

KDB 865664 D01 SAR Measurement 100MHz to 6GHz FCC 47 CFR part 2 (2.1093)

SAR EVALUATION REPORT

For

Laptop Computer with IEEE 802.11a/b/g/n/ac (MIMO 3X3) and Bluetooth Radio

Model: A1990 FCC ID: BCGA1990

Report Number UL-SAR-RP12185759JD18A V3.0 ISSUE DATE: 06 July 2018

Prepared for

APPLE INC.
ONE APPLE PARK WAY
CUPERTINO
CA 95014-2084, USA

Prepared by

UL VS LTD
UNIT 1 HORIZON
KINGSLAND BUSINESS PARK
WADE ROAD, BASINGSTOKE
HAMPSHIRE, RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

REPORT NO: UL-SAR-RP12185759JD18A V3.0

REVISION HISTORY

Issue Date: 06 July 2018

Version Issue Date Revisions Revised By 1.0 25 June 2018 Initial Issue The following amendments were made in the report: Naseer Mirza Missing probe SN 7495 added in section 4.3 and 4.4 Measured power updated in section 8.1.2, 8.1.3 and 8.1.4 Typo corrected in section 8.3.1 and 8.3.2 3. Typo corrected in section 9.3 Typo corrected in section 10.2 Note updated in section11.0 2.0 04 July 2018 4. 5. 6. Updated system check plot SYS/015. Notes added in section 12.3 SAR test plots. 7. The following amendments were made in the report: Naseer Mirza 06 July 2018 Note and diagram added in section 8.5 Lab address updated on front page 3.0

TABLE OF CONTENTS

1.	Attestation of Test Results	4
2.	Test Specification, Methods and Procedures	5
	2.1. Test Specification	5
	2.2. Methods and Procedures Reference Documentation	5
	2.3. Definition of Measurement Equipment	5
	Facilities and Accreditation	
4.	SAR Measurement System & Test Equipment	
	4.1. SAR Measurement System	7
	4.2. SAR Measurement Procedure 4.3. Test Equipment	8 10
	4.4. SAR System Specifications	12
5	Measurement Uncertainty	
J.	5.1. Uncertainty – Freq. < 3 GHz Body Configuration 1g	13 14
	5.2. Uncertainty – Freq. > 3 GHz Body Configuration 1g	15
6.	Device Under Test (DUT) Information	16
	6.1. DUT Description	16
	6.2. Wireless Technologies	17
	6.3. Nominal and Maximum Output power: Wi-Fi and Bluetooth	19
7.	RF Exposure Conditions (Test Configurations)	
	7.1. Configuration Consideration 7.2. SAR Test Exclusion Consideration	22 22
_		
8.	8.1. RF Output Average Power Measurement: Wi-Fi 2.4 GHz	23 23
	8.2. RF Output Average Power Measurement: Wi-Fi 5.0 GHz	25 25
	8.3. RF Output Average Power Measurement: Wi-Fi SDB Mode	34
	8.4. RF Output Average Power Measurement: Bluetooth	34
	8.5. Body Detect Mode Verification	35
9.	Dielectric Property Measurements & System Check	
	9.1. Tissue Dielectric Parameters 9.2. System Check	36 37
	9.2. System Check 9.3. Reference Target SAR Values	37 37
	9.4. Dielectric Property Measurements & System Check Results	38
10	D. Measurements, Examinations and Derived Results	42
	10.1. General Comments	42
	10.2. Specific Absorption Rate - Test Results	43
	10.3. Specific Absorption Rate - Test Results – SDB Mode	53 55
	10.4. SAR Measurement Variability 10.5. Highest Standalone Reported SAR	56
11	1. Simultaneous Transmission Analysis	
12	2. Appendixes	59 59
	12.2. System Check Plots	67
	12.3. SAR Test Plots	93
	12.4. Calibration Certificate for E-Field Probes	103
	12.5. Calibration Certificate for Dipoles 12.6. Tissues-Equivalent Media Recipes	104 105
	IE.V. HOURDO EURIVAIOTII IVIONIA INDUNOS	IUU

1. Attestation of Test Results

Applicant Name	Apple Inc.	Apple Inc.							
Model	A1990	A1990							
Test Device is	A representative	e test san	nple						
Device category	Portable								
Date Tested	09 April 2018 to	31 May	2018						
ICNIRP Guidelines Limits for SAR Exposure Characteristics	General Population/Localised SAR (Head and trunk) – SAR limit 1.6 W/kg								
The highest reported	RF Exposu	ıre		Equipme	ent Class				
SAR values	Condition	S	Licensed	DTS	U-NII	DSS			
	Standalone	Body	N/A	0.81	1.10	0.28			
	Simultaneous Transmission Body N/A 1.09 1.33 1.33								
Applicable Standards	FCC 47 CFR part 2 (2.1093) KDB publication								
Test Results	Pass								

Issue Date: 06 July 2018

UL Verification Services Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties are in accordance with the above standard and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample(s), under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by UKAS. This report is written to support regulatory compliance of the applicable standards stated above.

Issued By:	Prepared By:
M. Masce	flether
Naseer Mirza	Marc Montserrat
Project Lead	Senior Engineer
UL VS Ltd.	UL VS Ltd.

REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

2. Test Specification, Methods and Procedures

2.1. Test Specification

Reference:	KDB Publication Number: 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04						
Title:	SAR Measurement Requirements for 100 MHz to 6 GHz						
Introduction:	The SAR Measurement procedures for 100MHz to 6GHz are described in this document. Field probes, tissue dielectric properties, SAR scans, measurement accuracy and variability of the measured results are discussed. The field probe and SAR scan requirements are derived from criteria considered in standard IEEE 1528-2013. The wireless product and technology specific procedures in applicable KDB publications are required to be used unless further guidance has been approved by the FCC.						
Purpose of Test:	To determine if the Equipment Under Test complies with the Specific Absorption Rate for general population/uncontrolled exposure limit of 1.6 W/kg as specified in FCC 47 CFR part 2 (2.1093).						

2.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

IEEE 1528:2013

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques.

FCC KDB Publication:

KDB 248227 D01 802.11 Wi-Fi SAR v02r02

KDB 447498 D01 General RF Exposure Guidance v06

KDB 616217 D04 SAR for laptop and tablets v01r02

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r02

2.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Section 4.3 contains a list of the test equipment used.

Page 5 of 105 UL VS Ltd.

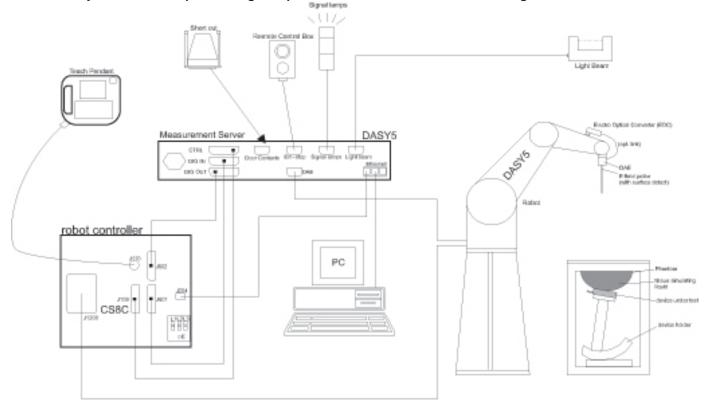
REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG, UK (Up to 20 April 2018)	Facility Type
SAR Lab 59	Controlled Environment Chamber
SAR Lab 60	Controlled Environment Chamber
Horizon Unit 1, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, UK (From 01 May 2018)	Facility Type
SAR Lab 59	Controlled Environment Chamber
SAR Lab 61	Controlled Environment Chamber

UL Verification Services Ltd, is accredited by UKAS (United Kingdom Accreditation Service), Laboratory UKAS Code 0644.


Page 6 of 105 UL VS Ltd.

Report. No.: 3.0

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY system used for performing compliance tests consists of the following items:

Issue Date: 06 July 2018

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win 8.1 or Win 10 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 105

REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

4.2. SAR Measurement Procedure

4.2.1. Normal SAR Measurement Procedure

The following procedure shall be performed for each of the test conditions Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT.

- a) Measure the two-dimensional SAR distribution within the phantom (area scan procedure).
- b) The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grid spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3 GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and δ ln(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and ln(x) is the natural logarithm. The maximum variation of the sensor-phantom surface distance shall be ± 1 mm for frequencies below 3 GHz and ± 0,5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.
- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB 6 of the SAR compliance limit (e.g., 1 W/kg for 1,6 W /kg 1 g limit, or 1,26 W/kg for 2 W /kg, 10 g limit).
- d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c) (zoom scan procedure). The horizontal grid step shall be (24 / f [GHz]) mm or less but not more than 8 mm. The minimum zoom scan size is 30 mm by 30 mm by 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom scan size can be reduced to 22 mm by 22 mm by 22 mm. The grid step in the vertical direction shall be (8-f [GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12/f [GHz]) mm or less but not more than 4 mm, and the spacing between farther points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centred on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved if the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°.
- e) Use post processing (e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.
- f) The local SAR should be measured at the same location as in Step a). SAR drift is assessed and reported in the uncertainty budget. In the event that the evaluation of measurement drift exceeds the 5 % tolerance, it is required that SAR be reassessed following guidelines contained within this standard. If the drift is larger than 5 %, then the measurement drift shall be considered a bias, not an uncertainty. A correction shall be applied to the measured SAR value. It is not necessary to record the drift in the uncertainty budget (i.e. ui = 0 %). The uncertainty budget reported in a measurement report should correspond to the highest SAR value reported (after correction, if applicable). Alternatively, the uncertainty budget reported should cover all measurements, i.e., it should report a conservative value.

Page 8 of 105

Area Scan Parameters:

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Issue Date: 06 July 2018

Zoom Scan Parameters:

			≤3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	n graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·Δz	z _{oom} (n-1)
Minimum zoom scan volume x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	No. Instrument Manufacturer		Type No. Serial No.		Date Last Calibrated	Cal. Interval (Months)
A2547	Data Acquisition Electronics	SPEAG	DAE4	1438	27 Apr 2017	12
A2547	Data Acquisition Electronics	SPEAG	DAE4	1438	18 Apr 2018	12
A1184	Data Acquisition Electronics	SPEAG	DAE4	394	12 May 2017	12
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	06 Feb 2018	12
A1234	Data Acquisition Electronics	SPEAG	DAE4	450	19 Sep 2017	12
A1322	2450 MHz Dipole Kit	SPEAG	D2450V2	725	19 Sep 2017	12
A1377	5.0 GHz Dipole Kit	SPEAG	D5GHzV2	1016	12 Feb 2018	12
A2781	5.0 GHz Dipole Kit	SPEAG	D5GHzv2	1222	18 Sep 2017	12
A2077	Probe	SPEAG	EX3DV4	3814	28 Sep 2017	12
A2544	Probe	SPEAG	EX3DV4	3994	19 Mar 2018	12
A2545	Probe	SPEAG	EX3DV4	3995	24 Apr 2018	12
PRE0178266	Probe	SPEAG	EX3DV4	7495	16 Mar 2018	12
PRE0178313	Probe	SPEAG	EX3DV4	7496	16 Mar 2018	12
PRE0178314	Probe	SPEAG	EX3DV4	7497	16 Mar 2018	12
G0610	Robot Power Supply	SPEAG	DASY52	F13/5SC6F1/C/01	Calibrated as part of system	-
G0611	Robot Power Supply	SPEAG	DASY52	F14/5UA6A1/C/01	Calibrated as part of system	-
G0612	Robot Power Supply	SPEAG	DASY52	F14/5T5ZA1/C/01	T5ZA1/C/01 Calibrated as part of system	
M1875	Robot Arm	Staubli	TX60 L	F13/5SC6F1/A/01	F13/5SC6F1/A/01 Calibrated as part of system	
M1876	Robot Arm	Staubli	TX60 L	F14/5T5ZA1/A/01 Calibrated as part of system		-
M1877	Robot Arm	Staubli	TX60 L	F14/5T5ZA1/A/01	Calibrated as part of system	-
A2808	Head Handset Positioner	SPEAG	MD4HHTV5	None	Calibrated before use	-
A2809	Head Handset Positioner	SPEAG	MD4HHTV5	None	Calibrated before use	-
A2440	Body Handset Positioner	SPEAG	MD4HACV5	None	Calibrated before use	-
A2811	Body Handset Positioner	SPEAG	MD4HACV5	None	Calibrated before use	-
M1755	DAK Fluid Probe	SPEAG	SM DAK 040 CA	1089	Calibrated before use	-
M1855	Power Sensor	R&S	NRP-Z51	103246	08 Nov 2017	12
PRE0175232	Power Sensor	R&S	NRP-Z51	104649-JG	05 Feb 2018	12
PRE0175234	Power Sensor	R&S	NRP-Z51	103031-NV	05 Feb 2018	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	12 Oct 2017	12
A2621	Digital Camera	Nikon	S3600	41010357	N/A	-
A2252	Phantom	SPEAG	ELI Phantom	1177	Calibrated as part of system	-

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2550	Phantom	SPEAG	ELI Phantom	1252	Calibrated as part of system	-
A2549	Phantom	SPEAG	ELI Phantom	1253	Calibrated as part of system	-
PRE0141347	Phantom Support Structure	SPEAG	DASY6 Phantom Table	-	Calibrated as part of system	-
PRE0141348	Phantom Support Structure	SPEAG	DASY6 Phantom Table	-	Calibrated as part of system	-
PRE0141350	Phantom Support Structure	SPEAG	DASY6 Phantom Table	-	Calibrated as part of system	-
PRE0155857	RS Hygrometer	RS Components	408-6109	612Q19R(2)	11 Apr 2018	12
M1853	RS Hygrometer	RS Components	408-6109	D10Q69	11 Apr 2018	12
PRE0176840	RF Coax Cable	Huber+Suhner	Superflex 126	503318	Calibrated before use	-
PRE0176848	RF Coax Cable	Huber+Suhner	Superflex 126	503319	Calibrated before use	-
PRE0176855	RF Coax Cable	Huber+Suhner	Superflex 126	503321	Calibrated before use	-
PRE0176839	RF Coax Cable	Huber+Suhner	Superflex 126	503324	Calibrated before use	-
PRE0176843	RF Coax Cable	Huber+Suhner	Superflex 126	503326	Calibrated before use	-
PRE0176846	RF Coax Cable	Huber+Suhner	Superflex 126	503322	Calibrated before use	-
A2100	Directional Coupler	RF-Lambda	RFDC5M06G15	11101300748	Calibrated before use	-
PRE0141987	Directional Coupler	RF-Lambda	RFDC5M06G15	12042502540	Calibrated before use	-
PRE0141988	Directional Coupler	RF-Lambda	RFDC5M06G15	12042502539	Calibrated before use	-
A1938	Amplifier	Mini-Circuits	ZHL-42	QA0826002	Calibrated before use	-
A2403	Amplifier	Mini-Circuits	ZHL-42	15542	Calibrated before use	-
A2620	Amplifier	Mini-Circuits	ZHL-42	D080900-14	Calibrated before use	-
A2689	Amplifier	Mini-Circuits	ZVE-8G	910401427	Calibrated before use	-
M1647	Signal Generator	R&S	SME06	3537A01598	03 Oct 2017	12
M1908	Signal Generator	R&S	SME06	1125.555.03	09 Nov 2017	12
M1838	Signal Generator	R&S	SME06	1038.6002.06	22 Mar 2018	12
M1841	Dual Channel Power Meter	R&S	NRVD	834501/069	22 Mar 2018	12
M1840	Dual Channel Power Meter	R&S	NRVD	844860/040	22 Mar 2018	12
M263	Dual Channel Power Meter	R&S	NRVD	826558/004	03 Oct 2017	12
M1847	Power Sensor	R&S	NRV-Z1	831430/003	26 Oct 2017	12
M1848	Power Sensor	R&S	NRV-Z1	831430/004	26 Oct 2017	12
M1842	Power Sensor	R&S	NRV-Z1	890212/015	22 Mar 2018	12
M1843	Power Sensor	R&S	NRV-Z1	826515/018	22 Mar 2018	12
M265	Power Sensor	R&S	NRV-Z1	893350/0017	03 Oct 2017	12
M1044	Power Sensor	R&S	NRV-Z1	893350/0019	06 Nov 2017	12

Issue Date: 06 July 2018

4.4. SAR System Specifications

Robot System	
Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Repeatability:	±0.030 mm
No. of Axis:	6
Serial Number(s):	F13/5SC6F1/C/01; F14/5UA6A1/C/01; F14/5T5ZA1/C/01
Reach:	920 mm
Payload:	2.0 kg
Control Unit:	CS8C
Programming Language:	V+
Data Acquisition Electronic (DAE) System	
Serial Number:	DAE4 SN: 394, 1435, 1438, 450
PC Controller	
PC:	HP EliteDesk800
Operating System:	Windows 10
Data Card:	DASY5 Measurement Servers
Data Converter	
Features:	Signal Amplifier, multiplexer, A/D converted and control logic.
Software:	DASY5 PRO Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.
PC Interface Card	
Function:	24 bit (64 MHz) DSP for real time processing Link to DAE4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.
Phantom	
Phantom:	Eli Phantom
Shell Material:	Fibreglass
Thickness:	2.0 ±0.1 mm
E-Field Probe	
Model:	EX3DV4
Serial No:	3995, 3994, 3814, 7495, 7496, 7497
Construction:	Triangular core
Frequency:	10MHz to >6GHz
Linearity:	±0.2 dB (30 MHz to 6 GHz)
Probe Length (mm):	337
Probe Diameter (mm):	10
Tip Length (mm):	9
Tip Diameter (mm):	2.5
Sensor X Offset (mm):	1
Sensor X Offset (mm): Sensor Y Offset (mm):	1

Issue Date: 06 July 2018

UL VS Ltd. Report. No.: 3.0

REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

5. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Uncertainty- Freq. < 3 GHz Body Configuration 1g	95 %	±19.22 %
Uncertainty- Freq. > 3 GHz Body Configuration 1g	95 %	±16.37 %

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page 13 of 105

UL VS Ltd. Report. No.: 3.0

5.1. Uncertainty - Freq. < 3 GHz Body Configuration 1g

				Probability			Standard I	Uncertainty	υ _i or
Туре	Source of uncertainty	+ Value	- Value	Distribution	Divisor	C _{i (1g)}	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	5.050	5.050	normal (k=1)	1.0000	1.0000	5.050	5.050	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	× ×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	× ×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.300	0.300	Rectangular	1.7321	1.0000	0.173	0.173	×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	8.520	8.520	Rectangular	1.7321	1.0000	4.919	4.919	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	8
Α	Test Sample Positioning	0.147	0.147	normal (k=1)	1.0000	1.0000	0.147	0.147	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	× ×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	2.470	2.470	normal (k=1)	1.0000	0.6400	1.581	1.581	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	2.430	2.430	normal (k=1)	1.0000	0.6000	1.458	1.458	5
	Combined standard uncertainty			t-distribution			9.81	9.81	>500
	Expanded uncertainty			k = 1.96			19.22	19.22	>500

5.2. Uncertainty - Freq. > 3 GHz Body Configuration 1g

Туре	Source of uncertainty	+	- Value	Probability	Divisor	C _{i (1g)}		idard rtainty	ບ _i or ບ _{eff}
	,	Value		Distribution		(19)	+ u (%)	- u (%)	of or oth
В	Probe calibration	5.050	5.050	normal (k=1)	1.0000	1.0000	5.050	5.050	8
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.300	0.300	Rectangular	1.7321	1.0000	0.173	0.173	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	8
Α	Test Sample Positioning	1.360	1.360	normal (k=1)	1.0000	1.0000	1.360	1.360	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	8
Α	Liquid Conductivity (measured value)	0.770	0.770	normal (k=1)	1.0000	0.6400	0.493	0.493	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	8
А	Liquid Permittivity (measured value)	0.990	0.990	normal (k=1)	1.0000	0.6000	0.594	0.594	5
	Combined standard uncertainty			t-distribution			8.35	8.35	>500
	Expanded uncertainty			k = 1.96			16.37	16.37	>500

6. Device Under Test (DUT) Information

6.1. DUT Description

DUT Description:	HT40), 802.11ac (VHT20,	The EUT supports WLAN 2.4 GHz (802.11 b/g/n) with MIMO 3X3, WLAN 5.0 GHz {802.11a/n (HT20, HT40), 802.11ac (VHT20, VHT40, VHT80)} with MIMO 3x3, <i>Bluetooth</i> (BDR, EDR and BLE). The device supports CDD and SDM, TxBF and non-TxBF modes for WLAN 2.4GHz and 5.0GHz MIMO.								
	C02WD02RJTGW	WLAN 2.4/5.2/5.6/5.8GHz; Bluetooth	SAR Evaluation							
	C02WC001JMFM	WLAN 2.4/5.2/5.6GHz	SAR Evaluation							
	C02WC004JMFQ	WLAN 5.2GHz/5.6GHz/5.8GHz	SAR Evaluation							
Serial Number:	C02WC003JMFQ	WLAN 5.2GHz	SAR Evaluation							
	C02WC003JMFM	WLAN 2.4/5GHz; Bluetooth	Conducted Power Measurements							
	C02WC00EJMFL	WLAN 2.4/5GHz; Bluetooth	Conducted Power Measurements							
Hardware Version Number:	EVT									
Firmware (WLAN):	17G2033									
Firmware (BT):	V40									
Country of Manufacture:	China									
Device dimension	240.7 x 349.3 x 16.2 mm ((Length x Width x Depth)								
Display Diagonal Dimension:	15.4 Inch (~ 391.16 mm)									
Date of Receipt:	06 April 2018									

Antenna Type:	Internal integral	
Antenna Length:	Unknown	
Number of	Antenna 1 (WF1) - WLAN / WPAN ~ Wi-Fi 2.4 GHz / 5.0 GHz / BT	1 fixed
Antenna Positions:	Antenna 2 (WF2) - WLAN ~ Wi-Fi 2.4 GHz / 5.0 GHz	1 fixed
	Antenna 3 (WF3) - WLAN ~ Wi-Fi 2.4 GHz / 5.0 GHz	1 fixed
Battery Type(s):	Embedded Li-ion	

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle
Wi-Fi	2.4 GHz	802.11b	100%
VVI-1 1	2.4 0112		10078
		802.11g	
		802.11n (HT20)	
	5.0 GHz	802.11a	100%
		802.11n (HT20)	
		802.11n (HT40)	
		802.11ac (VHT20)	
		802.11ac (VHT40)	
		802.11ac (VHT80)	
Bluetooth	2.4 GHz	Version 1.0 + BDR	32.25% (DH1)
		Version 2.1 + EDR	66.68% (DH3)
		Version 4.0 LE	77.52% (DH5)

Issue Date: 06 July 2018

			Wi-Fi							
			Descri	ption						
Band	20 MHz BW Ch.#	Frq. (MHz)	40 MHz BW Ch.#	Frq. (MHz)	80 MHz BW Ch.#	Frq. (MHz)				
	1	2412.0								
W. E. O 4 OIL	6	2437.0								
Wi-Fi 2.4 GHz (802.11b/g/n)	11	2462.0	N/A							
(002.110/g/11)	12	2467.0								
	13	2472.0								
W. E. E O OLL	36	5180.0	38	5190.0	-					
Wi-Fi 5.0 GHz 5.2 (U-NII-1)	40	5200.0	-		42	5210.0				
(802.11a/n/ac)	44	5220.0	46	5230.0						
,	48	5240.0			-					
W. E. E 0 011	52	5260.0	54	5270.0	-					
Wi-Fi 5.0 GHz 5.3 (U-NII-2A)	56	5280.0	-		58	5290.0				
(802.11a/n/ac)	60	5300.0	62	5310.0						
	64	5320.0			-					
	100	5500.0	102	5510.0	1					
	104	5520.0	-		106	5530.0				
	108	5540.0	110	5550.0						
	112	5560.0			-					
	116	5580.0	118	5590.0	-					
Wi-Fi 5.0 GHz	120	5600.0	-		122	5610.0				
5.6 (U-NII-2C) (802.11a/n/ac)	124	5620.0	126	5630.0	-					
(102)	128	5640.0			-					
	132	5660.0	134	5670.0	-					
	136	5680.0	-		138	5690.0				
	140	5700.0	142	5710.0	-					
	144	5720.0			-					
	149	5745.0	151	5755.0	-					
Wi-Fi 5.0 GHz	153	5765.0	-		155	5775.0				
5.8 (U-NII-3)	157	5785.0	159	5795.0	-					
(802.11a/n/ac)	161	5805.0			-					
	165	5825.0			-					

REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

Wireless Technologies (Continued):

Bluetooth											
Band	Band Description										
		Frequen	cy Range: 2402 - 2480 MHz								
	Mode	Channel Number	Channel Description	Frequency (MHz)							
	BDR/EDR	0	Low	2402.0							
Bluetooth	Mode	39	Middle	2441.0							
	Mode	78	High	2480.0							
		1	Low	2404.0							
	LE Mode	19	Middle	2440.0							
		38	High	2478.0							

REPORT NO: UL-SAR-RP12185759JD18A V3.0 Issue Date: 06 July 2018

6.3. Nominal and Maximum Output power: Wi-Fi and Bluetooth

				Target + Max. Tolerances (dBm) - applicable to all antenna's (WF1, WF2 and WF3)									
Band	Channel	Centre Frequency (MHz)	802.11b (SISO)	802.11g (SISO)	802.11n HT20 (SISO)	802.11n HT20 (2 Tx, DSSS)	802.11n HT20 (2 Tx, non-TXBF)	802.11n HT20 (2 Tx, TXBF)	802.11n HT20 (3 Tx, DSSS)	802.11n HT20 (3 Tx, non-TXBF)	802.11n HT20 (3 Tx, TXBF)		
	1	2412	17.00	17.00	17.00	17.00	15.00	14.50	17.00	14.00	14.00		
	2	2417	17.00	17.00	17.00	17.00	17.00	16.00	17.00	16.50	16.00		
	3	2422	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00		
	4	2427	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00		
	5	2432	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00		
Wi-Fi 2.4 GHz	6	2437	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00		
WI-FI 2.4 GHZ	7	2442	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00		
	8	2447	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00		
	9	2452	17.00	17.00	17.00	17.00	17.00	17.00	17.00	16.50	16.50		
	10	2457	17.00	16.00	16.00	17.00	15.00	14.00	17.00	13.50	13.50		
	11	2462	17.00	15.00	15.00	17.00	13.00	12.00	16.50	12.00	12.00		
	12	2467	14.00	12.00	12.00	14.00	10.00	9.50	14.00	10.00	9.00		
	13	2472	12.00	4.00	4.00	11.00	2.00	2.00	10.00	-0.50	-0.50		

		Target + Max. Tolerances (dBm) - applicable to WF1 antenna							
Band	Channel	BDR (SISO)	EDR (SISO)	BLE (SISO)					
Bluetooth	ALL	13.00	10.00	7.00					

Note: Bluetooth operates only on Antenna WF1

Nominal and Maximum Output power: Wi-Fi (Continued)

				Ta	arget + Max. Tolerai	nces (dBm) - applica	ble to all antenna's	(WF1, WF2 and WF	F3)	
Band	Channel (20 MHz BW)	Center Frequency (MHz)	802.11a (SISO)	802.11n HT20 (SISO)	802.11n HT20 (2 Tx CDD, non-TXBF)	802.11n HT20 (2 Tx SDM, non- TXBF)	802.11n HT20 (2 Tx, TXBF)	802.11n HT20 (3 Tx CDD, non-TXBF)	802.11n HT20 (3 Tx SDM, non- TXBF)	802.11n HT20 (3 Tx, TXBF)
	36	5180	14.00	14.00	14.00	14.00	13.00	11.00	13.00	10.50
Sub Band 1 - 5.2	40	5200	14.00	14.00	14.00	14.00	14.00	11.50	14.00	11.50
GHz	44	5220	14.00	14.00	14.00	14.00	14.00	11.50	14.00	11.50
	48	5240	14.00	14.00	14.00	14.00	14.00	11.50	14.00	11.50
	52	5260	13.50	13.50	13.50	13.50	13.50	10.00	13.50	10.00
Sub Band 2 - 5.3	56	5280	13.50	13.50	13.50	13.50	13.50	10.00	13.50	10.00
GHz	60	5300	13.50	13.50	13.50	13.50	13.50	10.00	13.50	10.00
	64	5320	13.50	13.50	13.00	13.50	12.50	10.00	12.50	10.00
	100	5500	13.00	13.00	12.00	13.00	12.00	9.50	12.50	9.50
	104	5520	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	108	5540	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	112	5560	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	116	5580	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
Sub Band 3 - 5.6	120	5600	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
GHz	124	5620	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	128	5640	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	132	5660	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	136	5680	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	140	5700	12.50	12.50	12.00	13.00	10.50	10.50	12.50	9.50
	144	5720	13.00	13.00	13.00	13.00	13.00	10.50	13.00	10.50
	149	5745	13.25	13.25	13.25	13.25	13.25	13.25	13.25	13.25
Cub Daniel 4 E O	153	5765	13.25	13.25	13.25	13.25	13.25	13.25	13.25	13.25
Sub Band 4 - 5.8	157	5785	13.25	13.25	13.25	13.25	13.25	13.25	13.25	13.25
GHz	161	5805	13.25	13.25	13.25	13.25	13.25	13.25	13.25	13.25
	165	5825	13.25	13.25	13.25	13.25	13.25	13.25	13.25	13.25

Nominal and Maximum Output power: Wi-Fi (Continued)

				Target +	Max. Tolerances (dBn	n) - applicable to all a	antenna's (WF1, WF2	and WF3)	
Band	Channel (40 MHz BW)	Centre Frequency (MHz)	802.11n HT40 (1 Tx)	802.11n HT40 (2 Tx CDD, non- TXBF)	802.11n HT40 (2 Tx SDM, non- TXBF)	802.11n HT40 (2 Tx, TXBF)	802.11n HT40 (3 Tx CDD, non- TXBF)	802.11n HT40 (3 Tx SDM, non- TXBF)	802.11n HT40 (3 Tx, TXBF)
Sub Band 1 - 5.2 GHz	38	5190	14.00	12.00	13.00	10.00	10.00	11.00	8.00
Sub Band 1 - 5.2 GHZ	46	5230	14.00	14.00	14.00	14.00	13.50	14.00	13.00
Sub Band 2 - 5.3 GHz	54	5270	13.50	13.50	13.50	13.50	12.50	13.50	12.00
Sub Bario 2 - 5.3 GHZ	62	5310	13.50	11.50	13.50	10.00	11.00	12.50	10.00
	102	5510	13.00	12.50	12.00	11.50	10.00	12.00	8.50
	110	5550	13.00	13.00	13.00	13.00	13.00	13.00	12.50
Sub Band 3 - 5.6 GHz	118	5590	13.00	13.00	13.00	13.00	13.00	13.00	12.50
Sub Barid 3 - 5.6 GHZ	126	5630	13.00	13.00	13.00	13.00	13.00	13.00	12.50
	134	5670	13.00	13.00	13.00	13.00	13.00	13.00	12.50
	142	5710	13.00	13.00	13.00	13.00	13.00	13.00	12.50
Cub Dand 4 F 9 CUz	151	5755	13.25	13.25	13.25	13.25	13.25	13.25	13.25
Sub Band 4 - 5.8 GHz	159	5795	13.25	13.25	13.25	13.25	13.25	13.25	13.25

				Target + Max. Tolerances (dBm) - applicable to all antenna's (WF1, WF2 and WF3)									
Band	Channel (80 MHz BW)	Centre Frequency (MHz)	802.11ac VHT80 (1 Tx)	802.11ac VHT80 (2 Tx CDD, non-TXBF)	802.11ac VHT80 (2 Tx SDM, non-TXBF)	802.11ac VHT80 (2 Tx, TXBF)	802.11ac VHT80 (3 Tx CDD, non-TXBF)	802.11ac VHT80 (3 Tx SDM, non-TXBF)	802.11ac VHT80 (3 Tx, TXBF)				
Sub Band 1 - 5.2 GHz	42	5210	13.00	10.00	11.00	8.00	8.50	10.50	7.50				
Sub Band 2 - 5.3 GHz	58	5290	13.50	11.00	11.50	9.50	9.00	11.00	8.00				
	106	5530	13.00	10.50	10.50	9.50	9.50	10.00	8.50				
Sub Band 3 - 5.6 GHz	122	5610	13.00	13.00	13.00	13.00	13.00	13.00	13.00				
	138	5690	13.00	13.00	13.00	13.00	13.00	13.00	13.00				
Sub Band 4 - 5.8 GHz	155	5775	13.25	13.25	13.25	13.25	13.25	13.25	13.25				

7. RF Exposure Conditions (Test Configurations)

7.1. Configuration Consideration

Technology Antenna	Configuration	Antenna-to- User Separation	Position	Antenna-to-Edge Separation (mm)	Evaluation Considered
WF1		0mm	Back	< 25	Yes
WLAN / WPAN ~ (Wi-Fi 2.4 GHz/ Wi-Fi	Body		Right	> 25	No
	Бойу		Left	> 25	No
5.0 GHz/BT)			Display Side	< 25	Yes
WF2		0mm	Back	< 25	Yes
WLAN ~	Body		Right	> 25	No
(Wi-Fi 2.4 GHz/ Wi-Fi			Left	> 25	No
5.0 GHz)			Display Side	< 25	Yes
WF3			Back	< 25	Yes
WLAN ~	Dody	0	Right	> 25	No
(Wi-Fi 2.4 GHz/ Wi-Fi	Body	0mm	Left	> 25	No
5.0 GHz)			Display Side	< 25	Yes

Note: The Antenna to edge separation distances are indicated in the 'Antenna Schematics' located in Section 12.1 of this report.

7.2. SAR Test Exclusion Consideration

	Configuration(s)		
Frequency Band	Body		
	siso	МІМО	
WLAN 2.4 GHz	No	No	
WLAN 5.2 GHz	No	No	
WLAN 5.3 GHz	Yes ¹	Yes ¹	
WLAN 5.6 GHz	No	No	
WLAN 5.8 GHz	No	No	
Bluetooth	No	N/A	

Note: As per KDB 248227, U-NII-1 was chosen for SAR evaluation as maximum rated power for U-NII-1 > U-NII-2A. Based on the measurements obtained, SAR measurements on U-NII-2A band are not required as highest reported SAR from U-NII-1 band is ≤ 1.2 W/Kg.

8. Conducted Output Power Measurements

8.1. RF Output Average Power Measurement: Wi-Fi 2.4 GHz

Note: Additional Conducted power measurements are performed on adjacent Channels having same or higher Max. rated power than the standard Channels (i.e., 1, 6, and 11).

8.1.1. Wi-Fi 802.11b (2.4 GHz) - SISO

		Avg Power (dBm)			
		WF1	WF2	WF3	
Channel	Frequency	6Mbps	6Mbps	6Mbps	Operating Mode
Number	(MHz)	Body	Body	Body	Operating Mode
1	2412	16.90	16.70	16.80	
6	2437	16.80	16.90	17.00	
11	2462	16.90	17.00	16.90	802.11b
12	2467	12.80	12.50	12.70	
13	2472	11.70	11.50	11.80	

8.1.2. Wi-Fi 802.11n (2.4 GHz) – MIMO WF1 + WF2

		Avg Power (dBm)		
		WF1	WF2	
Channel	Frequency	6.5Mbps	6.5Mbps	Operating Made
Number	(MHz)	Body	Body	Operating Mode
1	2412	16.80	16.30	
6	2437	16.70	16.20	
10	2457	16.70	16.70	802.11n, HT20
11	2462	15.90	15.90	DSSS
12	2467	13.00	12.80	
13	2472	10.50	10.60	

8.1.3. Wi-Fi 802.11n (2.4 GHz) – MIMO WF2 + WF3

		Avg Pow	Avg Power (dBm)	
		WF2	WF3	
Channel	Frequency	6.5Mbps	6.5Mbps	Operating Meda
Number	(MHz)	Body	Body	Operating Mode
1	2412	16.70	16.80	
6	2437	16.50	16.60	
10	2457	16.30	16.80	802.11n, HT20
11	2462	16.10	16.00	DSSS
12	2467	13.00	12.90	
13	2472	10.40	10.60	

8.1.4. Wi-Fi 802.11n (2.4 GHz) – MIMO WF1 + WF3

	Avg Power (dBm)			
		WF1	WF3	
Channel	Frequency	6.5Mbps	6.5Mbps	Operating Made
Number	(MHz)	Body	Body	Operating Mode
1	2412	16.60	16.70	
6	2437	16.60	16.60	
10	2457	16.60	16.70	802.11n, HT20
11	2462	16.00	16.10	DSSS
12	2467	12.60	12.60	
13	2472	10.30	10.40	

8.1.5. Wi-Fi 802.11n (2.4 GHz) – MIMO WF1 + WF2 + WF3

		Avg Power (dBm)			
		WF1	WF2	WF3	
Channel	Frequency	6.5Mbps	6.5Mbps	6.5Mbps	Operating Mode
Number	(MHz)	Body	Body	Body	Operating Mode
1	2412	16.60	17.00	16.60	
6	2437	16.70	16.80	16.70	
10	2457	16.80	16.60	16.80	802.11n, HT20
11	2462	16.10	16.10	16.20	DSSS
12	2467	12.70	12.20	12.60	
13	2472	11.60	11.40	11.50	

8.2. RF Output Average Power Measurement: Wi-Fi 5.0 GHz

8.2.1. Wi-Fi 802.11a/n/ac (5.0 GHz) – SISO Sub Band 1 (5.2 GHz U-NII-1)

			Avg Power (dBm)			
		WF1	WF2	WF3		
Channel	Frequency	13.5 Mbps	13.5 Mbps	13.5 Mbps	Operating Mede	
Number	(MHz)	Body	Body	Body	Operating Mode	
38	5190	13.80	14.00	13.80	802.11n HT40	
46	5230	13.80	13.90	13.90	002.1111 H140	
Channel	Frequency	29.3 Mbps	29.3 Mbps	29.3 Mbps	Operating Mede	
Number	(MHz)	Body	Body	Body	Operating Mode	
42	5210	11.80	11.50	11.70	802.11ac VHT80	

Note: Conducted power measurements for 802.11a/ 802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.2. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 1 (5.2 GHz U-NII-1) WF1 + WF2

		Avg Pow	er (dBm)	
		WF1	WF2	
Channel	Frequency	6.5 Mbps	6.5 Mbps	Operating Mode
Number	(MHz)	Body	Body	Operating Mode
36	5180	13.20	13.70	
40	5200	13.20	13.60	802.11n HT20
44	5220	13.20	13.60	(2 Tx SDM, non-TXBF)
48	5240	13.40	13.30	
Channel	Frequency	13.5 Mbps	13.5 Mbps	Operating Mode
Number	(MHz)	Body	Body	Operating wode
38	5190	12.70	13.00	802.11n HT40
46	5230	13.40	13.80	SDM, non-TxBF

Note: Conducted power measurements for 802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.3. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 1 (5.2 GHz U-NII-1) WF2 + WF3

				VIZTVIJ
	er (dBm)			
	WF3	WF2		
On anating Made	6.5 Mbps	6.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
	13.50	13.50	5180	36
802.11n HT20	13.50	13.30	5200	40
(2 Tx SDM, non-TXBF)	13.50	13.50	5220	44
	13.50	13.50	5240	48
Operating Mede	13.5 Mbps	13.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
802.11n HT40	12.60	13.00	5190	38
SDM, non-TxBF	13.70	13.80	5230	46

Note: Conducted power measurements for 802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

Page 25 of 105

UL VS Ltd. Report. No.: 3.0

8.2.4. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 1 (5.2 GHz U-NII-1) WF1 + WF3

		Avg Pow	ver (dBm)	
		WF1	WF3	
Channel	Frequency	6.5 Mbps	6.5 Mbps	Operating Made
Number	(MHz)	Body	Body	Operating Mode
36	5180	13.30	13.40	
40	5200	13.10	13.30	802.11n HT20
44	5220	13.30	13.40	(2 Tx SDM, non-TXBF)
48	5240	13.30	13.50	
Channel	Frequency	13.5 Mbps	13.5 Mbps	Operating Made
Number	(MHz)	Body	Body	Operating Mode
38	5190	12.70	12.50	802.11n HT40
46	5230	13.60	13.60	SDM, non-TxBF

Note: Conducted power measurements for 802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.5. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 1 (5.2 GHz U-NII-1) WF1 + WF2 + WF3

			WF2	WF3	
Channel	Frequency	6.5 Mbps	6.5 Mbps	6.5 Mbps	Operating Mede
Number	(MHz)	Body	Body	Body	Operating Mode
36	5180	12.30	12.60	12.30	
40	5200	13.10	13.50	13.50	802.11n HT20
44	5220	13.30	13.30	13.20	(2 Tx SDM, non-TXBF)
48	5240	13.20	13.50	13.30	
Channel	Frequency	13.5 Mbps	13.5 Mbps	13.5 Mbps	Operating Mode
Number	(MHz)	Body	Body	Body	Operating Mode
38	5190	9.90	10.20	10.30	802.11n HT40
46	5230	13.40	13.70	13.50	SDM, non-TxBF

Note: Conducted power measurements for 802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.6. Wi-Fi 802.11a/n/ac (5.0 GHz) - SISO Sub Band 2 (5.3 GHz U-NII-2A)

		Avg Power (dBm)			
		WF1	WF2	WF3	
Channel	Frequency	13.5 Mbps	13.5 Mbps	13.5 Mbps	Operating Meda
Number	(MHz)	Body	Body	Body	Operating Mode
54	5270	13.05	12.45	12.85	902 44n UT40
62	5310	12.85	12.45	13.25	802.11n HT40
Channel	Frequency	29.3 Mbps	29.3 Mbps	29.3 Mbps	Operating Meda
Number	(MHz)	Body	Body	Body	Operating Mode
58	5290	13.45	13.15	13.35	802.11ac VHT80

Note: Conducted power measurements for 802.11a/802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.7. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 2 (5.3 GHz U-NII-2A) WF1 + WF2

	ver (dBm)			
	WF2	WF1		
Operating Made	13.5 Mbps	13.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
802.11n HT40	13.50	13.25	5270	54
SDM, non-TxBF	13.50	13.50	5310	62

Note: Conducted power measurements for 802.11n HT20/802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.8. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 2 (5.3 GHz U-NII-2A) WF2 + WF3

W1 Z T W1 S						
		Avg Pow				
		WF2	WF3			
Channel	Frequency	13.5 Mbps	13.5 Mbps	Operating Meda		
Number	(MHz)	Body	Body	Operating Mode		
54	5270	13.35	13.05	802.11n HT40		
62	5310	13.25	13.05	SDM, non-TxBF		

Note: Conducted power measurements for 802.11n HT20/802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.9. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 2 (5.3 GHz U-NII-2A) WF1 + WF3

		Avg Pow		
		WF1	WF3	
Channel	Frequency	13.5 Mbps	13.5 Mbps	Operating Mode
Number	(MHz)	Body	Body	Operating Mode
54	5270	13.25	13.45	802.11n HT40
62	5310	13.50	13.25	SDM, non-TxBF

Note: Conducted power measurements for 802.11n HT20/802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.10. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 2 (5.3 GHz U-NII-2A) WF1 + WF2 + WF3

			Avg Power (dBm)		
		WF1	WF2	WF3	
Channel	Frequency	13.5 Mbps	13.5 Mbps	13.5 Mbps	Operating Mode
Number	(MHz)	Body	Body	Body	Operating wode
54	5270	13.25	13.35	13.15	802.11n HT40
62	5310	12.45	12.45	12.15	SDM, non-TxBF

Note: Conducted power measurements for 802.11n HT20/802.11ac VHT80 (MIMO) modes not required, as the Max. Rated Power for this mode was ≤ than 802.11n HT20/HT40.

8.2.11. Wi-Fi 802.11a/n/ac (5.0 GHz) - SISO Sub Band 3 (5.6 GHz U-NII-2C)

		JISO Sub Ballu	,		
		Avg Power (dBm)			
	WF3	WF2	WF1		
On another Marks	13.5 Mbps	13.5 Mbps	13.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	Body	(MHz)	Number
	12.20	12.60	12.30	5510	102
802.11n HT40	12.50	12.50	12.60	5550	110
	12.30	12.60	12.50	5590	118
	12.40	12.70	12.50	5630	126
	12.10	12.70	12.80	5670	134
	12.50	12.90	12.70	5710	142
On a ratio a Mada	29.3 Mbps	29.3 Mbps	29.3 Mbps	Frequency	Channel
Operating Mode	Body	Body	Body	(MHz)	Number
	12.90	13.00	13.00	5530	106
802.11ac VHT80	12.90	13.00	12.80	5610	122
	12.80	13.00	12.80	5690	138

Note: Conducted power measurements for 802.11a/802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.12. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 3 (5.6 GHz U-NII-2C) WF1 + WF2

	r (dBm)			
	WF2	WF1		
Operating Mode	13.5 Mbps	13.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
	11.90	11.80	5510	102
7	12.50	12.50	5550	110
802.11n HT40	12.50	12.40	5590	118
SDM, non-TxBF	12.60	12.30	5630	126
	12.50	12.60	5670	134
	12.60	12.40	5710	142
Operating Made	29.3 Mbps	29.3 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
	9.90	9.90	5530	106
802.11ac VHT80 SDM, non-TxBF	13.00	12.80	5610	122
	12.90	12.40	5690	138

Note: Conducted power measurements for 802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.13. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 3 (5.6 GHz U-NII-2C) WF2 + WF3

		Avg Powe		
		WF2	WF3	
Channel	Frequency	13.5 Mbps	13.5 Mbps	One retire Made
Number	(MHz)	Body	Body	Operating Mode
102	5510	11.80	12.00	
110	5550	12.30	12.60	
118	5590	12.40	12.70	802.11n HT40
126	5630	12.80	12.70	SDM, non-TxBF
134	5670	12.90	12.60	
142	5710	12.70	12.40	
Channel	Frequency	29.3 Mbps	29.3 Mbps	Operating Made
Number	(MHz)	Body	Body	Operating Mode
106	5530	9.80	9.20	202.44
122	5610	12.80	12.10	802.11ac VHT80 SDM, non-TxBF
138	5690	12.90	12.10	

Note: Conducted power measurements for 802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.14. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 3 (5.6 GHz U-NII-2C) WF1 + WF3

	er (dBm)			
	WF3	WF1		
On a ratio a Mada	13.5 Mbps	13.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
	11.80	11.90	5510	102
]	12.50	12.40	5550	110
802.11n HT40	12.50	12.60	5590	118
SDM, non-TxBF	12.70	12.60	5630	126
]	12.70	12.80	5670	134
]	12.40	12.30	5710	142
Operating Meda	29.3 Mbps	29.3 Mbps	Frequency	Channel
Operating Mode	Body	Body	(MHz)	Number
	9.20	10.00	5530	106
802.11ac VHT80 SDM, non-TxBF	12.30	13.00	5610	122
	12.30	12.90	5690	138

Note: Conducted power measurements for 802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.15. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 3 (5.6 GHz U-NII-2C) WF1 + WF2 + WF3

		Avg Power (dBm)			
	WF3	WF2	WF1		
Onevetina Mede	13.5 Mbps	13.5 Mbps	13.5 Mbps	Frequency	Channel
Operating Mode	Body	Body	Body	(MHz)	Number
	11.90	11.90	12.00	5510	102
	12.40	12.30	12.10	5550	110
802.11n HT40	12.30	12.30	12.10	5590	118
SDM, non-TxBF	12.50	12.50	12.10	5630	126
	12.20	12.50	12.30	5670	134
	12.30	12.60	12.30	5710	142
On a ratio a Mada	29.3 Mbps	29.3 Mbps	29.3 Mbps	Frequency	Channel
Operating Mode	Body	Body	Body	(MHz)	Number
	9.10	9.80	9.80	5530	106
802.11ac VHT80 SDM, non-TxBF	12.20	13.00	12.80	5610	122
	12.00	12.90	12.50	5690	138

Note: Conducted power measurements for 802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ than higher bandwidth modes (HT40/VHT80).

8.2.16. Wi-Fi 802.11a/n/ac (5.0 GHz) - SISO Sub Band 4 (5.8 GHz U-NII-3)

	, , , , , , , , , , , , , , , , , , ,						
			Avg Power (dBm)				
		WF1	WF2	WF3			
Channel	Frequency	13.5 Mbps	13.5 Mbps	13.5 Mbps	Operating Mede		
Number	(MHz)	Body	Body	Body	Operating Mode		
151	5755	12.60	12.60	12.40	8802.11n HT40		
159	5795	12.70	12.90	12.60	SDM, non-TxBF		
Channel	Frequency	29.3 Mbps	29.3 Mbps	29.3 Mbps	Operating Mede		
Number	(MHz)	Body	Body	Body	Operating Mode		
155	5775	12.80	12.80	13.00	802.11ac VHT80		

Note: Conducted power measurements for 802.11a/ 802.11n HT20 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ higher bandwidth modes (HT40/VHT80).

8.2.17. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 4 (5.8 GHz U-NII-3) WF1 + WF2

		Avg Pow		
		WF1 WF2		
Channel	Frequency	29.3 Mbps	29.3 Mbps	Operating Mode
Number	(MHz)	Body	Body	Operating Mode
155	5775	12.30	12.80	802.11ac VHT80 SDM, non-TxBF

Note: Conducted power measurements for 802.11a/802.11n HT20/HT40 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ higher bandwidth modes (VHT80).

8.2.18. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 4 (5.8 GHz U-NII-3) WF2 + WF3

		Avg Pow		
		WF2	WF3	
Channel	Frequency	29.3 Mbps	29.3 Mbps	Operating Mode
Number	(MHz)	Body	Body	Operating Mode
155	5775	12.90	12.40	802.11ac VHT80 SDM, non-TxBF

Note: Conducted power measurements for 802.11a/802.11n HT20/HT40 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ higher bandwidth modes (VHT80).

Page 32 of 105

UL VS Ltd. Report. No.: 3.0

8.2.19. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 4 (5.8 GHz U-NII-3) WF1 + WF3

		Avg Pow	er (dBm)		
		WF1	WF3		
Channel	Frequency	29.3 Mbps	29.3 Mbps	Operating Mode	
Number (MHz)		Body	Body	Operating Mode	
155	5775	12.70	12.60	802.11ac VHT80 SDM, non-TxBF	

Note: Conducted power measurements for 802.11a/802.11n HT20/HT40 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ higher bandwidth modes (VHT80).

8.2.20. Wi-Fi 802.11a/n/ac (5.0 GHz) – MIMO Sub Band 4 (5.8 GHz U-NII-3) WF1 + WF2 + WF3

			Avg Power (dBm)				
		WF1	WF2	WF3			
Channel	Frequency	29.3 Mbps	29.3 Mbps	29.3 Mbps	Operating Meda		
Number (MHz)		Body	Body	Body	Operating Mode		
155	5775	12.50	12.80	12.40	802.11ac VHT80 SDM, non-TxBF		

Note: Conducted power measurements for 802.11a/802.11n HT20/HT40 (SISO) modes not required, as the Max. Rated Power for this mode was ≤ higher bandwidth modes (VHT80).

REPORT NO: UL-SAR-RP12185759JD18A V3.0

8.3. RF Output Average Power Measurement: Wi-Fi SDB Mode

Simultaneous Dual Band (SDB) mode allows antenna WF3 to simultaneously transmit on 2 different bands (2.4GHz and 5GHz) using the same antenna, since this one contains two cores, Main and Auxiliary. One band will transmit using the Main core and the other the Auxiliary.

Issue Date: 06 July 2018

When this mode is enabled, the Auxiliary core is set to transmit at the standard power rate and the Main to transmit at a lower rate (6dB less).

When the SDB mode is active, WF3 Auxiliary core can also transmit along with WF1 and WF2. For these cases, all the antennas are set to the standard power rate.

8.3.1. Wi-Fi 802.11b (2.4 GHz) - SDB Mode Main Core (Lower Power Rate)

		Avg Power (dBm)	,	
		WF3		
Channel Number	Fraguency (MUz)	6Mbps	Operating Mode	
Chainlei Number	Frequency (MHz)	Body		
1	2412	9.80		
6	2437	9.70		
11	2462	9.80	802.11b	
12	2467	9.80]	
13	2472	9.80		

Note: Additional Conducted power measurements are performed on adjacent Channels having same or higher Max. rated power than the standard Channels (i.e., 1, 6, and 11).

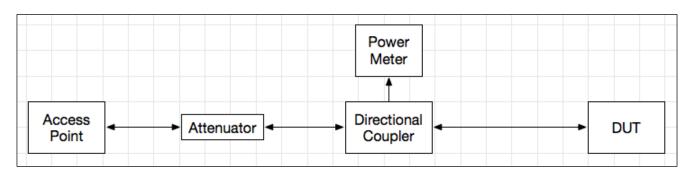
8.3.2. Wi-Fi 802.11a/n/ac (5.0 GHz) - SDB Mode Main Core (Lower Power Rate)

0.3.2. VVI-1 1 002.1 1a/11	i ower itale)		
		Avg Power (dBm)	
		WF3	
Channel Number	Frequency (MHz)	13.5 Mbps	Operating Mode
Chamilei Number	Frequency (MH2)	Body	Operating widde
38	5190	6.90	802.11n HT40
46	5230	6.80	SDM, non-TxBF
Channel Number	Frequency (MHz)	29.3 Mbps	Operating Mode
Chamilei Number	Frequency (MH2)	Body	Operating wode
58	5290	6.45	
106	5530	5.80	
122	5610	5.90	802.11ac VHT80 SDM, non-TxBF
138	5690	5.80	, .
155	5775	6.00	

8.4. RF Output Average Power Measurement: Bluetooth

8.4.1. Bluetooth 2.4 GHz

		Avg Power (dBm) WF1	
Channel Number	Frequency (MHz)	Body	Operating Mode
0	2402	12.00	
39	2441	12.00	BDR (GFSK DH5)
78	2480	11.80	,


Page 34 of 105

JL VS Ltd. Report. No.: 3.0

8.5. Body Detect Mode Verification

The WLAN tester acts as an access point, the DUT is set up in normal operating mode with consumer OS and associated with the access point, data is sent from the DUT at the highest duty cycle possible using iperf, the duty cycle is measured, when the DUT has detected it is on the body the power is measured with compensation for the duty cycle. The process is repeated for each sub band as detailed in the table below to demonstrate the power reduction.

Issue Date: 06 July 2018

Verification checks have been performed to demonstrate Body Detect Mode. Conducted power spot check measurements have been taken on each frequency band for a given configuration mode, when Body Detect Mode is enabled and disabled. Body Detect Mode is described in detail within the technical description of the device.

			_	Meas Conducted F	sured Power (dBm)	Delta (dB)
Band	Mode	Channel	Frequency (MHz)	Body Detect Disabled (Off Body)	Body Detect Enabled (On Body)	
			WF1			
WLAN 2.4 GHz	802.11b	6	2437	17.4	13.5	3.9
WLAN 5.2 GHz		40	5200	17.2	13.8	3.4
WLAN 5.3 GHz		56	5280	17.3	13.0	4.3
WLAN 5.6 GHz	802.11a	108	5540	16.8	11.3	5.5
WLAIN 5.0 GHZ		136	5680	16.6	11.0	5.6
WLAN 5.8 GHz		157	5785	16.0	11.4	4.6
			WF2			
WLAN 2.4 GHz	802.11b	6	2437	18.3	14.8	3.5
WLAN 5.2 GHz		40	5200	17.0	12.3	4.7
WLAN 5.3 GHz	802.11a	56	5280	17.2	12.3	4.9
WLAN 5.6 GHz		108	5540	16.2	10.8	5.4
WLAN 5.0 GHZ		136	5680	16.3	10.8	5.5
WLAN 5.8 GHz		157	5785	15.8	10.7	5.1
WF3						
WLAN 2.4 GHz	802.11b	6	2437	18.4	15	3.4
WLAN 5.2 GHz		40	5200	17.3	14	3.3
WLAN 5.3 GHz		56	5280	17.2	13	4.2
WLAN 5.6 GHz	802.11a	108	5540	16.1	10.3	5.8
WLAIN 5.0 GHZ		136	5680	16.5	10.9	5.6
WLAN 5.8 GHz		157	5785	16	11.3	4.7

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

IEEE 1528:2013

Torget Frequency (MHz)	Hea	d	Body (F	Body (FCC only)		
Target Frequency (MHz)	ε _r	σ (S/m)	$\epsilon_{\rm r}$	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
750	41.9	0.89	-	-		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1500	40.4	1.23	=	=		
1610	40.3	1.29	53.8	1.40		
1640	40.2	1.31	=	=		
1750	40.1	1.37	=	=		
1800	40	1.40	53.3	1.52		
1900	40	1.40	53.3	1.52		
2000	40	1.40	53.3	1.52		
2100	39.8	1.49	=	-		
2300	39.5	1.67	=	-		
2450	39.2	1.80	52.7	1.95		
2600	39	1.96	=	-		
3000	38.5	2.40	52.0	2.73		
3500	37.9	2.91	=	=		
4000	37.4	3.43	=	=		
4500	36.8	3.94	=	-		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5250	35.9	4.71	48.9	5.36		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5750	35.4	5.22	48.3	5.94		
5800	35.3	5.27	48.2	6.00		
6000	35.1	5.48	=	-		

NOTE: For convenience, permittivity and conductivity values at some frequencies that are not part of the original data from Drossos et al. [B60] or the extension to 5800 MHz are provided (i.e., the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6000 MHz that were linearly extrapolated from the values at 3000 MHz and 5800 MHz.

9.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

9.3. Reference Target SAR Values

The reference SAR values are obtained from the calibration certificate of system validation dipoles. The measured values are normalised to 1 Watt.

Overtown Pincels	Ossisl No	0-1 P-1-	F (1411-)	Target	SAR Values (mW/g)
System Dipole	Serial No.	Cal. Date	Freq. (MHz)	1g/10g	Body
D0450\/0	705	40.0 0040	0.450	1g	49.9
D2450V2	725	19 Sep 2018	2450	10g	23.6
				1g	73.9
			5250	10g	20.7
DEOLI-1/0	4040	40 Est 0040		1g	76.7
D5GHzV2	1016	12 Feb 2018	5600	10g	21.5
			5750	1g	73.5
			5750	10g	20.5
			5050	1g	76.6
			5250	10g	21.5
D5011-1/0	4000	40.0 - 0047	5000	1g	79.4
D5GHzV2	1222	19 Sep 2017	5600	10g	22.4
			F750	1g	76.6
			5750	10g	21.5

REPORT NO: UL-SAR-RP12185759JD18A V3.0

9.4. Dielectric Property Measurements & System Check Results

The 1-g SAR and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 5\%$ of the manufacturer calibrated dipole SAR target. The internal limit is set to $\pm 5\%$.

Issue Date: 06 July 2018

Site 59

System check 5250 Body

Date: 12/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	49.25	0.72	5.00
Body	5250.00	20.3	20.3	Σ	5.36	5.43	1.39	5.00
Бойу	5250.00	20.3	20.3	1g (W/kg)	73.90	77.10	4.33	10.00
				10g (W/kg)	20.70	21.70	4.83	10.00

Date: 23/05/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	47.10	-3.68	5.00
Body	5250.00	24.0	23.9	Σ	5.36	5.56	3.78	5.00
Бойу	5250.00	24.0	23.9	1g (W/kg)	73.90	72.20	-2.30	10.00
				10g (W/kg)	20.70	20.20	-2.41	10.00

Date: 27/05/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	47.25	-3.38	5.00
Dody	5250.00	21.5	23.4	Σ	5.36	5.59	4.35	5.00
Body	5250.00	21.5	23.4	1g (W/kg)	73.90	76.00	2.84	10.00
				10g (W/kg)	20.70	21.20	2.41	10.00

Date: 31/05/2018

Validation dipole and Serial Number: D5GHzv2 / SN: 1222

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	47.02	-3.84	5.00
Body	5250.00	22.7	22.0	Σ	5.36	5.56	3.75	5.00
Бойу	5250.00	22.1	22.0	1g (W/kg)	76.60	74.10	-3.26	10.00
				10g (W/kg)	21.50	20.70	-3.72	10.00

System check 5600 Body

Date: 09/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.50	46.50	-4.13	5.00
Dody	5600.00	23.0	22.1	Σ	5.77	5.99	3.75	5.00
Body	5600.00	23.0	22.1	1g (W/kg)	76.70	73.90	3.75 -3.65	10.00
				10g (W/kg)	21.50	20.50	-4.65	10.00

Date: 19/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.50	46.57	-3.97	5.00
Rody	5600.00	21.0	20.0	Σ	5.77	5.83	1.07	5.00
Бойу	Body 5600.00	21.0	20.0	1g (W/kg) 76.70 79.9	79.90	4.17	10.00	
				10g (W/kg)	21.50		0.93	10.00

Page 38 of 105

REPORT NO: UL-SAR-RP12185759JD18A V3.0

Date: 23/05/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.50	46.73	-3.64	5.00
Body	5600.00	22.1	22.1	Σ	5.77	5.82	0.89	5.00
Бойу	5600.00	22.1	22.1	1g (W/kg)	76.70	78.30	2.08	10.00
				10g (W/kg)	21.50	21.80	1.39	10.00

Issue Date: 06 July 2018

Date: 27/05/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.50	46.49	-4.15	5.00
Body	5600.00	22.7	23.7	Σ	5.77	5.75	-0.29	5.00
Вобу	3000.00	22.1	23.1	1g (W/kg)	76.70	74.50	-2.86	10.00
				10g (W/kg)	21.50	20.60	-4.18	10.00

System check 5750 Body

Date: 09/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.30	46.19	-4.37	5.00
Body	5750.00	23.0	22.1	Σ	5.94	6.18	4.11	5.00
Бойу	5750.00	23.0	22.1	1g (W/kg)	73.50	76.30	3.80	10.00
				10g (W/kg)	20.50	21.20	3.41	10.00

Date: 18/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.30	46.21	-4.33	5.00
Body	5750.00	21.0	20.0	Σ	5.94	5.99	0.88	5.00
Бойу	5750.00	21.0	20.0	1g (W/kg)	73.50	75.00	2.04	10.00
				10g (W/kg)	20.50	21.00	2.43	10.00

Site 60

System check 2450 Body

Date: 09/04/2018

Validation dipole and Serial Number: D2450V2 / SN: 725

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (℃)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	52.70	51.50	-2.28	5.00
Pody	2450.00	23.0	23.0	Σ	1.95	2.01	2.87	5.00
Бойу	Body 2450.00	23.0	23.0	1g (W/kg)	49.90	48.96	-1.86	10.00
				10g (W/kg)	23.60	22.65	-4.01	10.00

Date: 12/04/2018

Validation dipole and Serial Number: D2450V2 / SN: 725

Simulant	Frequency (MHz)	Room Temp (℃)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	52.70	51.26	-2.74	5.00
Body	2450.00	23.0	20.5	Σ	1.95	1.91	-2.11	5.00
Body	2430.00	23.0	20.5	1g (W/kg)	49.90	48.56	-2.66	10.00
				10g (W/kg)	23.60	22.53	-4.52	10.00

REPORT NO: UL-SAR-RP12185759JD18A V3.0

Date: 17/04/2018

Validation dipole and Serial Number: D2450V2 / SN: 725

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Dody				εr	52.70	52.01	-1.32	5.00
	2450.00	23.0	22.4	Σ	1.95	2.04	4.61	5.00
Body	2450.00	23.0	22.4	1g (W/kg)	49.90	52.15	4.51	10.00
				10g (W/kg)	23.60	24.16	2.39	10.00

Issue Date: 06 July 2018

Date: 19/04/2018

Validation dipole and Serial Number: D2450V2 / SN: 725

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	52.70	52.01	-1.32	5.00
Body	2450.00	23.0	22.4	Σ	1.95	2.04	4.61	5.00
Вобу	2430.00	23.0	22.4	1g (W/kg)	49.90	52.15	4.51	10.00
				10g (W/kg)	23.60	24.16	2.39	10.00

Date: 23/05/2018

Validation dipole and Serial Number: D2450V2 / SN: 725

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	52.70	52.64	-0.11	5.00
Dody	2450.00	22.7	23.0	Σ	1.95	1.99	2.23	5.00
Body	2450.00	22.1	23.0	1g (W/kg)	49.90	50.95	2.11	10.00
				10g (W/kg)	23.60	23.44	-0.64	10.00

System check 5250 Body

Date: 16/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	47.11	-3.67	5.00
Body	5250.00	23.5	23.4	Σ	5.36	5.33	-0.52	5.00
Войу	3230.00	23.3	23.4	1g (W/kg)	73.90	72.80	-1.48	10.00
				10g (W/kg)	20.70	20.50	-0.96	10.00

Date: 19/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (℃)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Body				εr	48.90	46.63	-4.64	5.00
	5250.00	24.7	25.0	Σ	5.36	5.15	-4.00	5.00
Бойу	5250.00	24.1	25.0	1g (W/kg)	73.90	71.00	-3.92	10.00
				10g (W/kg)	20.70	20.10	-2.89	10.00

Date: 23/05/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	47.21	-3.47	5.00
Body	5250.00	22.7	23.0	Σ	5.36	5.42	1.18	5.00
Бойу	5250.00	22.1	23.0	1g (W/kg)	73.90	72.10	-2.43	10.00
				10g (W/kg)	20.70	20.10	-2.89	10.00

Date: 29/05/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	48.03	-1.78	5.00
Dody	5250.00	21.5	24.0	Σ	5.36	5.40	0.71	5.00
Body	5250.00	21.5	24.0	1g (W/kg)	73.90	70.70	-4.33	10.00
				10g (W/kg)	20.70	19.50	-5.79	10.00

System check 5600 Body

Date: 12/04/2018

Validation dipole and Serial Number: D5GHzv2 / SN: 1222

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.50	46.16	-4.82	5.00
Dodu	5600.00	23.0	20.5	Σ	5.77	5.59	-3.16	5.00
Body	5600.00	23.0	20.5	1g (W/kg)	79.40	77.30	-2.64	10.00
				10g (W/kg)	22.40	21.40	-4.46	10.00

Date: 16/04/2018

Validation dipole and Serial Number: D5GHzv2 / SN: 1222

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.50	46.44	-4.24	5.00
Body	5600.00	23.5	23.4	Σ	5.77	5.82	0.84	5.00
Бойу	5600.00	23.3	23.4	1g (W/kg)	79.40	82.00	3.27	10.00
				10g (W/kg)	22.40	22.80	1.78	10.00

System check 5750 Body

Date: 16/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.30	46.20	-4.35	5.00
Dody	5750.00	23.5	23.4	Σ	5.94	6.02	1.34	5.00
Body	5750.00	23.3	23.4	1g (W/kg)	73.50	73.60	0.13	5.00
				10g (W/kg)	20.50	20.50	0.00	5.00

Date: 20/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Body				εr	48.30	47.21	-2.25	5.00
	5750.00	23.4	22.2	Σ	5.94	5.98	0.74	5.00
	5750.00	23.4	22.2	1g (W/kg)	73.50	75.20	-6.69	10.00
				10g (W/kg)	20.50	20.90	-9.13	10.00

Site 61

System check 2450 Body

Date: 29/05/2018

Validation dipole and Serial Number: D2450V2 / SN: 725

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	52.70	52.53	-0.32	5.00
Body	2450.00	22.0	22.5	Σ	1.95	2.04	4.57	5.00
Бойу	2450.00	22.0	22.5	1g (W/kg)	49.90	47.37	-5.06	10.00
				10g (W/kg)	23.60	22.09	-6.37	10.00

System check 5250 Body

Date: 18/04/2018

Validation dipole and Serial Number: D5GHzV2 / SN: 1016

Simulant	Frequency (MHz)	Room Temp (°C)	Liquid Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				εr	48.90	47.82	-2.20	5.00
Dody	5250.00	22.0	20.4	Σ	5.36	5.52	3.06	5.00
Body	5250.00	22.0	20.4	1g (W/kg)	73.90	75.60	2.30	10.00
				10g (W/kg)	20.70	21.10	1.93	10.00

10. Measurements, Examinations and Derived Results

10.1. General Comments

SAR test was performed in accordance with the criteria in KDB 248227.

In the 2.4 GHz band, separate SAR procedures were applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR test was evaluated on the mode with the highest rated power, which is in this case was 802.11b mode. OFDM mode was not evaluated because when the highest reported SAR for DSSS was adjusted by the ratio of OFDM to DSSS specified maximum output power, the adjusted SAR obtained was < 1.2W/kg.

In the 5.0 GHz band, the initial test configuration transmission mode was determined by the 802.11 configuration with the highest maximum output power specified for production units, including upper tune-up tolerance, in each standalone and aggregated frequency band. Since multiple channel bandwidth configuration modes have the same specified maximum output power, SAR test was performed on the largest channel bandwidth with the lowest order modulation.

For the cases where the power was not flat throughout the mode to test, additional runs were also performed on the next highest bandwidth provided the power response was identical. This was performed in order to assess the SAR response throughout the frequency band and establish that all worst cases have been evaluated.

Note: SAR Values represented by "-" indicate no SAR peaks were detected during area scans.

UL VS Ltd. Report. No.: 3.0

Page 42 of 105

10.2. Specific Absorption Rate - Test Results

10.2.1. WLAN 2.4 GHz Body 1g

					Power (d	IBm) - WF1		AR Results (g) - WF1	Power (dBm) - WF2		AR Results (g) - WF2		(dBm) - F3		R Results g) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
								SISO Ant WF1									
802.11b	0	Back	1	2412.0	17.00	16.90	0.64	0.65									-
802.11b	0	Display Side	1	2412.0	17.00	16.90	0.03	0.03									-
								SISO Ant WF2									
802.11b	0	Back	11	2462.0					17.00	17.00	0.68	0.68					-
802.11b	0	Display Side	11	2462.0					17.00	17.00	0.04	0.04					-
	<u> </u>							SISO Ant WF3									
802.11b	0	Back	6	2437.0									17.00	17.00	0.52	0.52	-
802.11b	0	Display Side	6	2437.0									17.00	17.00	0.02	0.02	-

WLAN 2.4 GHz Body 1g (Continued)

		e e e e e e e e e e e e e e e e e e e			Power (d	Bm) - WF1		R Results g) - WF1	Power (d	Bm) - WF2		R Results g) - WF2	Power (d WF			R Results ı) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
							MIM	O Ant WF1 + V	VF2								
802.11n, HT20	0	Back	1	2412.0	17.00	16.80	0.62	0.65	17.00	16.30	0.60	0.70					-
	1			,	-		MIM	O Ant WF2 + V	VF3	<u>*</u>							
802.11n, HT20	0	Back	1	2412.0					17.00	16.70	0.63	0.68	17.00	16.80	0.55	0.58	-
	•			•			MIM	O Ant WF3 + V	VF1	•	_		,	•	•		
802.11n, HT20	0	Back	1	2412.0	17.00	16.60	0.56	0.62					17.00	16.70	0.50	0.54	-
	•	,	'	'	•		MIMO A	nt WF1 + WF2	+ WF3					•			
802.11n, HT20	0	Back	6	2437.0	17.00	16.70	0.62	0.66	17.00	16.80	0.71	0.74	17.00	16.70	0.63	0.67	-
802.11n, HT20	0	Back	1	2412.0	17.00	16.60	0.55	0.60	17.00	17.00	0.63	0.63	17.00	16.60	0.55	0.61	-
802.11n, HT20	0	Back	10	2457.0	17.00	16.80	0.76	0.79	17.00	16.60	0.74	0.81	17.00	16.80	0.77	0.81	1

10.2.2. WLAN 5.2 GHz Body 1g Max Reported SAR = 1.10 (W/kg)

				Power (d	IBm) - WF1	1g: S/ (W/l	AR Results kg) - WF1	Power (d	dBm) - WF2	1g: S <i>A</i> (W/k	AR Results (g) - WF2					
Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
							SISO Ant WF1									
0	Back	38	5190.0	14.00	13.80	0.67	0.70									-
0	Display Side	38	5190.0	14.00	13.80	0.08	0.08									-
							SISO Ant WF2									
0	Back	38	5190.0					14.00	14.00	0.64	0.64					-
0	Display Side	38	5190.0					14.00	14.00	0.18	0.18					-
							SISO Ant WF3									
0	Back	46	5230.0									14.00	13.90	0.68	0.70	-
0	Display Side	46	5230.0									14.00	13.90	0.11	0.11	-
	0 0 0 0 0 0	0 Back 0 Display Side 0 Back 0 Display Side	(mm) Position # 0 Back 38 0 Display Side 38 0 Back 38 0 Display Side 38 0 Back 46	(mm) Position # (MHz) 0 Back 38 5190.0 0 Display Side 38 5190.0 0 Back 38 5190.0 0 Display Side 38 5190.0 0 Back 46 5230.0	Dist. (mm) EUT Position Channel # Freq (MHz) Tune Up Limit 0 Back 38 5190.0 14.00 0 Display Side 38 5190.0 14.00 0 Back 38 5190.0 0 Display Side 38 5190.0 0 Back 46 5230.0	Dist. (mm) EU1 Position Channel # (MHz) Freq (MHz) Up Limit Meas Power 0 Back 38 5190.0 14.00 13.80 0 Display Side 38 5190.0 14.00 13.80 0 Back 38 5190.0 0 Display Side 38 5190.0 0 Back 46 5230.0	Dist. (mm) EUT Position Channel # Freq (MHz) Tune Up Limit Meas Power Meas. 0 Back 38 5190.0 14.00 13.80 0.67 0 Display Side 38 5190.0 14.00 13.80 0.08 0 Back 38 5190.0 0 Display Side 38 5190.0 0 Back 46 5230.0	Dist. (mm) EUT position Channel # (MHz) Freq (MHz) Limit Tune Up Limit Meas. Power Meas. Reported 0 Back 38 5190.0 14.00 13.80 0.67 0.70 0 Display Side 38 5190.0 14.00 13.80 0.08 0.08 0 Back 38 5190.0	Dist. EUT Channel Freq (MHz) Up Limit Meas Power Meas. Reported Up Limit Tune Up Limit Meas Power Meas. Reported Tune Up Limit Meas Power Meas. Reported Up Limit Meas Power Meas. Reported Up Limit Meas Reported Up Limit	Dist. (mm)	Dist. (mm)	Dist. Channel Freq (MHz) Limit Meas Reported Limit Limit Meas Reported Limit Limit Meas Reported Reported Limit Meas Reported Reported Limit Meas Reported Meas Meas Reported Meas Meas Reported Meas Meas Meas Reported Meas Meas	Dist. Channel Freq (MHz) Tune Meas Reported Tune Up Limit Meas Power Up Limit Tune Up Limit Up	Dist. Position Channel Freq (MHz) Tune Meas Power Up Limit Meas Power Meas Reported Up Limit Meas Power Meas Meas Meas Meas Meas Reported Meas Meas Meas Reported Up Limit Meas Meas	Channel Freq (MHz) Tune Meas Reported Tune Meas Meas Reported Tune Meas Meas Reported Tune Meas Meas Meas Reported Tune Meas Mea	Channel Frequency Meas Meas

Issue Date: 06 July 2018

WI AN 5.2 GHz Body 1g (Continued)

WLAN 5.2					Power (d	Bm) - WF1	1g: SA (W/k	R Results g) - WF1	Power (dl	Bm) - WF2	1g: SA (W/k	R Results g) - WF2	Power (Wi			R Results g) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
							MIN	IO Ant WF1 + V	VF2								
802.11n HT40	0	Back	46	5230.0	14.00	13.40	0.59	0.68	14.00	13.80	0.77	0.80					1
802.11n HT40	0	Back	38	5190.0	13.00	12.70	0.38	0.41	13.00	13.00	0.57	0.57					-
802.11n HT20	0	Back	36	5180.0	14.00	13.20	0.42	0.51	14.00	13.70	0.66	0.71					-
							MIN	O Ant WF2 + V	VF3								
802.11n HT40	0	Back	46	5230.0					14.00	13.80	0.75	0.79	14.00	13.70	0.60	0.64	-
802.11n HT20	0	Back	36	5180.0					14.00	13.50	0.56	0.63	14.00	13.50	0.40	0.45	-
			<u> </u>				MIM	IO Ant WF3 + V	VF1				<u> </u>	-	<u> </u>		
802.11n HT40	0	Back	46	5230.0	14.00	13.60	0.60	0.66					14.00	13.60	0.56	0.61	-
802.11n HT20	0	Back	48	5240.0	14.00	13.30	0.58	0.68					14.00	13.50	0.56	0.62	-
			•				MIMO	Ant WF1 + WF2	+ WF3								
802.11n HT40	0	Back	46	5230.0	14.00	13.40	0.66	0.76	14.00	13.70	0.94	1.01	14.00	13.50	0.78	0.88	-
802.11n HT40	0	Back	38	5190.0	11.00	9.90	-	-	11.00	10.20	0.41	0.49	11.00	10.30	0.37	0.44	-
802.11n HT20	0	Back	40	5200.0	14.00	13.10	-	-	14.00	13.50	0.88	0.99	14.00	13.50	0.79	0.88	-
802.11n HT20	0	Back	44	5220.0	14.00	13.30	0.65	0.77	14.00	13.30	0.94	1.10	14.00	13.20	0.78	0.94	2
802.11n HT20	0	Back	48	5240.0	14.00	13.20	0.69	0.82	14.00	13.50	0.92	1.03	14.00	13.30	0.71	0.83	-

Page 46 of 105

^{1.} SAR Values represented by "-" indicate no SAR peaks were detected during area scans.

10.2.3. WLAN 5.3 GHz Body 1g

As per KDB 248227, U-NII-1 was chosen for SAR evaluation as maximum rated power for U-NII-1 > U-NII-2A. Based on the measurements obtained, SAR measurements on U-NII-2A band are not required as highest reported SAR from U-NII-1 band is $\leq 1.2 \text{ W/Kg}$.

10.2.4. WLAN 5.6 GHz Body 1g Max Reported SAR = 1.05 (W/kg)

·		ur = 1.00 (1	37		Power (d	dBm) - WF1	1g: S/ (W/l	AR Results kg) - WF1	Power (dBm) - WF2	1g: S/ (W/k	AR Results (g) - WF2		(dBm) - F3		R Results g) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
								SISO Ant WF1									
802.11ac VHT80	0	Back	106	5530.0	13.00	13.00	0.82	0.82									-
802.11ac VHT80	0	Back	122	5610.0	13.00	12.80	0.95	1.00									-
802.11ac VHT80	0	Back	138	5690.0	13.00	12.80	0.82	0.86									-
	,			•				SISO Ant WF2									
802.11ac VHT80	0	Back	106	5530.0					13.00	13.00	0.83	0.83					-
802.11ac VHT80	0	Back	122	5610.0					13.00	13.00	0.79	0.79					-
802.11ac VHT80	0	Back	138	5690.0					13.00	13.00	0.67	0.67					-
								SISO Ant WF3	3								
802.11ac VHT80	0	Back	106	5530.0									13.00	12.90	0.93	0.95	1
802.11ac VHT80	0	Back	122	5610.0									13.00	12.90	0.79	0.81	-
802.11ac VHT80	0	Back	138	5690.0									13.00	12.80	0.56	0.59	-

^{1.} Worst case configuration obtained from WLAN 5.2 GHz SISO mode was used to evaluate WLAN 5.6 GHz.

WLAN 5.6 GHz Body 1g (Continued)

802.11ac VHT80 0 802.11ac VHT80 0 802.11ac VHT80 0	Position Back	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.		Tune								
VHT80 0 802.11ac VHT80 0		122	ı				Reported	Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reporte d	Plot No.
VHT80 0 802.11ac VHT80 0		122				MIM	O Ant WF1 + W	F2								
VHT80) Back		5610.0	13.00	12.80	0.84	0.88	13.00	13.00	0.87	0.87					-
902 1100	Dack	138	5690.0	13.00	12.40	0.66	0.75	13.00	12.90	0.81	0.83					-
VHT80) Back	106	5530.0	10.50	9.90	0.37	0.43	10.50	9.90	0.37	0.42					-
802.11n HT40 0) Back	134	5670.0	13.00	12.60	0.62	0.68	13.00	12.50	0.75	0.84					-
802.11n HT40 0) Back	110	5550.0	13.00	12.50	0.69	0.78	13.00	12.50	0.71	0.80					-
802.11n HT40 0) Back	142	5710.0	13.00	12.40	0.53	0.61	13.00	12.60	0.68	0.74					-
						MIM	O Ant WF2 + W	F3								
802.11ac VHT80 0	Back	138	5690.0					13.00	12.90	0.80	0.82	13.00	12.10	0.54	0.67	-
802.11ac VHT80 0) Back	122	5610.0					13.00	12.80	0.79	0.82	13.00	12.10	0.60	0.74	-
802.11ac VHT80 0) Back	106	5530.0					10.50	9.80	0.36	0.42	10.50	9.20	-	-	-
802.11n HT40 0) Back	134	5670.0					13.00	12.90	0.77	0.79	13.00	12.60	0.53	0.58	-
						MIM	O Ant WF3 + W	F1								
802.11ac VHT80 0) Back	122	5610.0	13.00	13.00	0.89	0.89					13.00	12.30	0.67	0.78	-
802.11ac VHT80 0) Back	138	5690.0	13.00	12.90	0.70	0.71					13.00	12.30	0.52	0.61	-
802.11ac VHT80 0) Back	106	5530.0	10.50	10.00	0.39	0.44					10.50	9.20	0.33	0.45	-
802.11n HT40 0) Back	134	5670.0	13.00	12.80	0.75	0.79					13.00	12.70	0.56	0.60	-

Note(s):

1.

Page 49 of 105

WLAN 5.6 GHz Body 1g (Continued)

					Power (dl	Bm) - WF1	1g: SAI (W/kg	R Results g) - WF1	Power (d	Bm) - WF2	1g: SAF (W/kg	R Results ı) - WF2	Power (WF			R Results J) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reporte d	Plot No.
							MIMO	Ant WF1 + W	F2 + WF3								
802.11ac VHT80	0	Back	122	5610.0	13.00	12.80	0.87	0.91	13.00	13.00	0.85	0.85	13.00	12.20	0.64	0.77	-
802.11ac VHT80	0	Back	138	5690.0	13.00	12.50	0.72	0.81	13.00	12.90	0.79	0.81	13.00	12.00	-	-	-
802.11ac VHT80	0	Back	106	5530.0	10.00	9.80	0.42	0.44	10.00	9.80	0.44	0.46	10.00	9.10	-	-	-
802.11n HT40	0	Back	142	5710.0	13.00	12.30	0.74	0.87	13.00	12.60	0.77	0.84	13.00	12.30	0.50	0.59	-
802.11n HT40	0	Back	110	5550.0	13.00	12.10	0.72	0.89	13.00	12.30	0.74	0.86	13.00	12.40	0.70	0.80	-
802.11n HT40	0	Back	126	5630.0	13.00	12.10	0.86	1.05	13.00	12.50	0.83	0.93	13.00	12.50	0.62	0.69	3

- 2. Worst case configuration obtained from WLAN 5.2 GHz SISO mode was used to evaluate WLAN 5.6 GHz.
- 3. SAR Values represented by "-" indicate no SAR peaks were detected during area scans.

10.2.5. WLAN 5.8 GHz Body 1g Max Reported SAR = 0.97 (W/kg)

		AIX = 0.97 (V			Power (d	dBm) - WF1	1g: S <i>l</i> (W/k	AR Results (g) - WF1	Power (dBm) - WF2	1g: S/ (W/I	AR Results (g) - WF2		(dBm) - F3	1g: SA (W/k	R Results g) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
								SISO Ant WF1									
802.11ac VHT80	0	Back	155	5775.0	13.25	12.80	0.68	0.75									-
								SISO Ant WF2									
802.11ac VHT80	0	Back	155	5775.0					13.25	12.80	0.72	0.80					-
								SISO Ant WF3									
802.11ac VHT80	0	Back	155	5775.0									13.25	13.00	0.62	0.65	-
			•	•			MII	MO Ant WF1 + V	NF2					•			
802.11ac VHT80	0	Back	155	5775.0	13.25	12.30	-	-	13.25	12.80	0.83	0.92					-
	•		<u> </u>		,		MII	MO Ant WF2 + V	NF3								
802.11ac VHT80	0	Back	155	5775.0					13.25	12.90	0.84	0.91	13.25	12.40	-	-	-
							MII	MO Ant WF3 + V	NF1								
802.11ac VHT80	0	Back	155	5775.0	13.25	12.70	0.71	0.81					13.25	12.60	0.59	0.69	-
							MIMO	Ant WF1 + WF2	2 + WF3								
802.11ac VHT80	0	Back	155	5775.0	13.25	12.50	0.57	0.68	13.25	12.80	0.87	0.97	13.25	12.40	-	-	4

- 1. Worst case configuration obtained from WLAN 5.2 GHz SISO mode was used to evaluate WLAN 5.8 GHz.
- 2. SAR Values represented by "-" indicate no SAR peaks were detected during area scans.

10.2.6. Bluetooth Body 1g Max Reported SAR = 0.28 (W/kg)

					Power (d	dBm) - WF1	1g: S/ (W/F	AR Results (g) - WF1	Power (d	dBm) - WF2		AR Results (g) - WF2		(dBm) - F3		R Results g) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
								SISO WF1									
DH5	0	Back	39	2441.0	13.00	12.00	0.22	0.28									5
DH5	0	Display Side	39	2441.0	13.00	12.00	0.01	0.01									-
DH5	0	Back	0	2402.0	13.00	12.00	0.19	0.24									-
DH5	0	Back	78	2480.0	13.00	11.80	0.28	0.00									-

10.3. Specific Absorption Rate - Test Results - SDB Mode

This section contains the SDB Mode Wi-Fi results for WF3 Main core when transmitting at a lower power rate.

10.3.1. WLAN 2.4 GHz (Main) Body 1g - SDB Mode

Max Reported SAR = 0.14 (W/kg)

·		, G				(dBm) - F3		R Results ı) - WF3	
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.
			S	ISO WF3					
802.11b	0	Back	1	2412.00	10.00	9.80	0.11	0.12	-
802.11b	0	Back	6	2437.00	10.00	9.70	0.12	0.13	-
802.11b	0	Back	11	2462.00	10.00	9.80	0.13	0.14	6
Note(s):	•				•				

10.3.2. WLAN 5.2 GHz (Main) Body 1g - SDB Mode

Max Reported SAR = 0.12 (W/kg)

		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(dBm) - F3	1g: SAF (W/kg									
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.						
	SISO WF3														
802.11ac, VHT80	0	Back	38	5190.00	7.00	6.90	0.12	0.12	7						

Note(s):

10.3.3. WLAN 5.3GHz (Main) Body 1g - SDB Mode

As per KDB 248227, U-NII-1 was chosen for SAR evaluation as maximum rated power for U-NII-1 > U-NII-2A. Based on the measurements obtained, SAR measurements on U-NII-2A band are not required as highest reported SAR from U-NII-1 band is $\leq 1.2 \text{ W/Kg}$.

Page 53 of 105
UL VS Ltd. Report. No.: 3.0

10.3.4. WLAN 5.6 GHz (Main) Body 1g - SDB Mode

Max Reported SAR = 0.17 (W/kg)

		(**************************************				(dBm) - F3	1g: SAF (W/kg						
Mod.	Dist. (mm)					Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Reported	Plot No.		
	SISO WF3												
802.11ac, VHT80	0	Back	106	5530.00	6.00	5.80	0.16	0.17	-				
802.11ac, VHT80	0	Back	122	5610.00	6.00	5.90	0.17	0.17	8				
802.11ac, VHT80	0	Back	138	5690.00	6.00	5.80	0.17	0.17	-				
Note(s):	•			,		1							

10.3.5.WLAN 5.8 GHz (Main) Body 1g - SDB Mode

Max Reported SAR = 0.18 (W/kg)

	Power (dE WF3							R Results ı) - WF3							
Mod.	Dist. (mm)	EUT Position	Channel #	Freq (MHz)	Tune Up Limit	Meas Power	Meas.	Meas. Reported							
	SISO WF3														
802.11ac, VHT80	0	Back	155	5775.00	6.00	6.00	0.18	0.18	9						
Noto(c)			·				<u> </u>		•						

10.4. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Exposure Configuration	Technology Band	Measured 1g - SAR (W/Kg)	Equipment Class	Max Meas. Source base Avg. Power [dBm]	Ratio of Largest to Smallest SAR Measured
BODY (Separation	WLAN 2.4 GHz	0.77	DTS	16.80	1.03
Distance 0mm)	(802.11n HT20 MIMO WF1 + WF2 + WF3 – CH10)	0.75	סוט	10.00	1.03
BODY	WLAN 5.2 GHz	0.94	11.501.4	40.70	4.04
(Separation Distance 0mm)	(802.11n HT40 MIMO WF1 + WF2 + WF3 – CH46)	0.90	U-NII-1	13.70	1.04
BODY	WLAN 5.6 GHz	0.95	11 111 00	40.00	4.00
(Separation Distance 0mm)	(802.11ac VHT80 SISO WF1 – CH122)	0.93	U-NII-2C	12.80	1.02
BODY	WLAN 5.8 GHz	0.87		40.00	4.40
(Separation Distance 0mm)	(802.11ac VHT80 MIMO WF3 + WF1 + WF3 - CH155)	0.79	U-NII-3	12.80	1.10

10.5. Highest Standalone Reported SAR

Individual Transmitter Evaluation per Band:

				Repor		Max Rated Source base	Highest				
Exposure Configuration	Technology Band		SISO			MI	МО		Equipment Class	Avg. Power + Max Tolerance	Reported 10g - SAR (W/Kg)
		WF1	WF2	WF3	WF1+WF2	WF2+WF3	WF3+WF1	WF1+WF2+ WF3		[dBm]	OAR (Wing)
	WLAN 2.4 GHz	0.65	0.68	0.52	0.70	0.68	0.62	0.81	DTS	17.00	0.81
	WLAN 5.2 GHz	0.70	0.64	0.70	0.80	0.79	0.68	1.10	U-NII	14.00	1.10
BODY (Separation Distance 0mm)	WLAN 5.6 GHz	1.00	0.83	0.95	0.88	0.82	0.89	1.05	U-NII	13.00	1.05
	WLAN 5.8 GHz	0.75	0.80	0.65	0.92	0.91	0.81	0.97	U-NII	13.25	0.97
	Bluetooth	0.28	N/A	N/A	N/A	N/A	N/A	N/A	DTS	13.00	0.28

11. Simultaneous Transmission Analysis

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the <u>reported</u> standalone SAR of each applicable simultaneous transmitting antenna.

													Simultan	eous Tra	nsmissio	n Condit	ions											
												WLAN	(Main)												WLAN	l (Aux)	WPA N	
Case						Wi-Fi 2	2.4 GHz							Wi-Fi 5.0 GHz											Wi-Fi 2.4 GHz	Wi-Fi 5.0 GHz	ВТ	Highest Reporte d Sum-
		SISO						MIMO						SISO		МІМО							SISO		SISO	SAR 1g- SAR		
	WF1	WF2	WF3	WF1	+WF2	WF2+	- WF3	WF1	⊦ WF3	WF	1+WF2+\	WF3	WF1	WF2	WF3	WF1-	+WF2	WF2	+WF3	WF1-	- WF3	WF	1+WF2+V	NF3	WF3	WF3	WF1	(W/Kg)
		****		WF1	WF2	WF2	WF3	WF1	WF3	WF1	WF2	WF3	***	VF1 VVF2		WF1	WF2	WF2	WF3	WF1	WF3	WF1	WF2	WF3			•••	
													SD	B Mode I	nactive													
1													1.00														0.28	1.28
2														0.83													0.28	1.11
3															0.95												0.28	1.23
4																0.88	0.87										0.28	1.16
5																		0.91	-								0.28	0.91
6																				0.89	0.78						0.28	1.17
7																						1.05	0.93	0.69			0.28	1.33
8		0.68																									0.28	0.68
9			0.52																								0.28	0.52
10						0.68	0.58						<u> </u>														0.28	0.68
		1	•				•	1		•	•		SI	DB Mode	Active	1		•	1		•	•					•	
11	0.65																								0.52			0.65
12		0.68																							0.52			0.68
13	0.05	0.68						ļ						ļ			ļ		ļ						0.52		0.28	0.68
14	0.65	0.00						ļ											ļ							0.95		0.95
15		0.68			-	-		ļ	1											1			-			0.95 0.95	0.00	0.95
16		0.68	0.44																								0.28	0.95
17			0.14																							0.95 0.95	0.00	1.09
18			0.14	0.05	0.70				-											-			-				0.28	
19				0.65	0.70	0.68	0.00												1							0.95 0.95		0.95 0.95
20						0.68	0.00																			0.95	0.28	0.95
21 22						0.68	0.00	0.62	0.00																	0.95	0.28	0.95
								0.62	0.00	0.79	0.01	0.00														0.95		0.95
23										0.79	0.81	0.00														0.95		0.95

(Table Continued)

(i ai	DIE C	Ontin	iucuj																									
													Simultan	eous Tra	nsmissio	n Condit	ions											
												WLAN	(Main)												WLAN (Aux)		WPA N	
Case						Wi-Fi 2	2.4 GHz							Wi-Fi 5.0 GHz										Wi-Fi 2.4 GHz	Wi-Fi 5.0 GHz	BT	Highest Reporte d Sum-	
		SISO						MIMO						SISO						MIMO					SI	so	SISO	SAR 1g- SAR
	WF1	WF2	WF3	WF1	+WF2	WF2	- WF3	WF1	+ WF3	WF	1+WF2+V	NF3	WF1	WF2	WF3	WF1-	-WF2	WF2	+WF3	WF1-	- WF3	WF	1+WF2+\	NF3	WF3	WF3	WF1	(W/Kg)
		WIZ	WIS	WF1	WF2	WF2	WF3	WF1	WF3	WF1	WF2	WF3	""	WIZ	WIS	WF1	WF2	WF2	WF3	WF1	WF3	WF1	WF2	WF3	WIS	WIS		
24													1.00												0.52		1	1.00
25													1.00												0.52		0.28	1.28
26														0.83											0.52			0.83
27														0.83											0.52		0.28	0.83
28															0.18										0.52			0.70
29															0.18										0.52		0.28	0.70
30																-	0.92								0.52			0.92
31																0.88	0.87								0.52		0.28	1.16
32																		0.91	0.00						0.52			0.91
33																		0.91	0.00						0.52		0.28	0.91
34																				0.89	0.00				0.52			0.89
35																				0.89	0.00				0.52		0.28	1.17
36																						0.77	1.10	0.00	0.52			1.10
37																						1.05	0.93	0.00	0.52		0.28	1.33
38													1.00													0.95		1.00
39													1.00													0.95	0.28	1.28
40														0.83												0.95		0.95
41														0.83												0.95	0.28	0.95
42																-	0.92									0.95		0.95
43																0.88	0.87									0.95	0.28	1.16

Notes:

- 1. "Highest Reported Sum-SAR" column contains the highest reported SAR addition (if applicable) of simultaneous transmission technologies being transmitted on the same antenna. The summation only considered for same antenna {i.e.: WF1 (5.0 GHz Main SISO) + WF1 (BT SISO)}, as the other transmitting antenna (i.e.: WF2 or WF3) is > 50 mm separation distance from WF1 antenna and does not have any effects on SAR from WF2 or WF3 antenna.
- 2. On cases 20 23 and 32 37, when WF3 Main core is on MIMO mode, measured SAR level has been considered negligible since WF3 Main core is set to transmit at 6dB less than the standard power rate.
- 3. On cases 17, 18, 20 23, 28, 29, 32 37 WF3 Main and Auxiliary cores are transmitting simultaneously.