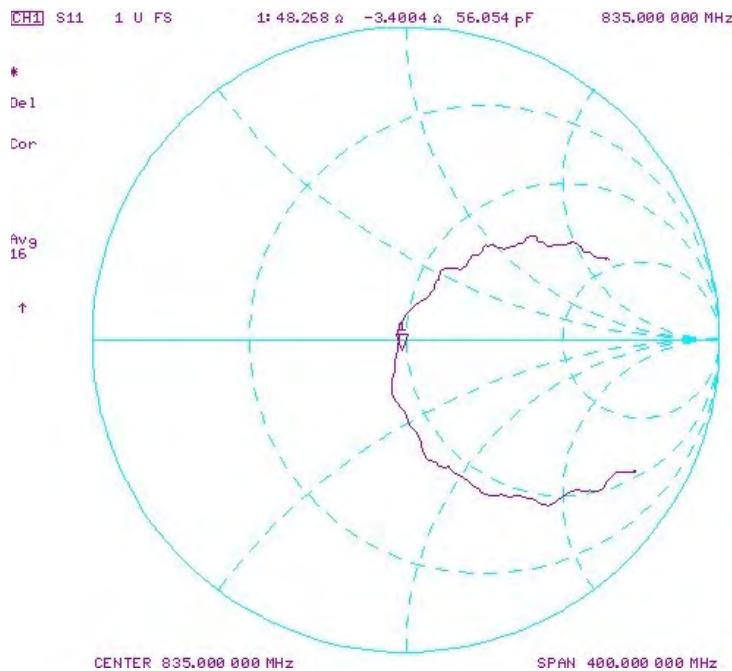
Object: D835V2 – SN: 4d180	Date Issued: 5/18/2020	Page 1 of 4
-------------------------------	---------------------------	-------------

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/18/2018	5/18/2020	1.396	1.92	2	4.17%	1.244	1.32	6.11%	50.7	51.2	0.5	-5.1	-1	4.1	-25.9	-26	-8.10% PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	Measured Body SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/18/2018	5/18/2020	1.396	1.918	2	4.28%	1.262	1.31	3.80%	47.2	48.3	1.1	-8.2	-3.4	4.8	-21.1	-24.9	-18.00% PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D835V2 – SN: 4d180	Date Issued: 5/18/2020	Page 3 of 4
-------------------------------	---------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D835V2 – SN: 4d180	Date Issued: 5/18/2020	Page 4 of 4
-------------------------------	---------------------------	-------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D1750V2-1104_Sep17**

CALIBRATION CERTIFICATE

Object **D1750V2 - SN:1104**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **September 07, 2017**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by: **Name** Michael Weber **Function** Laboratory Technician

Signature

Approved by: **Name** Katja Pokovic **Function** Technical Manager

Issued: September 7, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 0.2 $j\Omega$
Return Loss	- 41.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω - 0.7 $j\Omega$
Return Loss	- 28.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2013

DASY5 Validation Report for Head TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

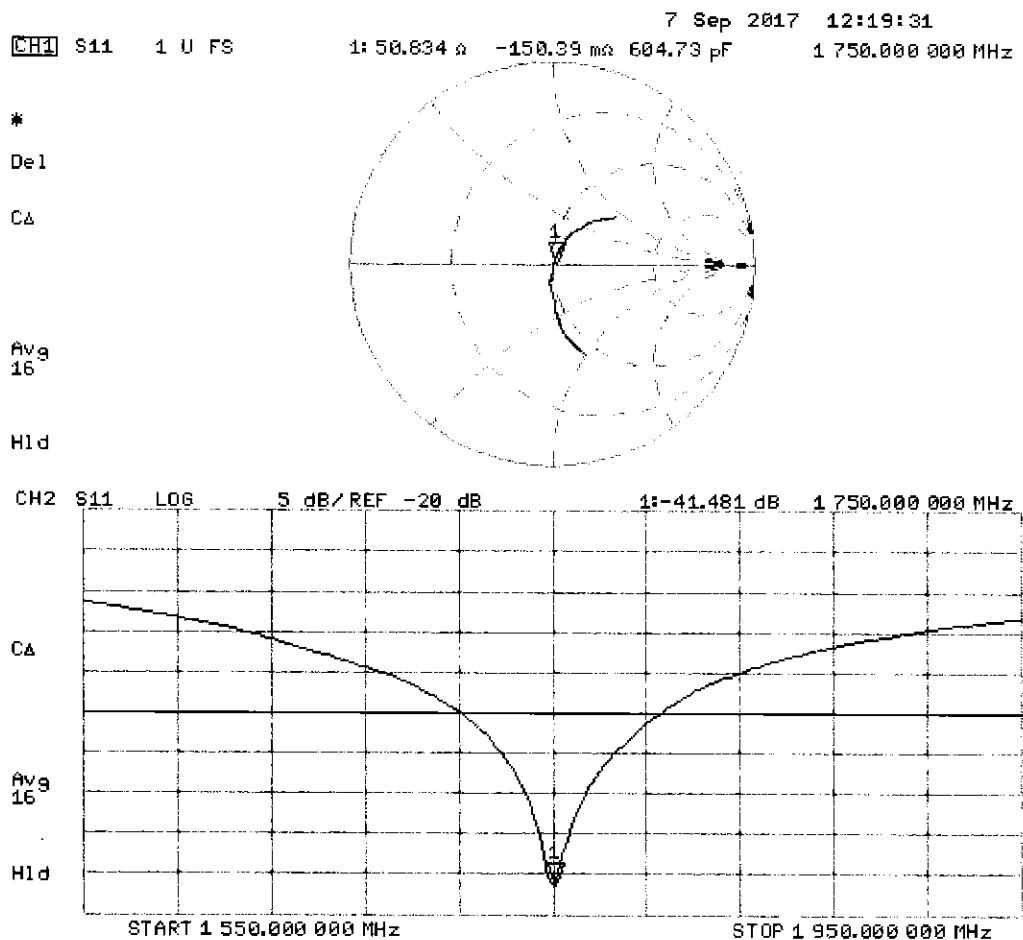
- Probe: EX3DV4 - SN7349; ConvF(8.73, 8.73, 8.73); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.9 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.81 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: $f = 1750 \text{ MHz}$; $\sigma = 1.46 \text{ S/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

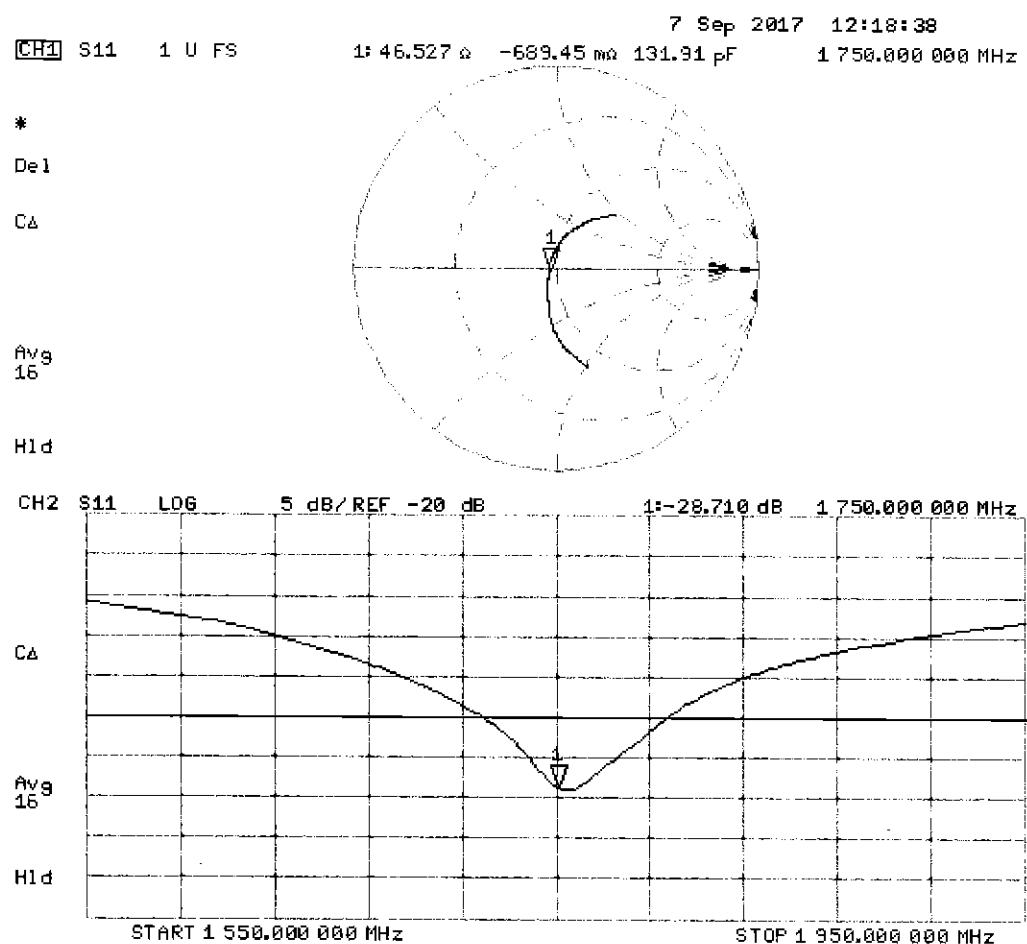
- Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 99.30 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 15.6 W/kg


SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object D1750V2 – SN: 1104

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 07, 2018

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

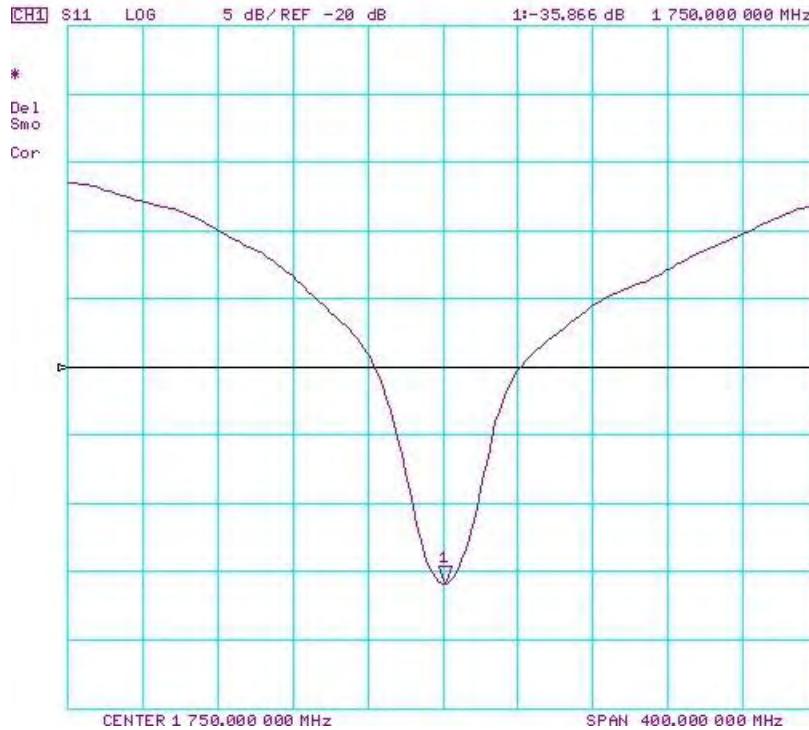
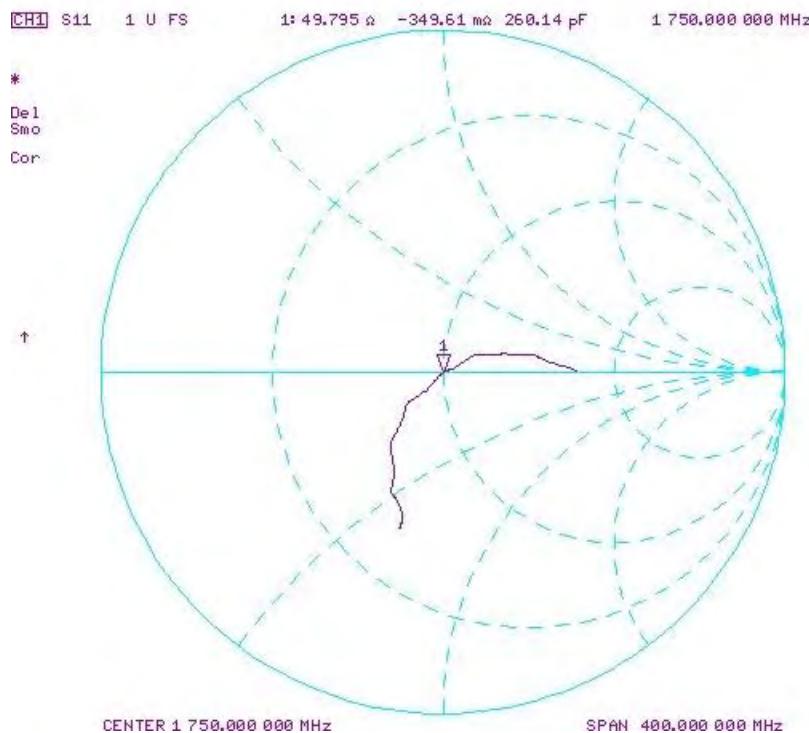
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	

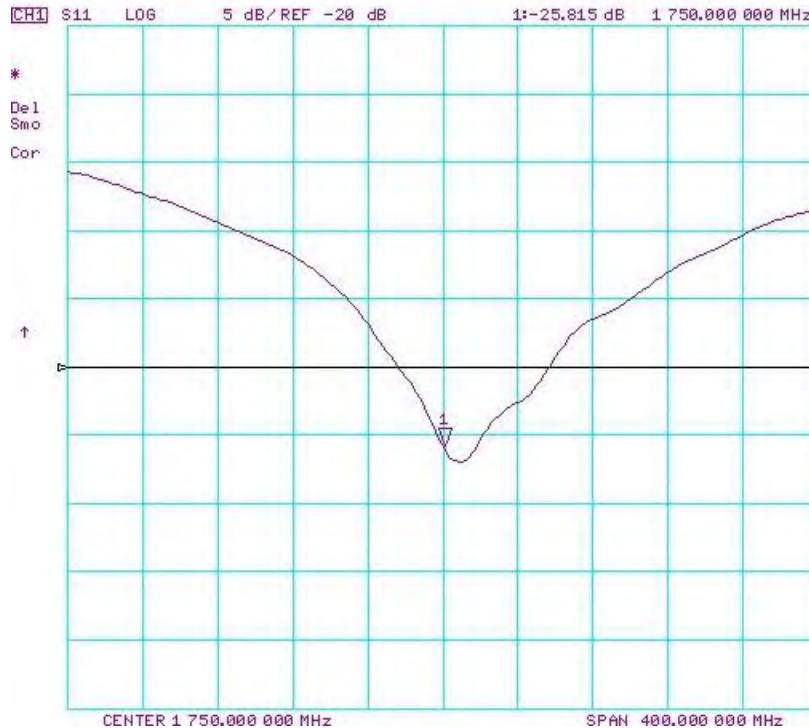
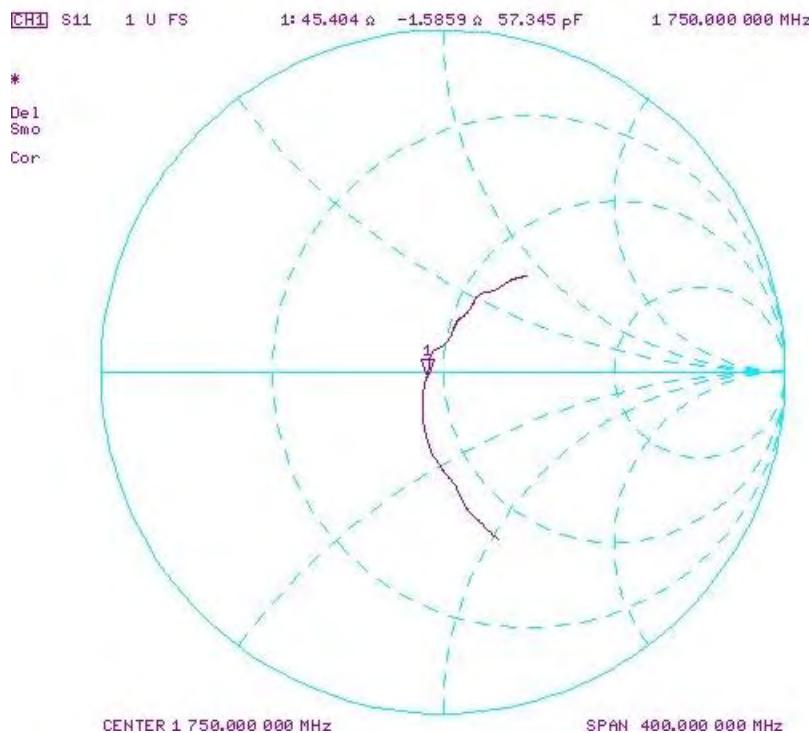
Object: D1750V2 – SN: 1104	Date Issued: 09/07/2018	Page 1 of 4
-------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.217	3.64	3.62	-0.59%	1.92	1.94	1.04%	50.8	49.8	1	-0.2	-0.3	0.1	-41.5	-35.9	13.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.217	3.66	3.84	4.92%	1.96	2.07	5.61%	46.527	45.4	1.1	-0.69	-1.6	0.9	-28.7	-25.8	10.10%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1750V2 – SN: 1104	Date Issued: 09/07/2018	Page 3 of 4
-------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1750V2 – SN: 1104	Date Issued: 09/07/2018	Page 4 of 4
-------------------------------	----------------------------	-------------

Certification of Calibration

Object D1750V2 – SN: 1104

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 7, 2019

Description: SAR Validation Dipole at 1750 MHz.

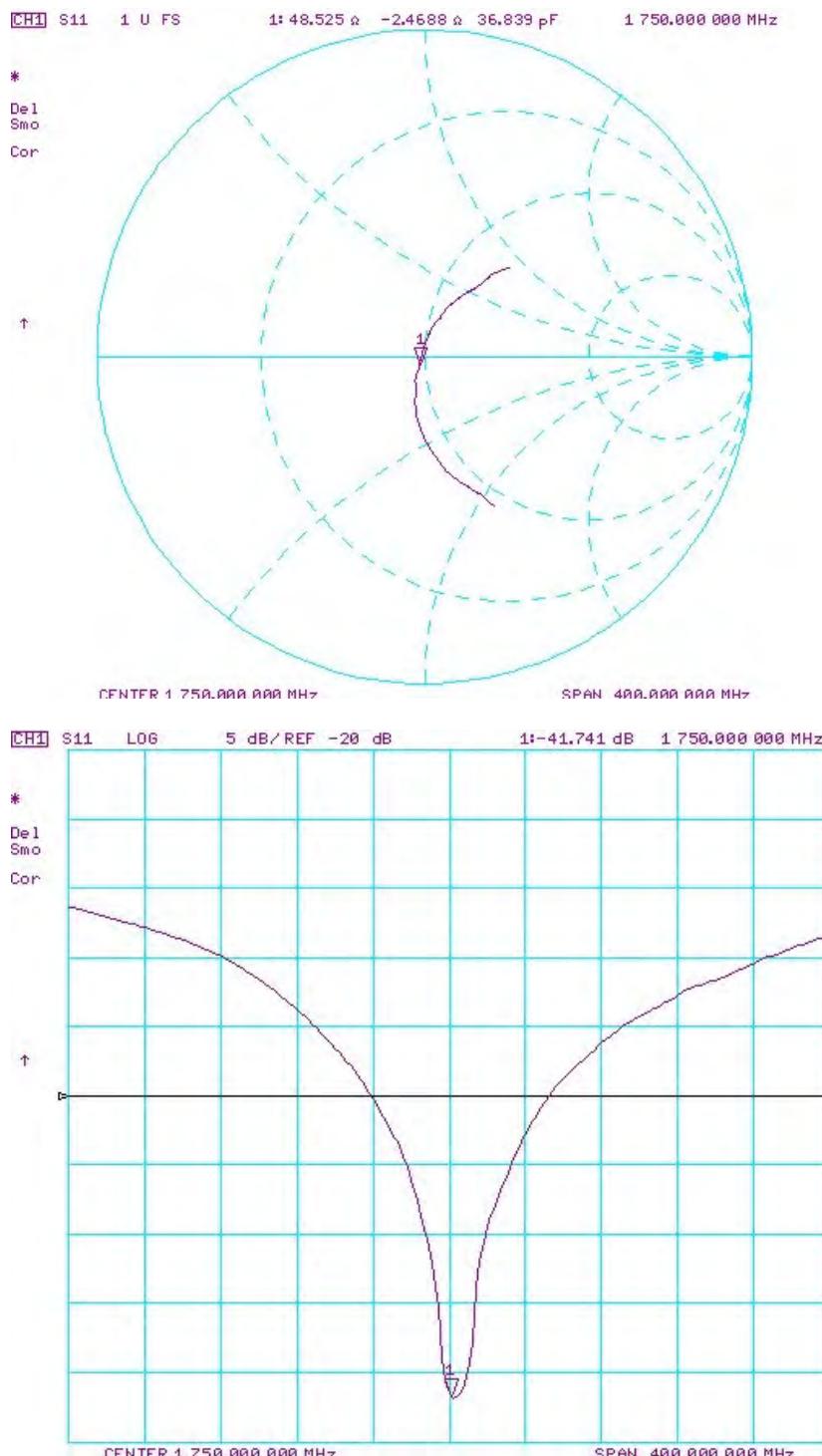
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	155166	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	11/1/2017	Biennial	11/1/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	DAE4	Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532

Measurement Uncertainty = $\pm 23\%$ (k=2)

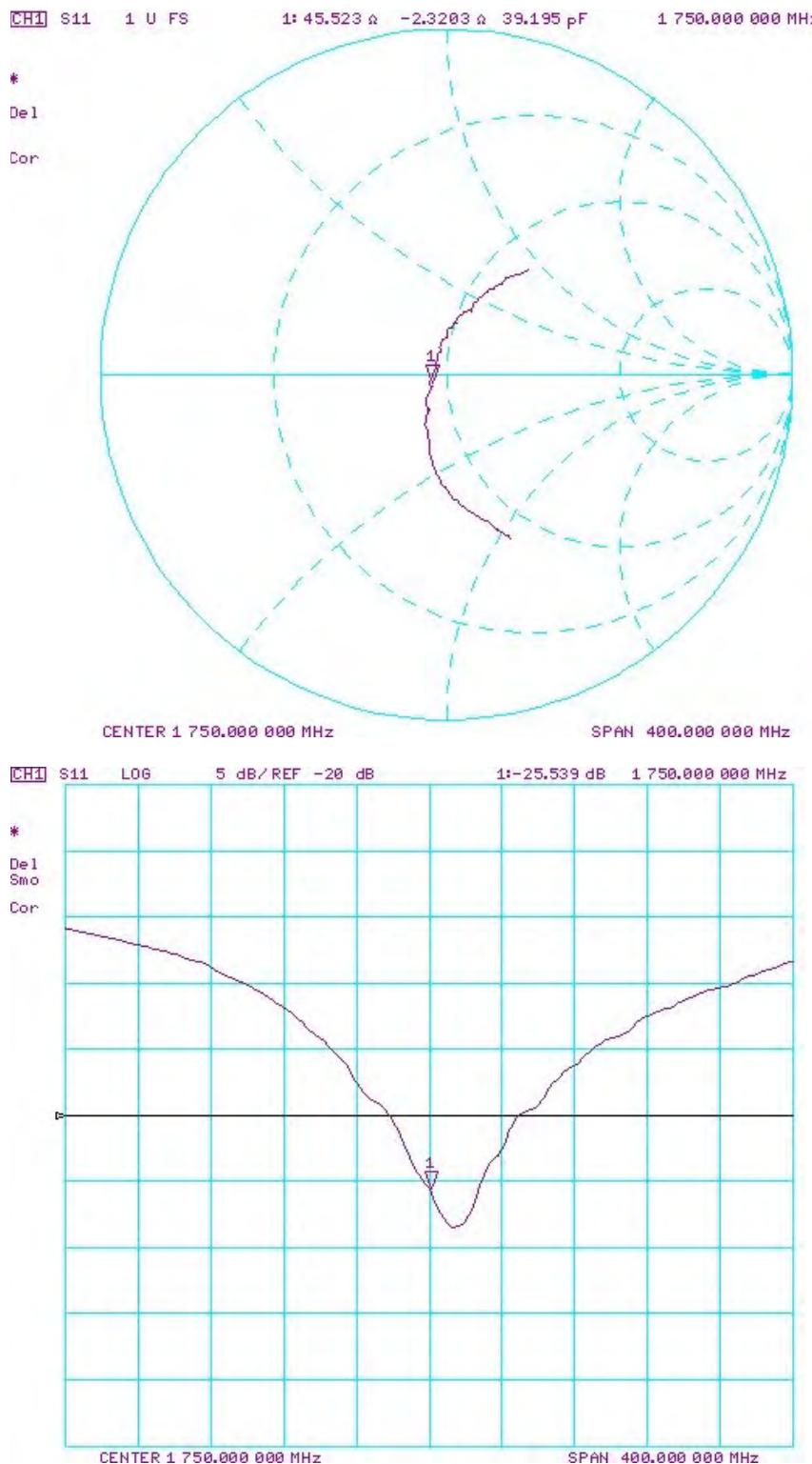
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2019	1.217	3.64	3.54	-2.75%	1.92	1.88	-2.08%	50.8	48.5	2.3	-0.2	-2.5	2.3	-41.5	-41.7	-0.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2019	1.217	3.66	3.67	0.27%	1.96	1.96	0.00%	46.5	45.5	1	-0.7	-2.3	1.6	-28.7	-25.5	11.10%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1750V2 – SN: 1104	Date Issued: 09/07/2019	Page 3 of 4
-------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1750V2 – SN: 1104	Date Issued: 09/07/2019	Page 4 of 4
-------------------------------	----------------------------	-------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client: **PC Test**

Certificate No: **D1900V2-5d026_May18**

CALIBRATION CERTIFICATE

Object	D1900V2-5d026		
Calibration procedure(s)	QH-CAL-05-070 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	May 14, 2018 SC ✓ 17/11/2018		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name: Jelton Kastrati	Function: Laboratory Technologist	Signature:
Approved by:	Name: Katja Pekovic	Function: Technical Manager	Signature:
Issued: May 14, 2018			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.0 \Omega + 8.0 j\Omega$
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.1 \Omega + 7.4 j\Omega$
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2002

DASY5 Validation Report for Head TSL

Date: 14.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

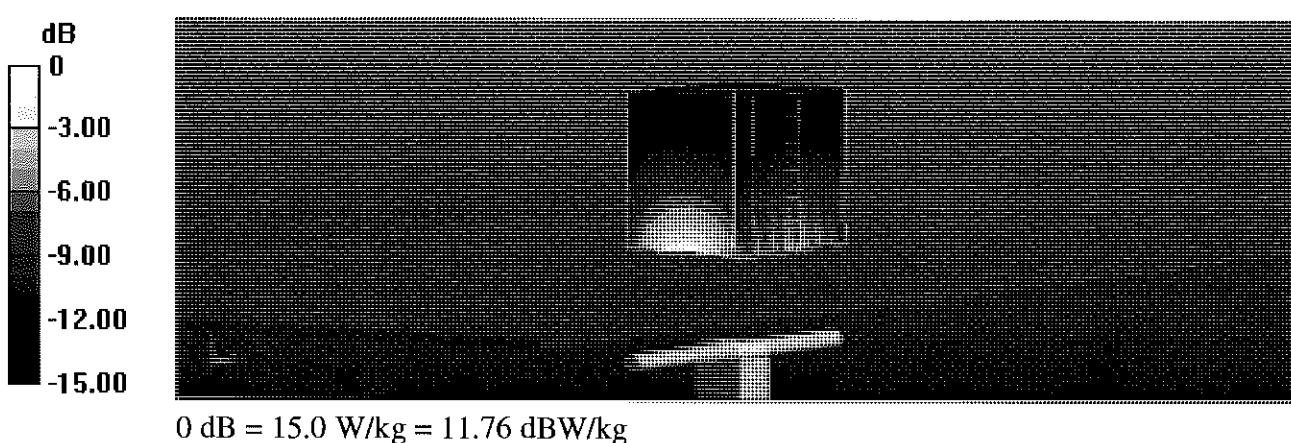
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

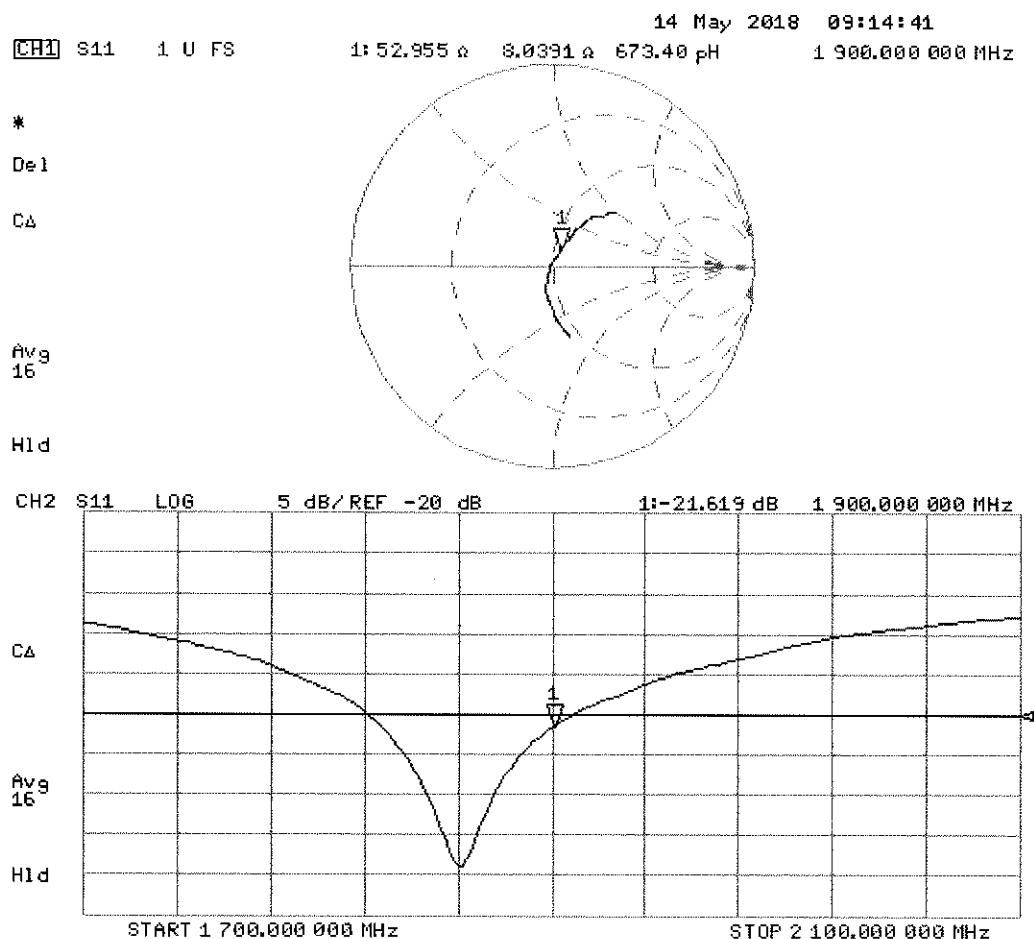
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.9 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

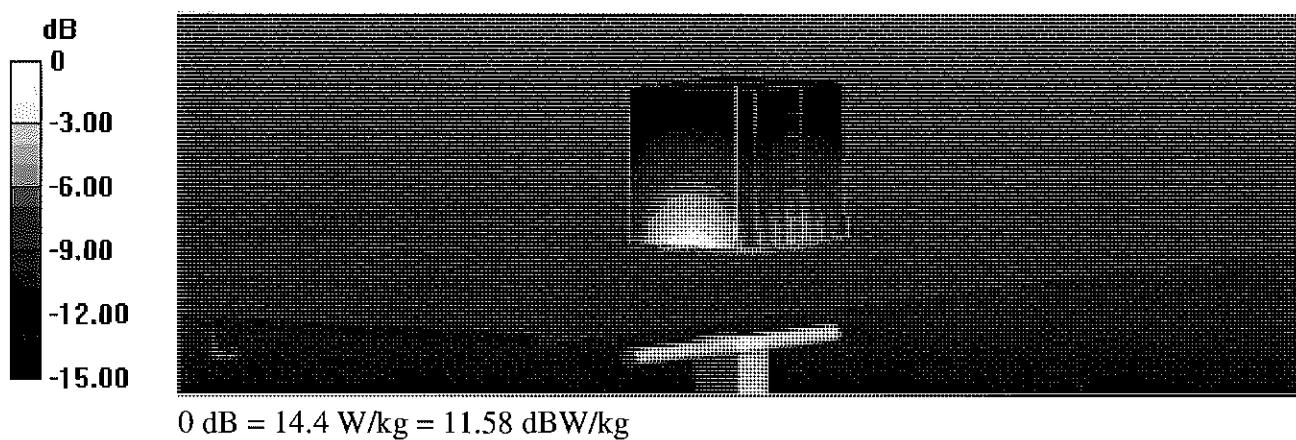
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

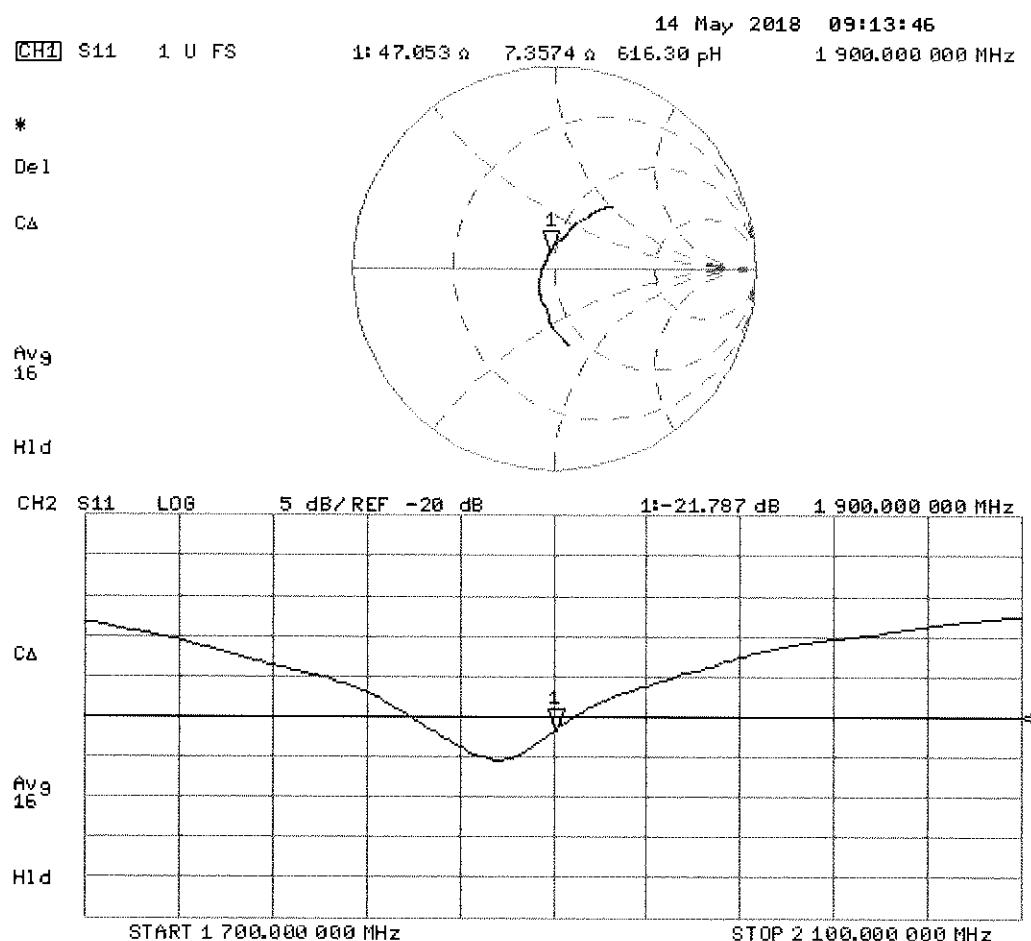
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.5 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object D1900V2 – SN: 5d026

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 14, 2019

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

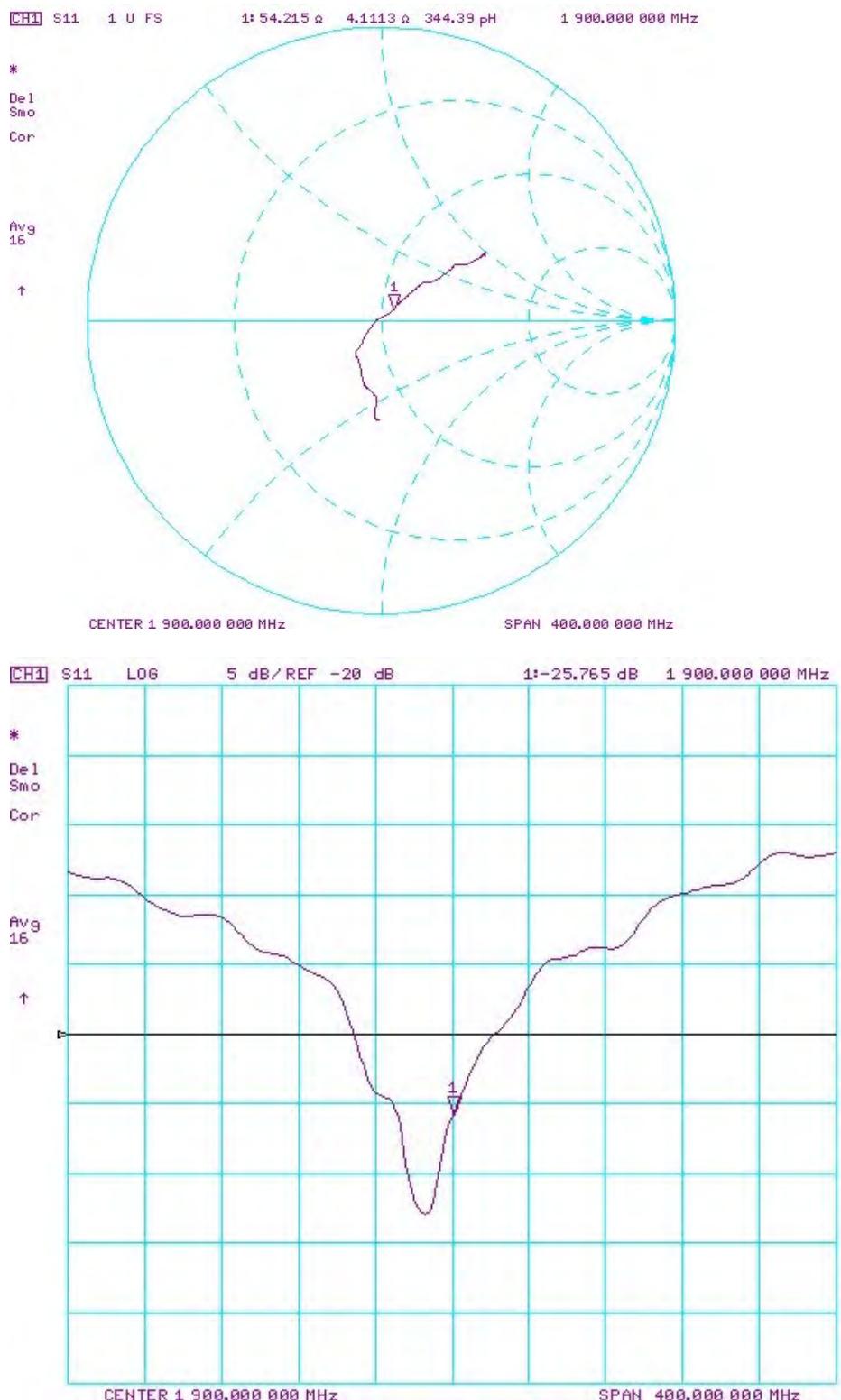
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

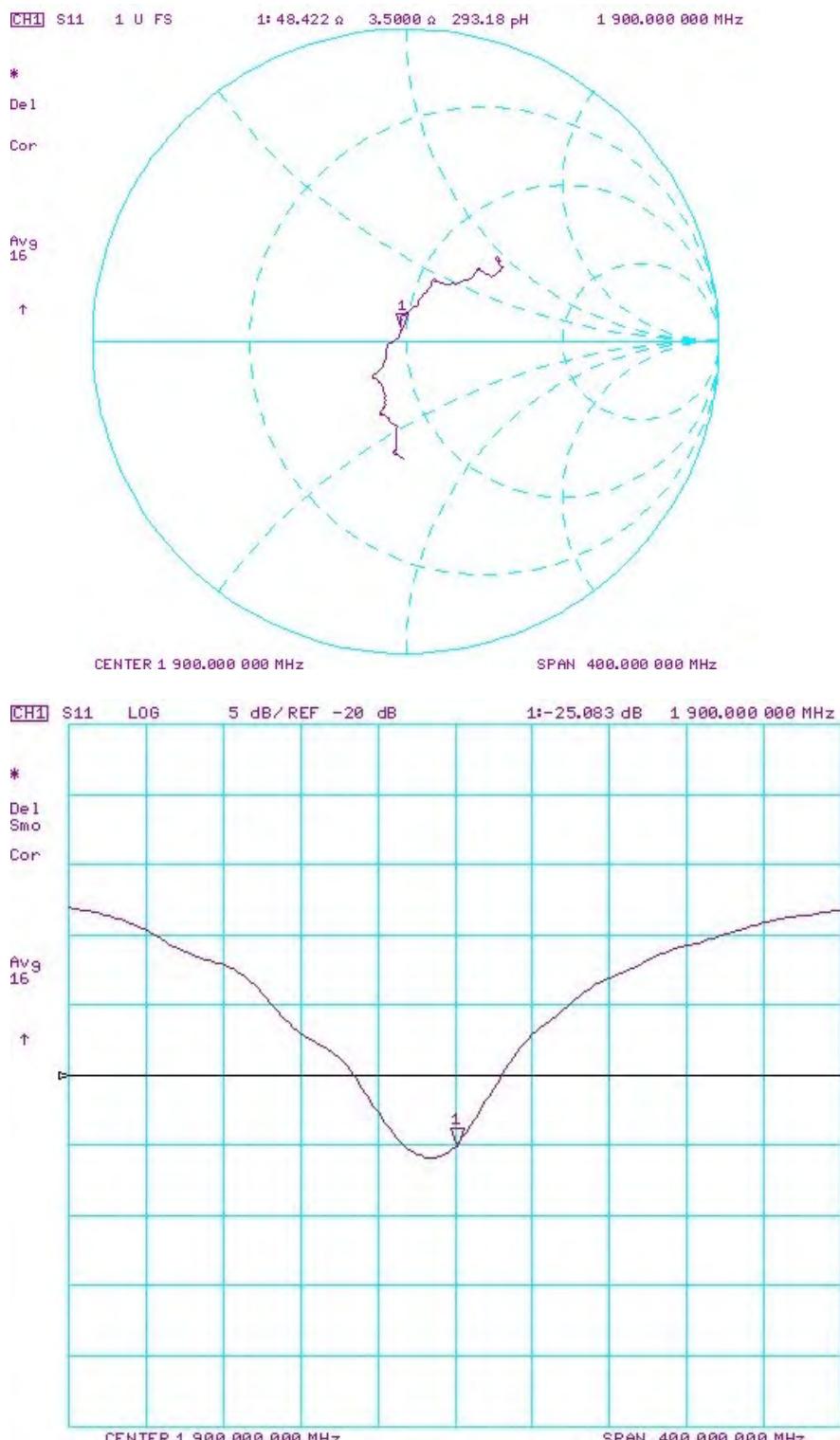
Object: D1900V2 – SN: 5d026	Date Issued: 05/14/2019	Page 1 of 4
--------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/14/2018	5/14/2019	1.199	4.02	3.98	-1.00%	2.11	2.05	-2.64%	53	54.2	1.2	8	4.1	3.9	-21.6	-25.8	-19.30% PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/14/2018	5/14/2019	1.199	3.99	3.97	-0.50%	2.12	2.04	-3.77%	47.1	48.4	1.3	7.4	3.5	3.9	-21.8	-25.1	-15.10% PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1900V2 – SN: 5d026	Date Issued: 05/14/2019	Page 3 of 4
--------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1900V2 – SN: 5d026	Date Issued: 05/14/2019	Page 4 of 4
--------------------------------	----------------------------	-------------

Certification of Calibration

Object D1900V2 – SN: 5d026

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 14, 2020

Description: SAR Validation Dipole at 1900 MHz.

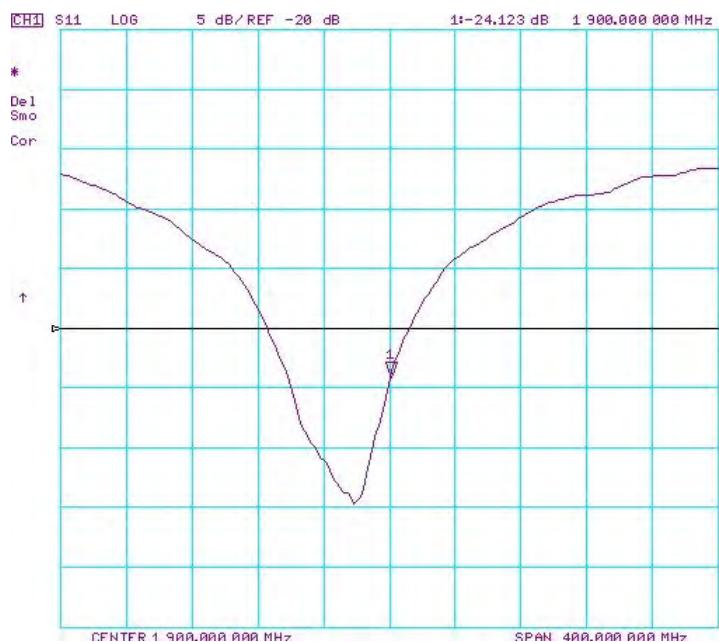
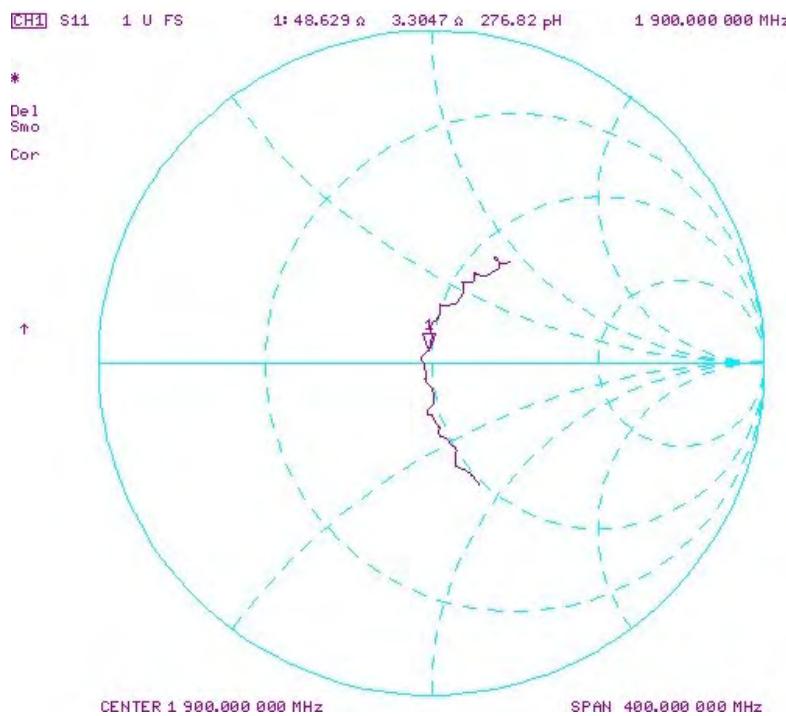
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2020	Annual	2/13/2021	1403
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/19/2020	Annual	3/19/2021	604
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070
SPEAG	EX3DV4	SAR Probe	2/19/2020	Annual	2/19/2021	7427
SPEAG	EX3DV4	SAR Probe	3/20/2020	Annual	3/20/2021	7421

Measurement Uncertainty = $\pm 23\%$ (k=2)

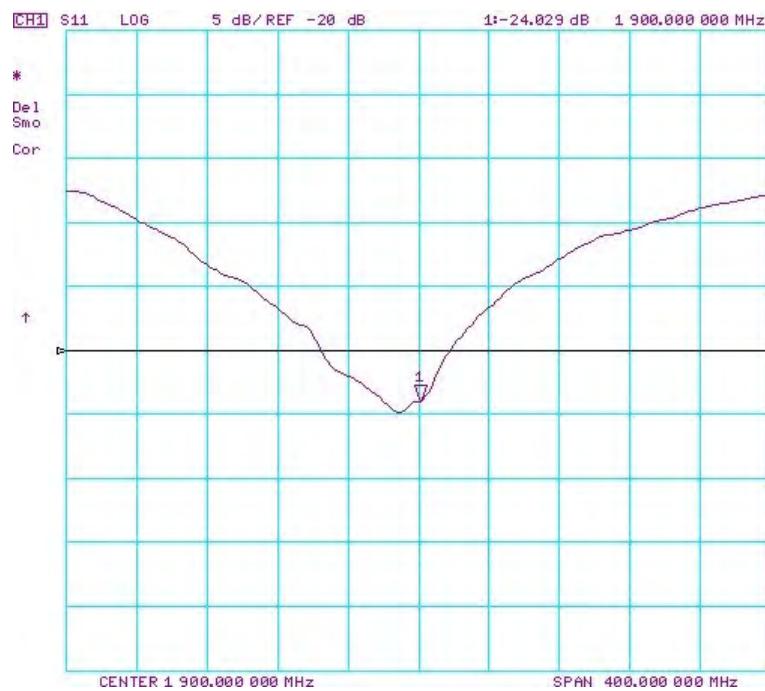
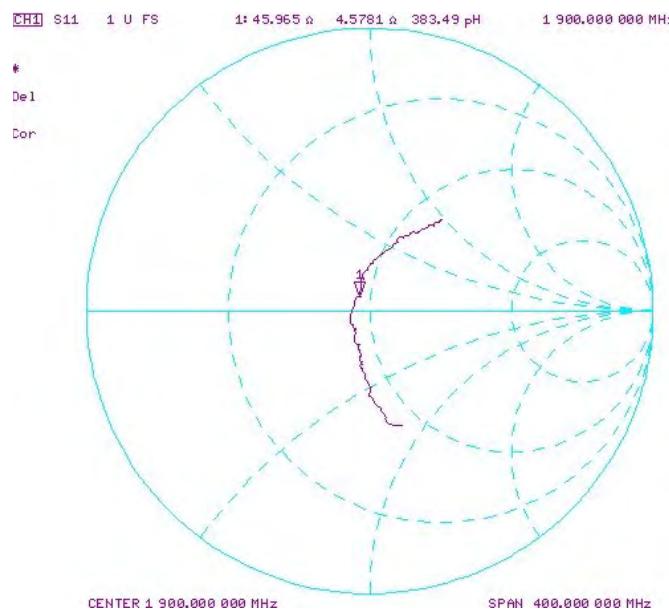
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Managing Director	<i>KOK</i>

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/14/2018	5/14/2020	1.199	4.02	4.15	3.23%	2.11	2.16	2.37%	53	48.6	4.4	8	3.3	4.7	-21.6	-24.1	-11.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/14/2018	5/14/2020	1.199	3.99	4.12	3.26%	2.12	2.13	0.47%	47.1	46	1.1	7.4	4.6	2.8	-21.8	-24	-10.10%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1900V2 – SN: 5d026	Date Issued: 5/14/2020	Page 3 of 4
--------------------------------	---------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1900V2 – SN: 5d026	Date Issued: 5/14/2020	Page 4 of 4
--------------------------------	---------------------------	-------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client: PC Test

Certificate No: D1900V2-5d180_Aug17

CALIBRATION CERTIFICATE

Object: D1900V2 - SN: 5d180

Calibration procedure(s): QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 16, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02622)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (In house check Oct-16)	In house check: Oct-18
Network Analyzer HF 8753E	SN: US37390585	18-Oct-01 (In house check Oct-16)	In house check: Oct-17

Calibrated by:	Name: Johannes Kürkka	Function: Laboratory Technician	Signature:
Approved by:	Kalla Pokovic	Technical Manager	

Issued: August 16, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.0 \Omega + 5.7 \text{ j} \Omega$
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.6 \Omega + 6.5 \text{ j} \Omega$
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 23, 2013

DASY5 Validation Report for Head TSL

Date: 16.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d180

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³

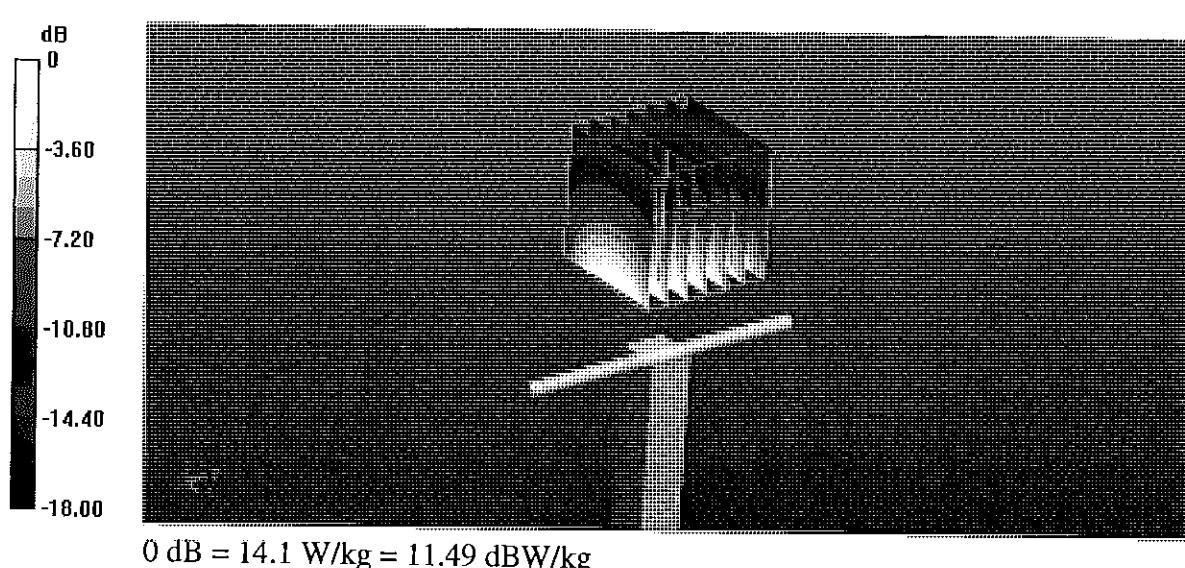
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

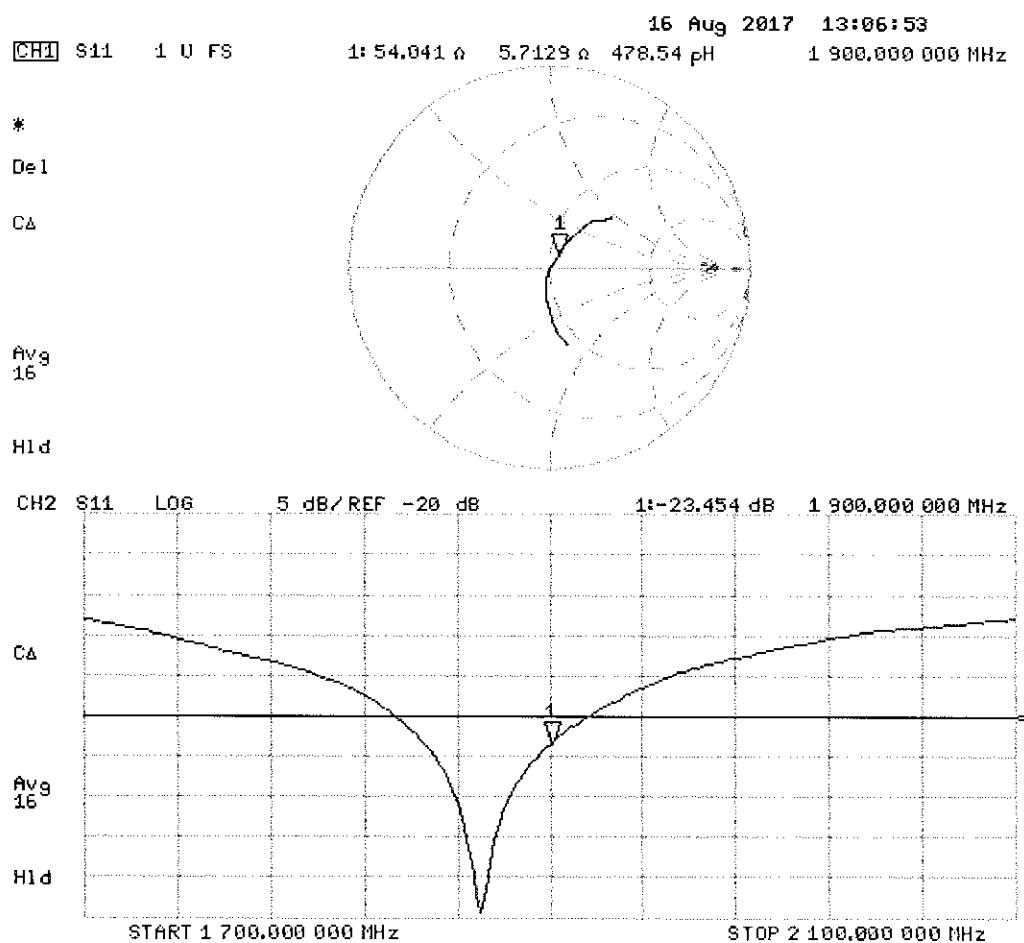
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.7 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.6 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d180

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³

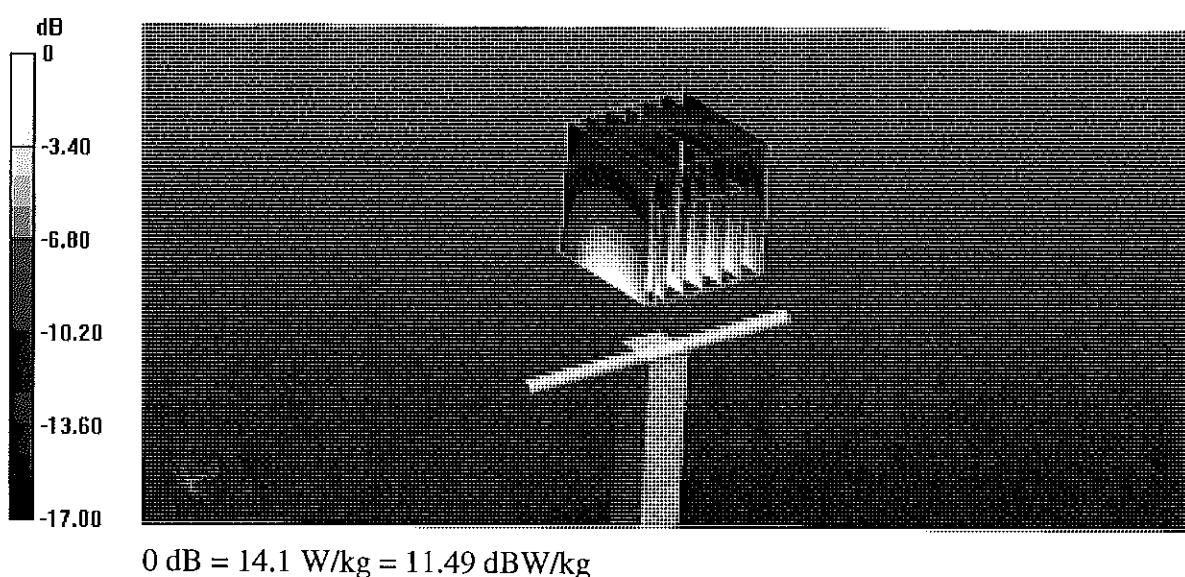
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

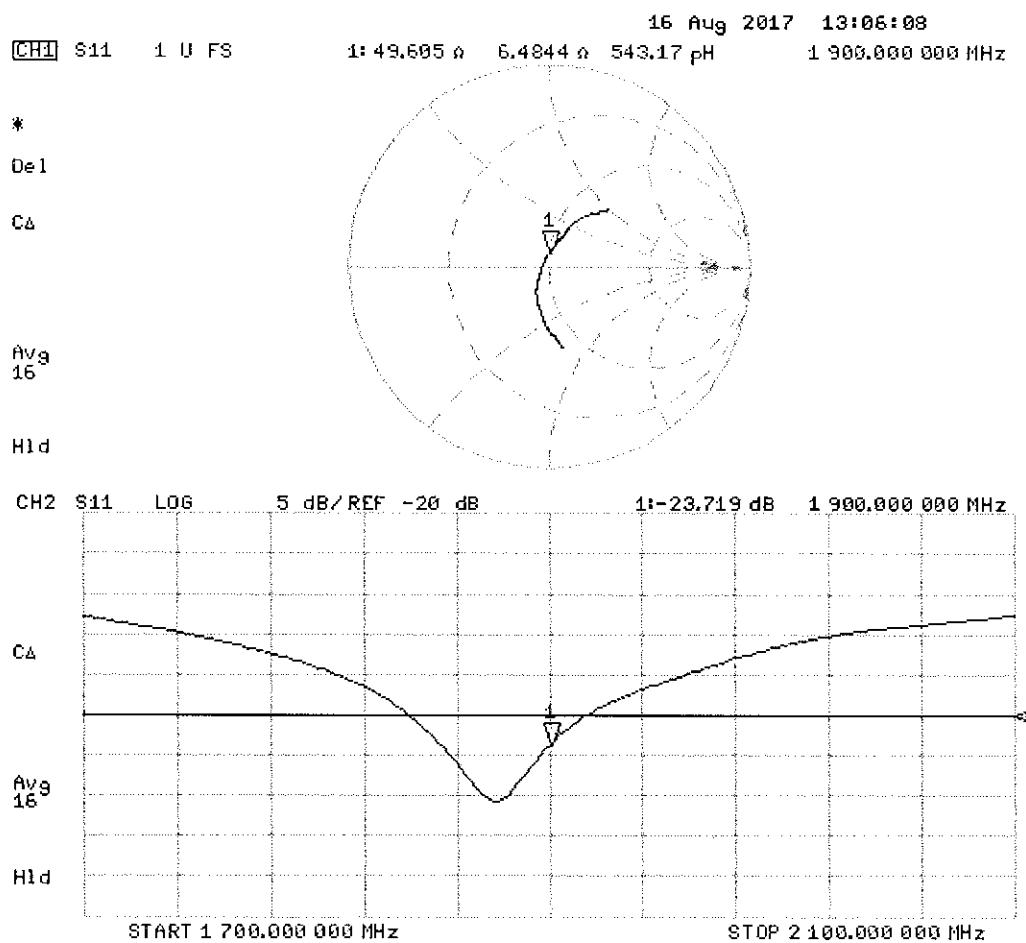
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

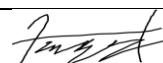
Reference Value = 99.33 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

Impedance Measurement Plot for Body TSL


Certification of Calibration

Object D1900V2 – SN: 5d180
Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.
Extended Calibration date: August 01, 2018
Description: SAR Validation Dipole at 1900 MHz.

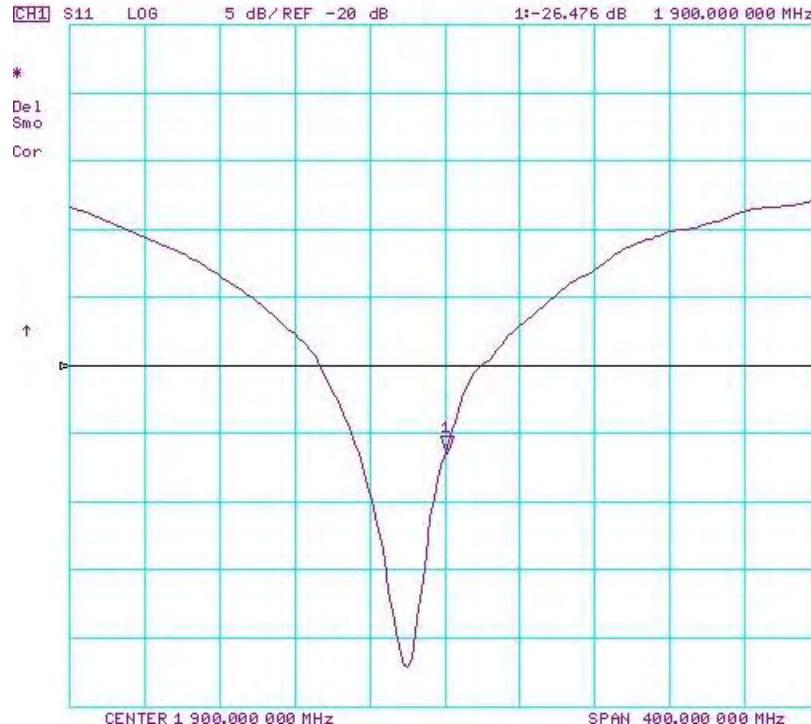
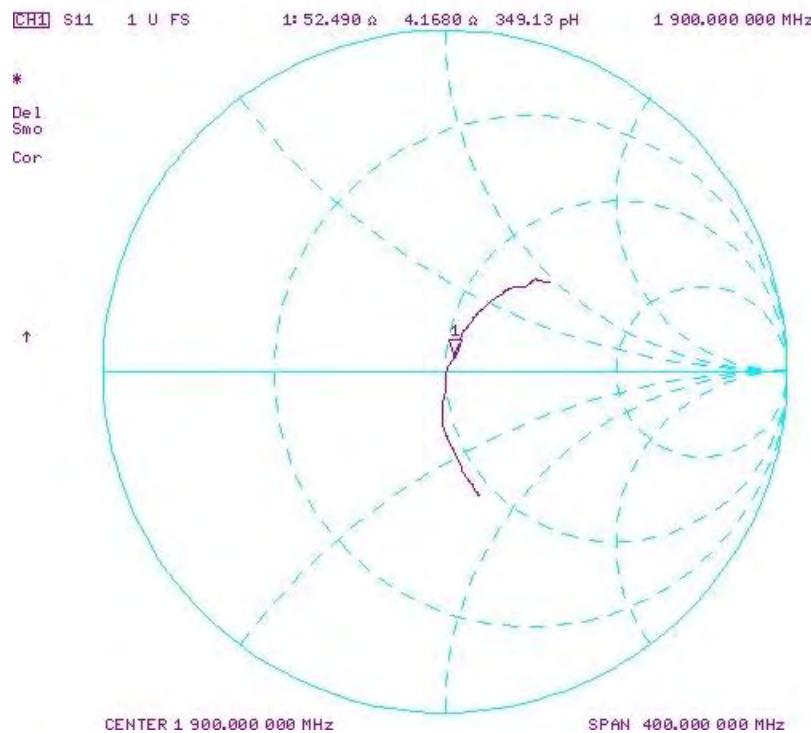
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/5/2017	Annual	9/5/2018	1045
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3329
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/8/2018	Annual	2/8/2019	1403

Measurement Uncertainty = $\pm 23\%$ (k=2)

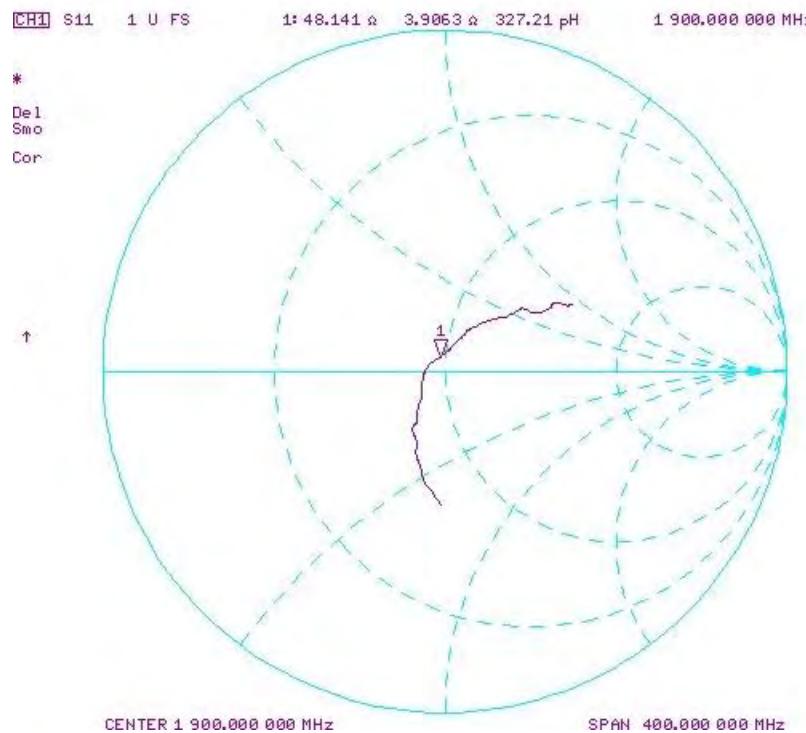
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Biomedical Engineer II	
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
8/16/2017	8/1/2018	1.203	3.92	3.81	-2.81%	2.06	1.97	-4.37%	54	52.5	1.5	5.7	4.2	1.5	-23.5	-26.5	-12.80%	PASS
8/16/2017	8/1/2018	1.203	3.95	4.29	8.61%	2.09	2.21	5.74%	49.6	48.1	1.5	6.5	3.9	2.6	-23.7	-26.7	-12.70%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1900V2 – SN: 5d180	Date Issued: 08/01/2018	Page 3 of 4
--------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1900V2 – SN: 5d180	Date Issued: 08/01/2018	Page 4 of 4
--------------------------------	----------------------------	-------------

Certification of Calibration

Object D1900V2 – SN: 5d180

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: August 7, 2019

Description: SAR Validation Dipole at 1900 MHz.

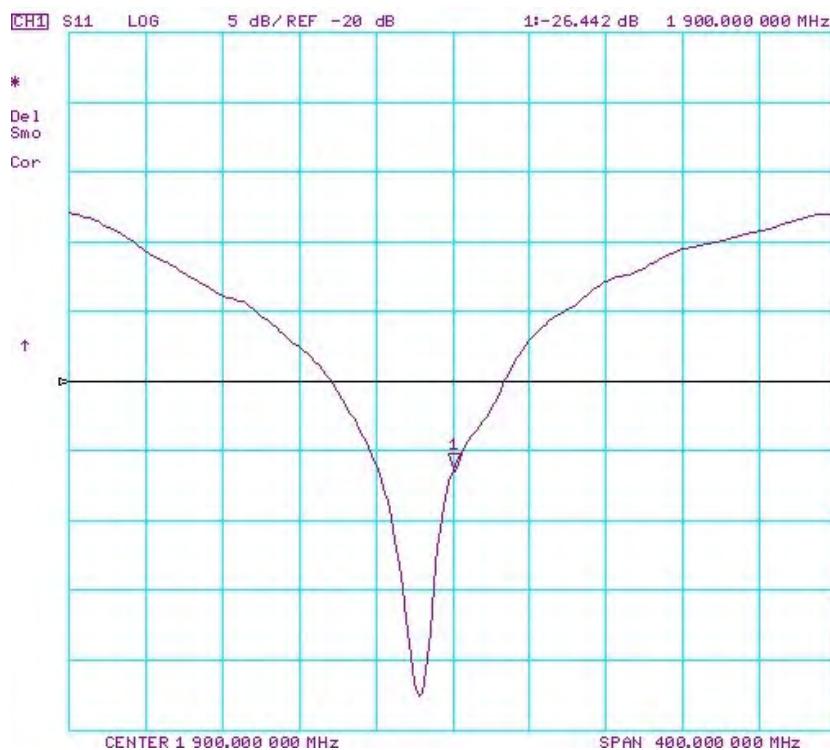
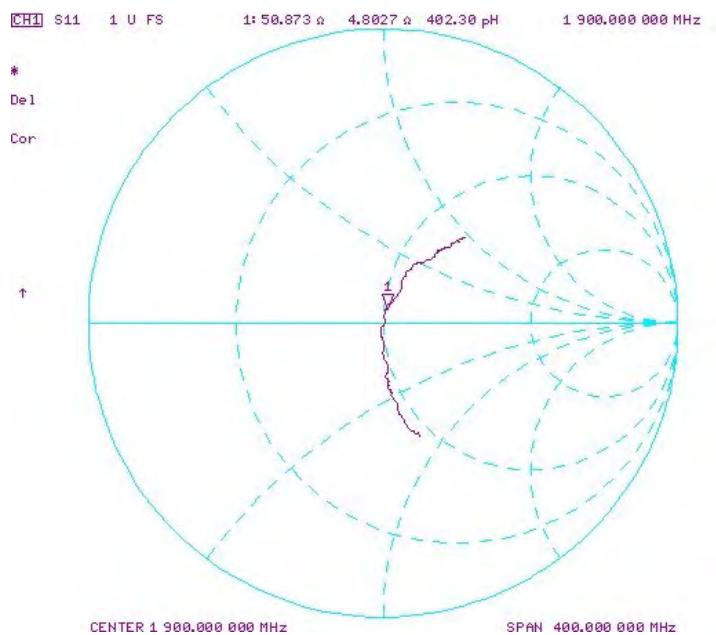
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	1/28/2019	Annual	1/28/2020	3837
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	793

Measurement Uncertainty = $\pm 23\%$ (k=2)

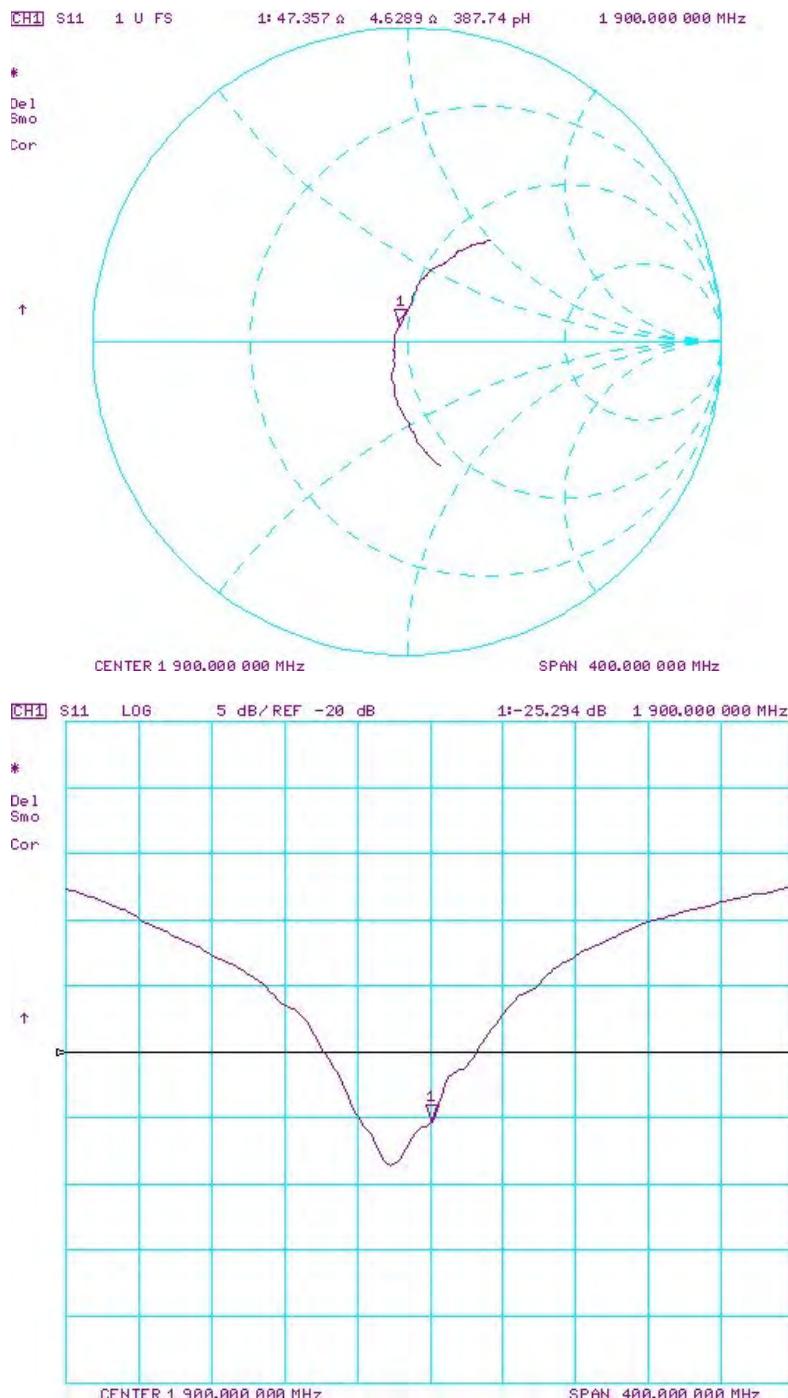
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
8/16/2017	8/7/2019	1.203	3.92	4.17	6.38%	2.06	2.11	2.43%	54	50.9	3.1	5.7	4.8	0.9	-23.5	-26.4	-12.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/16/2017	8/7/2019	1.203	3.95	4.02	1.77%	2.09	2.07	-0.96%	49.6	47.4	2.2	6.5	4.6	1.9	-23.7	-25.3	-6.70%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1900V2 – SN: 5d180	Date Issued: 08/7/2019	Page 3 of 4
--------------------------------	---------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client: **PC Test**

Certificate No.: **D2300V2-1038_Mar18**

CALIBRATION CERTIFICATE

Object	D2300V2-1038
Calibration procedure(s)	TOA/ATM 05.07.01 Calibration procedure for probe validation (is above 70.01 MHz)
Calibration date:	March 07, 2018

SC ✓
3/21/18

SC ✓
2/25/19

ATM ✓
6/10/2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:	Name: Claudio Leubler	Function: Laboratory Technologist	Signature:
----------------	------------------------------	--	------------

Approved by:	Name: Katja Pokovic	Function: Technical Manager	Signature:
--------------	----------------------------	------------------------------------	------------

Issued: March 9, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	38.6 \pm 6 %	1.70 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.3 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	51.6 \pm 6 %	1.86 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	46.7 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.5 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8 Ω - 4.9 $j\Omega$
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9 Ω - 3.4 $j\Omega$
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.170 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 02, 2013

DASY5 Validation Report for Head TSL

Date: 07.03.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1038

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: $f = 2300$ MHz; $\sigma = 1.7$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

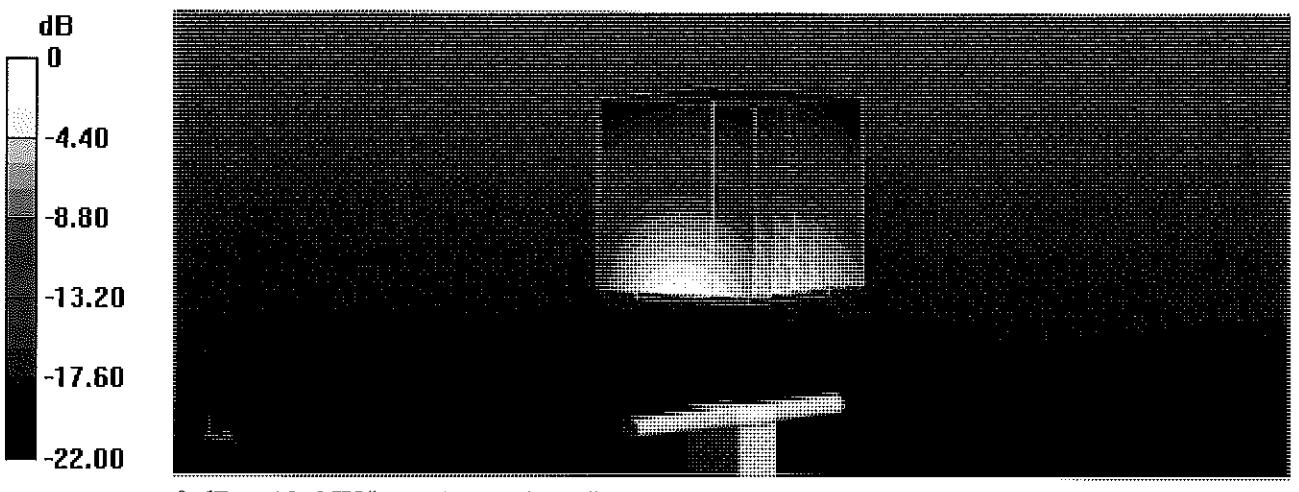
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

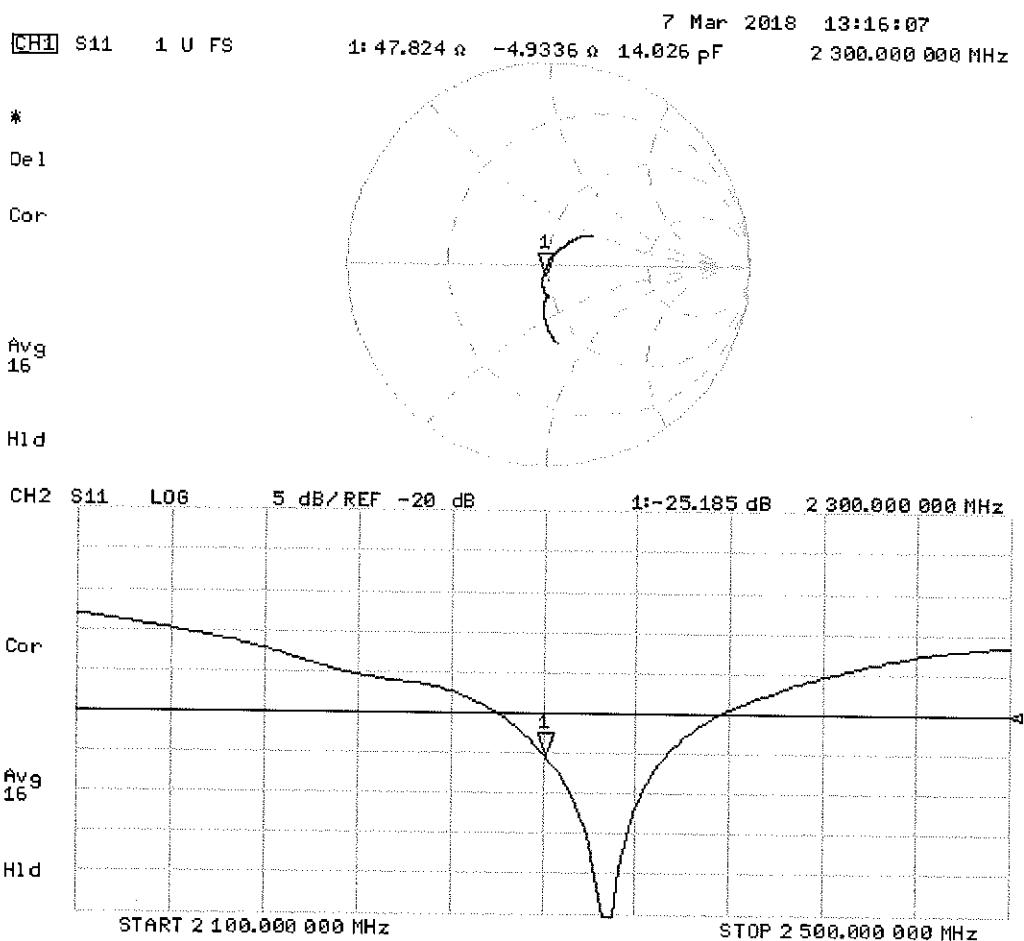
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.08, 8.08, 8.08); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.4 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 24.5 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.94 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.03.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1038

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: $f = 2300$ MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

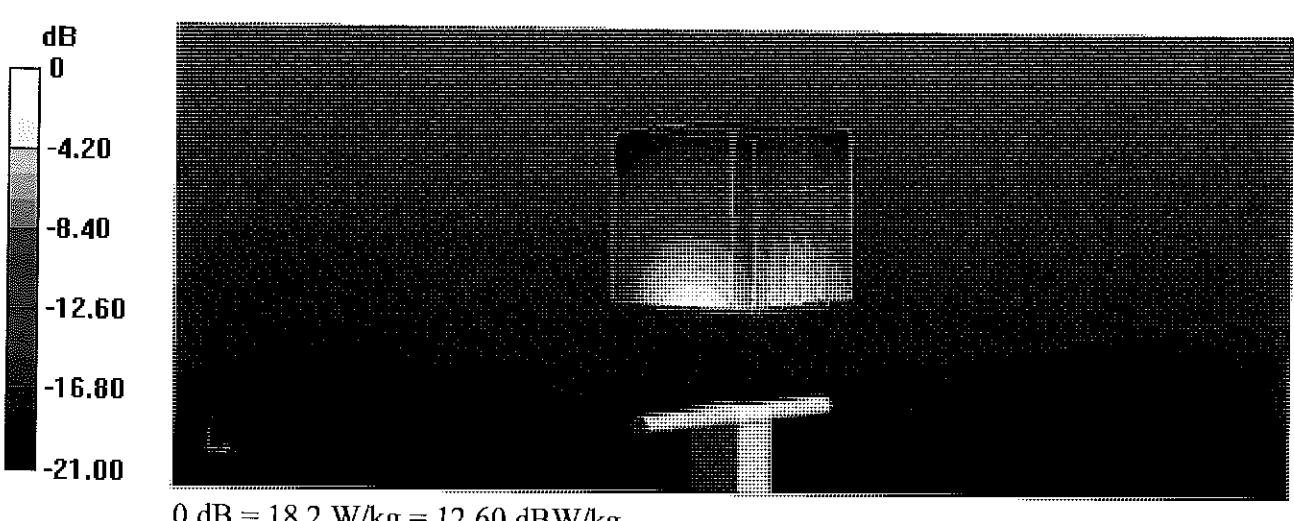
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

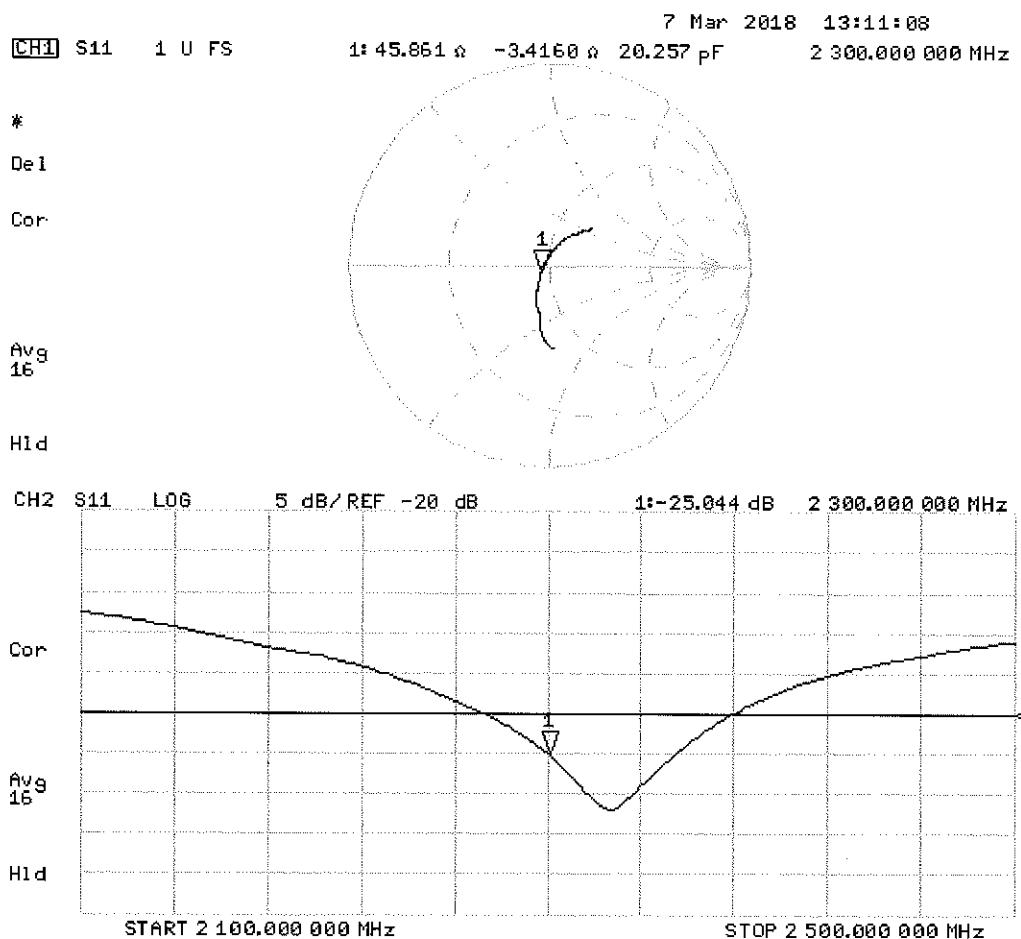
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.08, 8.08, 8.08); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

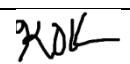
Reference Value = 104.5 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 23.0 W/kg

SAR(1 g) = 11.9 W/kg; SAR(10 g) = 5.69 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

Impedance Measurement Plot for Body TSL


Certification of Calibration

Object D2300V2 – SN: 1038
Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.
Extended Calibration date: February 25, 2019
Description: SAR Validation Dipole at 2300 MHz.

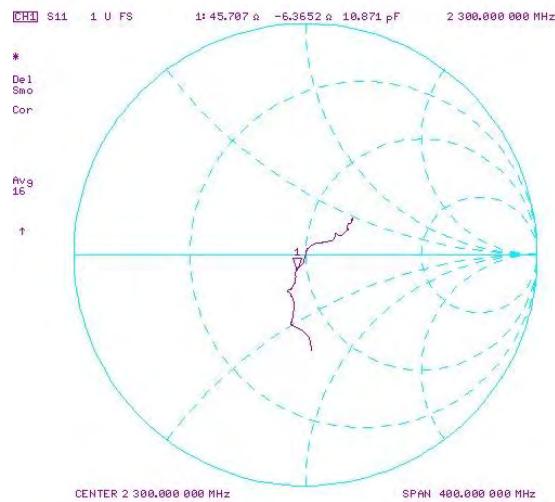
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Anritsu	ML2496A	Power Meter	10/21/2018	Annual	10/21/2019	1138001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Agilent	85033E	3.5mm Standard Calibration Kit	8/13/2018	Annual	8/13/2019	MY53402352
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/12/2018	Annual	4/12/2019	501
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/18/2018	Annual	10/18/2019	1364
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	4/12/2018	Annual	4/12/2019	3275
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7491

Measurement Uncertainty = $\pm 23\%$ ($k=2$)

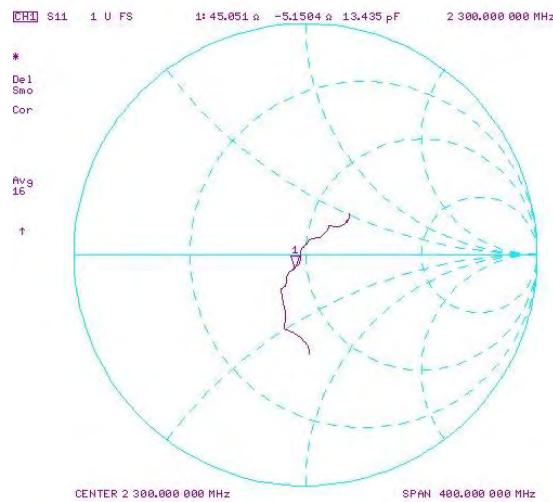
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	
Approved By:	Kaitlin O'Keefe	Managing Director	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3/7/2018	2/25/2019	1.17	4.93	4.77	-3.29%	2.36	2.29	-2.97%	47.8	45.7	2.1	-4.9	-6.4	1.5	-25.2	-22.1	12.30% PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3/7/2018	2/25/2019	1.17	4.67	4.82	3.21%	2.25	2.27	0.89%	45.9	45.1	0.8	-3.4	-5.2	1.8	-25	-22.7	9.20% PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D2300V2 – SN: 1038	Date Issued: 2/25/2019	Page 3 of 4
-------------------------------	---------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D2300V2 – SN: 1038	Date Issued: 2/25/2019	Page 4 of 4
-------------------------------	---------------------------	-------------

Certification of Calibration

Object D2300V2 – SN: 1038

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: March 6, 2020

Description: SAR Validation Dipole at 2300 MHz.

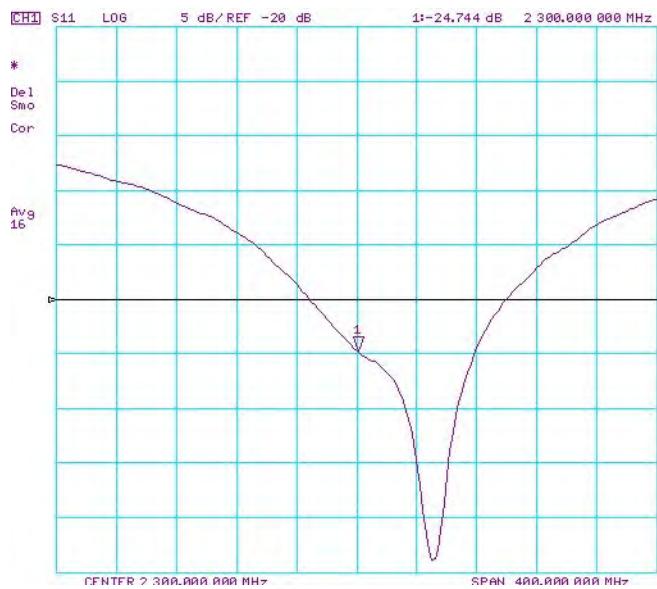
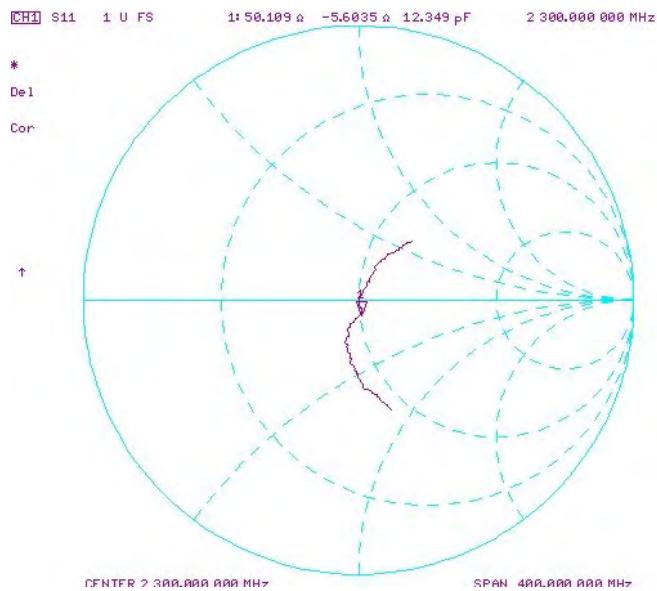
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1339007
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Control Company	62344-734	Therm./ Clock/ Humidity Monitor	3/18/2019	Biennial	3/18/2021	192038436
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/17/2019	Annual	4/17/2020	501
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2020	Annual	1/14/2021	793
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	4/12/2019	Annual	4/12/2020	7532
SPEAG	EX3DV4	SAR Probe	1/20/2020	Annual	1/20/2021	3837

Measurement Uncertainty = $\pm 23\%$ (k=2)

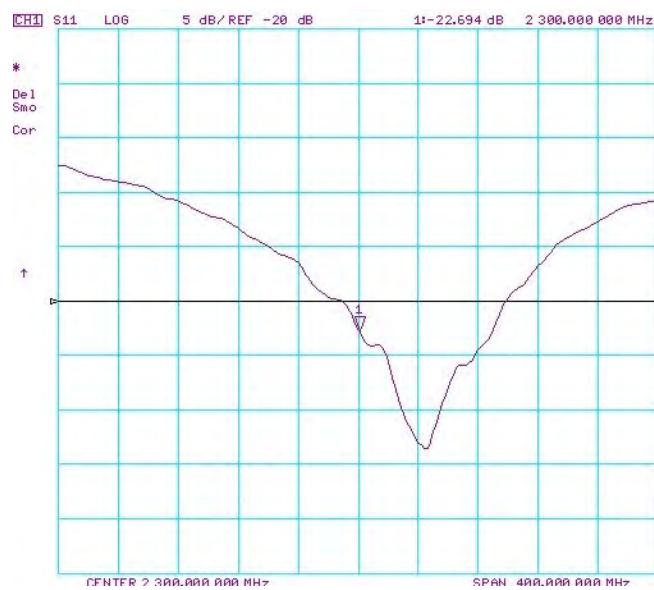
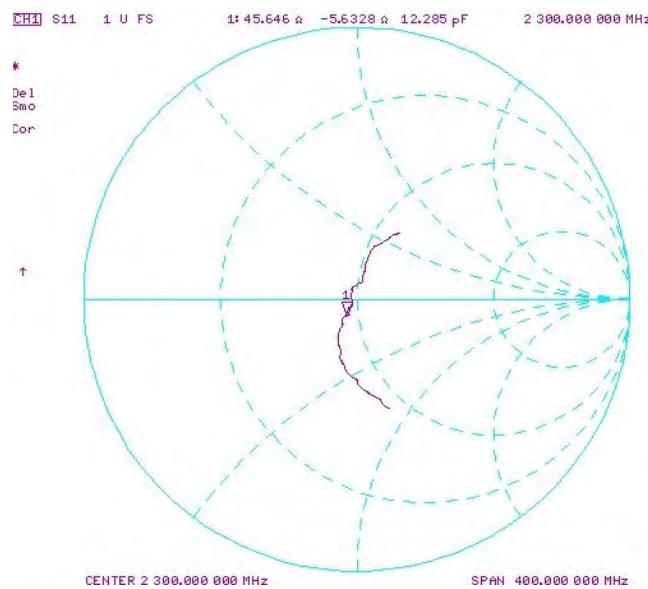
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Managing Director	<i>KOK</i>

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3/7/2018	3/6/2020	1.17	4.93	4.72	-4.26%	2.36	2.22	-5.93%	47.8	50.1	2.3	-4.9	-5.6	0.7	-25.2	-24.7	2.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3/7/2018	3/6/2020	1.17	4.67	4.8	2.78%	2.25	2.26	0.44%	45.9	45.6	0.3	-3.4	-5.6	2.2	-25	-22.7	9.20%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D2300V2 – SN: 1038	Date Issued: 3/6/2020	Page 3 of 4
-------------------------------	--------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D2300V2 – SN: 1038	Date Issued: 3/6/2020	Page 4 of 4
-------------------------------	--------------------------	-------------

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client

PC test

Certificate No: **D2450V2-921 Nov18**

CALIBRATION CERTIFICATE

Object **D2450V2 SN:921**

Calibration procedure(s)

QA CAL-05.v10
 Calibration procedure for dipole validation kits above 700 MHz

SC ✓
 12/4/2018
 BNL ✓

Calibration date:

November 12, 2018

12/31/2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name	Function	Signature
	Manu Seitz	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 12, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.7 \Omega + 6.5 j\Omega$
Return Loss	- 22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.7 \Omega + 7.8 j\Omega$
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

DASY5 Validation Report for Head TSL

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

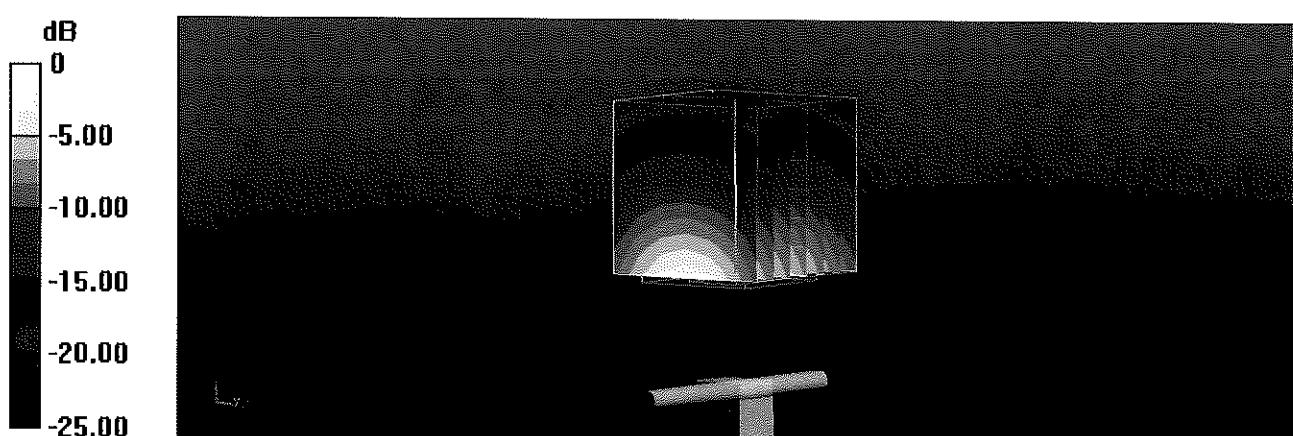
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

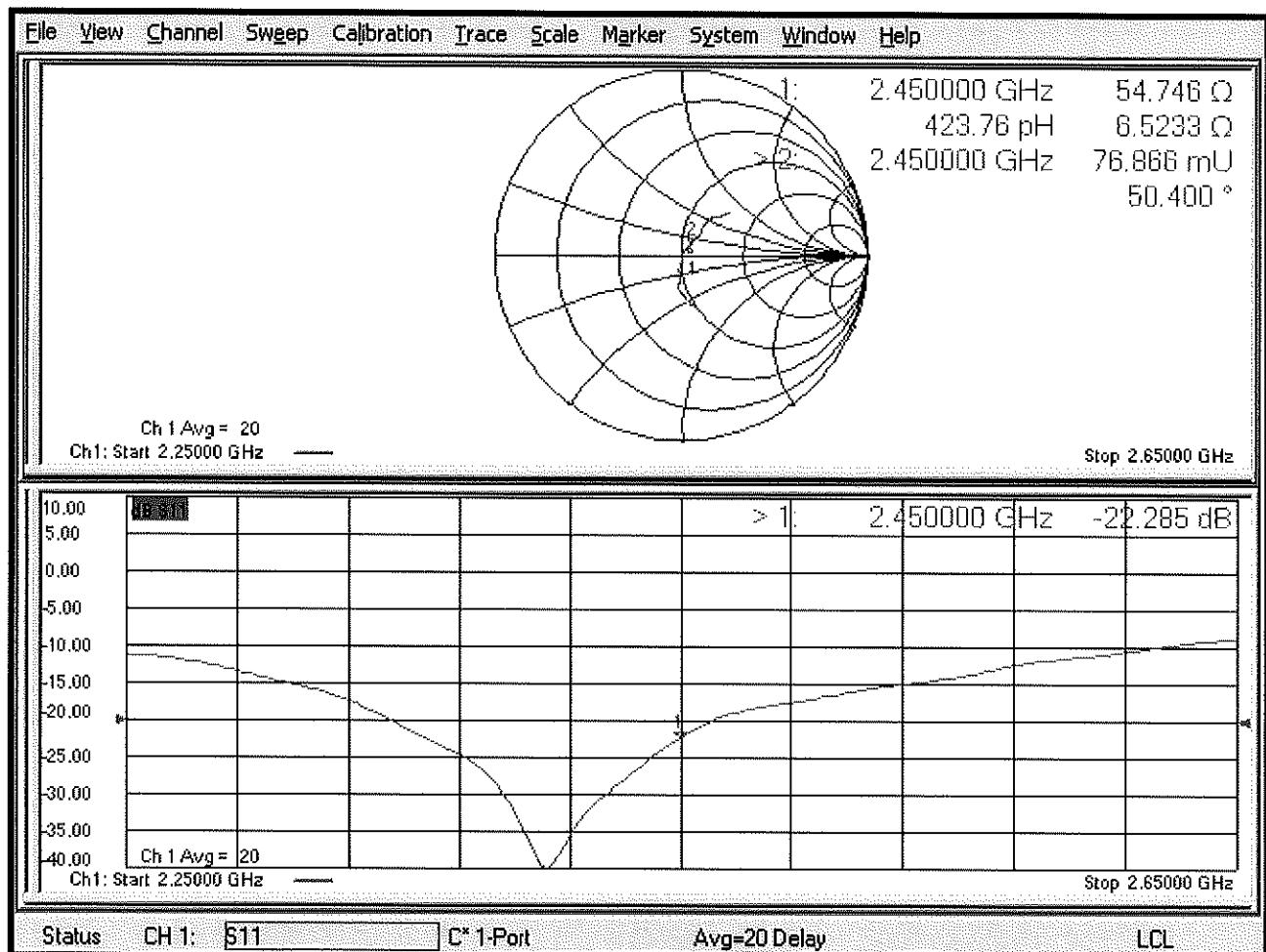
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.7 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 22.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

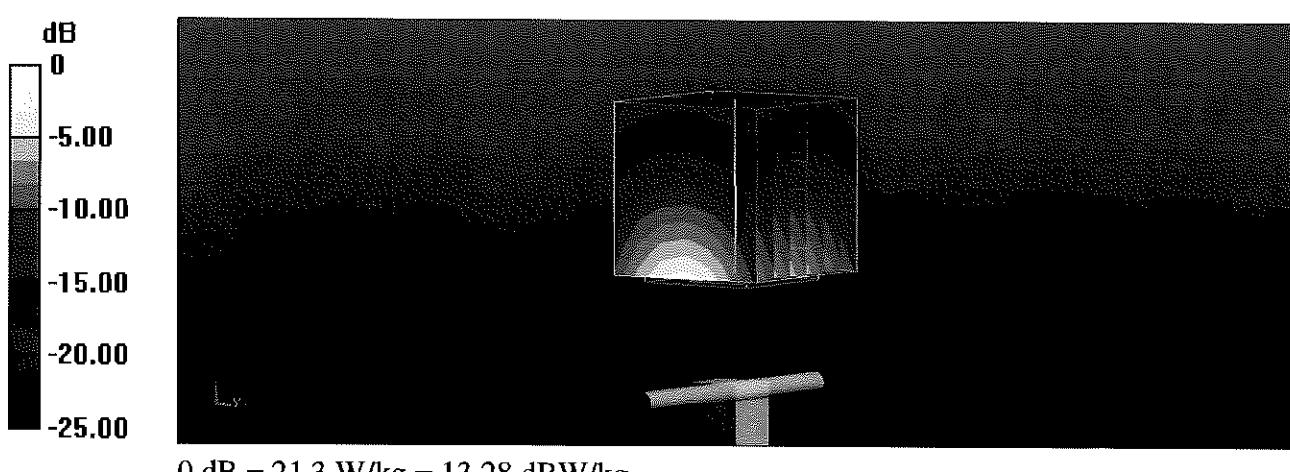
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

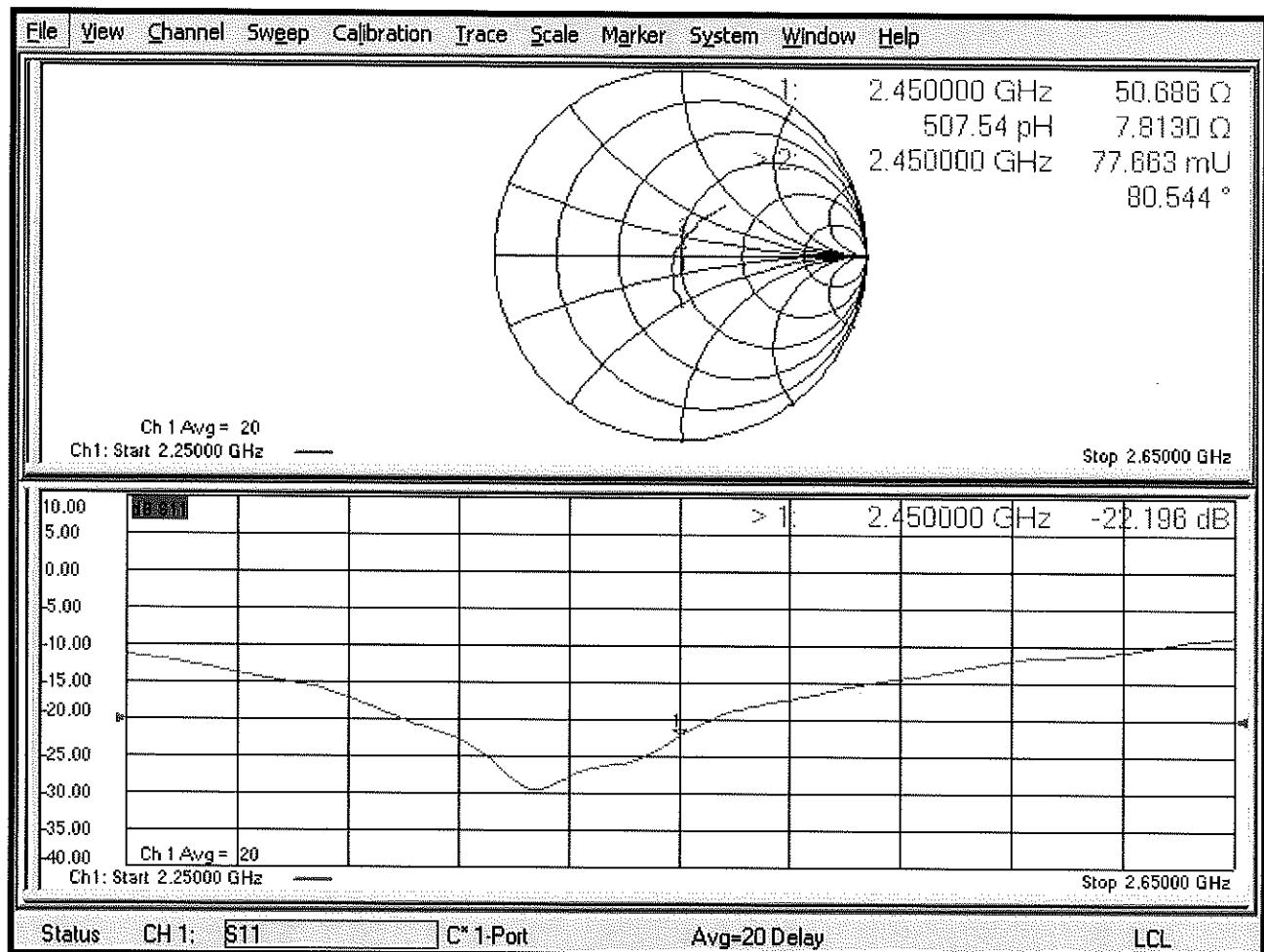
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.6 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

Impedance Measurement Plot for Body TSL

Certification of Calibration

Object	D2450V2 – SN: 921
Calibration procedure(s)	Procedure for Calibration Extension for SAR Dipoles.
Extended Calibration date:	November 11, 2019
Description:	SAR Validation Dipole at 2450 MHz.

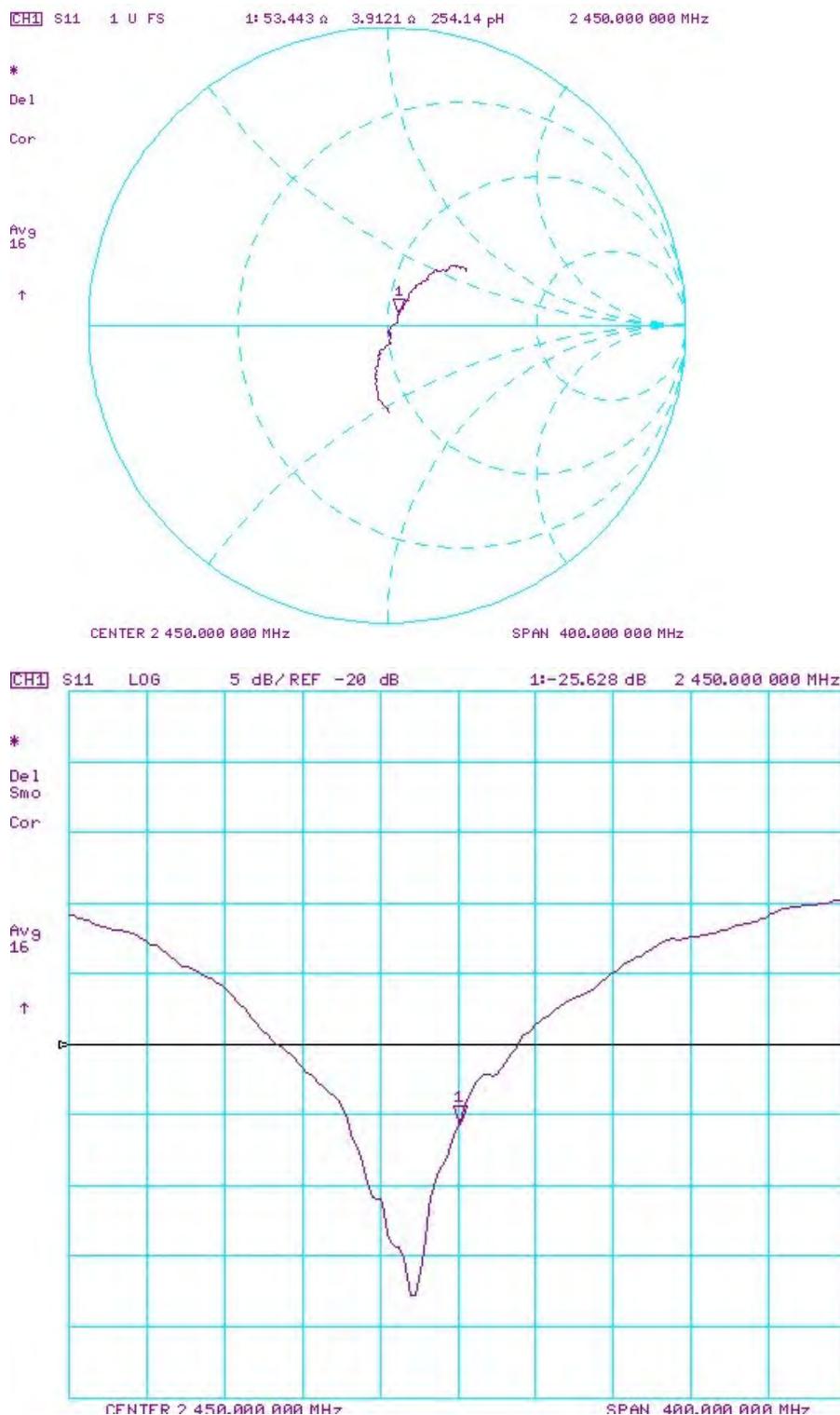
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	5/4/2018	Biennial	5/4/2020	22216
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	DAE4	Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532

Measurement Uncertainty = $\pm 23\%$ (k=2)

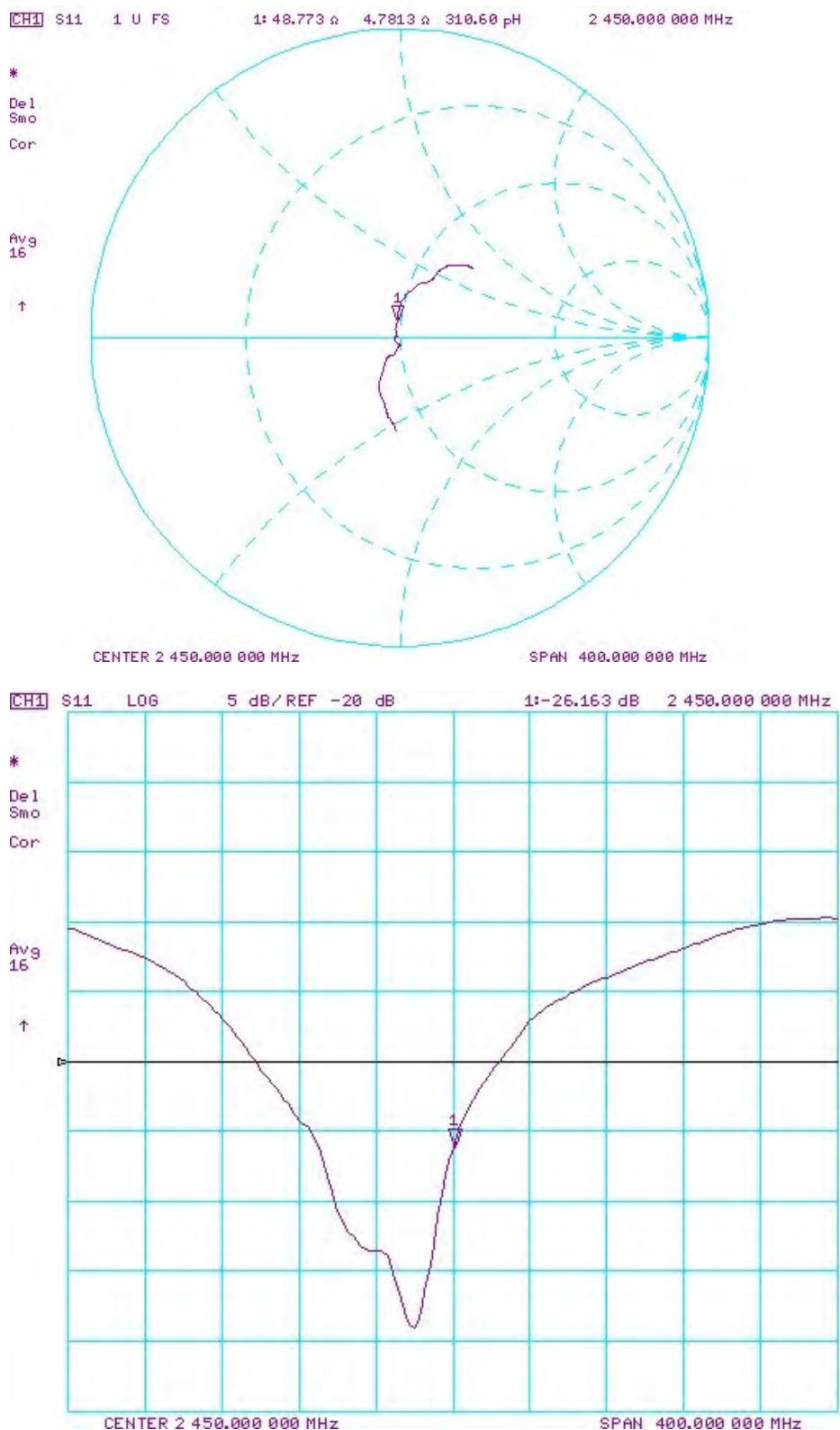
	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
11/12/2018	11/11/2019	1.157	5.31	5.28	-0.56%	2.48	2.38	-4.03%	54.7	53.4	1.3	6.5	3.9	2.6	-22.3	-25.6	-14.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
11/12/2018	11/11/2019	1.157	5.08	5.41	6.50%	2.38	2.47	3.78%	50.7	48.8	1.9	7.8	4.8	3	-22.2	-26.2	-18.00%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D2450V2 – SN: 921	Date Issued: 11/11/2019	Page 3 of 4
------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D2450V2 – SN: 921	Date Issued: 11/11/2019	Page 4 of 4
------------------------------	----------------------------	-------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D2600V2-1069_Sep17**

CALIBRATION CERTIFICATE

Object **D2600V2 - SN:1069**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

SCV
 10/03/2017

Calibration date: **September 11, 2017**

SCV
 9/10/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

BNV
 10/10/2019

All calibrations have been conducted in the closed laboratory facility; environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by: **Michael Weber** Function: **Laboratory Technician**

Signature
M. Weber

Approved by: **Katja Pokovic** Function: **Technical Manager**

Signature
K. Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: September 11, 2017