

TEST REPORT

Report Number: 15496249-E30V1

Applicant : APPLE, INC
1 APPLE PARK WAY
CUPERTINO, CA 95014, U.S.A.

Model : A3257

Brand : APPLE

FCC ID : BCG-E8950A

EUT Description : SMARTPHONE

Test Standard(s) : FCC 47 CFR PART 2, PART 27

Date Of Issue:
2025-07-30

Prepared by:
UL Verification Services Inc.
47173 Benicia Street
Fremont, CA 94538, U.S.A.
TEL: (510) 319-4000
FAX: (510) 661-0888

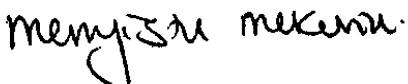
Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2025-07-30	Initial Review	--

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	5
2. SUMMARY OF TEST RESULTS	6
3. TEST METHODOLOGY	7
4. FACILITIES AND ACCREDITATION	7
5. DECISION RULES AND MEASUREMENT UNCERTAINTY	8
5.1. METROLOGICAL TRACEABILITY	8
5.2. DECISION RULES	8
5.3. MEASUREMENT UNCERTAINTY	8
5.4. SAMPLE CALCULATION	8
6. EQUIPMENT UNDER TEST	9
6.1. DESCRIPTION OF EUT	9
6.2. MAXIMUM OUTPUT POWER	9
6.3. SOFTWARE AND FIRMWARE	10
6.4. MAXIMUM ANTENNA GAIN AND MAXIMUM ALLOWED OUTPUT POWER	10
6.5. WORST-CASE CONFIGURATION AND MODE	11
6.6. DESCRIPTION OF TEST SETUP	12
7. TEST AND MEASUREMENT EQUIPMENT	13
8. RF OUTPUT POWER VERIFICATION	14
8.1. 5G NR n70	15
9. CONDUCTED TEST RESULTS	17
9.1. OCCUPIED BANDWIDTH	17
9.1.1. 5G NR n70	18
9.2. EMISSION MASK AND ADJACENT CHANNEL POWER	19
9.2.1. 5G NR n70	20
9.3. OUT OF BAND EMISSIONS	23
9.3.1. 5G NR n70	24
9.4. FREQUENCY STABILITY	25
9.4.1. 5G NR n70 (BPSK 15MHz BANDWIDTH)	26
9.5. PEAK-TO-AVERAGE POWER RATIO	27
9.5.1. 5G NR n70	27

10. RADIATED TEST RESULTS.....	28
10.1. FIELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz.....	31
10.1.1. 5G NR n70.....	32
11. SETUP PHOTOS.....	34


1. ATTESTATION OF TEST RESULTS

Applicant Name and Address	APPLE, INC 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A.
Model	A3257
Brand	APPLE
FCC ID	BCG-E8950A
EUT Description	SMARTPHONE
Serial Number	Radiated: HM7J7JQX6J, LFJJGD2VPV. GMHVQR27VP Conducted: HVHHH5000AY000122J, HVHHH50002D0000YE7 HVHHD20009U0000YE7
Sample Receipt Date	2025-02-28
Date Tested	2025-03-31 to 2025-07-08
Applicable Standards	FCC 47 CFR PART 2, PART 27
Test Results	COMPLIES

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document.

Approved & Released By: 	Reviewed By: 	Prepared By:
Mengistu Mekuria Staff Laboratory Engineer UL Verification Services Inc.	Eric Ting Senior Test Engineer UL Verification Services Inc.	Carlos D. Caudana Laboratory Engineer UL Verification Services Inc.

2. SUMMARY OF TEST RESULTS

This report contains data provided by the customer, which can impact the validity of the results. UL Verification Services Inc. is only responsible for correctly integrating customer-provided data with measurements performed by UL Verification Services Inc.

Below is a list of the data provided by the customer:

1. Antenna gain and type (see section 6.4)

Requirement Description	Requirement Clause Number (FCC)	Result	Remarks
Equivalent Isotropic Radiated Power	27.50 (d) (4)	Complies	
Occupied Bandwidth	2.1049	Complies	
Band Edge and Emission Mask	2.1051, 27.53 (h)	Complies	
Out of Band Emissions	2.1051, 27.53 (h)	Complies	
Frequency Stability	2.1055, 27.54	Complies	
Peak-to-Average Ratio	27.50 (d) (5)	Complies	
Field Strength of Spurious Radiation	2.1053, 27.53 (h)	Complies	

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following.
FCC published lists of [measurement procedures](#) for compliance testing.

- ANSI C63.26:2015
- ANSI/TIA-603-E (2016)
- FCC 47 CFR Part 2, Part 27
- [FCC KDB 971168 D01](#): Power Meas License Digital Systems
- [FCC KDB 971168 D02](#): Misc Rev Approv License Devices
- [FCC KDB 412172 D01](#): Determining ERP and EIRP

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
<input type="checkbox"/>	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	550739
<input type="checkbox"/>	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA			
<input checked="" type="checkbox"/>	Building 3: 843 Auburn Court, Fremont, CA 94538, USA			
<input type="checkbox"/>	Building 4: 47658 Kato Rd, Fremont, CA 94538, USA			
<input checked="" type="checkbox"/>	Building 5: 47670 Kato Rd, Fremont, CA 94538, USA			

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U_{Lab}
Conducted Antenna Port Emission Measurement	1.940 dB
Power Spectral Density	2.466 dB
Time Domain Measurements Using SA	3.39 %
RF Power Measurement Direct Method Using Power Meter	0.450 dB Ave. 1.300 dB Peak
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)
36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with cellular GSM, GPRS, EGPRS, WCDMA, LTE, 5GNR1, 5GNR2, IEEE 802.11a/b/g/n/ac/ax/be, Bluetooth (BT), Ultra-Wideband (UWB), Global Positioning System (GPS), Near-Field Communication (NFC), Narrow-Band (NB) UNII, 802.15.4, 802.15.4ab-Narrow Band (NB), Wireless Power Transfer (WPT) and Mobile Satellite Service (MSS) technologies. The rechargeable battery is not user accessible. This device is not user-serviceable and requires special tools to disassemble.

6.2. MAXIMUM OUTPUT POWER

EIRP/ERP TEST PROCEDURE

ANSI C63.26:2015
KDB 971168 D01 Section 5.6

ERP/EIRP = PMeas + GT - LC

where: ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted and ERP/EIRP output powers as follows:

5G NR n70

Part 27										
EIRP Limit (W)		1.00								
Antenna Gain (dBi) (Ant 4)		-0.70								
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (MHz)	99% BW (kHz)	Emission Designator	
5.0	BPSK	1697.5	1707.5	25.70	25.00	0.316	4.498	4498	4M50G7W	
	QPSK			25.70	25.00	0.316	4.503	4503	4M50G7W	
	16QAM			25.40	24.70	0.295	4.503	4503	4M50D7W	
10.0	BPSK	1700.0	1705.0	25.70	25.00	0.316	8.970	8970	8M97G7W	
	QPSK			25.70	25.00	0.316	8.967	8967	8M97G7W	
	16QAM			25.28	24.58	0.287	8.965	8965	8M97D7W	
15.0	BPSK	1702.5	1702.5	25.67	24.97	0.314	13.454	13454	13M5G7W	
	QPSK			25.70	25.00	0.316	13.440	13440	13M4G7W	
	16QAM			25.28	24.58	0.287	13.468	13468	13M5D7W	

6.3. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was version 0.08.00.

6.4. MAXIMUM ANTENNA GAIN AND MAXIMUM ALLOWED OUTPUT POWER

The IFA antenna(s) gain/ allowed output power, as provided by the manufacturer' are as follows:

Bands	Frequency Range (MHz)	Antenna	Gain (dBi)	Max Allowed Conducted Output Power (dBm)	ERP/EIRP (dBm)
5G NR n70	1695 - 1710	ANT3	-3.4	25.7	22.30
		ANT4	-0.7	25.7	25.00
		ANT2	-2.8	25.7	22.90
		ANT1	-4.2	25.7	21.50

6.5. WORST-CASE CONFIGURATION AND MODE

This report covers the following technologies:

- 5G NR n70

For 5G NRs, conducted spurious emission tests were conducted on wider bandwidth with inner 1RB since this is the worst bandwidth and the highest output power.

BPSK modulation applied only for 5G NR frequencies and has the same tune up power as QPSK modulations.

The DFT-s-OFDM and CP-OFDM waveforms were investigated, and DFT-s-OFDM was found to be the worst case.

The worst-case scenario for all measurements is based on an engineering evaluation made on different modulations. Then, QPSK and BPSK were observed as the worst mode to LTE bands and 5G NR bands respectively and set for all conducted and radiated. Output power measurements were measured on BPSK, QPSK, 16QAM, 64QAM, and 256QAM modulations. For testing purposes emissions on section 9 were measured while QPSK/BPSK was set at or above target power for all bands. Conducted tests were performed on the worst-case antenna port because it has the highest conducted power. The worst-case antenna port is shown in the table below.

5G NR Bands	Worst case Antenna Port
5G NR 70	Ant 3

The EUT was investigated in three orthogonal orientations X/Y/Z on all available antennas to determine the worst-case orientation. The following table exhibits the worst-case orientation. The full tests of the EUT have made upon the orientations shown in the table below.

Frequency Range	ANT3	ANT4	ANT2	ANT1
1695 – 1710 MHz	X	X	X	X

Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 1GHz. There were no emissions found with less than 20dB of margin from 9kHz to 30MHz, 30MHz-1GHz.

For simultaneous transmission of multiple channels in the 2.4GHz/5GHz WLAN, UWB, and Cellular bands, tests were conducted for various configurations having the highest power, least separation in frequencies and widest operation bandwidths. No noticeable new emission was found.

6.6. DESCRIPTION OF TEST SETUP

Refer to Appendix A for description of test setup.

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset	Cal Due
Antenna, Horn 1-18GHz	ETS Lindgren	3117	250003	2026-02-28
RF Filter Box, 1-18GHz, 12 Port	UL-FR1	Frankenstein	231876	2026-04-30
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	223459	2026-02-27
Antenna, Broadband Hybrid, 30MHz to 3GHz	Sunol Sciences Corp.	JB3	171863	2026-11-30
Amplifier 9 KHz - 1 GHz	SONOMA INSTRUMENT	310N	224490	2026-05-06
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO-METRICS	EM-6871	170013	2025-07-31
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO-METRICS	EM-6872	170015	2025-07-31
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	262735	2026-03-30
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	231912	2026-04-30
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	259079	2026-02-28
PXA Signal Analyzer	Keysight Technologies Inc	N9030B	262734	2026-04-30
Wideband Communication Call Box	Rohde & Schwarz	CMW500	230298	2026-02-28
Wideband Communication Call Box	Rohde & Schwarz	CMW500	85943	2026-02-28
Wideband Communication Call Box	Rohde & Schwarz	CMW500	262742	2027-02-11
Wideband Communication Call Box	Rohde & Schwarz	CMW500	262741	2027-02-11
Conducted Switch Box	N/A	CSB	221008	2026-04-30
Conducted Switch Box	N/A	CSB	262354	2026-04-30
Filter, BRF 3400-3800MHz, 18GHz max	Micro-Tronics	BRM50711	217364	2025-09-30
Filter, BRF 2305-2315	Micro-Tronics	BRC20553	224186	2026-06-29
Directional Coupler	KRYTAR	152610	254457	2025-10-31
Directional Coupler	KRYTAR	101040010K	254458	2025-10-30
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90718	2026-03-31
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	257704	2026-03-31
Chamber, Environmental	Cincinnati Sub Zero	ZPHS-8-3.5-SCT/WC	89097	2025-10-31
UL AUTOMATION SOFTWARE				
Conducted Software	UL	Power Measurement	Ver 2023.08.14	
Conducted Software	UL	Antenna Port	Ver.2022.8.16	
Conducted Software	UL	Station Tool	Ver. v2025.3.0, v2025.5.0 & v2025.6.1	
Radiated Software	UL	UL EMC	Ver 9.5, May 1, 2023	

8. RF OUTPUT POWER VERIFICATION

CONDUCTED OUTPUT POWER MEASUREMENT PROCEDURE

All bands conducted average power is obtained from the base station simulator.

The following tests were conducted according to the test requirements outlined in ANSI C63.26 Section 5.2.

RESULTS

EUT has different power levels for head use configuration and body use configuration. All measurements are made with the device operating at the highest average conducted output powers.

8.1. 5G NR n70

Test Engineer ID:	16080	Test Date:	2025-04-01
-------------------	-------	------------	------------

OUTPUT POWER FOR 5G NR n70 (5.0 MHz)

Bandwidth (MHz)	Modulation	RB Allocation	RB Offset	Conducted Average (dBm)												
				ANT 3				ANT 4				ANT 2				ANT 1
				339500	340500	341500	339500	340500	341500	339500	340500	341500	339500	340500	341500	
5.0	BPSK	1	0	25.52	25.63	25.60	25.58	25.64	25.60	25.62	25.60	25.48	25.56	25.53	25.55	
		1	1	25.65	25.70	25.67	25.56	25.58	25.68	25.53	25.65	25.52	25.66	25.57	25.57	
		1	23	25.70	25.70	25.62	25.67	25.62	25.70	25.70	25.67	25.54	25.70	25.54	25.58	
		1	24	25.62	25.69	25.57	25.67	25.63	25.59	25.69	25.63	25.54	25.67	25.56	25.62	
		12	6	25.65	25.67	25.70	25.69	25.67	25.66	25.66	25.63	25.70	22.60	25.63	25.67	
	QPSK	25	0	25.51	25.53	25.50	25.57	25.48	25.50	25.52	25.50	25.49	25.53	25.51	25.51	
		1	0	25.40	25.41	25.45	25.32	25.40	25.39	25.41	25.44	25.38	25.41	25.41	25.46	
		1	1	25.60	25.62	25.64	25.66	25.65	25.63	25.60	25.67	25.56	25.63	25.61	25.65	
		1	23	25.58	25.65	25.67	25.68	25.66	25.57	25.60	25.70	25.60	25.70	25.60	25.59	
		1	24	25.41	25.41	25.45	25.48	25.40	25.50	25.46	25.32	25.44	25.38	25.31	25.31	
	16QAM	12	6	25.67	25.70	25.66	25.70	25.70	25.68	25.67	25.69	25.62	25.65	25.70	25.70	
		25	0	25.37	25.39	25.36	25.41	25.32	25.37	25.33	25.33	25.37	25.40	25.39	25.37	
		1	0	24.19	24.26	24.26	24.33	24.27	24.35	24.22	24.35	24.19	24.34	24.36	24.35	
		1	1	25.28	25.25	25.33	25.30	25.40	25.28	25.29	25.37	25.22	25.32	25.33	25.35	
		1	23	25.44	25.40	25.33	25.36	25.31	25.32	25.36	25.43	25.25	25.32	25.31	25.19	
	64QAM	1	24	24.28	24.39	24.34	24.41	24.34	24.31	24.39	24.28	24.20	24.28	24.25	24.32	
		12	6	25.30	25.39	25.33	25.29	25.29	25.26	25.34	25.34	25.13	25.27	25.25	25.36	
		25	0	24.28	24.38	24.28	24.25	24.33	24.29	24.29	24.28	24.14	24.31	24.23	24.31	
		1	0	23.78	23.89	23.85	23.67	23.87	23.82	23.81	23.72	23.73	23.82	23.79	23.84	
		1	1	23.75	23.76	23.82	23.80	23.85	23.82	23.75	23.87	23.77	23.92	23.75	23.82	
	256QAM	1	23	23.81	23.91	23.64	23.76	23.83	23.74	23.95	23.94	23.77	23.91	23.97	23.83	
		1	24	23.74	23.76	23.82	23.84	23.67	23.92	23.94	23.84	23.79	23.79	23.70	23.86	
		12	6	23.80	23.90	23.73	23.67	23.74	23.77	23.77	23.84	23.76	23.81	23.70	23.75	
		25	0	23.73	23.82	23.75	23.70	23.70	23.68	23.81	23.75	23.65	23.82	23.77	23.78	
		1	0	21.69	21.75	21.79	21.62	21.82	21.76	21.71	21.82	21.76	21.69	21.81	21.78	
	256QAM	1	1	21.71	21.84	21.71	21.69	21.74	21.84	21.76	21.87	21.80	21.82	21.71	21.72	
		1	23	21.83	22.04	21.81	21.73	21.83	21.82	21.95	21.84	21.81	21.83	21.69	21.78	
		1	24	21.81	21.84	21.75	21.74	21.77	21.78	21.78	21.82	21.70	21.81	21.74	21.67	
		12	6	21.79	21.87	21.78	21.77	21.76	21.77	21.81	21.83	21.71	21.71	21.72	21.75	
		25	0	21.80	21.86	21.75	21.77	21.77	21.74	21.82	21.85	21.74	21.63	21.72		

OUTPUT POWER FOR 5G NR n70 (10.0 MHz)

Bandwidth (MHz)	Modulation	RB Allocation	RB Offset	Conducted Average (dBm)												
				ANT 3				ANT 4				ANT 2				ANT 1
				340000	340500	341000	340000	340500	341000	340000	340500	341000	340000	340500	341000	
10.0	BPSK	1	0	25.48	25.50	25.53	25.48	25.61	25.53	25.53	25.52	25.53	25.51	25.52	25.52	
		1	1	25.64	25.59	25.69	25.66	25.68	25.59	25.70	25.65	25.67	25.69	25.56	25.59	
		1	50	25.58	25.60	25.65	25.69	25.70	25.70	25.69	25.68	25.58	25.70	25.59	25.64	
		1	51	25.48	25.54	25.43	25.56	25.53	25.54	25.58	25.53	25.52	25.58	25.50	25.55	
		25	12	25.56	25.52	25.63	25.58	25.55	25.57	25.60	25.63	25.62	25.51	25.59	25.63	
	QPSK	50	0	25.43	25.45	25.46	25.52	25.51	25.46	25.57	25.56	25.52	25.47	25.47	25.44	
		1	0	25.31	25.38	25.32	25.40	25.31	25.45	25.27	25.37	25.42	25.32	25.35	25.33	
		1	1	25.60	25.70	25.70	25.70	25.60	25.62	25.61	25.70	25.69	25.65	25.70	25.70	
		1	50	25.70	25.62	25.64	25.70	25.69	25.67	25.68	25.66	25.66	25.69	25.58	25.56	
		1	51	25.35	25.36	25.34	25.39	25.45	25.36	25.37	25.36	25.35	25.35	25.28	25.34	
	16QAM	25	12	25.53	25.49	25.61	25.62	25.56	25.65	25.70	25.60	25.60	25.60	25.52	25.52	
		50	0	25.25	25.19	25.28	25.36	25.26	25.32	25.27	25.41	25.37	25.31	25.37	25.28	
		1	0	24.22	24.19	24.23	24.27	24.20	24.19	24.31	24.32	24.23	24.32	24.42	24.35	
		1	1	25.19	25.26	25.17	25.26	25.10	25.17	25.22	25.19	25.46	25.29	25.27	25.22	
		1	50	25.28	25.16	25.15	25.28	25.20	25.22	25.24	25.27	25.35	25.29	25.26	25.29	
	64QAM	1	51	24.33	24.17	24.14	24.31	24.21	24.26	24.16	24.27	24.29	24.27	24.24	24.03	
		25	12	25.20	25.13	25.25	25.21	25.10	25.26	25.24	25.28	25.30	25.24	25.23	25.25	
		50	0	24.21	24.12	24.20	24.28	24.12	24.30	24.20	24.26	24.30	24.28	24.24	24.16	
		1	0	23.82	23.62	23.64	23.74	23.70	23.67	23.86	24.01	23.71	23.79	23.78	23.81	
		1	1	23.73	23.79	23.58	23.80	23.77	23.84	23.77	24.00	23.78	23.78	23.59	23.67	
	256QAM	1	50	23.77	23.64	23.70	23.72	23.74	20.67	23.81	23.93	23.81	23.68	23.81	23.64	
		1	51	23.75	23.55	23.61	24.05	23.70	23.75	23.75	23.94	23.77	23.81	23.73	23.78	
		25	12	23.75	23.65	23.64	23.79	23.70	23.68	23.72	23.93	23.70	23.75	23.73	23.73	
		50	0	23.75	23.69	23.72	23.84	23.75	23.75	23.75	23.83	23.77	23.77	23.72	23.71	
		1	0	21.72	21.58	21.65	21.67	21.67	21.78	21.71	21.88	21.74	21.68	21.76	21.85	
	256QAM	1	1	21.77	21.70	21.71	21.81	21.55	21.70	21.72	21.78	21.82	21.85	21.73	21.65	
		1	50	21.58	21.59	21.66	21.83	21.61	21.69	21.68	21.96	21.79	21.73	21.60	21.61	
		1														

OUTPUT POWER FOR 5G NR n70 (15.0 MHz)

Bandwidth (MHz)	Modulation	RB Allocation	RB Offset	Conducted Average (dBm)									
				ANT 3		ANT 4		ANT 2			ANT 1		
				N/A	340500	N/A	N/A	340500	N/A	N/A	340500	N/A	N/A
15.0	BPSK	1	0	25.51		25.51		25.60		25.59			
		1	1	25.60		25.60		25.61		25.70			
		1	77	25.62		25.67		25.70		25.65			
		1	78	25.50		25.60		25.56		25.56			
		36	18	25.54		25.56		25.53		25.52			
		75	0	25.48		25.46		25.38		25.43			
		1	0	25.35		25.31		25.35		25.32			
	QPSK	1	1	25.70		25.70		25.66		25.66			
		1	77	25.70		25.67		25.62		25.63			
		1	78	25.42		25.37		25.33		25.29			
		36	18	25.64		25.67		25.57		25.65			
		75	0	25.34		25.32		25.26		25.26			
	16QAM	1	0	24.26		24.24		24.16		24.25			
		1	1	25.28		25.14		25.25		25.39			
		1	77	25.22		25.28		25.13		25.12			
		1	78	24.32		24.24		24.08		24.24			
		36	18	25.20		25.13		25.16		25.25			
		75	0	24.19		24.19		24.21		24.14			
		1	0	23.87		23.78		23.60		23.73			
	64QAM	1	1	23.77		23.70		23.78		23.79			
		1	77	23.66		23.75		23.85		23.75			
		1	78	23.80		23.67		23.79		23.73			
		36	18	23.69		23.66		23.67		23.76			
		75	0	23.77		23.66		23.66		23.79			
	256QAM	1	0	21.89		21.68		21.79		21.93			
		1	1	21.80		21.66		21.70		21.91			
		1	77	21.58		21.74		21.74		21.58			
		1	78	21.56		21.79		21.64		21.68			
		36	18	21.59		21.77		21.76		21.68			
		75	0	21.73		21.73		21.80		21.72			

9. CONDUCTED TEST RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

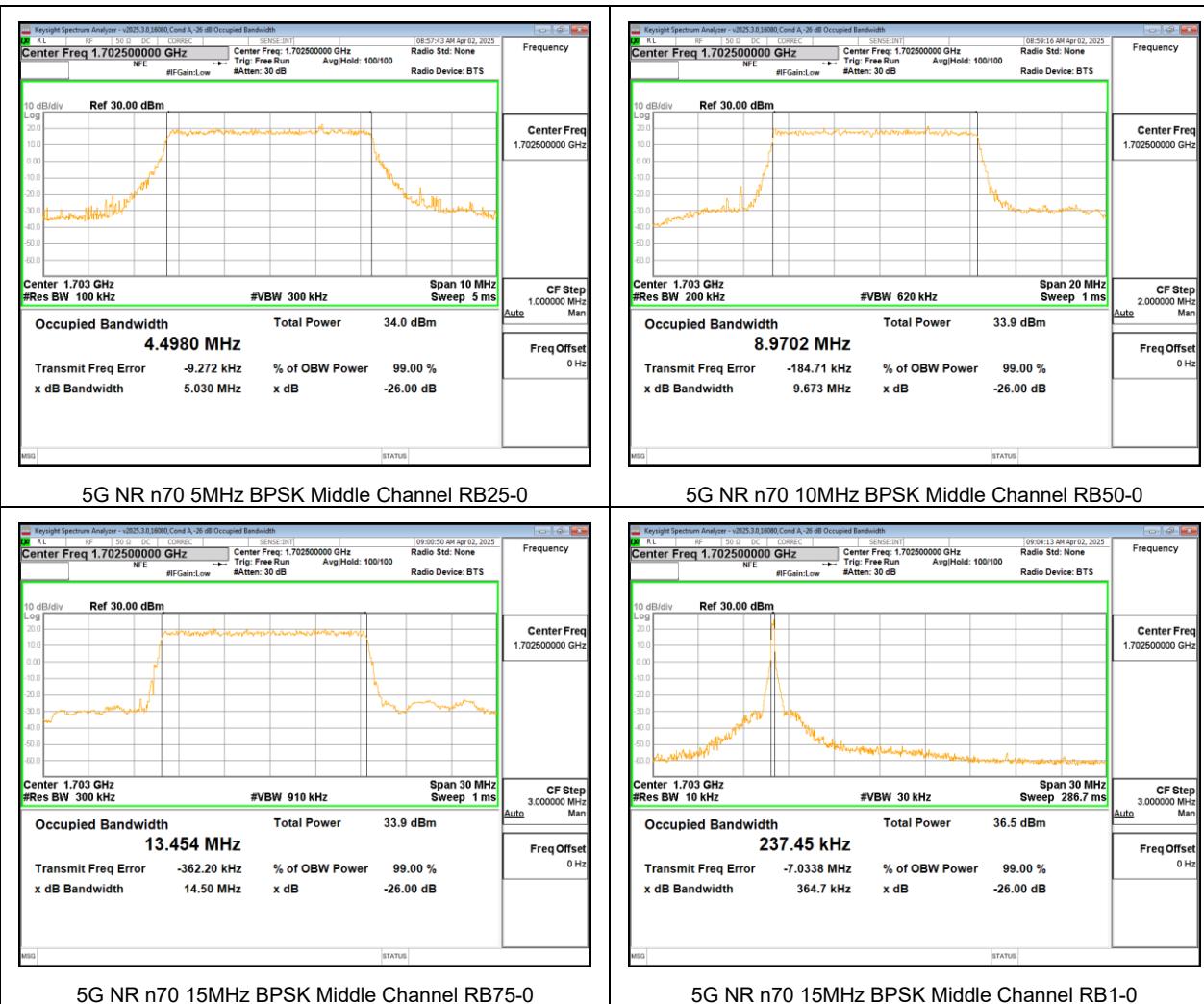
FCC: §2.1049

LIMITS

For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The 99% and -26dB bandwidths was also measured and recorded.


RESULTS

There is no limit required and power is the same for low, middle and high channel; therefore, only middle channel was tested.

5G NR n70

Band	Mode	RB Allocation/RB Offset	f(MHz)	99% BW (MHz)	-26dB BW (MHz)	
5G NR n70	5MHz, BPSK	25/0	1702.5	4.498	5.03	
	5MHz, QPSK			4.503	5.15	
	5MHz, 16QAM			4.503	5.14	
	10MHz, BPSK	50/0		8.970	9.67	
	10MHz, QPSK			8.967	9.75	
	10MHz, 16QAM			8.965	9.94	
	15MHz, BPSK	75/0		13.454	14.50	
	15MHz, QPSK			13.440	14.52	
	15MHz, 16QAM			13.468	14.39	
	15MHz, BPSK	1/0		0.237	0.37	

9.1.1. 5G NR n70

9.2. EMISSION MASK AND ADJACENT CHANNEL POWER

LIMITS

FCC: §27.53(h)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P)$ dB.

TEST PROCEDURE

For Spectrum Emission Mask plots, the spectrum analyzer is configured to sweep with a moving integration window, the width of which can be adjusted to different sizes across the sweep. The window width is configured to be greater than or equal to the required reference bandwidth. The center frequencies of the integration window for the different integration windows was set such that the upper and lower edges of the windows are aligned with the transition points in the reference bandwidths. This is achieved by setting the start / stop frequencies of the window with an offset equal to the reference bandwidth / 2 from the transition point.

The transmitter output was connected to a base station simulator and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:


1. Set the spectrum analyzer span to include the block edge frequency.
2. Set a marker to point the corresponding band edge frequency in each test case.
3. Set display line at required limit.
4. Set resolution bandwidth to at least 1% of emission bandwidth.

RESULTS

20MHz and 25MHz Bandwidth Upper Block Bandedge is covered by 5G NR n66 20MHz and 25MHz Bandwidth.

9.2.1. 5G NR n70

9.3. OUT OF BAND EMISSIONS

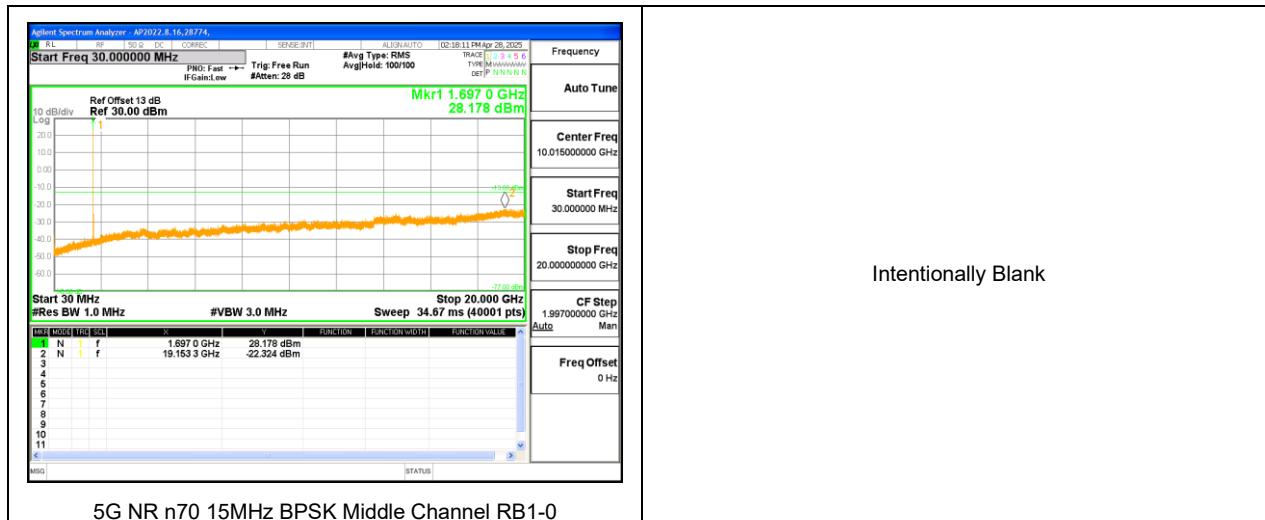
LIMITS

FCC: §27.53 (h)

The minimum permissible attenuation level of any spurious emissions is $43 + 10 \log (P)$ dB where transmitting power (P) in Watts.

TEST PROCEDURE

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.


For each out of band emissions measurement:

- Set display line at -13 dBm, -25dBm and -40dBm according to the band Limit
- Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.
(NOTE: Worst case set RBW/VBW to 1MHz/3MHz)

RESULTS

BPSK with 1RB is the highest power and PSD to all bandwidth. 1RB has the same frequency and power to all bandwidth. Therefore, BPSK with 1RB and wider bandwidths results are reported as worst case for 5G NRs.

9.3.1. 5G NR n70

9.4. FREQUENCY STABILITY

LIMITS

FCC: §27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

Use base station simulator with Frequency Error measurement capability.

- Temp. = -30°C to $+50^{\circ}\text{C}$
- Voltage = (85% - 115%)

Low voltage, 3.23VDC, Normal, 3.8VDC and High voltage, 4.37VDC.
End Voltage, 3.2VDC.

Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until $+50^{\circ}\text{C}$ is reached.

Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

RESULTS

See the following pages.

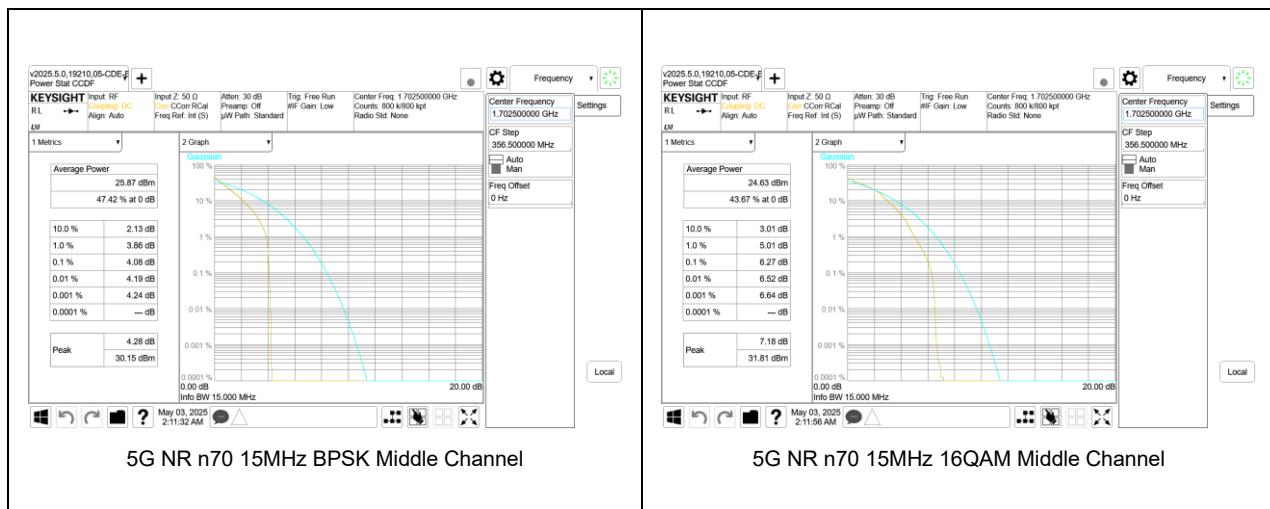
9.4.1. 5G NR n70 (BPSK 15MHz BANDWIDTH)

Test Engineer ID:	27700	Test Date:	2025-03-31
-------------------	-------	------------	------------

Band	70	Frequency Range		Frequency Error Reading (Hz)	Limit	
		1695	1710			
Condition		Freq Reading @ Low End (MHz)	Freq Reading @ High End (MHz)		Frequency Stability (ppm)	Within Authorized Frequency Block (Hz)
Temperature	Voltage					
Normal (20°C)	Normal	1695.4309	1708.8284			
Extreme (50°C)		1695.4309	1708.8284	-7.77	-0.005	Yes
Extreme (40°C)		1695.4309	1708.8284	-3.03	-0.002	Yes
Extreme (30°C)		1695.4309	1708.8284	-2.49	-0.001	Yes
Extreme (10°C)		1695.4309	1708.8284	-5.06	-0.003	Yes
Extreme (0°C)		1695.4309	1708.8284	-4.17	-0.002	Yes
Extreme (-10°C)		1695.4309	1708.8284	-4.05	-0.002	Yes
Extreme (-20°C)		1695.4309	1708.8284	-3.04	-0.002	Yes
Extreme (-30°C)		1695.4309	1708.8284	-6.72	-0.004	Yes
20°C		15%	1695.4309	1708.8284	-5.4	-0.003
		-15%	1695.4309	1708.8284	-0.64	0.000
		End Point Voltage	1695.4309	1708.8284	-2.21	-0.001

9.5. PEAK-TO-AVERAGE POWER RATIO

LIMIT


FCC: §27.50 (d) (5)

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

RESULT

Antenna 3 was used to measure as the worst case; full resource block (FRB) for each bandwidth was used to measure as the worst case. The results from all CCDF measurements are passed with 13dB peak-to-average power ratio criteria.

Example Plots: FULL RB

9.5.1. 5G NR n70

Test Engineer ID:	19210	Test Date:	2025-05-02
-------------------	-------	------------	------------

Band	Bandwidth (MHz)	Frequency (MHz)	RB Allocation	RB OffSet	Modulation	Conducted Power (dBm)		Peak-to-Average Power Ratio (dB)				
						Peak	Average					
5G NR n70	5MHz	1702.5	25	0	BPSK	30.36	26	4.36				
					16QAM	31.42	24.72	6.70				
	10MHz		50	0	BPSK	30.29	26.02	4.27				
					16QAM	31.54	24.76	6.78				
	15MHz		75	0	BPSK	30.15	25.87	4.28				
					16QAM	31.81	24.63	7.18				
Duty Cycle Correction Factor (dB) =			0.00									
Peak-to-Average Power Ratio= Peak Reading - Average Reading - Duty Cycle Correction Factor												

10. RADIATED TEST RESULTS

LIMITS

FCC: §27.53 (h)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Radiated measurement using the Field Strength Method

Using the test configuration shown in Figure 6 below, the radiated emissions is measured directly from the EUT and convert the measured field strength or received power to ERP or EIRP, as required, for comparison to the applicable limits. As stated in 5.5.1 of ANSI C63.26-2015, the field strength measurement method using a test site validated to the requirements of ANSI C63.4 is an alternative to the substitution measurement.

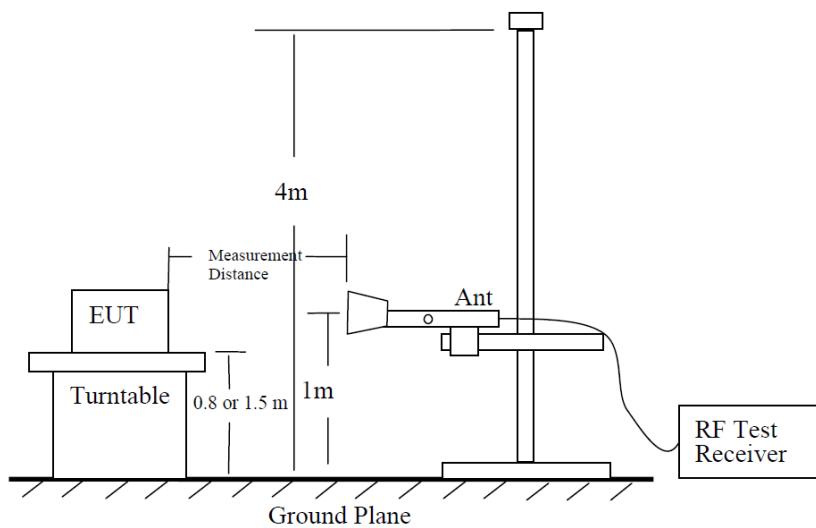
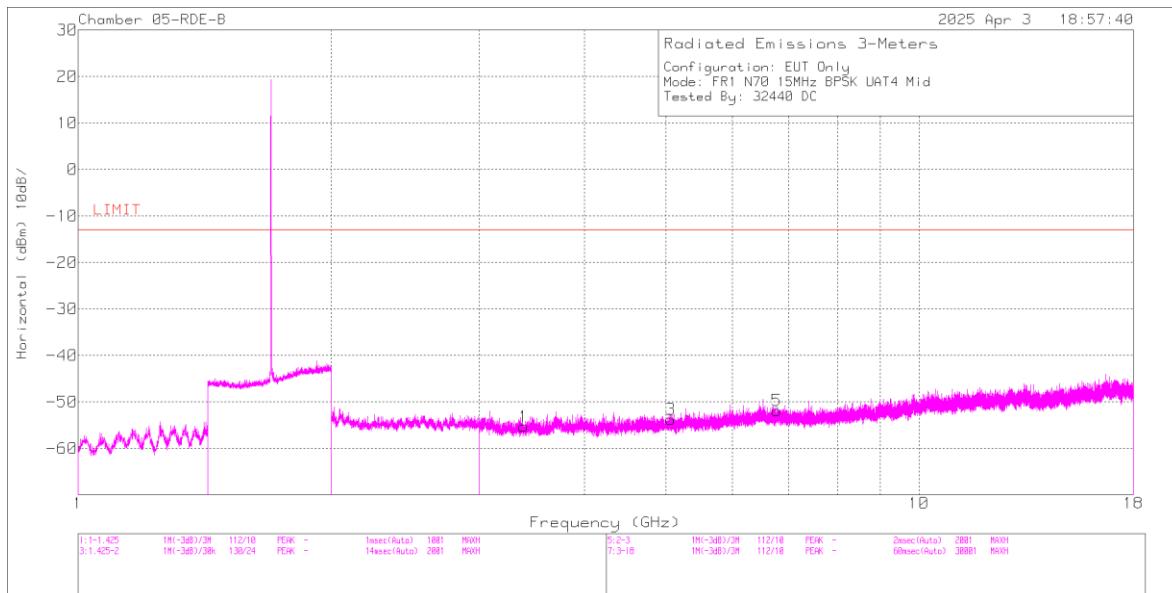


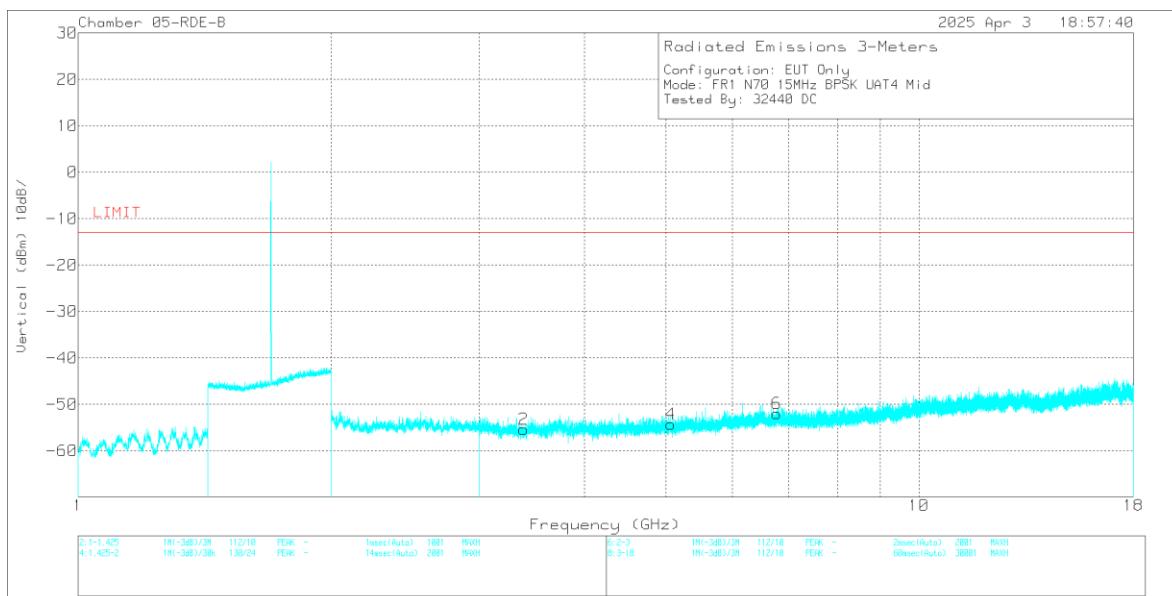
Figure 6—Test site-up for radiated ERP and/or EIRP measurements

Radiated Power Measurement Calculation According to ANSI C63.26-2015

- a) $E (\text{dB}\mu\text{V}/\text{m}) = \text{Measured amplitude level } (\text{dB}\mu\text{V}) + \text{Cable Loss } (\text{dB}) + \text{Antenna Factor } (\text{dB}/\text{m})$.
- b) $E (\text{dB}\mu\text{V}/\text{m}) = \text{Measured amplitude level } (\text{dBm}) + 107 + \text{Cable Loss } (\text{dB}) + \text{Antenna Factor } (\text{dB}/\text{m})$.
- c) $E (\text{dB}\mu\text{V}/\text{m}) = \text{EIRP } (\text{dBm}) - 20\log(D) + 104.8$; where D is the measurement distance (in the far field region) in m.
- d) $\text{EIRP } (\text{dBm}) = E (\text{dB}\mu\text{V}/\text{m}) + 20\log(D) - 104.8$; where D is the measurement distance (in the far field region) in m.


So, from d)

The measuring distance is usually at 3m, then $20\log(3) = 9.5424$


Then, $\text{EIRP } (\text{dBm}) = E (\text{dB}\mu\text{V}/\text{m}) + 9.5424 - 104.8 = E (\text{dB}\mu\text{V}/\text{m}) - 95.2576$

Note: Confidence check of each chamber is performed daily to see if any degradation from expected/normal reading reference data. Ambient check of each chamber is performed monthly.

Example Plot

Horizontal Polarity

Vertical Polarity

Trace Markers

Frequency (GHz)	Meter Reading (dBuV)	Det	226672 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
3.386000	54.16	Pk	32.8	-95.2	-47.06	-55.30	-13	-42.30	H
3.387500	54.16	Pk	32.8	-95.2	-47.09	-55.33	-13	-42.33	V
5.073500	55.60	Pk	34.2	-95.2	-48.34	-53.74	-13	-40.74	H
5.069500	55.05	Pk	34.2	-95.2	-48.31	-54.26	-13	-41.26	V
6.777000	53.66	Pk	35.6	-95.2	-45.87	-51.81	-13	-38.81	H
6.780000	53.45	Pk	35.6	-95.2	-45.84	-51.99	-13	-38.99	V

10.1. FIELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz

TEST PROCEDURE

KDB 971168 D01 /D02

All tests above 1GHz were done with a Resolution Bandwidth of 1MHz, and a Video Bandwidth of 3MHz

RESULTS

10.1.1. 5G NR n70

5G NR n70 (BPSK 15.0MHZ BANDWIDTH, ANT 3, based on 5G NR n70 maximum frequency range)

Date:	2025-03-27
Test Engineer:	32316
Configuration:	EUT Only
Mode	5G NR N70 15MHz BPSK
Chamber #:	05-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	226672 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
Mid Channel, 1702.5MHz									
3.417000	56.26	Pk	32.8	-95.2	-47.01	-53.15	-13	-40.15	H
3.412000	55.64	Pk	32.8	-95.2	-47.2	-53.96	-13	-40.96	V
5.134500	55.70	Pk	34.2	-95.2	-48	-53.30	-13	-40.30	H
5.123000	56.91	Pk	34.2	-95.2	-47.94	-52.03	-13	-39.03	V
6.815500	54.05	Pk	35.7	-95.2	-45.95	-51.40	-13	-38.40	H
6.794500	54.78	Pk	35.7	-95.2	-45.91	-50.63	-13	-37.63	V

5G NR n70 (BPSK 15.0MHZ BANDWIDTH, ANT 2, based on 5G NR n70 maximum frequency range)

Date:	2025-03-31
Test Engineer:	24928
Configuration:	EUT Only
Mode	5G NR N70 15MHz BPSK
Chamber #:	05-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	226672 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
Mid Channel, 1702.5MHz									
3.386500	53.64	Pk	32.8	-95.2	-47.07	-55.83	-13	-42.83	H
3.386000	53.56	Pk	32.8	-95.2	-47.06	-55.90	-13	-42.90	V
5.091500	56.09	Pk	34.2	-95.2	-48.16	-53.07	-13	-40.07	H
5.087000	59.41	Pk	34.2	-95.2	-48.25	-49.84	-13	-36.84	V
6.780000	53.90	Pk	35.6	-95.2	-45.84	-51.54	-13	-38.54	H
6.784000	53.62	Pk	35.6	-95.2	-45.87	-51.85	-13	-38.85	V

5G NR n70 (BPSK 15.0MHZ BANDWIDTH, ANT 1, based on 5G NR n70 maximum frequency range)

Date:	2025-07-08
Test Engineer:	32703
Configuration:	EUT Only
Mode	5G NR N70 15MHz BPSK
Chamber #:	03-RDE-A

Frequency (GHz)	Meter Reading (dBuV)	Det	226673 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
Mid Channel, 1702.5MHz									
3.390000	54.54	Pk	32.8	-95.2	-46.7	-54.56	-13	-41.56	H
3.390000	53.63	Pk	32.8	-95.2	-46.7	-55.47	-13	-42.47	V
5.085500	54.08	Pk	34.1	-95.2	-47.8	-54.82	-13	-41.82	H
5.085500	55.55	Pk	34.1	-95.2	-47.8	-53.35	-13	-40.35	V
6.780500	51.69	Pk	35.8	-95.2	-45.25	-52.96	-13	-39.96	H
6.780500	52.66	Pk	35.8	-95.2	-45.25	-51.99	-13	-38.99	V

5G NR n70 (BPSK 15.0MHZ BANDWIDTH, ANT 4, based on 5G NR n70 maximum frequency range)

Date:	2025-04-03
Test Engineer:	32440
Configuration:	EUT Only
Mode	5G NR N70 15MHz BPSK
Chamber #:	05-RDE-B

Frequency (GHz)	Meter Reading (dBuV)	Det	226672 ACF (dB/m)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Polarity
Mid Channel, 1702.5MHz									
3.386000	54.16	Pk	32.8	-95.2	-47.06	-55.30	-13	-42.30	H
3.387500	54.16	Pk	32.8	-95.2	-47.09	-55.33	-13	-42.33	V
5.073500	55.60	Pk	34.2	-95.2	-48.34	-53.74	-13	-40.74	H
5.069500	55.05	Pk	34.2	-95.2	-48.31	-54.26	-13	-41.26	V
6.777000	53.66	Pk	35.6	-95.2	-45.87	-51.81	-13	-38.81	H
6.780000	53.45	Pk	35.6	-95.2	-45.84	-51.99	-13	-38.99	V

11. SETUP PHOTOS

Refer to 15496249-EP1V1 for setup photos.

END OF REPORT