

CERTIFICATION TEST REPORT

Report Number: 13259310-E13V2

Applicant : APPLE, INC.
ONE APPLE PARK WAY
CUPERTINO, CA 95014, U.S.A.

Model : A2403, A2404, A2405

FCC ID : BCG-E3544A


IC : 579C-E3544A

EUT Description : Smartphone

Test Standard(s) : FCC 47 CFR PART 15 SUBPART C
ISED RSS-216 ISSUE 2
ISED RSS-GEN ISSUE 5

Date Of Issue:
September 15, 2020

Prepared by:
UL Verification Services Inc.
47173 Benicia Street
Fremont, CA 94538 U.S.A.
TEL: (510) 319-4000
FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	8/27/2020	Initial Issue	Chin Pang
V2	09/15/2020	Address TCB Questions	Francisco Guarnero

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. DECISION RULES AND MEASUREMENT UNCERTAINTY	6
4.1. <i>METROLOGICAL TRACEABILITY</i>	6
4.2. <i>DECISION RULES</i>	6
4.3. <i>MEASUREMENT UNCERTAINTY</i>	6
5. INTRODUCTION OF TEST DATA REUSE.....	7
5.1. <i>EUT DESCRIPTION</i>	7
5.2. <i>INTRODUCTION</i>	7
5.3. <i>DIFFERENCE IN MODEL NUMBER</i>	7
5.4. <i>SPOT CHECK VERIFICATION RESULTS SUMMARY</i>	7
5.4.1. FCC TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz	8
5.4.2. IC / CISPR 11 TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz	9
5.4.3. FCC TX SPURIOUS EMISSION 30 TO 1000 MHz	10
5.4.4. IC / CISPR 11 TX SPURIOUS EMISSION 30 TO 1000 MHz	12
5.5. <i>REFERENCE DETAIL</i>	14
5.6. <i>WORST-CASE CONFIGURATION AND MODE</i>	14
5.7. <i>DESCRIPTION OF TEST SETUP</i>	15
6. TEST AND MEASUREMENT EQUIPMENT	16
7. SETUP PHOTOS.....	16
Appendix A - Reference Test Report	17

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.
ONE APPLE PARK WAY
CUPERTINO, CA 95014,

EUT DESCRIPTION: Smartphone

MODEL: A2403, A2404, A2405

SERIAL NUMBER: (Original): G6TD200S04FR
(Spot Check): G6TD200304HT

DATE TESTED: JULY 28, 2020 – AUGUST 07, 2020

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	Complies
ISED RSS-216 Issue 2	Complies
ISED RSS-GEN Issue 5	Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For
UL Verification Services Inc. By:

Chin Pang
Senior Engineer
Consumer Technology Division
UL Verification Services Inc.

Prepared By:

Joe Vang
Test Engineer
Consumer Technology Division
UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, and FCC CFR 47 Part 15, RSS-GEN Issue 5 and RSS-216 Issue 2 January 2016.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street ISED Site Code:	47266 Benicia Street ISED Site Code:	47658 Kato Rd ISED Site Code:
<input type="checkbox"/> Chamber A (IC:2324B-1)	<input type="checkbox"/> Chamber D (IC:22541-1)	<input type="checkbox"/> Chamber I (IC: 2324A-5)
<input type="checkbox"/> Chamber B (IC:2324B-2)	<input type="checkbox"/> Chamber E (IC:22541-2)	<input type="checkbox"/> Chamber J (IC: 2324A-6)
<input type="checkbox"/> Chamber C (IC:2324B-3)	<input type="checkbox"/> Chamber F (IC:22541-3)	<input type="checkbox"/> Chamber K (IC: 2324A-1)
	<input checked="" type="checkbox"/> Chamber G (IC:22541-4)	<input type="checkbox"/> Chamber L (IC: 2324A-3)
	<input type="checkbox"/> Chamber H (IC:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement).

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. INTRODUCTION OF TEST DATA REUSE

5.1. EUT DESCRIPTION

EUT is a The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, CDMA, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC and WPT. All models support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM). The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible

5.2. INTRODUCTION

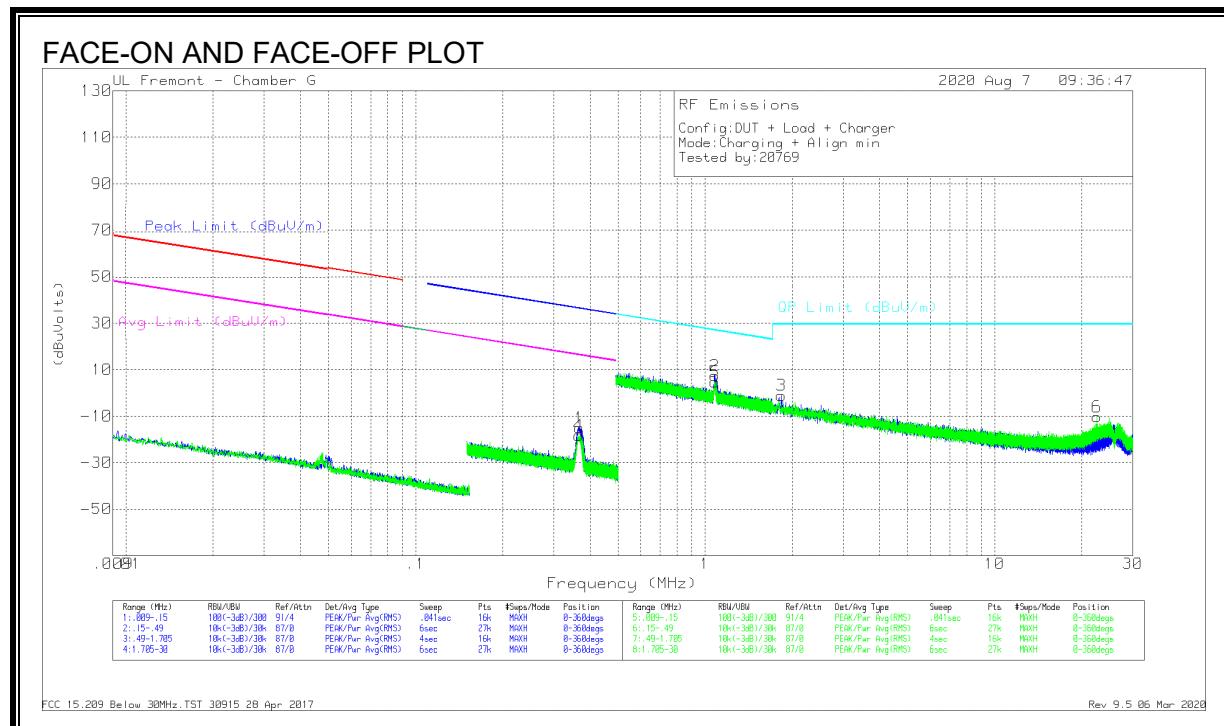
This application for certification is leveraging the data reuse procedures from KDB 484596 D01 based on reference FCC ID: BCG-E3542A, IC: 579C-E3542A to cover variant model BCG-E3544A, 579C-3544A. The major difference between the parent/reference model and the variant model is the depopulation in the variant model of the mmWave transmitter. All other circuitry and features are identical. The data reuse test plan was approved via manufacturer KDB inquiry.

5.3. DIFFERENCE IN MODEL NUMBER

Models A2403, A2404, and A2405 are electrically identical and the model numbers are allocated for marketing and logistic purposes only. Model A2403 was used for the spot check testing described in this report.

5.4. SPOT CHECK VERIFICATION RESULTS SUMMARY

Spot check verification has been done on device model A2403, FCC ID: BCG-E3544A, IC: 579C-3544A for radiated spurious and Fundamental in accordance with the Test Plan that was approved via KDB inquiry.


Item		Original model		Spot check model		Delta (dB)			
		A2172		A2403, A2404, A2405					
		BCG-E3542A, 579C-E3542A		BCG-E3544A, 579C-E3544A					
Frequency		FCC	IC	FCC	IC	FCC	IC		
Fundamental	360kHz	-14.45 dBuV/m	10.43 dBuA/m	--15.82dBuV/m	8.17dBuA/m	-1.37	-2.26		
RSE	30.6254MHz (FCC) 188.6831MHz (IC)	29.6 dBuV/m	26.2 dBuV/m	28.37dBuV/m	25.35dBuV/m	-1.23	-1.27		

Comparison of the models, upper deviation is within 3dB range and all tests are under FCC Technical Limits. The test report for FCC ID: BCG-E3542A, IC: 579C-E3542A is therefore being used to support the application for certification for FCC ID: BCG-E3544A, IC: 579C-E3544A.

SPOT CHECK DATA

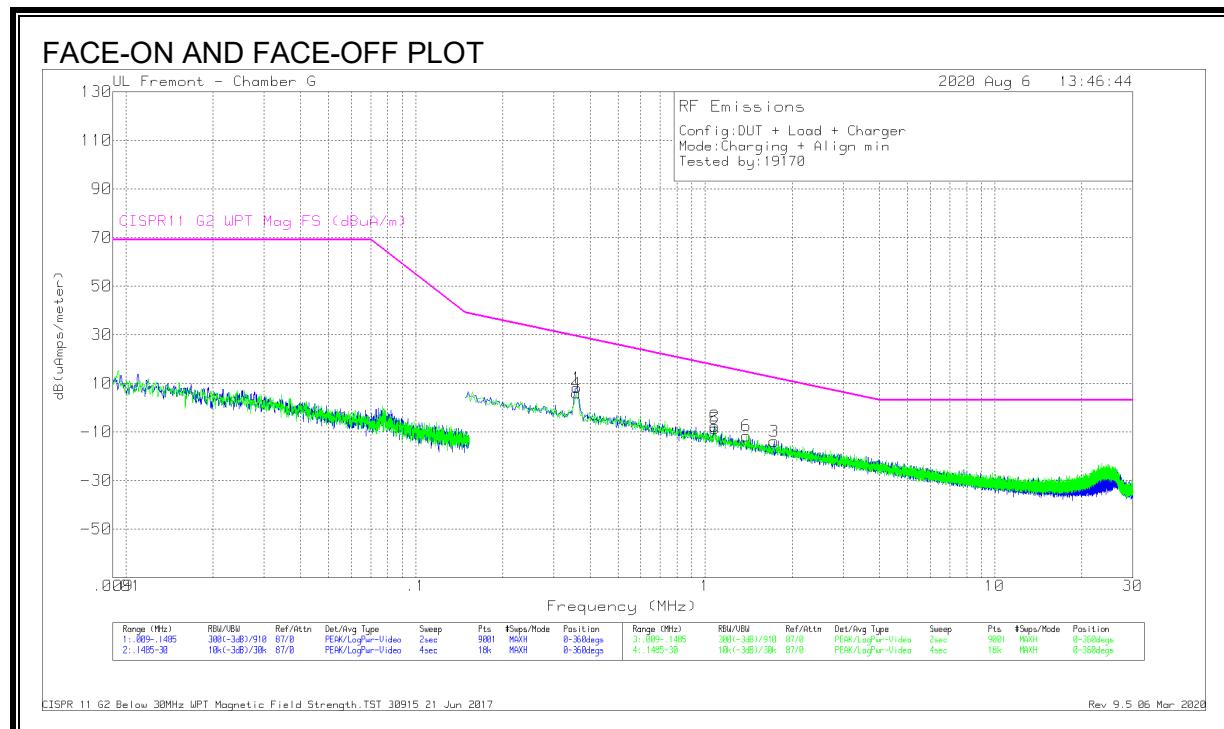
5.4.1. FCC TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz

OPERATING WITH LOAD

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dBm)	Cables (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Azimuth (Degrees)
1	.35916	53.28	Qp	10.8	.1	-80	-15.82	242
4	.35944	49.91	Qp	10.8	.1	-80	-19.19	324

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dBm)	Cables (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
2	1.07968	36.11	Pk	11.2	.1	-40	7.41	26.96	-19.55	0-360
5	1.08158	33.44	Pk	11.2	.1	-40	4.74	26.94	-22.2	0-360
3	1.83286	27.45	Pk	11.3	.2	-40	-1.05	29.5	-30.55	0-360
6	22.5623	19.36	Pk	9.7	.7	-40	-10.24	29.5	-39.74	0-360


Pk - Peak detector

Qp - Quasi-Peak detector

FCC 15.209 Below 30MHz.TST 30915 28 Apr 2017
 Rev 9.5 06 Mar 2020

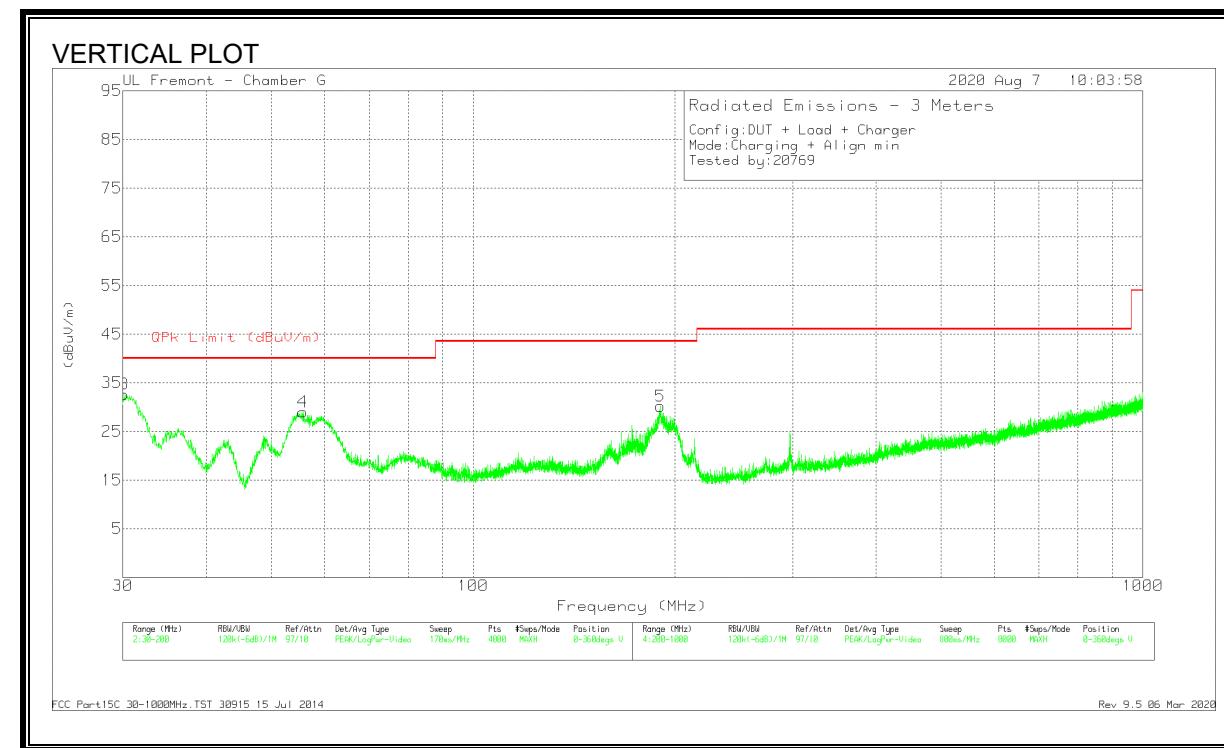
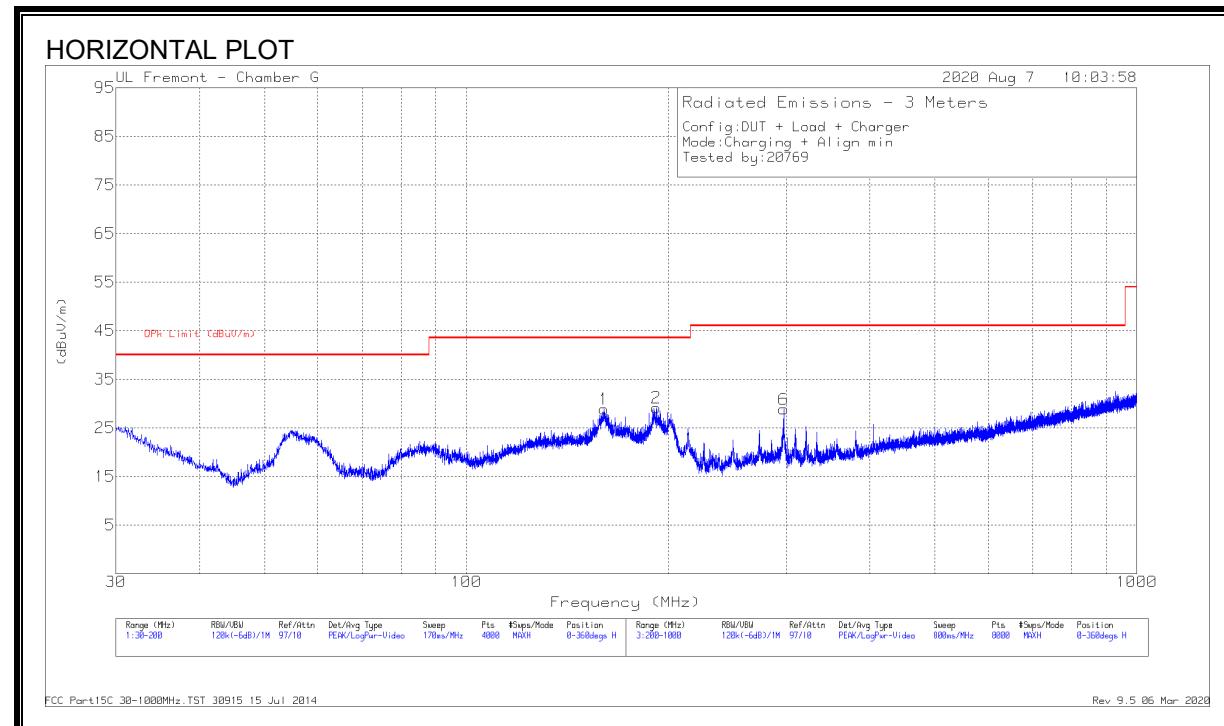
5.4.2. IC / CISPR 11 TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz

OPERATING WITH LOAD

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cables (dB)	Corrected Reading dB(uAmps/meter)	CISPR11 G2 WPT Mag FS (dBuA/m)	Margin (dB)	Azimuth (Degs)
4	.35907	46.44	Pk	-40.6	.1	5.94	29.35	-23.41	0-360
1	.36072	48.67	Pk	-40.6	.1	8.17	29.3	-21.13	0-360
2	1.07864	32.49	Pk	-40.2	.1	-7.61	17.33	-24.94	0-360
5	1.07864	31.47	Pk	-40.2	.1	-8.63	17.33	-25.96	0-360
6	1.38868	28.39	Pk	-40.2	.2	-11.61	14.56	-26.17	0-360
3	1.73023	26.11	Pk	-40.2	.2	-13.89	12.16	-26.05	0-360

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cables (dB)	Corrected Reading dB(uAmps/meter)	CISPR11 G2 WPT Mag FS (dBuA/m)	Margin (dB)	Azimuth (Degs)
.35946	45.73	Qp	-40.6	.1	5.23	29.34	-24.11	180
.36042	45.62	Qp	-40.6	.1	5.12	29.31	-24.19	176



Pk - Peak detector

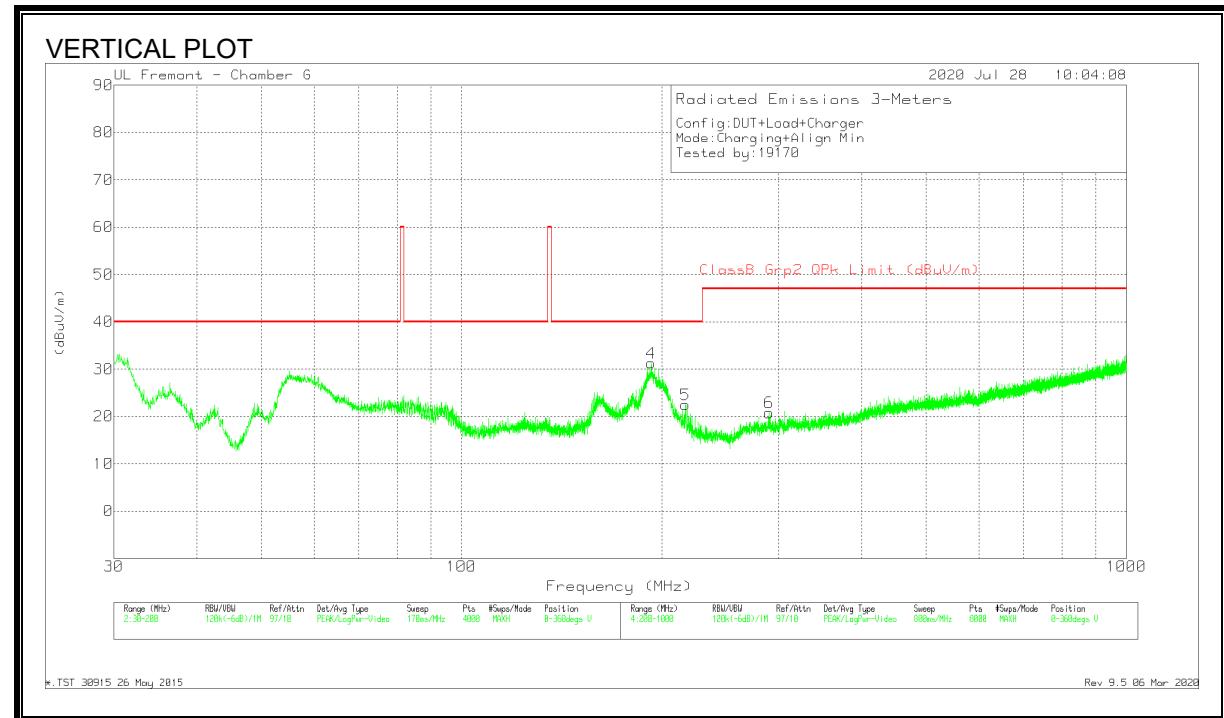
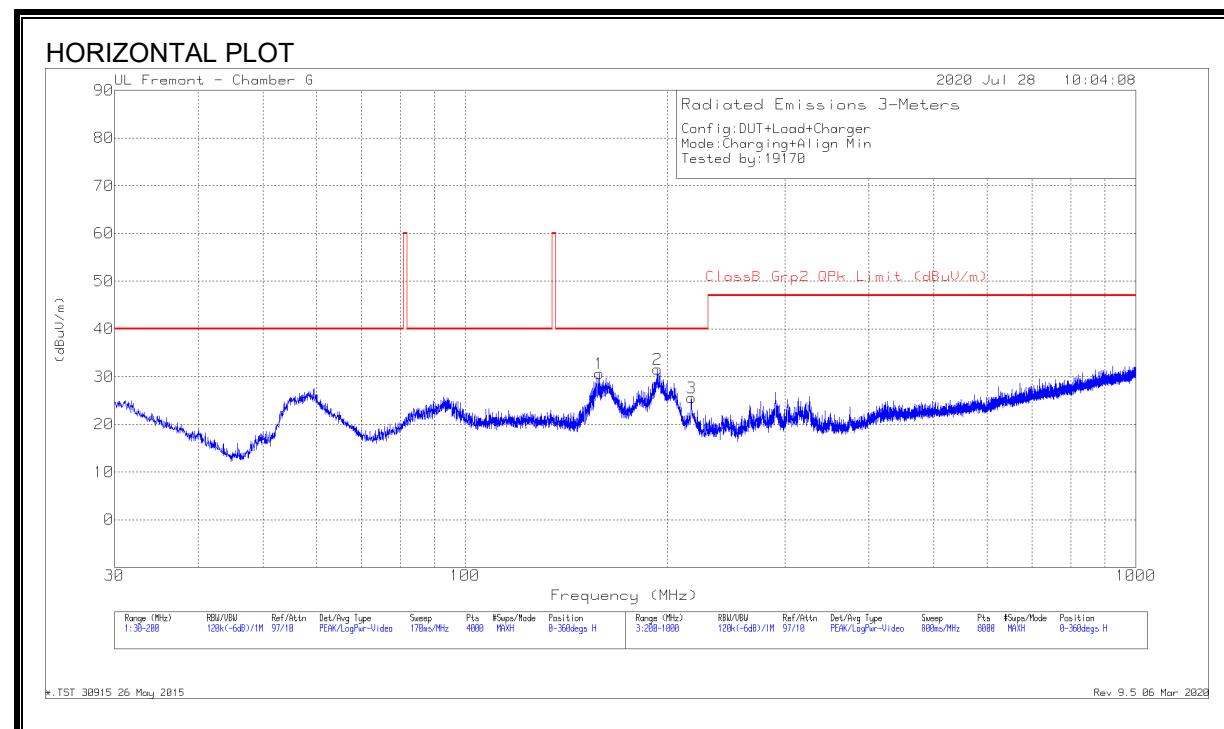
Qp - Quasi-Peak detector

CISPR 11 G2 Below 30MHz WPT Magnetic Field Strength.TST 30915 21 Jun 2017
 Rev 9.5 06 Mar 2020

5.4.3. FCC TX SPURIOUS EMISSION 30 TO 1000 MHz

OPERATING WITH LOAD

DATA



Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	30.1275	32.17	Qp	27.2	-31	28.37	40	-11.63	115	115	V
1	160.4663	40.47	Pk	18.2	-29.8	28.87	43.52	-14.65	0-360	301	H
5	190.309	42.4	Pk	17.3	-29.5	30.2	43.52	-13.32	0-360	100	V
2	192.0519	41.24	Pk	17.4	-29.5	29.14	43.52	-14.38	0-360	100	H
6	297.4127	38.44	Pk	19.4	-29	28.84	46.02	-17.18	0-360	99	H

Pk - Peak detector

Qp - Quasi-Peak detector

5.4.4. IC / CISPR 11 TX SPURIOUS EMISSION 30 TO 1000 MHz

OPERATING WITH LOAD

DATA

Radiated Emissions

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	ClassB Grp2 QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	158.5867	39.19	Qp	18.3	-29.8	27.69	40	-12.31	102	150	H
4	192.6272	34.17	Qp	17.5	-29.5	22.17	40	-17.83	242	112	V
2	193.5549	37.25	Qp	17.6	-29.5	25.35	40	-14.67	76	100	H
5	217.3791	30.69	Qp	16.6	-29.4	17.89	40	-22.11	89	157	H
3	217.4187	23.33	Qp	16.6	-29.4	10.53	40	-29.47	16	242	V
6	289.9288	20.47	Qp	19.4	-28.9	10.97	47	-36.03	45	307	V

Qp - Quasi-Peak detector

5.5. REFERENCE DETAIL

Reference application that contains the reused reference data which is attached to this report in Appendix A.

Equipment Class	Reference FCC & IC	Reference Reportr	Report Title/Section
DCD	BCG-E3542A 579C-E3542A	13179116-E13	FCC IC_WPT Report / All sections

5.6. WORST-CASE CONFIGURATION AND MODE

The EUT is a smartphone which connected to the AC/DC adapter via USB-C cable, and the inductive charging coil to charge WPT accessories. For the entire radiated emissions test, the EUT was performed based on the worst case on model A2172

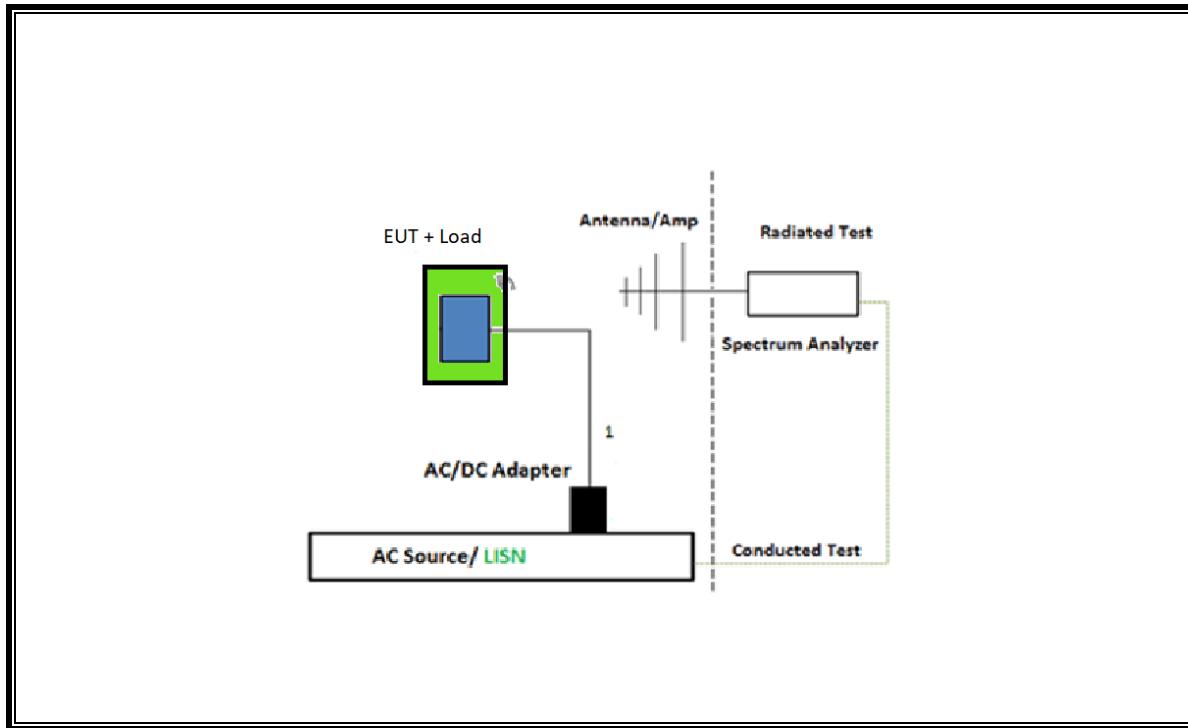
Mode	Descriptions
Operating	EUT and Load powered by AC/DC adapter

For below 30MHz testing, investigation was done on three antenna orientations: RX antenna Face-on, Face-off and horizontal (parallel to ground). The worst-case configurations were determined on RX antenna Face-on and Face-off; therefore, all final tests were performed using these two orientations.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 300 m open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788 D01.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT & PERIPHERALS


SUPPORT EQUIPMENT & PERIPHERALS LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
AC/DC adapter	Apple	A2305	N/A	N/A
Phone	Apple	A2095	D92YT005MWC4	BCG-A2095
WPT Accessory	Apple	N/A	N/A	N/A

I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC	1	USBC	Un-shielded	2	5W Power Supply

TEST SETUP

OPERATING MODE PHONE WITH LOAD

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
Antenna, Active Loop 9KHz to 30MHz	ETS-Lindgren	6502	T1616	10/28/2020	10/28/2019
Antenna, Broadband Hybrid, 30MHz to 2000MHz w/4dB	Sunol Sciences Crop.	JB3	T477	09/04/2020	09/04/2019
Amplifier, 10kHz to 1GHz, 32dB	Sonoma Instrument	310N	T834	07/14/2021	07/14/2020
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A-544	T1113	03/02/2021	03/02/2020
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T342	01/23/2021	01/23/2020

UL AUTOMATION SOFTWARE			
Radiated Software	UL	UL EMC	Ver 9.5, Mar 6, 2020

7. SETUP PHOTOS

Please refer to 13179116-EP1 for setup photos

Appendix A - Reference Test Report

Attached is the test report (13179116-E13) containing the reference data form the parent model as detailed in section 5.5.

CERTIFICATION TEST REPORT

Report Number. : 13179116-E13V2

Applicant : APPLE, INC.
ONE APPLE PARK WAY
CUPERTINO, CA 95014, U.S.A.

Model : A2172

FCC ID : BCG-E3542A

IC : 579C-E3542A

EUT Description : Smartphone

Test Standard(s) : FCC 47 CFR PART 15 SUBPART C
ISED RSS-216 ISSUE 2

Date Of Issue:
September 11, 2020

Prepared by:
UL Verification Services Inc.
47173 Benicia Street
Fremont, CA 94538 U.S.A.
TEL: (510) 319-4000
FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	8/26/2020	Initial Issue	Chin Pang
V2	9/11/2020	Address TCB's Questions	Chin Pang

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. DECISION RULES AND MEASUREMENT UNCERTAINTY	6
4.1. <i>METROLOGICAL TRACEABILITY</i>	6
4.2. <i>DECISION RULES</i>	6
4.3. <i>MEASUREMENT UNCERTAINTY</i>	6
5. EQUIPMENT UNDER TEST	7
5.1. <i>DESCRIPTION OF EUT</i>	7
5.2. <i>MAXIMUM E-FIELD STRENGTH</i>	7
5.3. <i>WORST-CASE CONFIGURATION AND MODE</i>	7
5.4. <i>DESCRIPTION OF TEST SETUP</i>	8
6. TEST AND MEASUREMENT EQUIPMENT	9
7. OCCUPIED BANDWIDTH	10
8. RADIATED EMISSION TEST RESULTS	11
8.1. <i>LIMITS AND PROCEDURE</i>	11
8.2. <i>EUT With Load</i>	12
8.2.1. FCC TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz	12
8.2.2. IC / CISPR 11 TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz	13
8.2.3. FCC TX SPURIOUS EMISSION 30 TO 1000 MHz	14
8.2.4. IC / CISPR 11 TX SPURIOUS EMISSION 30 TO 1000 MHz	16
9. AC POWER LINE CONDUCTED EMISSIONS	18
9.1. <i>EUT With Load</i>	19
9.1.1. OPERATING MODE WITH LOAD POWERED BY AC/DC ADAPTER	19
9.1.2. OPERATING MODE WITH LOAD POWERED BY HOST LAPTOP VIA USB CABLE	21
10. SETUP PHOTOS	23

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.
ONE APPLE PARK WAY
CUPERTINO, CA 95014,

EUT DESCRIPTION: Smartphone

MODEL: A2172

SERIAL NUMBER: G6TD200S04FR

DATE TESTED: JULY 24, 2020 – AUGUST 13, 2020

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	Complies
ISED RSS-216 Issue 2	Complies
ISED RSS-GEN Issue 5	Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For
UL Verification Services Inc. By:

Chin Pang
Senior Engineer
Consumer Technology Division
UL Verification Services Inc.

Prepared By:

Joe Vang
Test Engineer
Consumer Technology Division
UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, and FCC CFR 47 Part 15, RSS-GEN Issue 5 and RSS-216 Issue 2 January 2016.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street ISED Site Code:	47266 Benicia Street ISED Site Code:	47658 Kato Rd ISED Site Code:
<input type="checkbox"/> Chamber A (IC:2324B-1)	<input type="checkbox"/> Chamber D (IC:22541-1)	<input type="checkbox"/> Chamber I (IC: 2324A-5)
<input type="checkbox"/> Chamber B (IC:2324B-2)	<input type="checkbox"/> Chamber E (IC:22541-2)	<input type="checkbox"/> Chamber J (IC: 2324A-6)
<input type="checkbox"/> Chamber C (IC:2324B-3)	<input type="checkbox"/> Chamber F (IC:22541-3)	<input type="checkbox"/> Chamber K (IC: 2324A-1)
	<input checked="" type="checkbox"/> Chamber G (IC:22541-4)	<input type="checkbox"/> Chamber L (IC: 2324A-3)
	<input type="checkbox"/> Chamber H (IC:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement).

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, CDMA, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC and WPT. All models support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM). The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible.

5.2. MAXIMUM E-FIELD STRENGTH

The transmitter has maximum peak radiated electric and H field strength as follows:

Fundamental Frequency (KHz)	Mode	E field (300m distance) FCC (dBuV/m)	H field (3m distance) IC (dBuA/m)
360	Operating	-14.45	10.43

5.3. WORST-CASE CONFIGURATION AND MODE

The EUT is a smartphone which connected to the AC/DC adapter via USB-C cable, and the inductive charging coil to charge WPT accessories. For the entire radiated emissions test, the EUT was investigated on the following configuration during the test: 1. At its natural orientation with EUT set at center location, 2. EUT offset 2mm left and right, 3. EUT with 2mm spacer to find out the worst case location. And the worst case was at 2mm offset to the right and 3mm spacer.

Mode	Descriptions
Operating	EUT and Load powered by AC/DC adapter

For below 30MHz & 1GHz tests EUT was connected to AC power adapter as the worst case, For AC line conducted emission, test was investigated with AC power adapter.

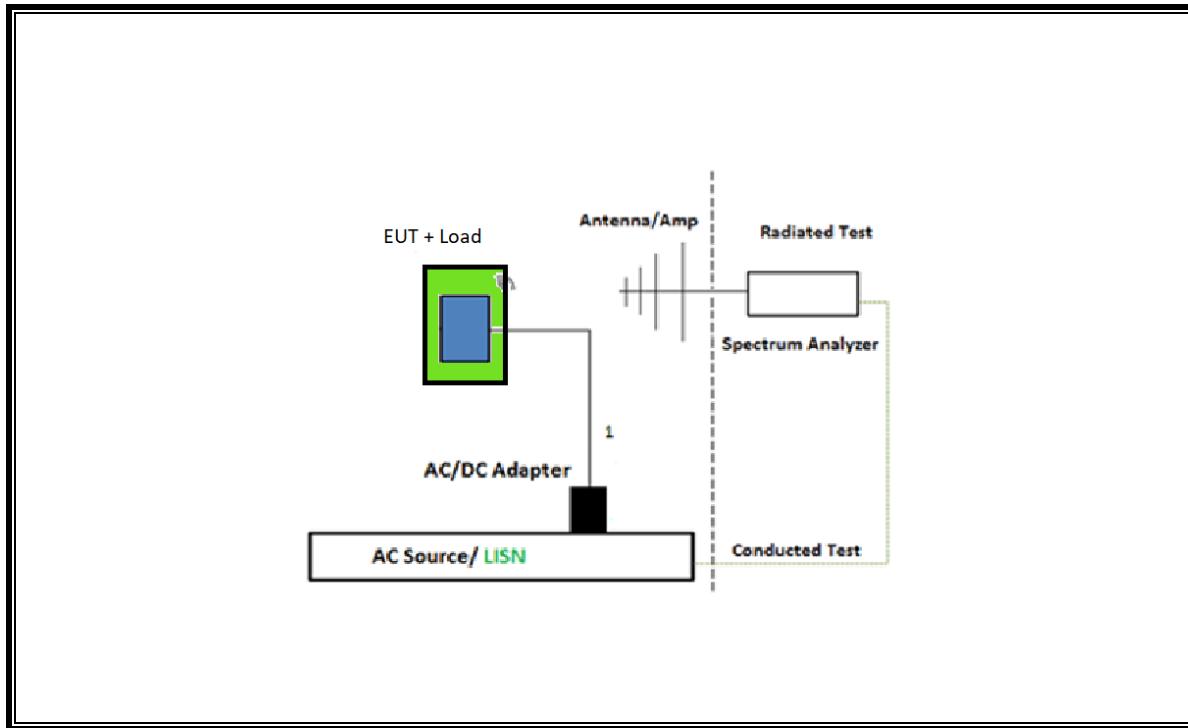
The EUT was tested as operation modes. During operational mode, EUT was tested with Phone and load.

For below 30MHz testing, investigation was done on three antenna orientations: RX antenna Face-on, Face-off and horizontal (parallel to ground). The worst-case configurations were determined on RX antenna Face-on and Face-off; therefore, all final tests were performed using these two orientations.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 300 m open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788 D01.

5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT & PERIPHERALS


SUPPORT EQUIPMENT & PERIPHERALS LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
AC/DC adapter	Apple	A2305	N/A	N/A
Phone	Apple	A2095	D92YT005MWC4	BCG-A2095
WPT Accessory	Apple	N/A	N/A	N/A

I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC	1	USBC	Un-shielded	2	5W Power Supply

TEST SETUP

OPERATING MODE PHONE WITH LOAD

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
Antenna, Active Loop 9KHz to 30MHz	ETS-Lindgren	6502	T1616	10/28/2020	10/28/2019
Antenna, Broadband Hybrid, 30MHz to 2000MHz w/4dB	Sunol Sciences Crop.	JB3	T477	09/04/2020	09/04/2019
Amplifier, 10kHz to 1GHz, 32dB	Sonoma Instrument	310N	T834	07/14/2021	07/14/2020
Sniffer Probes	Electro Metrics	EM-6992	N/A	NA	NA
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A-544	T1113	03/02/2021	03/02/2020
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T342	01/23/2021	01/23/2020

AC Line Conducted					
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESR	T1436	02/20/2021	02/20/2020
Power Cable, Line Conducted Emissions	UL	PR1	T861	10/27/2020	10/27/2019
LISN for Conducted Emissions CISPR-16	FISCHER CUSTOM COMMUNICATIONS	FCC-LISN-50/250-25-2-01	PRE0186446	01/23/2021	01/23/2020
UL AUTOMATION SOFTWARE					
Radiated Software	UL	UL EMC	Ver 9.5, Mar 6, 2020		
Conducted Software	UL	UL EMC	2020.2.26		
AC Line Conducted Software	UL	UL EMC	Ver 9.5, February 21, 2020		

7. OCCUPIED BANDWIDTH

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 300Hz. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

RESULTS

8. RADIATED EMISSION TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.209 (a)

ICES-001 Section 3.3.4, IC RSS-216 6.2.2, and IC RSS-GEN Sections 8.9 and 8.10.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (m)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88 to 216	150	3
216 to 960	200	3
Above 960 MHz	500	3

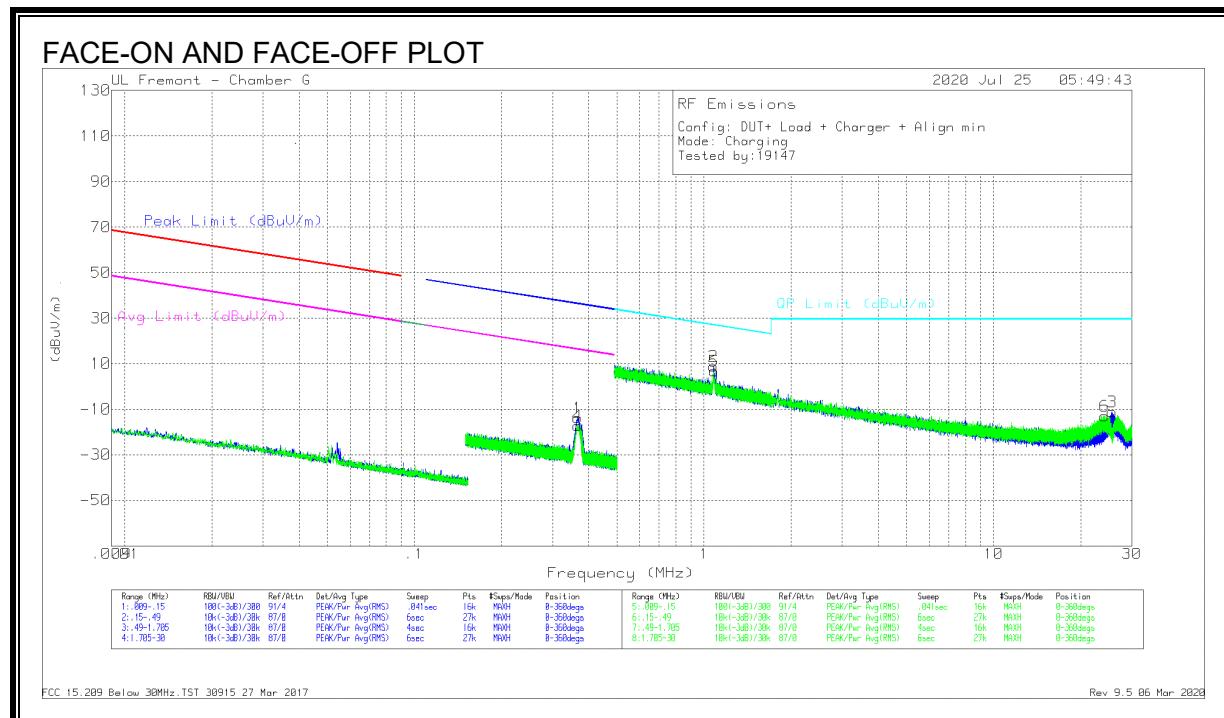
Note: The lower limit shall apply at the transition frequency.

ICES-001 Issue 5 Table 2 & Table 4:

Table 2: Magnetic field strength radiated emission limits for induction cooking appliances

Frequency range (MHz)	Quasi-peak, at 3 m distance (dB μ A/m)
0.009 – 0.07	69
0.07 – 0.15	69 to 39 *
0.15 – 30	39 to 7 *
*	The limit level in dB μ A/m decreases linearly with the logarithm of frequency.

Table 4: Electric field strength radiated emission limits for induction cooking appliances


Frequency range (MHz)	OATS or SAC *	OATS or SAC *	FAR *
	10 m measurement distance Quasi-peak (dB μ V/m)	3 m measurement distance Quasi-peak (dB μ V/m)	3 m measurement distance Quasi-peak (dB μ V/m)
30 – 230	30	40	42 to 35**
230 – 1000	37	47	42
Note: The more stringent limit applies at the transition frequency.			
* OATS = open-area test site, SAC = semi-anechoic chamber, FAR = fully-anechoic room (see CSA CISPR 11:19).			
** The limit level in dB μ V/m decreases linearly with the logarithm of frequency.			

RESULTS

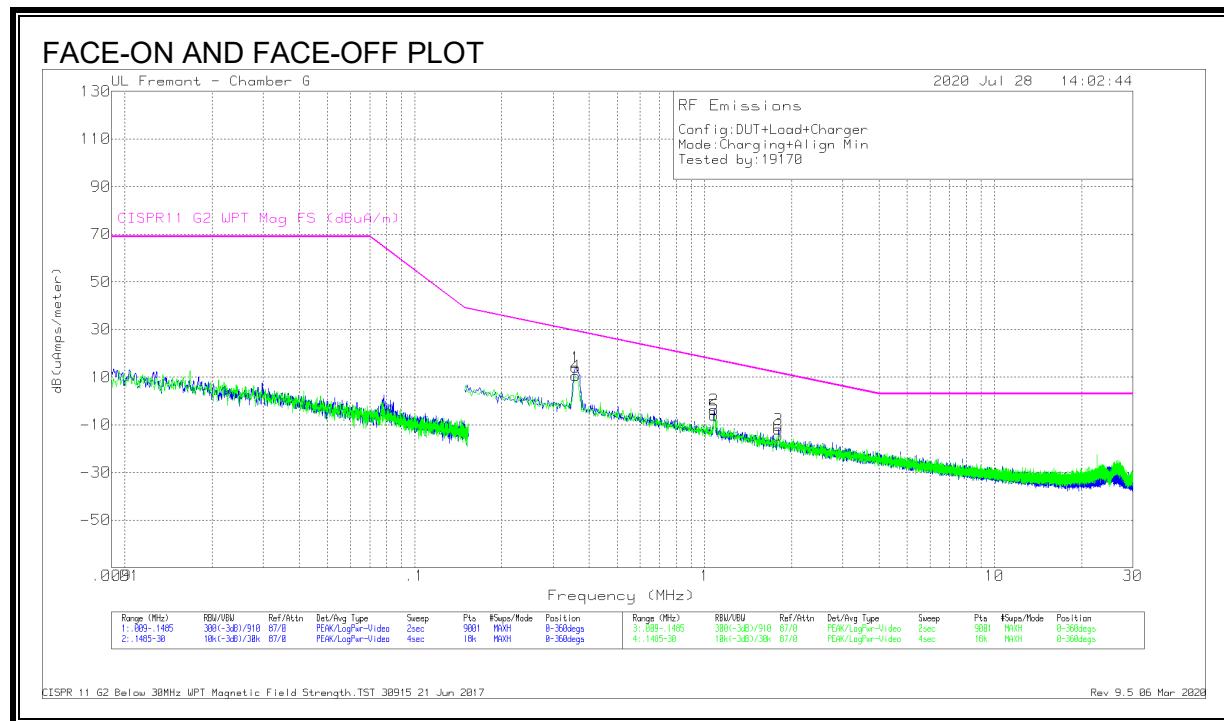
8.2. EUT With Load

8.2.1. FCC TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz

OPERATING WITH LOAD

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cables (dB)	Dist Corr 300m	Corrected Reading (dBuV/m)	Azimuth (Degs)
4	.36006	54.35	Qp	11.1	.1	-80	-14.45	259
1	.36027	50.97	Qp	11.1	.1	-80	-17.83	335

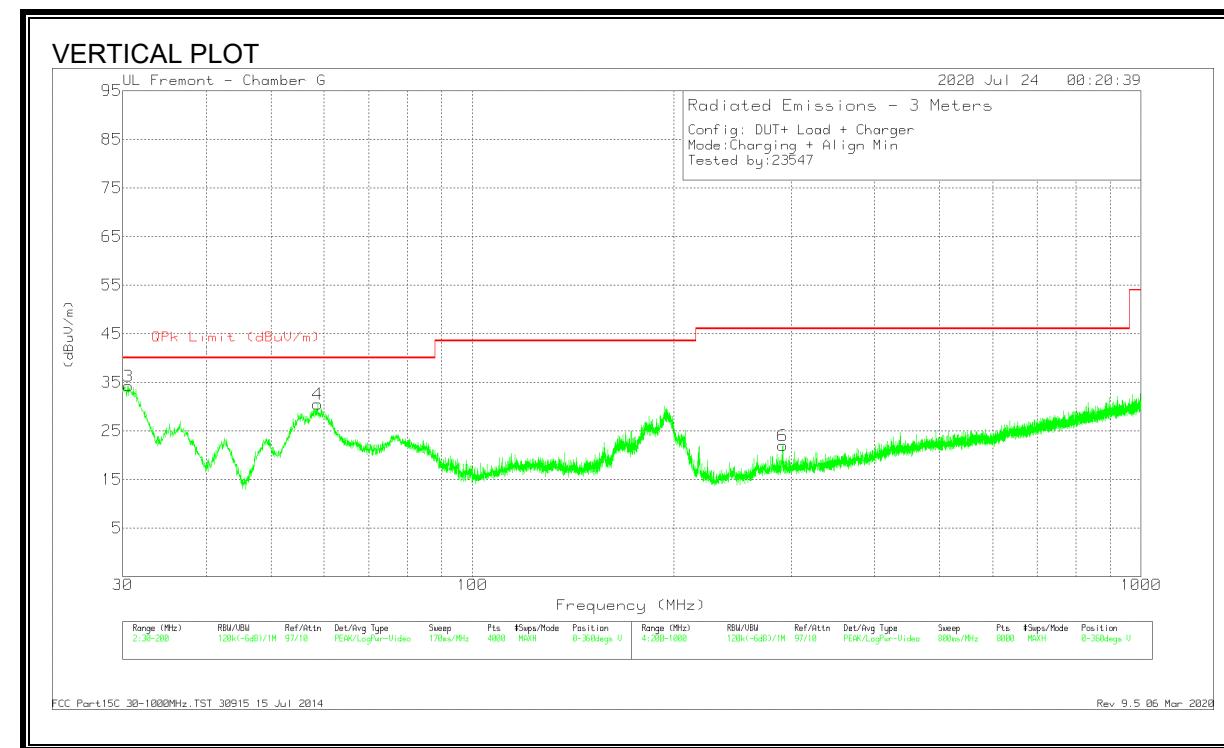
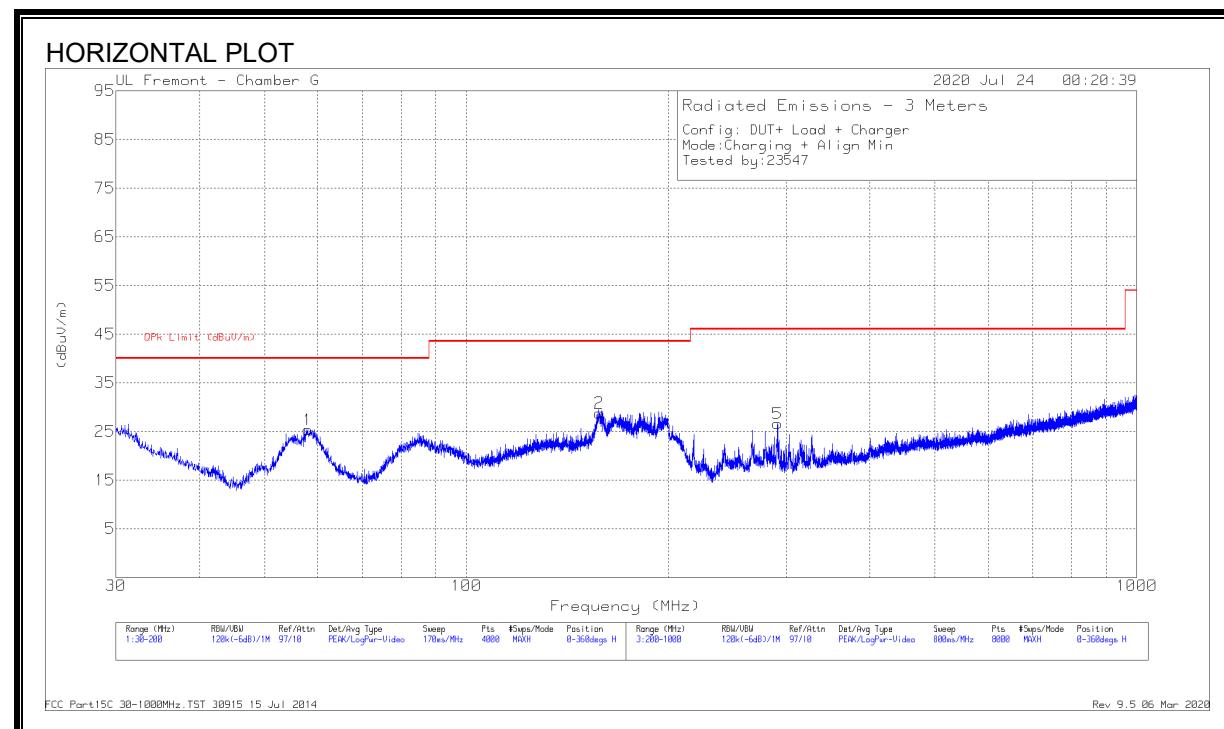

Qp - Quasi-Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cables (dB)	Dist Corr 30m	Corrected Reading (dBuV/m)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
2	1.0797	35.8	Qp	10.8	.1	-40	6.7	26.96	-20.26	62
5	1.0799	33.03	Qp	10.8	.1	-40	3.93	26.96	-23.03	344
6	24.1552	11.29	Qp	8.9	.7	-40	-19.11	29.5	-48.61	133
3	25.6339	13.01	Qp	8.7	.8	-40	-17.49	29.5	-46.99	50

Qp - Quasi-Peak detector

8.2.2. IC / CISPR 11 TX FUNDAMENTAL AND SPURIOUS EMISSIONS FROM 9 kHz TO 30 MHz

OPERATING WITH LOAD

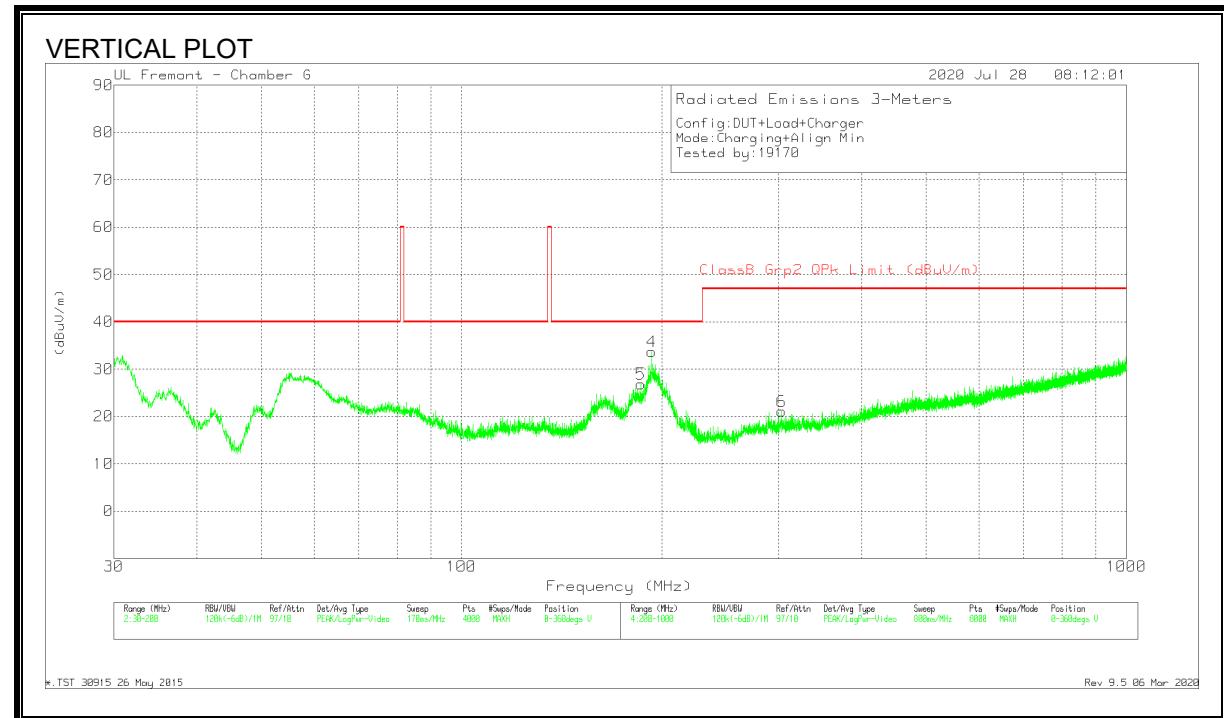
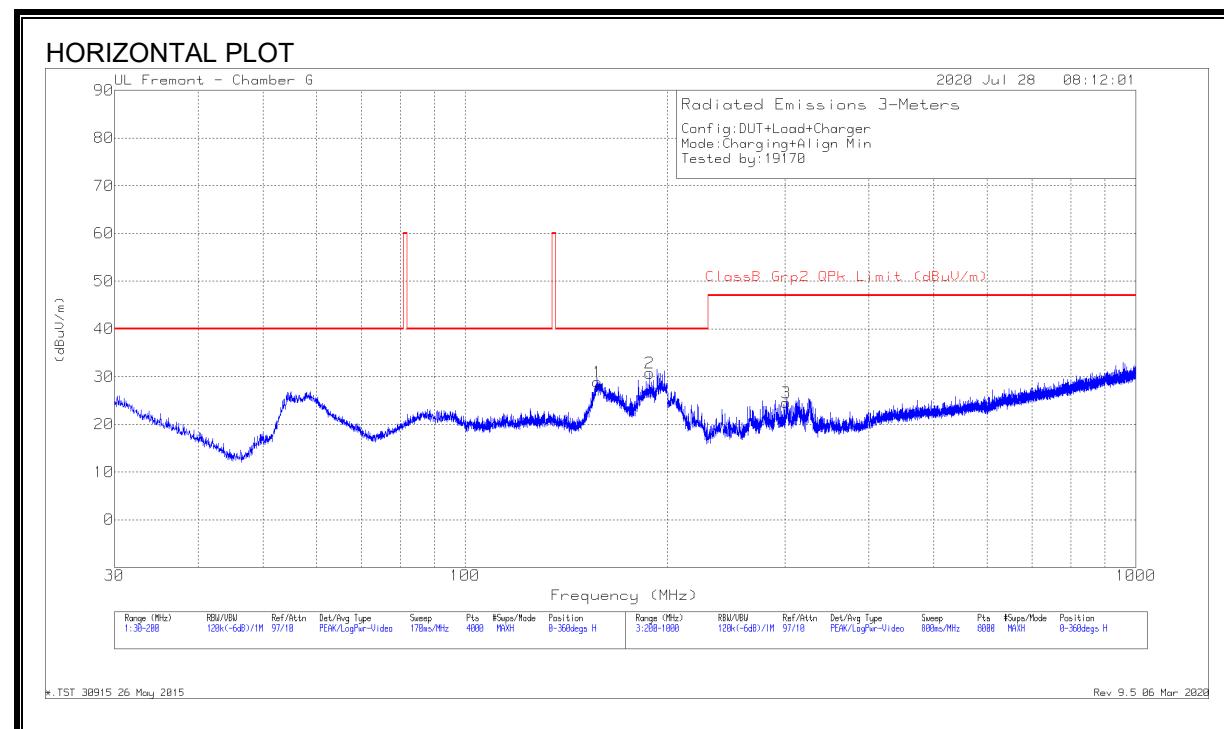


DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cables (dB)	Corrected Reading dB(uAmps/meter)	CISPR11 G2 WPT Mag FS (dBuA/m)	Margin (dB)	Azimuth (Degs)
1	.36002	50.93	Qp	-40.6	.1	10.43	29.32	-18.89	3
4	.36068	50.78	Qp	-40.6	.1	10.28	29.3	-19.02	350
2	1.07915	32.12	Qp	-40.2	.1	-7.98	17.32	-25.3	183
5	1.07962	32.27	Qp	-40.2	.1	-7.83	17.32	-25.15	187
6	1.79919	23.67	Qp	-40.2	.2	-16.33	11.73	-28.06	349
3	1.80066	23.67	Qp	-40.2	.2	-16.33	11.72	-28.05	170

Qp - Quasi-Peak detector

8.2.3. FCC TX SPURIOUS EMISSION 30 TO 1000 MHz

OPERATING WITH LOAD



DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	30.6254	33.7	Qp	26.9	-31	29.6	40	-10.4	98	101	V
1	58.0541	38.54	Qp	13.4	-30.7	21.24	40	-18.76	200	359	H
4	58.6714	43.08	Qp	13.4	-30.7	25.78	40	-14.22	224	101	V
2	157.6364	37.23	Qp	18.3	-29.8	25.73	43.52	-17.79	253	175	H
5	291.2217	27.6	Qp	19.4	-28.9	18.1	46.02	-27.92	336	119	V
6	291.3185	33.66	Qp	19.4	-28.9	24.16	46.02	-21.86	85	103	H

Qp - Quasi-Peak detector

8.2.4. IC / CISPR 11 TX SPURIOUS EMISSION 30 TO 1000 MHz

OPERATING WITH LOAD

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	ClassB Grp2 QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	157.5105	37.7	Qp	18.3	-29.8	26.2	40	-13.8	88	160	H
5	186.2729	34.62	Qp	17.2	-29.6	22.22	40	-17.78	74	111	V
2	188.6831	39.02	Qp	17.2	-29.6	26.62	40	-13.38	90	110	H
4	193.4782	38.56	Qp	17.5	-29.5	26.56	40	-13.44	248	109	V
3	301.0996	26.33	Qp	19.5	-28.9	16.93	47	-30.07	102	113	H
6	303.1646	25.28	Qp	19.5	-28.8	15.98	47	-31.02	93	117	V

Qp - Quasi-Peak detector

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

ICES-001 Issue 5 Table 1:

Table 1: Conducted emission limits for induction cooking appliances (AC mains terminals)

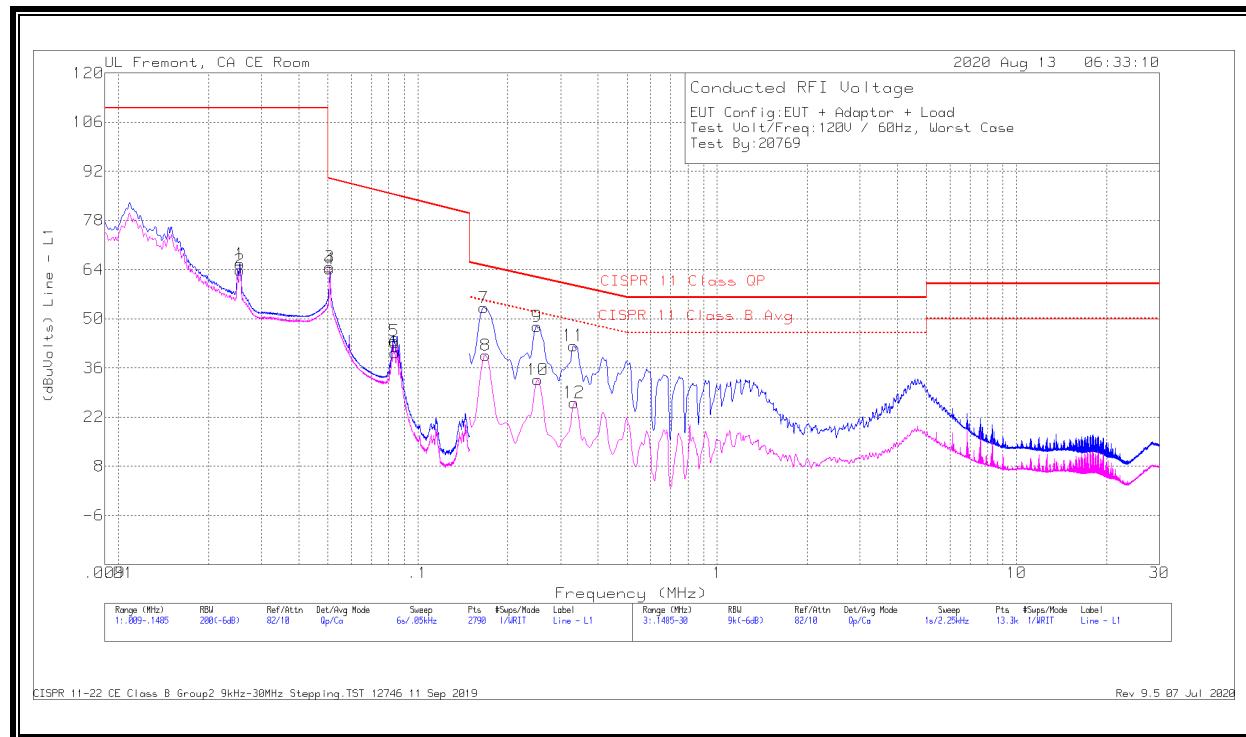
Frequency range (MHz)	Appliances rated 100 V, without an earth connection	Appliances rated 100 V, without an earth connection	All other appliances	All other appliances
	Quasi-peak (dB μ V)	Average (dB μ V)	Quasi-peak (dB μ V)	Average (dB μ V)
0.009 – 0.05	122	—	110	—
0.05 – 0.15	102 to 92 *	—	90 to 80 *	—
0.15 – 0.5	72 to 62 *	62 to 52 *	66 to 56 *	56 to 46 *
0.5 – 5	56	46	56	46
5 – 30	60	50	60	50

Note: The more stringent limit applies at transition frequencies.
***** The limit level in dB μ V decreases linearly with the logarithm of frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 200Hz (9KHz-150KHz)Hz and 9KHz (150KHz-30MHz) Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

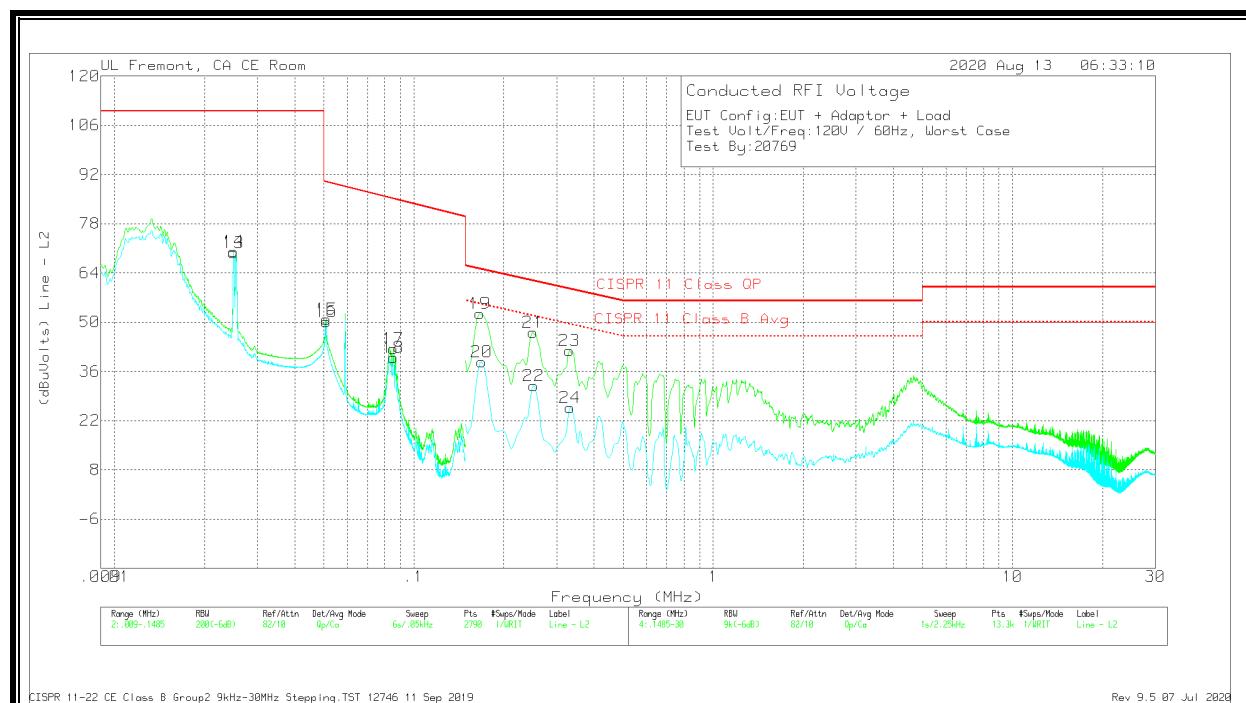
9.1. EUT With Load

9.1.1. OPERATING MODE WITH LOAD POWERED BY AC/DC ADAPTER

LINE 1 RESULTS

WORST EMISSIONS

Range 1: Line - L1 .009 - 30MHz


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	PRE0186446 LISN L1	LC Cables C1&C3	Limiter (dB)	Corrected Reading (dBuVolts)	CISPR 11 Class QP	Margin (dB)	CISPR 11 Class B Avg	Margin (dB)
1	.02545	55.46	Qp	.1	0	10.1	65.66	110	-44.34	-	-
2	.02545	53.63	Ca	.1	0	10.1	63.83	-	-	-	-
3	.05075	54.68	Qp	.1	0	10	64.78	89.86	-25.08	-	-
4	.05075	54.05	Ca	.1	0	10	64.15	-	-	-	-
5	.08355	33.63	Qp	.1	0	10	43.73	85.28	-41.55	-	-
6	.0839	30.27	Ca	.1	0	10	40.37	-	-	-	-
7	.1665	43.22	Qp	0	0	10	53.22	65.06	-11.84	-	-
8	.16875	29.55	Ca	0	0	10	39.55	-	-	55.02	-15.47
9	.24975	37.82	Qp	0	0	10	47.82	61.72	-13.9	-	-
10	.252	22.71	Ca	0	0	10	32.71	-	-	51.69	-18.98
11	.33075	32.35	Qp	0	0	10	42.35	59.4	-17.05	-	-
12	.333	16.12	Ca	0	0	10	26.12	-	-	49.38	-23.26

Qp - Quasi-Peak detector

Ca - CISPR average detection

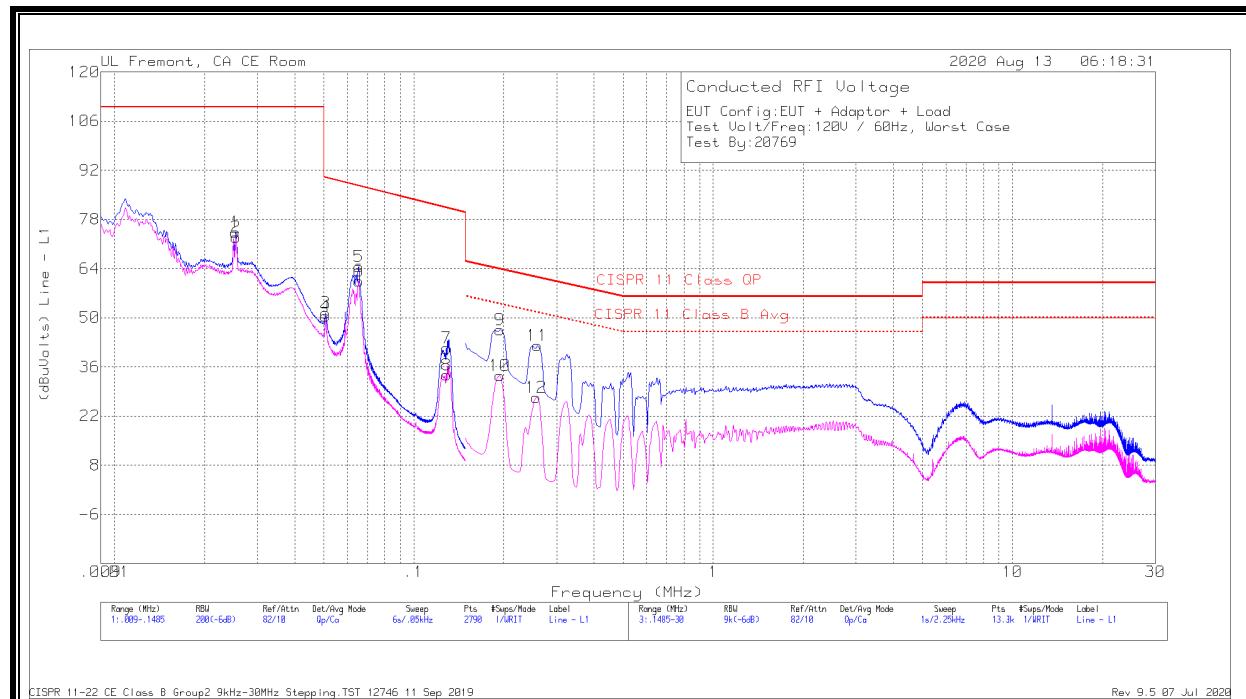
*Indicates UL RFID signal. Not from device

LINE 2 RESULTS

WORST EMISSIONS

Range 2: Line - L2 .009 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	PRE0186446 LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading (dBuVolts)	CISPR 11 Class QP	Margin (dB)	CISPR 11 Class B Avg	Margin (dB)
13	.025	59.49	Qp	.1	0	10.1	69.69	110	-40.31	-	-
14	.025	59.95	Ca	.1	0	10.1	70.15	-	-	-	-
15	.0509	40.67	Qp	.1	0	10	50.77	89.84	-39.07	-	-
16	.0509	40.04	Ca	.1	0	10	50.14	-	-	-	-
17	.08545	32.3	Qp	.1	0	10	42.4	85.08	-42.68	-	-
18	.0855	29.86	Ca	.1	0	10	39.96	-	-	-	-
19	.1665	42.4	Qp	0	0	10	52.4	65.06	-12.66	-	-
20	.16875	28.67	Ca	0	0	10	38.67	-	-	55.02	-16.35
21	.24975	37.08	Qp	0	0	10	47.08	61.72	-14.64	-	-
22	.252	21.97	Ca	0	0	10	31.97	-	-	51.69	-19.72
23	.33075	31.89	Qp	0	0	10	41.89	59.4	-17.51	-	-
24	.333	15.62	Ca	0	0	10	25.62	-	-	49.38	-23.76


Qp - Quasi-Peak detector

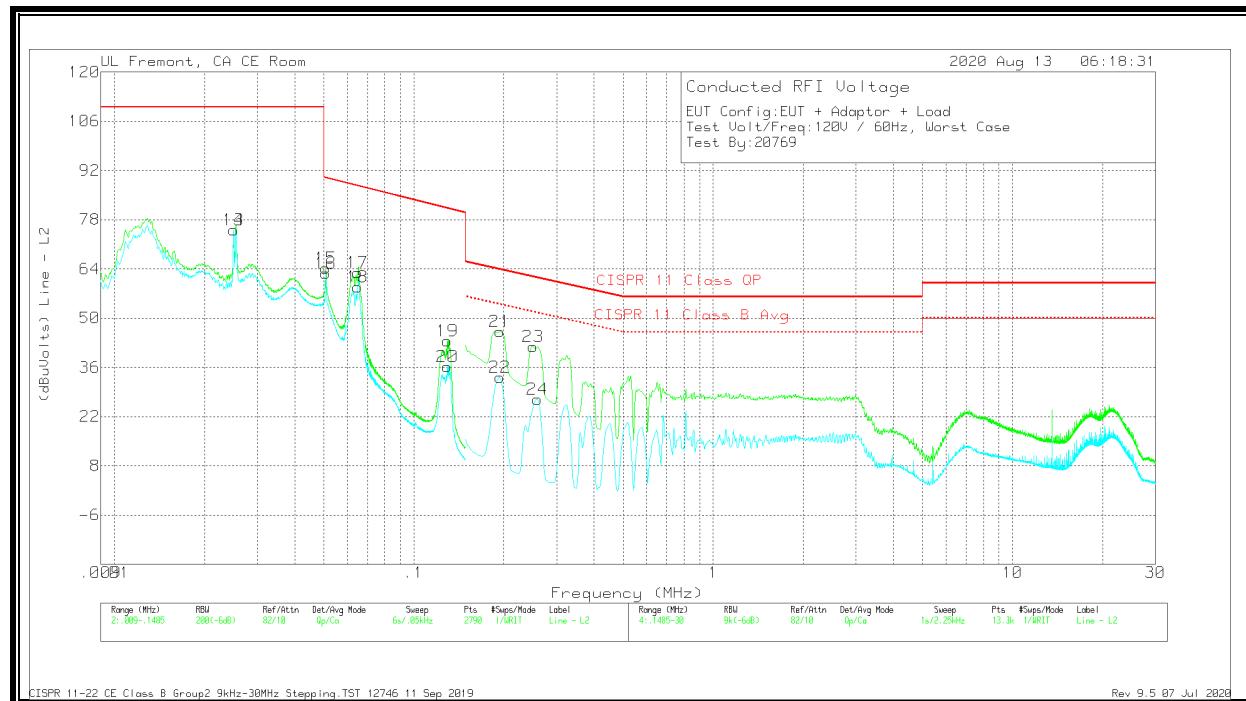
Ca - CISPR average detection

*Indicates UL RFID signal. Not from device

9.1.2. OPERATING MODE WITH LOAD POWERED BY HOST LAPTOP VIA USB CABLE

LINE 1 RESULTS

WORST EMISSIONS


Range 1: Line - L1 .009 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	PRE0186446 LISN L1	LC Cables C1&C3	Limiter (dB)	Corrected Reading (dBuVolts)	CISPR 11 Class QP	Margin (dB)	CISPR 11 Class B Avg	Margin (dB)
1	.0254	64.25	Qp	.1	0	10.1	74.45	110	-35.55	-	-
2	.02545	62.72	Ca	.1	0	10.1	72.92	-	-	-	-
3	.05075	41.34	Qp	.1	0	10	51.44	89.86	-38.42	-	-
4	.0508	40.35	Ca	.1	0	10	50.45	-	-	-	-
5	.0654	54.45	Qp	.1	0	10	64.55	87.53	-22.98	-	-
6	.0654	50.45	Ca	.1	0	10	60.55	-	-	-	-
7	.12845	31.19	Qp	.1	0	10	41.29	81.33	-40.04	-	-
8	.12845	23.62	Ca	.1	0	10	33.72	-	-	-	-
9	.1935	36.5	Qp	0	0	10	46.5	63.82	-17.32	-	-
10	.1935	23.52	Ca	0	0	10	33.52	-	53.88	-20.36	-
11	.25875	32.04	Qp	0	0	10	42.04	61.43	-19.39	-	-
12	.2565	17.27	Ca	0	0	10	27.27	-	51.54	-24.27	-

Qp - Quasi-Peak detector

Ca - CISPR average detection

LINE 2 RESULTS

WORST EMISSIONS

Range 2: Line - L2 .009 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	PRE0186446 LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading (dBuVolts)	CISPR 11 Class QP	Margin (dB)	CISPR 11 Class B Avg	Margin (dB)
13	.025	64.9	Qp	.1	0	10.1	75.1	110	-34.9	-	-
14	.025	64.89	Ca	.1	0	10.1	75.09	-	-	-	-
15	.0508	54.07	Qp	.1	0	10	64.17	89.85	-25.68	-	-
16	.0508	52.6	Ca	.1	0	10	62.7	-	-	-	-
17	.065	52.82	Qp	.1	0	10	62.92	87.59	-24.67	-	-
18	.065	48.73	Ca	.1	0	10	58.83	-	-	-	-
19	.1296	33.34	Qp	.1	0	10	43.44	81.25	-37.81	-	-
20	.1296	26.17	Ca	.1	0	10	36.27	-	-	-	-
21	.1935	36.2	Qp	0	0	10	46.2	63.82	-17.62	-	-
22	.1935	23.16	Ca	0	0	10	33.16	-	53.88	-20.72	-
23	.24975	31.96	Qp	0	0	10	41.96	61.72	-19.76	-	-
24	.25875	16.99	Ca	0	0	10	26.99	-	-	51.47	-24.48

Qp - Quasi-Peak detector

Ca - CISPR average detection

10. SETUP PHOTOS

Please refer to 13179116-EP1V1 for setup photos

END OF TEST REPORT

END OF TEST REPORT