

FCC and ISED Test Report

Apple Inc
Model: A2337

In accordance with FCC 47 CFR Part 15B,
ICES-003 and ISED RSS-GEN

Prepared for: Apple Inc
One Apple Park Way
Cupertino
California
95014
USA

Add value.
Inspire trust.

FCC ID: BCGA2337 IC: 579C-A2337

COMMERCIAL-IN-CONFIDENCE

Document 75949395-08 Issue 01

SIGNATURE			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
A Lawson	Senior Engineer	Authorised Signatory	07 October 2020

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Connor Lee	07 October 2020	
Testing	Mohammad Malik	07 October 2020	
Testing	Ahmad Javid	07 October 2020	

FCC Accreditation
90987 Octagon House, Fareham Test Laboratory

ISED Accreditation
12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2019, ICES-003:2016 and ISED RSS-GEN: Issue 5 and A1 (2019-03) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2020 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD
is a trading name of TUV SUD Ltd
Registered in Scotland at East Kilbride,
Glasgow G75 0QF, United Kingdom
Registered number: SC215164

TUV SUD Ltd is a
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100
Fax: +44 (0) 1489 558101
www.tuv-sud.co.uk

TÜV SÜD
Octagon House
Concorde Way
Fareham
Hampshire PO15 5RL
United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record.....	2
1.2	Introduction.....	2
1.3	Brief Summary of Results	3
1.4	Product Information	4
1.5	Deviations from the Standard.....	4
1.6	EUT Modification Record	5
1.7	Test Location.....	5
2	Test Details	6
2.1	Conducted Disturbance at Mains Terminals	6
2.2	Radiated Disturbance.....	11
3	Test Equipment Information	20
3.1	General Test Equipment Used.....	20
4	Incident Reports	21
5	Measurement Uncertainty	22

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	07 October 2020

Table 1

1.2 Introduction

Applicant	Apple Inc
Manufacturer	Apple Inc
Model Number(s)	A2337 and A2164
Serial Number(s)	C02D200VQ9MQ C02D200EQ9MQ
Hardware Version(s)	REV 1.0
Software Version(s)	20A2352 and 20A523220f
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 15B: 2019 ICES-003: 2016 ISED RSS-GEN: Issue 5 and A1 (2019-03)
Order Number	0540196335
Date	29-June-2020
Date of Receipt of EUT	28-August-2020
Start of Test	30-August-2020
Finish of Test	04-September-2020
Name of Engineer(s)	Connor Lee, Mohammad Malik and Ahmad Javid
Related Document(s)	ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN is shown below.

Section	Specification Clause			Test Description	Result	Comments/Base Standard
	FCC 15B	ICES- 003	RSS- GEN			
Configuration and Mode: 120 V AC Powered - Transmitters Idle						
2.1	15.107	6.2	8.8	Conducted Disturbance at Mains Terminals	Pass	ANSI C63.4: 2014
2.2	15.109	6.2	7.1	Radiated Disturbance	Pass	ANSI C63.4: 2014

Table 2

1.4 Product Information

1.4.1 Technical Description

The Equipment Under Test (EUT) was a laptop with Bluetooth, Bluetooth Low Energy and 802.11 a/b/g/n/ac/ax capabilities in the 2.4 GHz and 5 GHz bands.

1.4.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Type	Screened
Configuration and Mode: 120 V AC Powered - Transmitters Idle				
AC Power	1.5 meters	Power	230 V AC Mains	No
AC Power Live Line	1.5 meters	Power	230 V AC Power	No
AC Power Neutral Line	1.5 meters	Power	230 V AC Power	No
USB1	1.5 metres	Data and Signal	USB C	Yes
Audio Output	1.5 metres	Signal	Audio Jack	Yes

Table 3

1.4.3 Test Configuration

Configuration	Description
120 V AC Powered	A power adaptor was connected to the EUT and powered from a 120 V 60 Hz AC power supply. A USB adapter and USB loading device were connected to the USB C port. A set of headphones were connected to the audio output port.

Table 4

1.4.4 Modes of Operation

Mode	Description
Transmitters Idle	The EUT's intentional transmitters were turned OFF from the internal settings of the EUT.

Table 5

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
Model: A2337, Serial Number: C02D200VQ9MQ			
0	As supplied by the customer	Not Applicable	Not Applicable
Model: A2337, Serial Number: C02D200EQ9MQ			
0	As supplied by the customer	Not Applicable	Not Applicable

Table 6

1.7 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: 120 V AC Powered - Transmitters Idle		
Conducted Disturbance at Mains Terminals	Connor Lee	UKAS
Radiated Disturbance	Cristian Onaca	UKAS

Table 7

Office Address:

Octagon House
Concorde Way
Segensworth North
Fareham
Hampshire
PO15 5RL
United Kingdom

2 Test Details

2.1 Conducted Disturbance at Mains Terminals

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.107
ICES-003, Clause 6.2
ISED RSS-GEN, Clause 8.8

2.1.2 Equipment Under Test and Modification State

A2337, S/N: C02D200VQ9MQ - Modification State 0

2.1.3 Date of Test

03-September-2020

2.1.4 Test Method

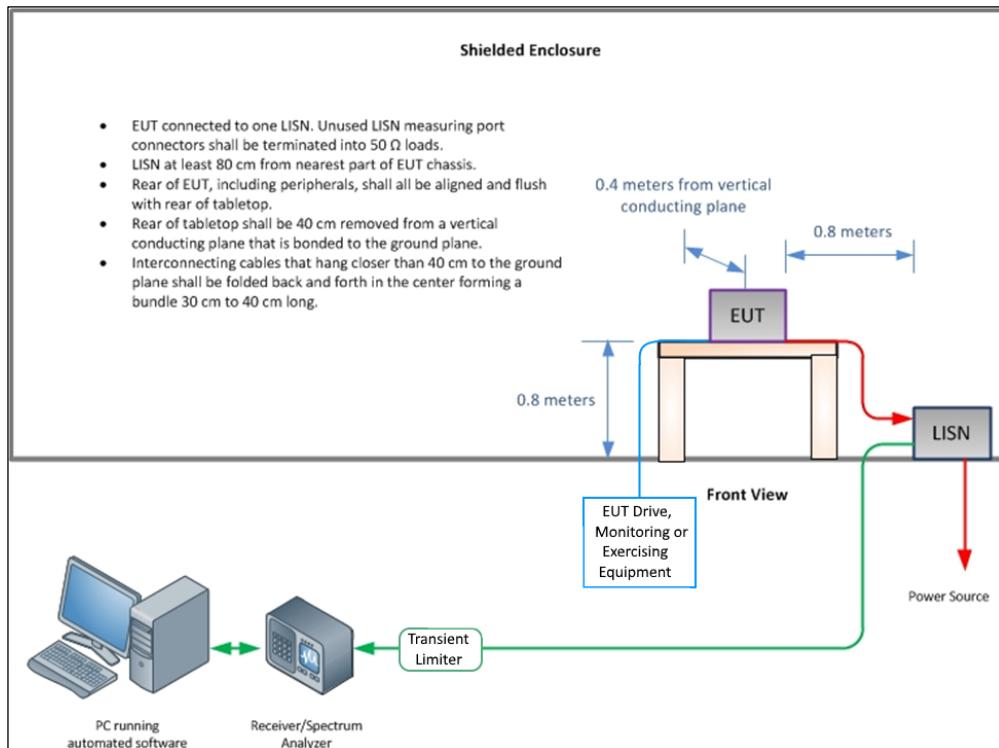
The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.


The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

2.1.5 Example Calculation

Quasi-Peak level (dB μ V) = Receiver level (dB μ V) + Correction Factor (dB)
Margin (dB) = Quasi-Peak level (dB μ V) - Limit (dB μ V)

CISPR Average level (dB μ V) = Receiver level (dB μ V) + Correction Factor (dB)
Margin (dB) = CISPR Average level (dB μ V) - Limit (dB μ V)

2.1.6 Example Test Setup Diagram

Figure 1 - Conducted Disturbance – Example Test Setup

2.1.7 Environmental Conditions

Ambient Temperature 21.6 °C
Relative Humidity 62.4 %

2.1.8 Specification Limits

Required Specification Limits - Class B			
Line Under Test	Frequency Range (MHz)	Quasi-Peak Test Limit (dB μ V)	CISPR Average Test Limit (dB μ V)
AC Power Port	0.15 to 0.5	66 to 56 ⁽¹⁾	56 to 46 ⁽¹⁾
	0.5 to 5	56	46
	5 to 30	60	50

Table 8

2.1.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitters Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

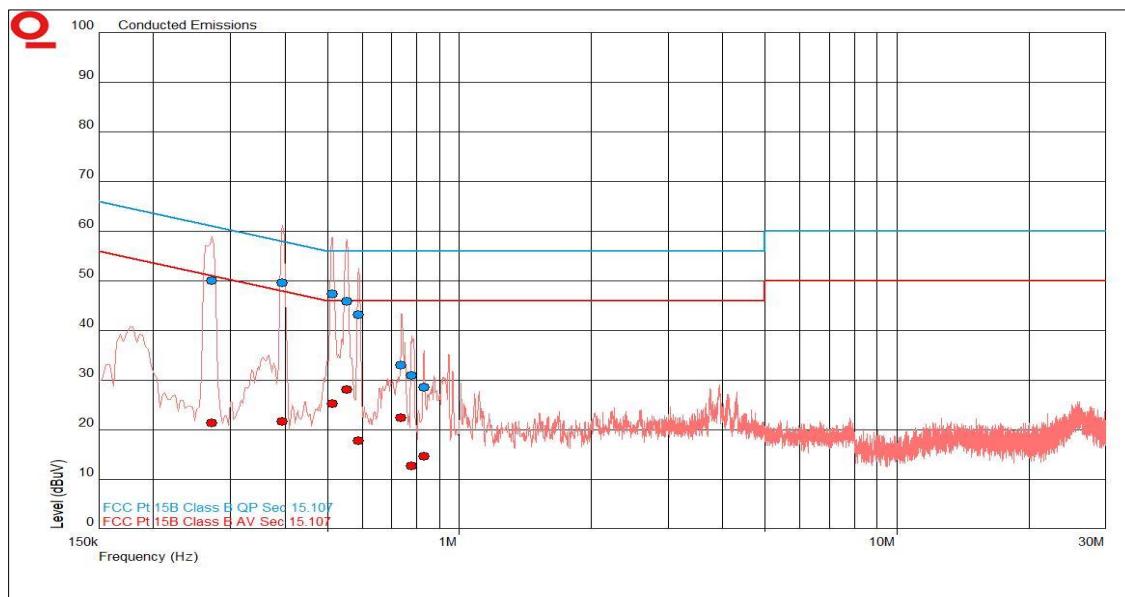


Figure 2 - Graphical Results - Live Line

Frequency (MHz)	Quasi-Peak Level (dB μ V)	Quasi-Peak Limit (dB μ V)	Quasi-Peak Margin (dB)	CISPR Average Level (dB μ V)	CISPR Average Limit (dB μ V)	CISPR Average Margin (dB)
0.272	50.0	61.0	-11.0	21.4	51.0	-29.6
0.395	49.7	58.0	-8.3	21.7	48.0	-26.3
0.514	47.4	56.0	-8.6	25.3	46.0	-20.7
0.553	45.8	56.0	-10.2	28.1	46.0	-17.9
0.589	43.3	56.0	-12.7	17.8	46.0	-28.2
0.738	33.0	56.0	-23.0	22.4	46.0	-23.6
0.777	31.0	56.0	-25.0	12.7	46.0	-33.3
0.831	28.7	56.0	-27.3	14.6	46.0	-31.4

Table 9

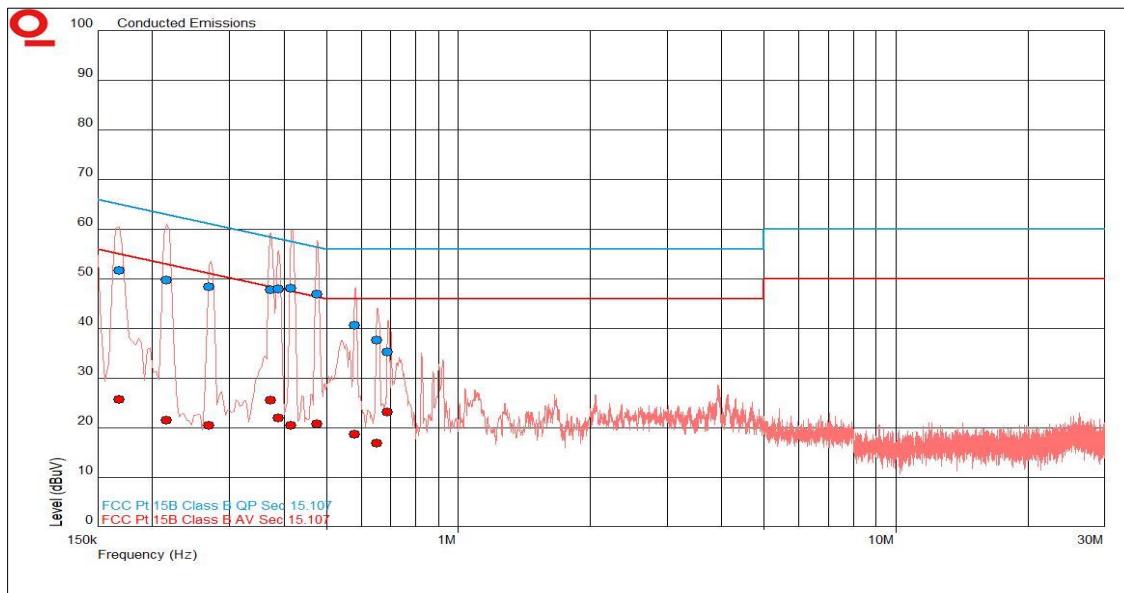


Figure 3 - Graphical Results - Neutral Line

Frequency (MHz)	Quasi-Peak Level (dB μ V)	Quasi-Peak Limit (dB μ V)	Quasi-Peak Margin (dB)	CISPR Average Level (dB μ V)	CISPR Average Limit (dB μ V)	CISPR Average Margin (dB)
0.168	51.7	65.1	-13.4	25.7	55.1	-29.4
0.216	49.7	63.0	-13.2	21.6	53.0	-31.4
0.269	48.5	61.1	-12.7	20.6	51.1	-30.6
0.374	47.9	58.4	-10.5	25.6	48.4	-22.8
0.389	47.9	58.1	-10.1	22.0	48.1	-26.1
0.416	48.1	57.5	-9.5	20.6	47.5	-27.0
0.475	46.9	56.4	-9.6	20.8	46.4	-25.6
0.580	40.7	56.0	-15.3	18.8	46.0	-27.2
0.651	37.7	56.0	-18.3	16.9	46.0	-29.1
0.690	35.3	56.0	-20.7	23.2	46.0	-22.8

Table 10

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
Compliance 5 Emissions	Teseq	V5.26.51	3275	-	Software
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	03-Jan-2021
Transient Limiter	Hewlett Packard	11947A	15	12	02-Oct-2020
Cable (Rx, Nm-Nm, 2m)	Scott Cables	SLU18-NMNM-02.00M	4485	12	06-Mar-2021
8m N-Type Cable	Junkosha	MWX221-08000NMSNMS/B	5520	12	24-Mar-2021
LISN	Rohde & Schwarz	ESH3-Z5	1390	12	27-Jan-2021

Table 11

2.2 Radiated Disturbance

2.2.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109
ICES-003, Clause 6.2
ISED RSS-GEN, Clause 7.1

2.2.2 Equipment Under Test and Modification State

A2337, S/N: C02D200EQ9MQ - Modification State 0

2.2.3 Date of Test

30-August-2020 to 04-September-2020

2.2.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

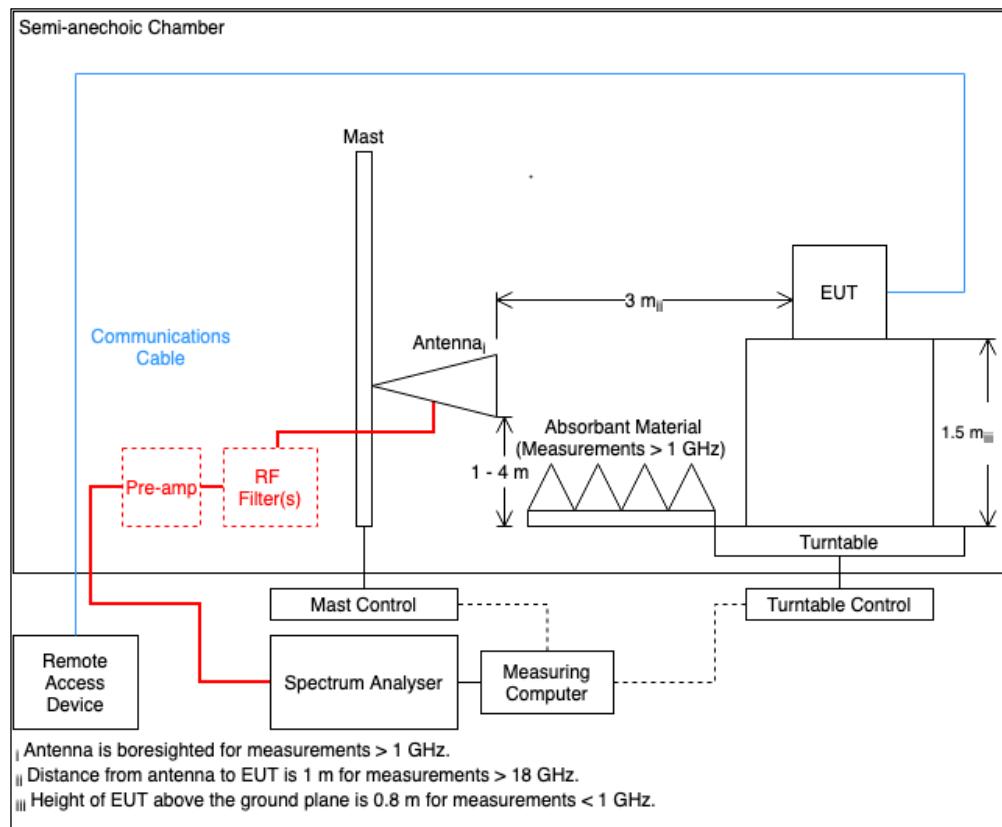
A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.2.5 Example Calculation

Below 1 GHz:


Quasi-Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m)
Margin (dB) = Quasi-Peak level (dB μ V/m) - Limit (dB μ V/m)

Above 1 GHz:

CISPR Average level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m)
Margin (dB) = CISPR Average level (dB μ V/m) - Limit (dB μ V/m)

Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m)
Margin (dB) = Peak level (dB μ V/m) - Limit (dB μ V/m)

2.2.6 Example Test Setup Diagram

Figure 4 – Radiated Disturbance – Example Test Setup

2.2.7 Environmental Conditions

Ambient Temperature 21.7 - 28.1 °C
Relative Humidity 38.9 - 51.5 %

2.2.8 Specification Limits

Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance		
Frequency Range (MHz)	Test Limit ($\mu\text{V/m}$)	Test Limit ($\text{dB}\mu\text{V/m}$)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Supplementary information:
 Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz.
 Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.
 Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 12

2.2.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitters Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 5825 MHz
Which necessitates an upper frequency test limit of: 30 GHz

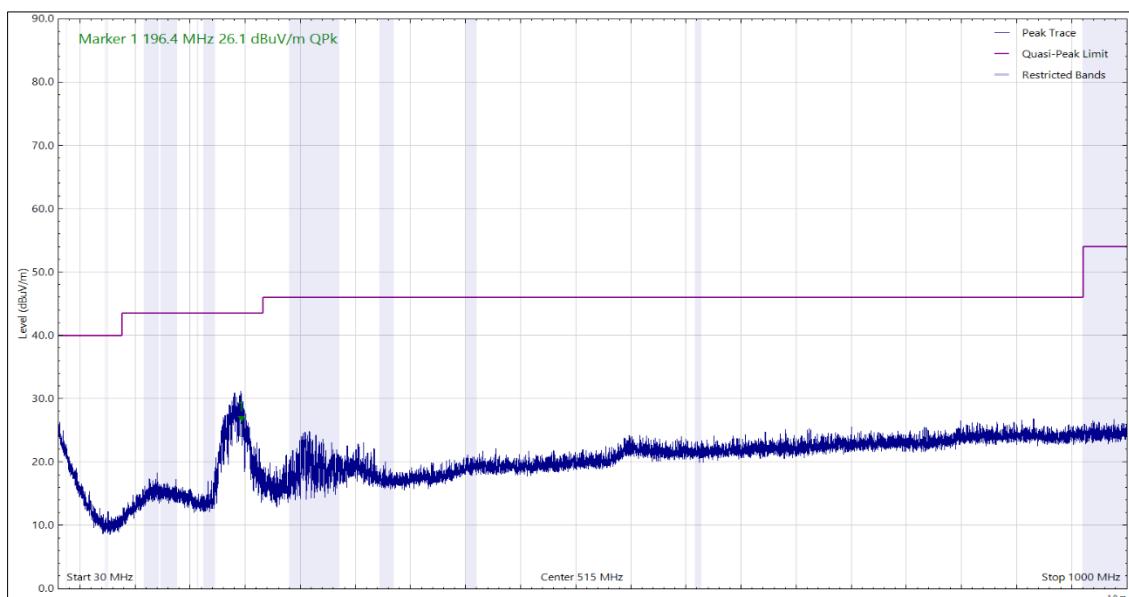



Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
196.409	26.1	43.5	-17.5	Q-Peak	284	106	Horizontal

Table 13

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

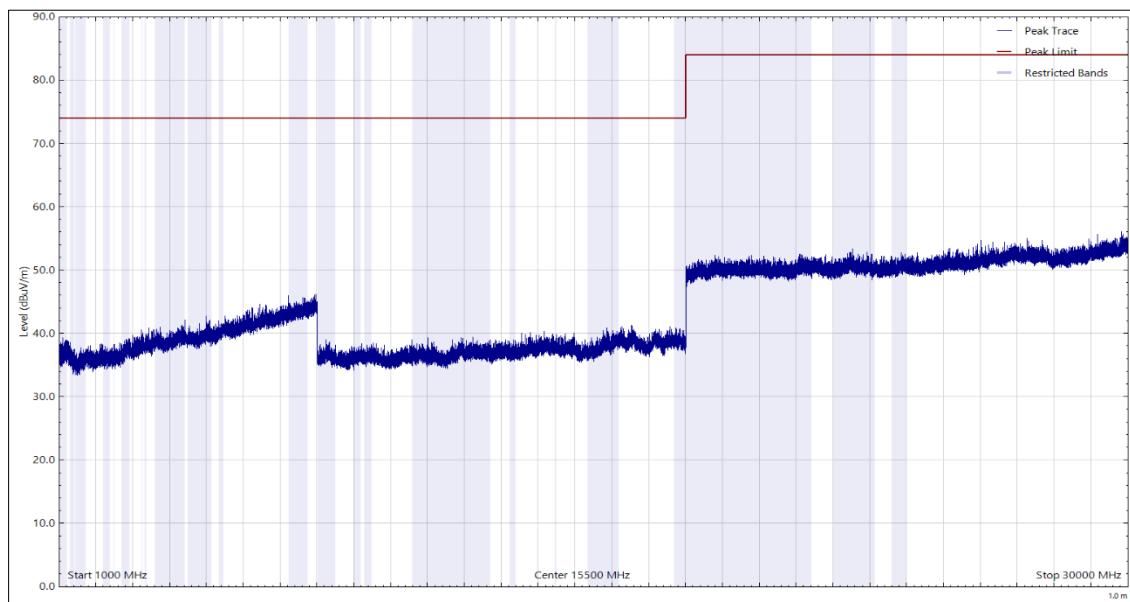


Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
31.503	21.2	40.0	-18.8	Q-Peak	357	400	Vertical
69.187	14.4	40.0	-25.6	Q-Peak	250	143	Vertical
194.473	21.9	43.5	-21.6	Q-Peak	45	100	Vertical

Table 14

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

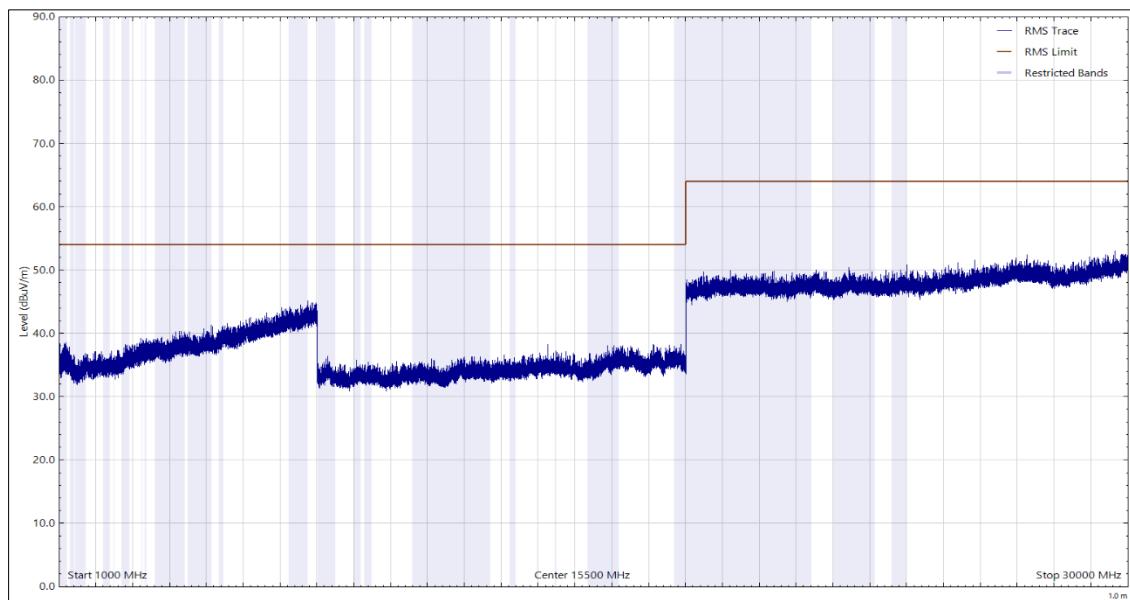


Figure 7 - 1 GHz to 30 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 15

No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

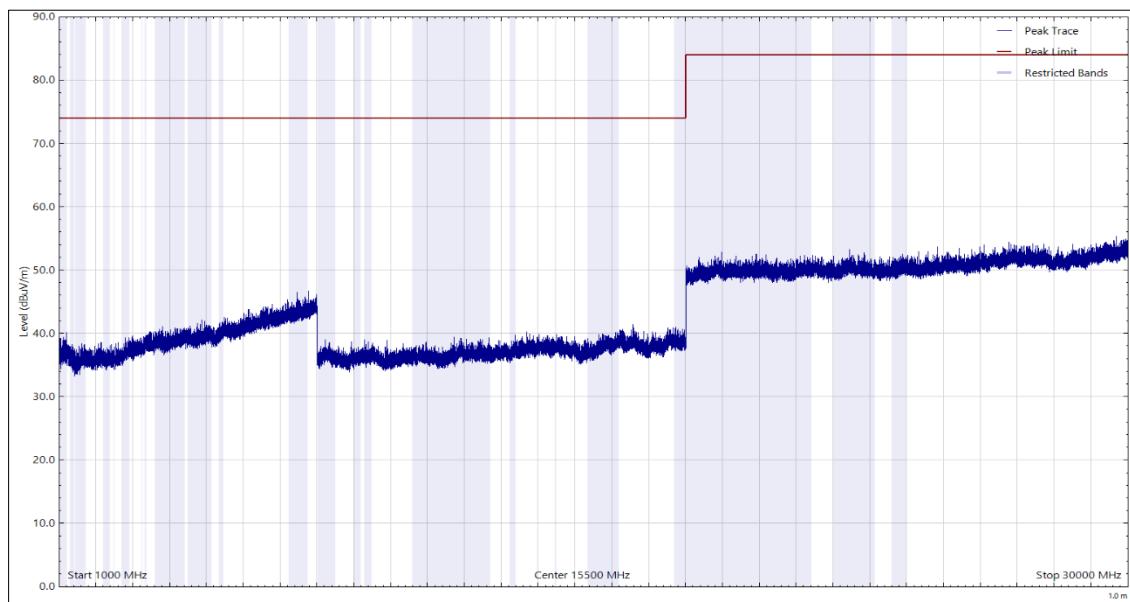


Figure 8 - 1 GHz to 30 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation

Table 16

No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

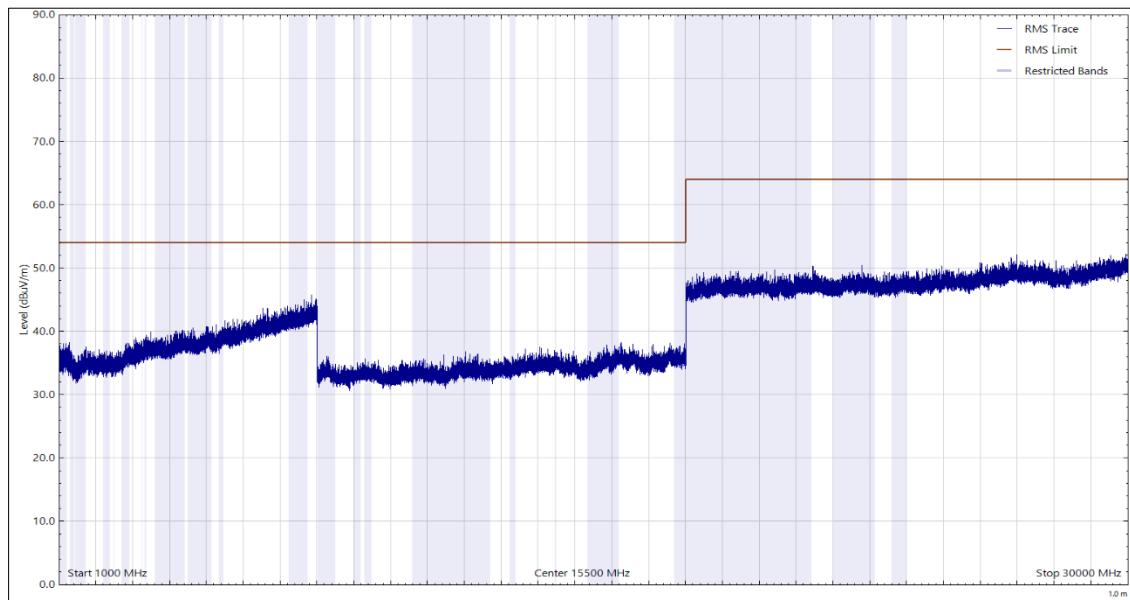


Figure 9 - 1 GHz to 30 GHz, Peak, Vertical

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation

Table 17

No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 10 - 1 GHz to 30 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation

Table 18

No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

2.2.10 Test Location and Test Equipment Used

This test was carried out in RF Chamber 11.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (11)	Rainford	Rainford	5136	36	01-Nov-2021
EmX Emissions Software	TÜV SUD	V1.6.3	5125	-	Software
EMI Test Receiver	Rohde & Schwarz	ESW44	5084	12	28-Nov-2020
Mast	Maturo	TAM 4.0-P	5158	-	TU
Mast and Turntable Controller	Maturo	Maturo NCD	5159	-	TU
Turntable	Maturo	TT 15WF	5160	-	TU
1200 MHz Low Pass Filter (02)	Mini-Circuits	VLF-1200+	5560	12	23-May-2021
2m SMA Cable	Junkosha	MWX221-02000AMSAMS/A	5518	12	01-Apr-2021
8m N Type Cable	Junkosha	MWX221-08000NMSNMS/B	5522	12	24-Mar-2021
2m K Type Cable	Junkosha	MWX241-02000KMSKMS/A	5524	12	03-Apr-2021
Pre Amp 1 - 26.5 GHz	Agilent Technologies	8449B	5445	12	06-May-2021
8 - 18 GHz preamp	Wright Technologies	PS06-0061/PS06-0060	4971	6	05-Nov-2020
18GHz - 40GHz Pre-Amplifier	Phase One	PS04-0087	1534	12	18-Feb-2021
Antenna with permanent attenuator (Bilog)	Chase	CBL6143	2904	24	30-Sep-2021
Horn Antenna (1-10GHz)	Schwarzbeck	BBHA 9120 B	5215	12	10-Mar-2021
DRG Horn Antenna (7.5-18GHz)	Schwarzbeck	HWRD750	5216	12	10-Mar-2021
Antenna 18-40GHz (Double Ridge Guide)	Q-Par Angus Ltd	QSH 180K	1511	24	02-Oct-2021

Table 19

TU - Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Power Supply Unit	Farnell	LB30-4	158	-	O/P Mon
Antenna (Double Ridge Guide,1GHz-18GHz)	EMCO	3115	35	12	10-Mar-2021
Spectrum Analyser	Agilent Technologies	E7405A	1410	12	04-Oct-2020
Multimeter	Iso-tech	IDM101	2419	12	28-Nov-2020
Multimeter	Iso-tech	IDM 101	2118	12	07-Feb-2021
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5475	12	17-Mar-2021
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5473	12	16-Mar-2021

Table 20

O/P Mon – Output Monitored using calibrated equipment

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ± 5.2 dB 1 GHz to 40 GHz, Horn Antenna, ± 6.3 dB
Conducted Disturbance at Mains Terminals	150 kHz to 30 MHz, LISN, ± 3.7 dB

Table 21

Worst case error for both Time and Frequency measurement 12 parts in 10^6 .

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.