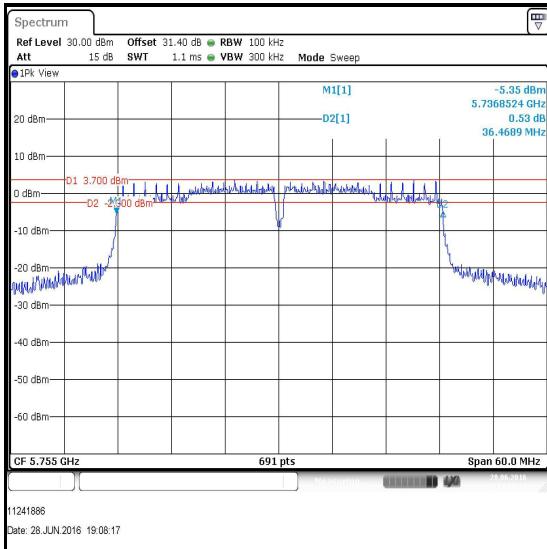


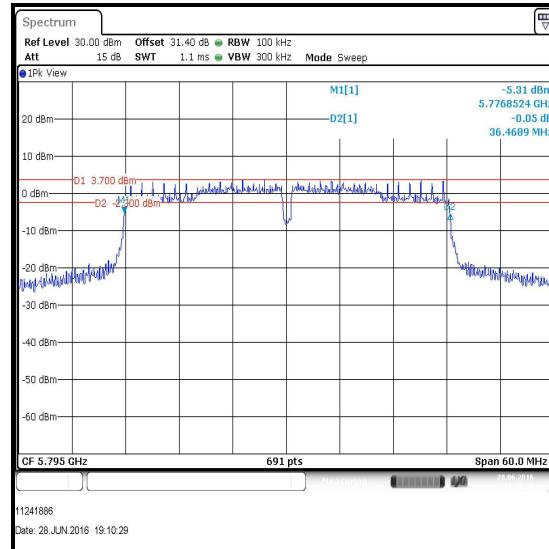

**Transmitter Minimum 6 dB Bandwidth (5.725-5.85 GHz band) (continued)****Results: 802.11n / 40 MHz / MIMO / BPSK / MCS0 / Port 1**

| Channel | 6 dB Bandwidth (kHz) | Limit (kHz) | Margin (kHz) | Result   |
|---------|----------------------|-------------|--------------|----------|
| Bottom  | 36208                | ≥500        | 35708        | Complied |
| Top     | 35948                | ≥500        | 35448        | Complied |




Bottom Channel

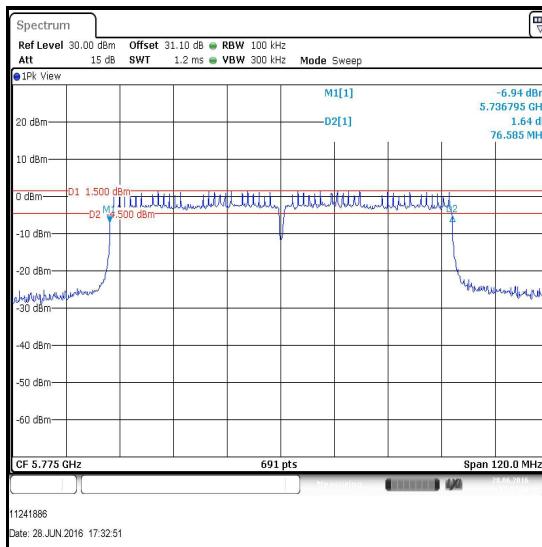



Top Channel

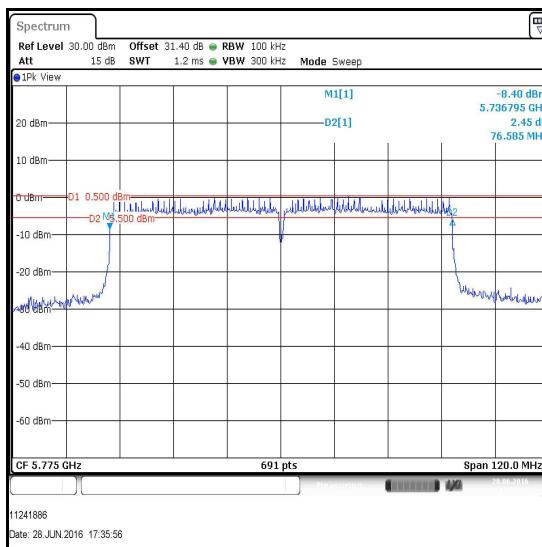
**Transmitter Minimum 6 dB Bandwidth (5.725-5.85 GHz band) (continued)****Results: 802.11n / 40 MHz / MIMO / BPSK / MCS0 / Port 2**

| Channel | 6 dB Bandwidth (kHz) | Limit (kHz) | Margin (kHz) | Result   |
|---------|----------------------|-------------|--------------|----------|
| Bottom  | 36469                | ≥500        | 35969        | Complied |
| Top     | 36469                | ≥500        | 35969        | Complied |




Bottom Channel




Top Channel

**Transmitter Minimum 6 dB Bandwidth (5.725-5.85 GHz band) (continued)****Results: 802.11ac / 80 MHz / MIMO / BPSK / MCS0x1 / Port 1**

| Channel | 6 dB Bandwidth (kHz) | Limit (kHz) | Margin (kHz) | Result   |
|---------|----------------------|-------------|--------------|----------|
| Single  | 76585                | ≥500        | 76085        | Complied |

**Single Channel****Results: 802.11ac / 80 MHz / MIMO / BPSK / MCS0x1 / Port 2**

| Channel | 6 dB Bandwidth (kHz) | Limit (kHz) | Margin (kHz) | Result   |
|---------|----------------------|-------------|--------------|----------|
| Single  | 76585                | ≥500        | 76085        | Complied |

**Single Channel**

**Transmitter Minimum 6 dB Bandwidth (continued)****Test Equipment Used:**

| Asset No. | Instrument       | Manufacturer         | Type No.                | Serial No.         | Date Calibration Due  | Cal. Interval (Months) |
|-----------|------------------|----------------------|-------------------------|--------------------|-----------------------|------------------------|
| M1659     | Thermohygrometer | JM Handelspunkt      | 30.5015.13              | None stated        | 02 Apr 2017           | 12                     |
| M1835     | Signal Analyser  | Rohde & Schwarz      | FSV30                   | 103050             | 27 Feb 2017           | 12                     |
| M1867     | Attenuator       | Huber + Suhner AG    | 6820.17.B               | 07101              | Calibrated before use | -                      |
| A2847     | Attenuator       | Radiall              | R411.820.121            | 24671450           | Calibrated before use | -                      |
| A2345     | Attenuator       | Macom                | 2082-6043-20            | None stated        | Calibrated before use | -                      |
| A2952     | RF Switch        | Pickering Interfaces | 64-102-002 & 40-881-001 | XZ361012 & X361507 | Calibrated before use | -                      |
| S0538     | DC Power Supply  | TTi                  | PL154                   | 250135             | Calibrated before use | -                      |
| M1818     | Multimeter       | Fluke                | 79III                   | 71811580           | 27 Apr 2017           | 12                     |
| M1252     | Signal Generator | Hewlett Packard      | 83640A                  | 3119A00489         | 26 Oct 2017           | 24                     |

### **5.2.3. Transmitter Duty Cycle**

#### **Test Summary:**

|                          |                 |                   |              |
|--------------------------|-----------------|-------------------|--------------|
| <b>Test Engineer:</b>    | Georgios Vrezas | <b>Test Date:</b> | 28 June 2016 |
| <b>Test Sample IMEI:</b> | 358640070098109 |                   |              |

|                          |                                  |
|--------------------------|----------------------------------|
| <b>FCC Reference:</b>    | Part 15.35(c)                    |
| <b>Test Method Used:</b> | KDB 789033 D02 Section II.B.2.b) |

#### **Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 23 |
| <b>Relative Humidity (%):</b> | 39 |

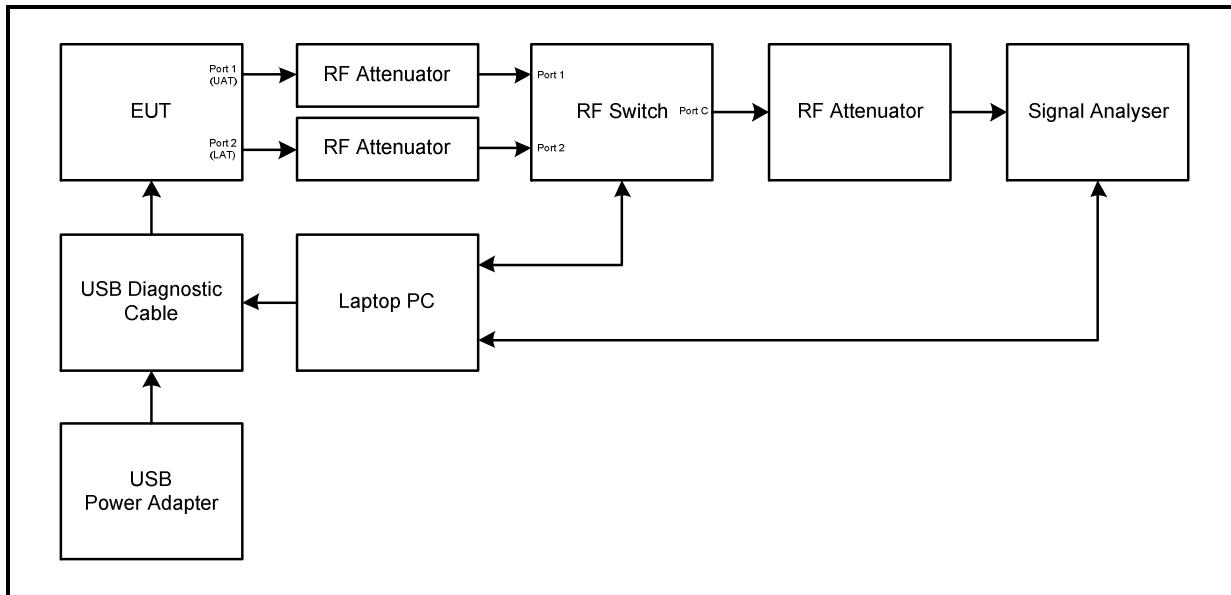
#### **Note(s):**

1. In order to assist with the determination of the average level of fundamental and spurious emissions field strength, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

$$10 \log 1 / (\text{On Time} / [\text{Period or } 100\text{ms whichever is the lesser}]).$$

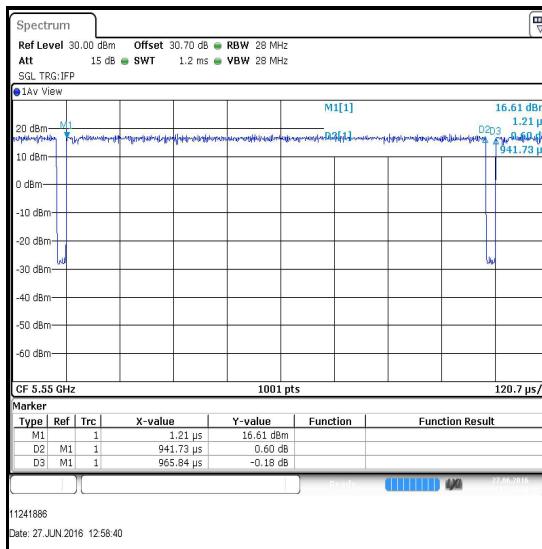
802.11n HT40 / SISO / MCS0 duty cycle:  $10 \log (1 / (941.730/965.840)) = 0.1$

802.11ac VHT80 / SISO / MCS0 duty cycle:  $10 \log (1 / (458.868/481.721)) = 0.2$

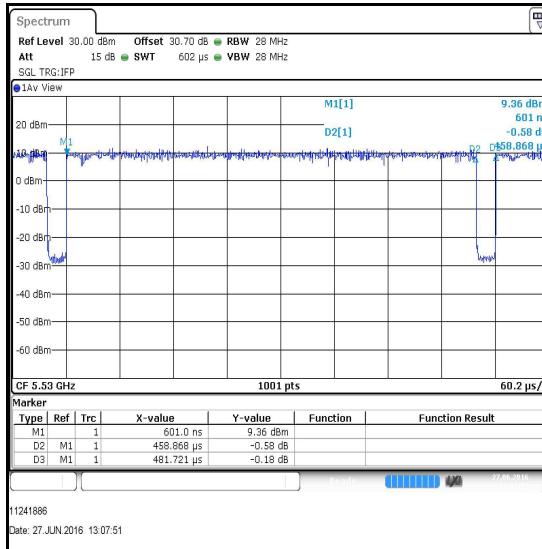

802.11n HT40 / MIMO / MCS0 / Port 1 duty cycle:  $10 \log (1 / (940.520/965.840)) = 0.1$

802.11n HT40 / MIMO / MCS0 / Port 2 duty cycle:  $10 \log (1 / (941.730/965.840)) = 0.1$

802.11ac VHT80 / MIMO / MCS0x1 / Port 1 duty cycle:  $10 \log (1 / (458.266/481.721)) = 0.2$

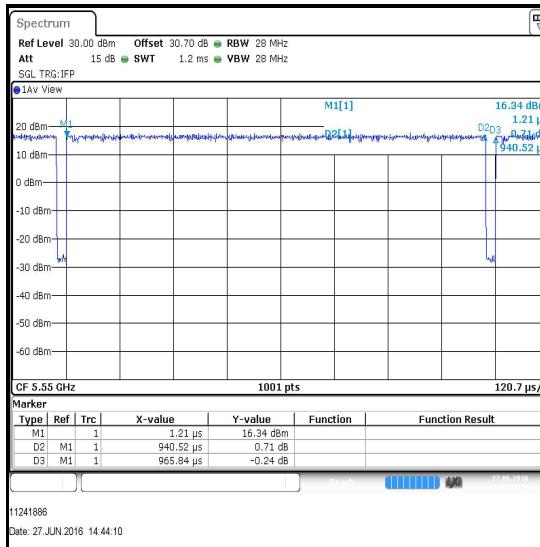

802.11ac VHT80 / MIMO / MCS0x1 / Port 2 duty cycle:  $10 \log (1 / (458.265/481.720)) = 0.2$

2. Plots below are for data rates with a duty cycle less than 98%. Results for all other modes are archived on the Company server and available for inspection if required.
3. The signal analyser was connected to the RF port on the EUT using an RF switch, suitable attenuation and RF cables. An RF level offset was entered on the signal analyser to compensate for the loss of the switch, attenuators and RF cables.

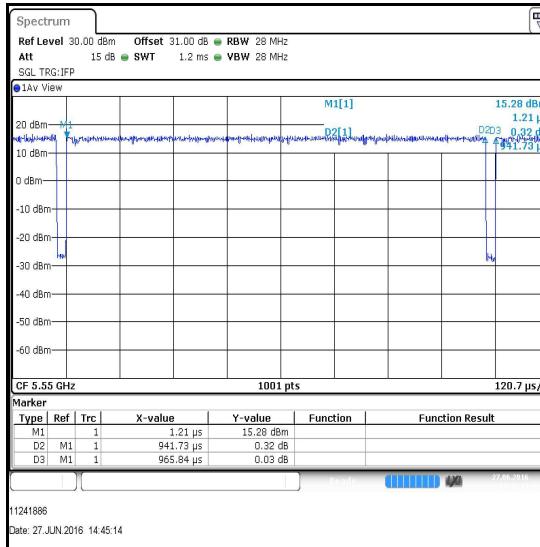

**Transmitter Duty Cycle (continued)****Test setup:**

**Transmitter Duty Cycle (continued)****Results: 802.11n / 40 MHz / SISO / MCS0**

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle<br>(dB) |
|------------------------------|----------------------|--------------------|
| 941.730                      | 965.840              | 0.1                |

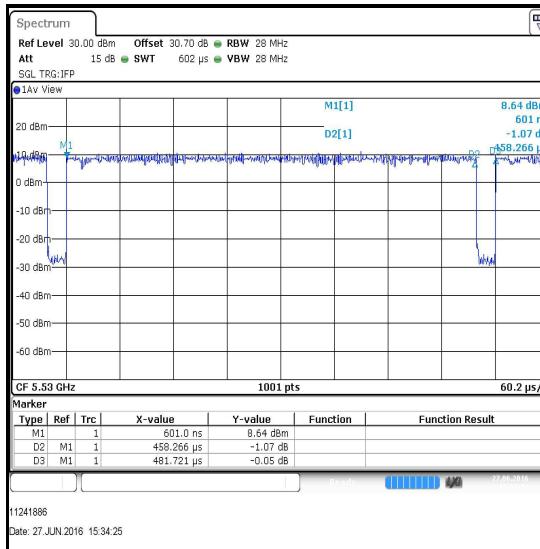

**Results: 802.11ac / 80 MHz / SISO / MCS0**

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle<br>(dB) |
|------------------------------|----------------------|--------------------|
| 458.868                      | 481.721              | 0.2                |

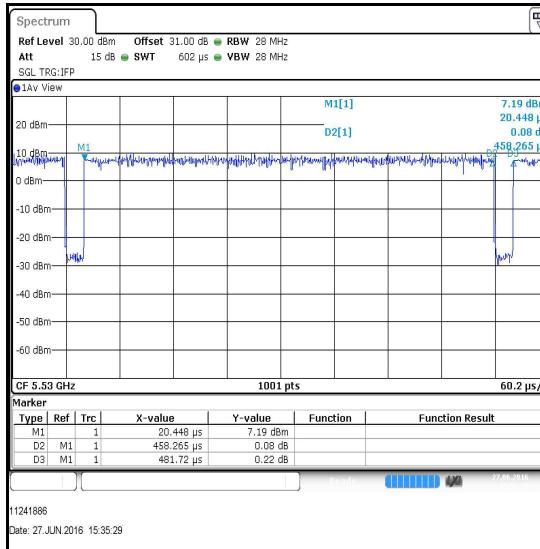



**Transmitter Duty Cycle (continued)****Results: 802.11n / 40 MHz / MIMO / MCS0 / Port 1**

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle<br>(dB) |
|------------------------------|----------------------|--------------------|
| 940.520                      | 965.840              | 0.1                |


**Results: 802.11n / 40 MHz / MIMO / MCS0 / Port 2**

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle<br>(dB) |
|------------------------------|----------------------|--------------------|
| 941.730                      | 965.840              | 0.1                |




**Transmitter Duty Cycle (continued)****Results: 802.11ac / 80 MHz / MIMO / MCS0x1 / Port 1**

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle<br>(dB) |
|------------------------------|----------------------|--------------------|
| 458.266                      | 481.721              | 0.2                |

**Results: 802.11ac / 80 MHz / MIMO / MCS0x1 / Port 2**

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle<br>(dB) |
|------------------------------|----------------------|--------------------|
| 458.265                      | 481.720              | 0.2                |



**Transmitter Duty Cycle (continued)****Test Equipment Used:**

| Asset No. | Instrument       | Manufacturer         | Type No.                | Serial No.         | Date Calibration Due  | Cal. Interval (Months) |
|-----------|------------------|----------------------|-------------------------|--------------------|-----------------------|------------------------|
| M1659     | Thermohygrometer | JM Handelpunkt       | 30.5015.13              | None stated        | 02 Apr 2017           | 12                     |
| M1835     | Signal Analyser  | Rohde & Schwarz      | FSV30                   | 103050             | 27 Feb 2017           | 12                     |
| M1867     | Attenuator       | Huber + Suhner AG    | 6820.17.B               | 07101              | Calibrated before use | -                      |
| A2847     | Attenuator       | Radiall              | R411.820.121            | 24671450           | Calibrated before use | -                      |
| A2345     | Attenuator       | Macom                | 2082-6043-20            | None stated        | Calibrated before use | -                      |
| A2952     | RF Switch        | Pickering Interfaces | 64-102-002 & 40-881-001 | XZ361012 & X361507 | Calibrated before use | -                      |
| S0538     | DC Power Supply  | TTi                  | PL154                   | 250135             | Calibrated before use | -                      |
| M1818     | Multimeter       | Fluke                | 79III                   | 71811580           | 27 Apr 2017           | 12                     |
| M1252     | Signal Generator | Hewlett Packard      | 83640A                  | 3119A00489         | 26 Oct 2017           | 24                     |

### **5.2.4. Transmitter Maximum Conducted Output Power**

#### **Test Summary:**

|                          |                 |                    |                                |
|--------------------------|-----------------|--------------------|--------------------------------|
| <b>Test Engineer:</b>    | Georgios Vrezas | <b>Test Dates:</b> | 28 June 2016 &<br>21 July 2016 |
| <b>Test Sample IMEI:</b> | 358640070098109 |                    |                                |

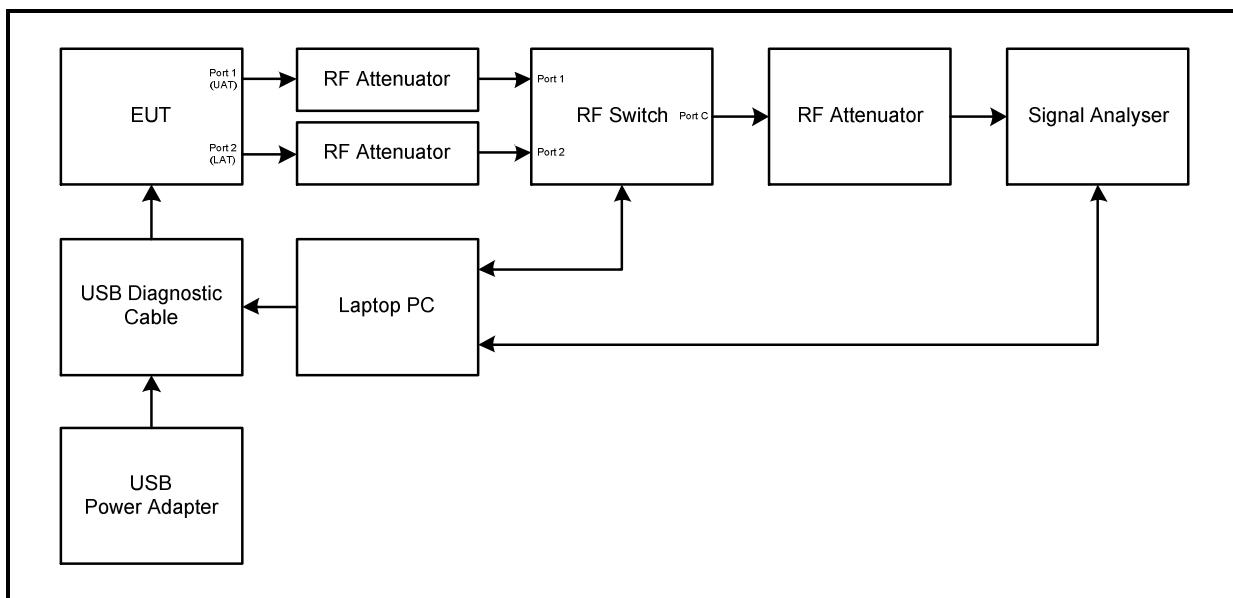
|                          |                                                |
|--------------------------|------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.407(a)(1)(iv)                          |
| <b>Test Method Used:</b> | KDB 789033 D02 Section II.E.2.b) and II.E.2.d) |

#### **Environmental Conditions:**

|                               |          |
|-------------------------------|----------|
| <b>Temperature (°C):</b>      | 24 to 25 |
| <b>Relative Humidity (%):</b> | 45 to 46 |

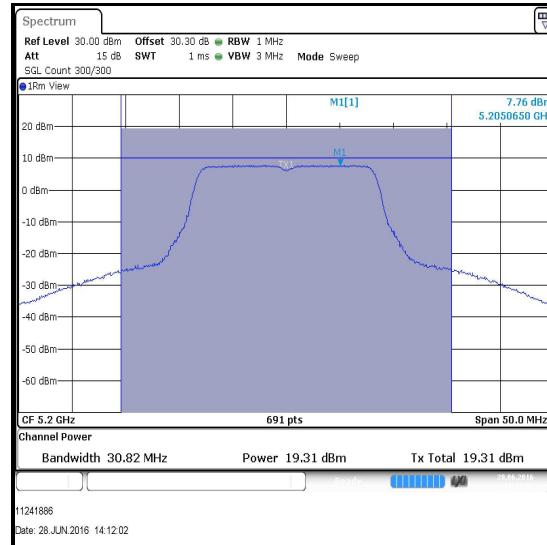
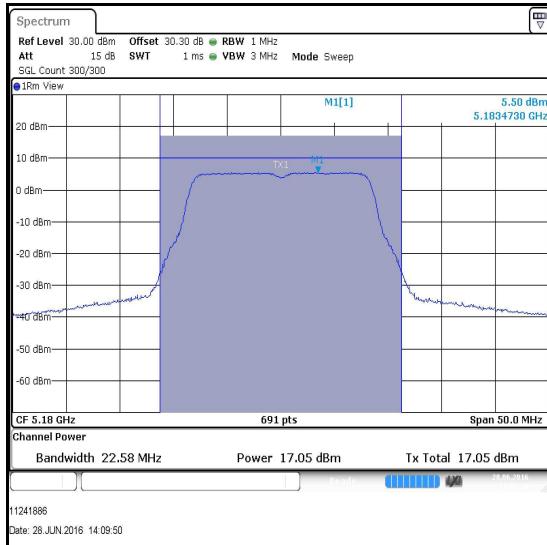
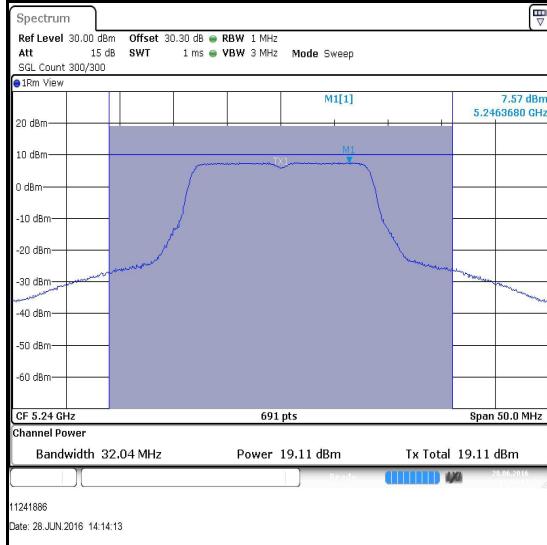
#### **Note(s):**

1. For conducted power tests where the duty cycle is >98%, the measurements were performed using a signal analyser in accordance with FCC KDB 789033 II.E.2.b) Method SA-1. Where the duty cycle is <98%, the measurements were performed in accordance with FCC KDB 789033 II.E.2.d) Method SA-2.
2. The customer declared the following data rates to be used for all measurements as:
  - o 802.11a – BPSK / 6 Mbps / Port 1
  - o 802.11n HT20 SISO – BPSK / 6.5 Mbps / MCS0 / Port 1
  - o 802.11n HT40 SISO – BPSK / 13.5 Mbps / MCS0 / Port 1
  - o 802.11ac VHT80 SISO – BPSK / 29.3 Mbps / MCS0 / Port 1
  - o 802.11n HT20 MIMO – BPSK / 6.5 Mbps / MCS0
  - o 802.11n HT40 MIMO – BPSK / 13.5 Mbps / MCS0
  - o 802.11ac VHT80 MIMO – BPSK / 29.3 Mbps / MCS0x1


Measurements were then performed in these modes on all relevant channels in all operating bands.

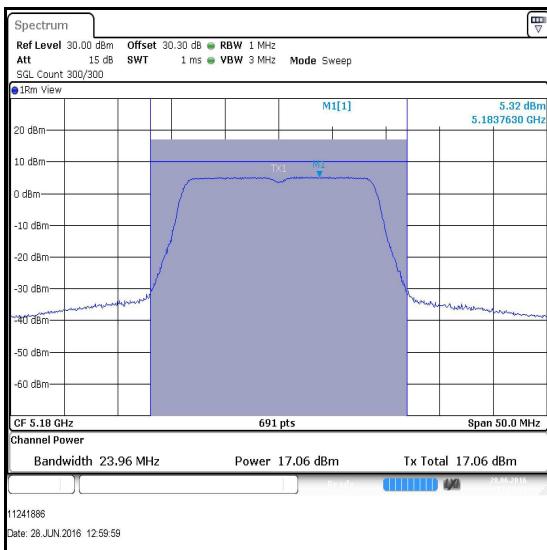
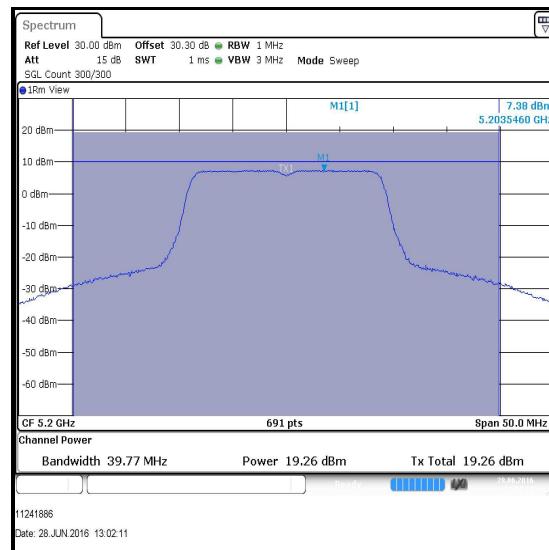
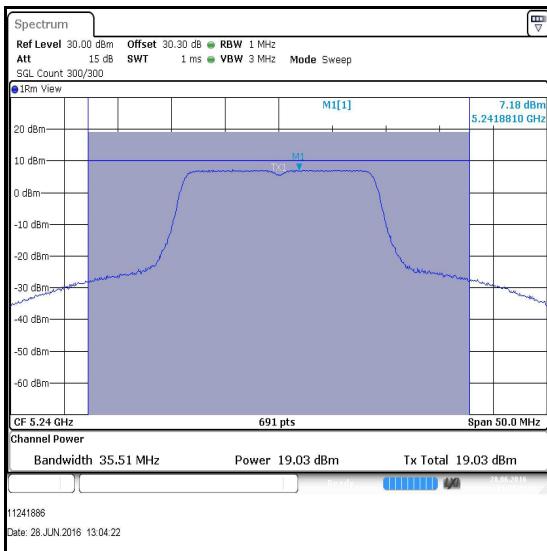
3. For data rates where the EUT was transmitting at <98% duty cycle, the calculated duty cycle in section 5.2.3 was added to the measured power in order to compute the average power during the actual transmission time.
4. Power was measured on both ports and then combined using the measure-and-sum technique stated in FCC KDB 662911 D01 Section E1).
5. For SISO modes, the antenna gain is < 6 dBi.
6. For MIMO modes presented in this section of the test report, the data stream is correlated as it is single stream with CDD on. The directional antenna gain has been calculated in accordance with ANSI C63.10 Section 14.4.3.2.4 b). The EUT antenna has a gain of -4.7 dBi for port 1 and -6.0 dBi for port 2, in the frequency range 5.15 GHz to 5.25 GHz:

$$\begin{aligned}
 \text{Directional Gain} &= 10 \log \left[ \frac{\sum_{j=1}^{N_{SS}} (\sum_{k=1}^{N_{ANT}} g_{j,k})^2}{N_{ANT}} \right] = 10 \log \left[ \frac{\sum_{j=1}^1 (\sum_{k=1}^2 g_{j,k})^2}{2} \right] \\
 &= 10 \log \left[ \frac{(g_{1,1} + g_{1,2})^2}{2} \right] = 10 \log \left[ \frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}}\right)^2}{2} \right] = 10 \log \left[ \frac{\left(10^{\frac{-4.7}{20}} + 10^{\frac{-6.0}{20}}\right)^2}{2} \right] = -2.3 \text{ dBi}
 \end{aligned}$$




**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Note(s):**

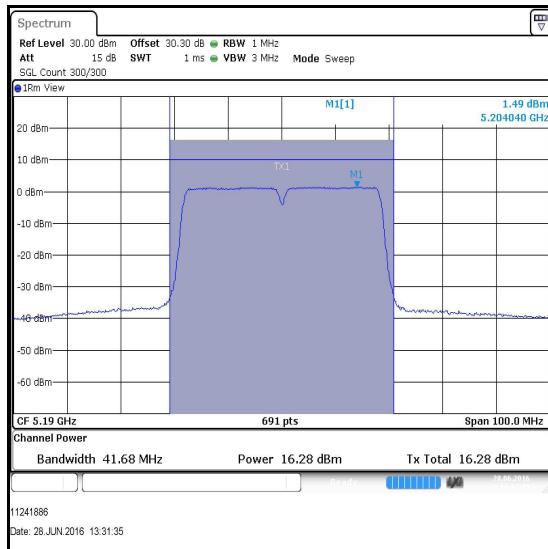
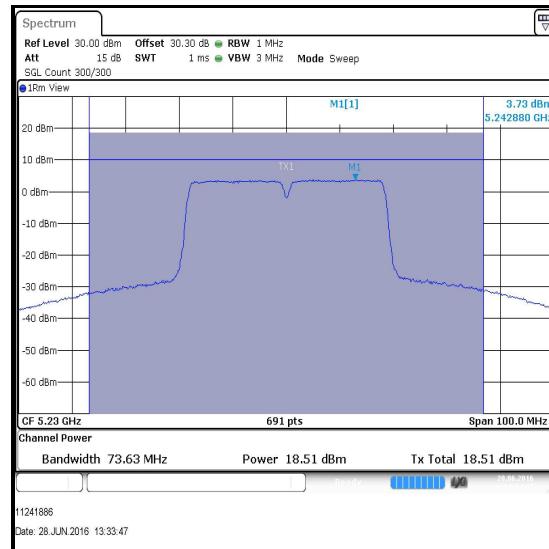
7. The signal analyser was connected to the RF port on the EUT using an RF switch, suitable attenuation and RF cables. An RF level offset was entered on the signal analyser to compensate for the loss of the switch, attenuators and RF cables.
8. The Part 15.407(a)(1)(iv) limit shall not exceed 250 mW (24.0 dBm).
9. Testing was performed with the EUT transmitting with power levels equal to or greater than those stated in the respective SAR test report. WLAN modes which provided higher output powers than those given within the SAR report, are the result of the device being configured with higher power settings for testing purposes.

**Test setup:**




**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11a / 20 MHz / BPSK / 6 Mbps**

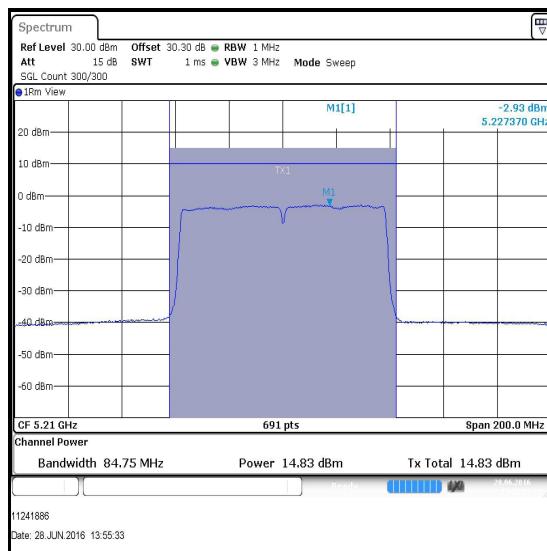
| Channel | Frequency (MHz) | Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-----------------|-----------------------|-------------|-------------|----------|
| Bottom  | 5180            | 17.1                  | 24.0        | 6.9         | Complied |
| Middle  | 5200            | 19.3                  | 24.0        | 4.7         | Complied |
| Top     | 5240            | 19.1                  | 24.0        | 4.9         | Complied |

**Bottom Channel****Middle Channel****Top Channel**



**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11n / 20 MHz / BPSK / MCS0 / SISO**

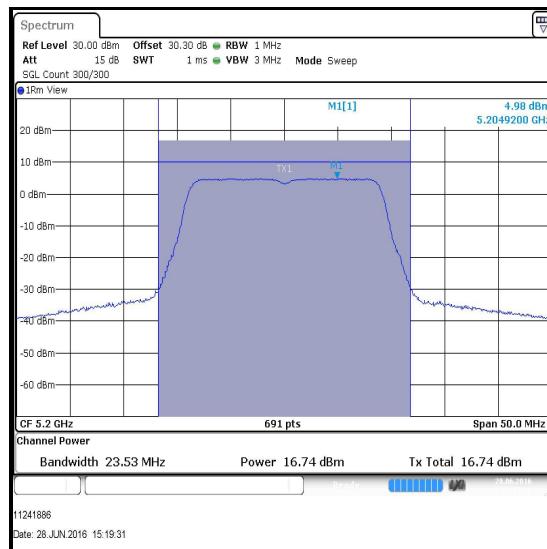
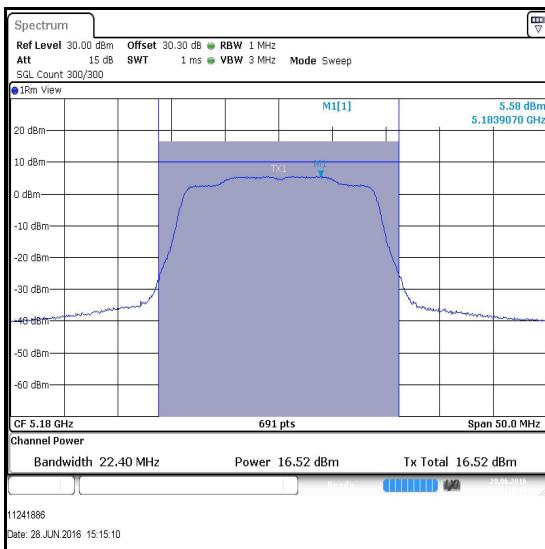
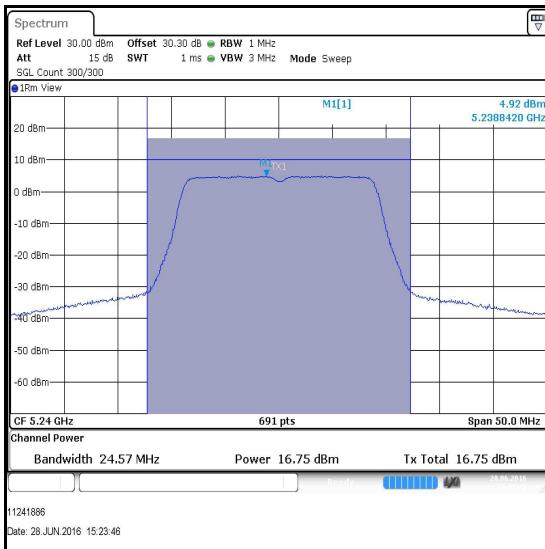
| Channel | Frequency (MHz) | Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-----------------|-----------------------|-------------|-------------|----------|
| Bottom  | 5180            | 17.1                  | 24.0        | 6.9         | Complied |
| Middle  | 5200            | 19.3                  | 24.0        | 4.7         | Complied |
| Top     | 5240            | 19.0                  | 24.0        | 5.0         | Complied |

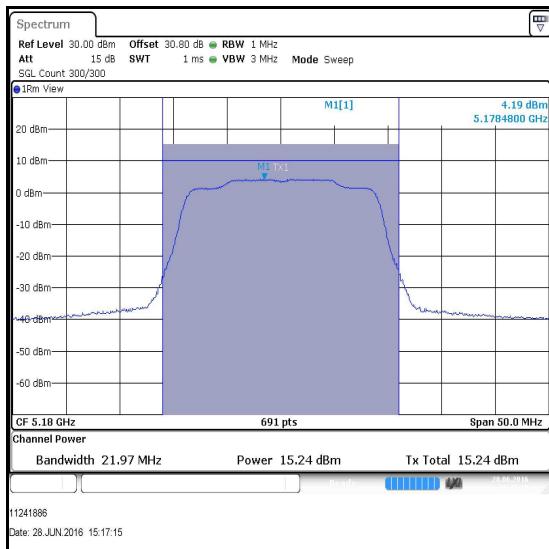
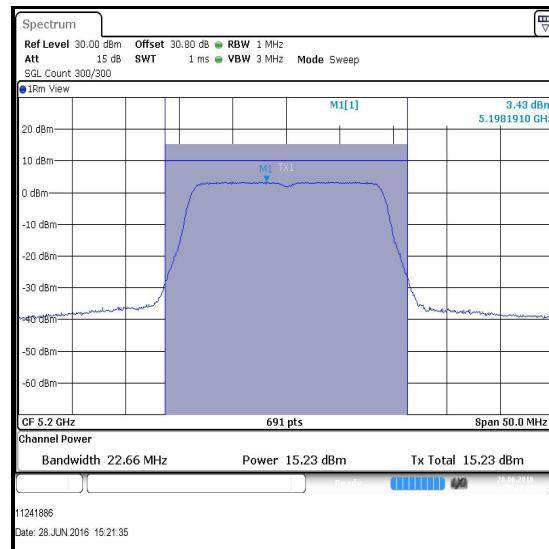
**Bottom Channel****Middle Channel****Top Channel**


**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11n / 40 MHz / BPSK / MCS0 / SISO**

| Channel | Frequency (MHz) | Conducted Power (dBm) | Duty cycle correction factor (dB) | Corrected Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-----------------|-----------------------|-----------------------------------|---------------------------------|-------------|-------------|----------|
| Bottom  | 5190            | 16.3                  | 0.1                               | 16.4                            | 24.0        | 7.6         | Complied |
| Top     | 5230            | 18.5                  | 0.1                               | 18.6                            | 24.0        | 5.4         | Complied |

**Bottom Channel****Top Channel**

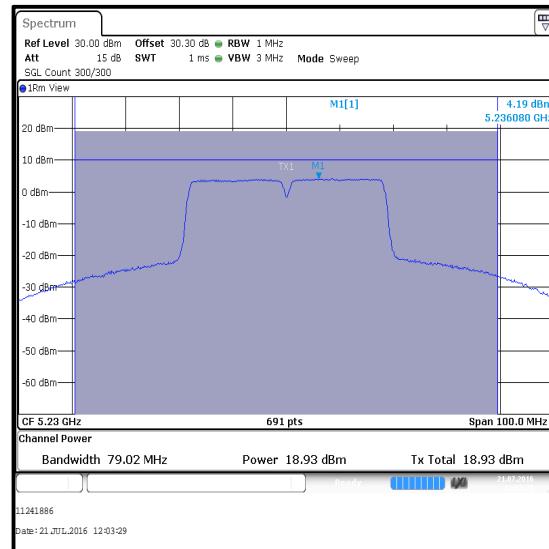
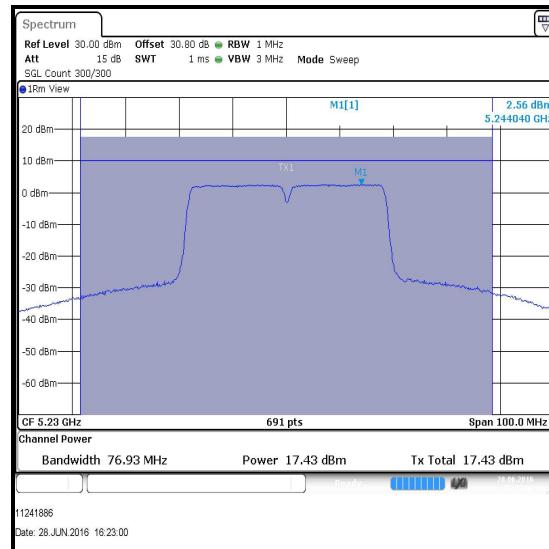



**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11ac / 80 MHz / BPSK / MCS0 / SISO**



| Channel | Frequency (MHz) | Conducted Power (dBm) | Duty cycle correction factor (dB) | Corrected Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-----------------|-----------------------|-----------------------------------|---------------------------------|-------------|-------------|----------|
| Single  | 5210            | 14.8                  | 0.2                               | 15.0                            | 24.0        | 9.0         | Complied |

**Single Channel**

**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11n / 20 MHz / BPSK / MCS0 / MIMO**

| Channel | Frequency (MHz) | Conducted Power Port 1 (dBm) | Conducted Power Port 2 (dBm) | Combined Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|-----------------|------------------------------|------------------------------|--------------------------------|-------------|-------------|----------|
| Bottom  | 5180            | 16.5                         | 15.2                         | 18.9                           | 24.0        | 5.1         | Complied |
| Middle  | 5200            | 16.7                         | 15.2                         | 19.0                           | 24.0        | 5.0         | Complied |
| Top     | 5240            | 16.8                         | 15.6                         | 19.3                           | 24.0        | 4.7         | Complied |




**Results: 802.11n / 20 MHz / BPSK / MCS0 / MIMO / Port 1****Bottom Channel****Top Channel****Middle Channel**

**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11n / 20 MHz / BPSK / MCS0 / MIMO / Port 2****Bottom Channel****Middle Channel****Top Channel**

**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11n / 40 MHz / BPSK / MCS0 / MIMO**

| Channel | Frequency (MHz) | Port 1                |                            |                                 | Port 2                |                            |                                 |
|---------|-----------------|-----------------------|----------------------------|---------------------------------|-----------------------|----------------------------|---------------------------------|
|         |                 | Conducted Power (dBm) | Duty Cycle Correction (dB) | Corrected Conducted Power (dBm) | Conducted Power (dBm) | Duty Cycle Correction (dB) | Corrected Conducted Power (dBm) |
| Bottom  | 5190            | 14.0                  | 0.1                        | 14.1                            | 12.2                  | 0.1                        | 12.3                            |
| Top     | 5230            | 18.9                  | 0.1                        | 19.0                            | 17.4                  | 0.1                        | 17.5                            |

| Channel | Corrected Conducted Power Port 1 (dBm) | Corrected Conducted Power Port 2 (dBm) | Combined Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|----------------------------------------|----------------------------------------|--------------------------------|-------------|-------------|----------|
| Bottom  | 14.1                                   | 12.3                                   | 16.3                           | 24.0        | 7.7         | Complied |
| Top     | 19.0                                   | 17.5                                   | 21.3                           | 24.0        | 2.7         | Complied |

**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11n / 40 MHz / BPSK / MCS0 / MIMO / Port 1****Bottom Channel****Top Channel****Results: 802.11n / 40 MHz / BPSK / MCS0 / MIMO / Port 2****Bottom Channel****Top Channel**

**Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band) (continued)****Results: 802.11ac / 80 MHz / BPSK / MCS0x1 / MIMO**

| Channel | Frequency (MHz) | Port 1                |                            |                                 | Port 2                |                            |                                 |
|---------|-----------------|-----------------------|----------------------------|---------------------------------|-----------------------|----------------------------|---------------------------------|
|         |                 | Conducted Power (dBm) | Duty Cycle Correction (dB) | Corrected Conducted Power (dBm) | Conducted Power (dBm) | Duty Cycle Correction (dB) | Corrected Conducted Power (dBm) |
| Single  | 5210            | 14.6                  | 0.2                        | 14.8                            | 12.9                  | 0.2                        | 13.1                            |

| Channel | Corrected Conducted Power Port 1 (dBm) | Corrected Conducted Power Port 2 (dBm) | Combined Conducted Power (dBm) | Limit (dBm) | Margin (dB) | Result   |
|---------|----------------------------------------|----------------------------------------|--------------------------------|-------------|-------------|----------|
| Single  | 14.8                                   | 13.1                                   | 17.0                           | 24.0        | 7.0         | Complied |