ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)
18855 Adams Court, Morgan Hill, CA 95037 USA
Tel. 408.538.5600
http://www.element.com

RF EXPOSURE REPORT

Applicant Name:

Apple, Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing:

06/18/2025 - 07/11/2025

Test Report Issue Date:

08/12/2025

Test Site/Location:

Element, Morgan Hill, CA, USA

Document Serial No.:

1C2503270030-12.BCG-R1

FCC ID: BCG-A3331

APPLICANT: APPLE, INC.

DUT Type: Watch

Application Type: Certification FCC Rule Part(s): CFR §2.1093

Model: A3331, A3450

	A3331, A3450					
Cauinment			SAR			
Equipment Class	Band & Mode	Tx Frequency	1g Head (W/kg)	10g Extremity (W/kg)		
DTS	2.4 GHz WIFI	2412 - 2472 MHz	0.42	<0.1		
NII	5 GHz WIFI	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz	0.18	<0.1		
DSS/DTS	2.4 GHz Bluetooth	2402 - 2480 MHz	0.28	<0.1		
NII	802.15.4 ab-NB	5728.75 - 5846.25 MHz	<0.1	<0.1		
DXX	NFC	13.56 MHz	N/A	<0.1		
UWB	UWB	6489.6 - 7987.2 MHz	N/A	N/A		
Sir	nultaneous SAR per KDI	0.35	<0.1			

Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by:	
		Technical Manager	
DUT Type:		Dog 1 of 20	
Watch	Page 1 of 28		

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTROD	UCTION	7
3	DOSIME	TRIC ASSESSMENT	8
4	TEST CO	ONFIGURATION POSITIONS	9
5	RF EXP	DSURE LIMITS	10
6	FCC ME	ASUREMENT PROCEDURES	11
7	RF CON	DUCTED POWERS	13
8	SYSTEM	I VERIFICATION	16
9	SAR DA	TA SUMMARY	20
10	SAR ME	ASUREMENT VARIABILITY	23
11	EQUIPM	ENT LIST	24
12	MEASUF	REMENT UNCERTAINTIES	25
13	CONCLU	JSION	26
14	REFERE	NCES	27
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	MULTI-TX AND ANTENNA SAR CONSIDERATIONS	
APPEN	IDIX F:	SAR SYSTEM VALIDATION	
APPEN	IDIX G:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by:
1 00 lb. Beg-Asss1	IN EXPOSERE REPORT	Technical Manager
DUT Type:		Page 2 of 28
Watch	rage 2 of 20	

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
5 GHz WIFI	Voice/Data	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
802.15.4 ab-NB	Data	5728.75 - 5846.25 MHz
UWB	Data	6489.6 - 7987.2 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 3 of 28

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D04v01.

1.3.1 Maximum Output Power – WiFi Mode

Mode/ Band			IEEE 802.11b (2.4 GHz)		IEEE 802.11g (2.4 GHz)		IEEE 802.11n (2.4 GHz)	
		Channel	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal
		1	20.00	19.00	17.00	16.00	17.00	16.00
		2	20.00	19.00	17.50	16.50	17.50	16.50
		3	20.00	19.00	19.00	18.00	19.00	18.00
	20 MHz Bandwidth	4	20.00	19.00	19.00	18.00	19.00	18.00
Modulated		5	20.00	19.00	19.00	18.00	19.00	18.00
Average -		6	20.00	19.00	19.00	18.00	19.00	18.00
Single Tx Chain		7	20.00	19.00	19.00	18.00	19.00	18.00
(dBm)		8	20.00	19.00	19.00	18.00	19.00	18.00
(ubiii)		9	20.00	19.00	19.00	18.00	19.00	18.00
		10	20.00	19.00	19.00	18.00	19.00	18.00
		11	20.00	19.00	16.50	15.50	16.50	15.50
		12	20.00	19.00	15.00	14.00	15.00	14.00
		13	18.00	17.00	2.50	1.50	2.50	1.50

Mode/ Band			IEEE 802.	11a (5 GHz)	IEEE 802.11n (5 GHz)	
		Channel	Maximum	Nominal	Maximum	Nominal
		36	17.00	16.00	17.00	16.00
		40	17.00	16.00	17.00	16.00
		44	17.00	16.00	17.00	16.00
		48	17.00	16.00	17.00	16.00
		52	17.00	16.00	17.00	16.00
		56	17.00	16.00	17.00	16.00
		60	17.00	16.00	17.00	16.00
		64	17.00	16.00	17.00	16.00
		100	17.00	16.00	17.00	16.00
		104	17.00	16.00	17.00	16.00
		108	17.00	16.00	17.00	16.00
Modulated Average -		112	17.00	16.00	17.00	16.00
Single Tx Chain	20 MHz Bandwidth	116	17.00	16.00	17.00	16.00
(dBm)		120	17.00	16.00	17.00	16.00
		124	17.00	16.00	17.00	16.00
		128	17.00	16.00	17.00	16.00
		132	17.00	16.00	17.00	16.00
		136	17.00	16.00	17.00	16.00
		140	13.50	12.50	13.50	12.50
		144	17.00	16.00	17.00	16.00
		149	17.00	16.00	17.00	16.00
		153	17.00	16.00	17.00	16.00
		157	17.00	16.00	17.00	16.00
		161	17.00	16.00	17.00	16.00
		165	17.00	16.00	17.00	16.00

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 4 of 28

1.3.2 Maximum Output Power – Bluetooth Mode

Mode / Band	Modulated Average - Single Tx Chain (dBm)	
Bluetooth BDR/LE	Maximum	18.50
Bidetootii BDK/LE	Nominal	17.50
Bluetooth EDR	Maximum	13.50
Bidetootii EDK	Nominal	12.50
Bluetooth HDR	Maximum	13.50
Biuetootii HDR	Nominal	12.50

1.3.3 Maximum Output Power – 802.15.4 ab-NB

Mode / Band	Modulated Average - Single Tx Chain (dBm)	
802.15.4 ab-NB	Maximum	16.00
002.13.4 dD-ND	Nominal	14.00

1.4 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in the DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in the DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D04v01, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D04v01 4.3.2 procedures.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by:
1 00 IB. 2004 (0001	KI EXI GOOKE KEI GKI	Technical Manager
DUT Type:		Dogo 5 of 20
Watch	Page 5 of 28	

Table 1-1 **Simultaneous Transmission Scenarios**

No.	Capable Transmit Configuration	Head	Extremity
1	2.4 GHz WI-FI + 802.15.4 ab-NB + NFC*	Yes*	Yes
2	2.4 GHz WI-FI + UWB + NFC*	Yes*	Yes
3	2.4 GHz Bluetooth + 5 GHz WI-FI + NFC*	Yes*	Yes
4	2.4 GHz Bluetooth + 802.15.4 ab-NB + NFC*	Yes*	Yes
5	2.4 GHz Bluetooth + UWB + NFC*	Yes*	Yes

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. 2.4 GHz WLAN and 5 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- 3. 802.15.4ab-NB and 5 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- 4. This device supports VOWIFI.
- 5. *NFC was evaluated for extremity only based on expected usage conditions.

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Per October 2022 TCB Workshop, the 1 mW test exemption is allowed for 6-8.5 GHz UWB in multitransmitter end products. No further evaluation for UWB is required.

1.8 **Guidance Applied**

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D04v01 (General SAR Guidance, Wrist-worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- IEEE 1528-2013
- November 2017, October 2018, April 2019, November 2019, October 2020 TCBC Workshop Notes
- SPEAG DASY6 System Handbook

1.9 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

1.10 **Device Housing Types and Wrist Band Types**

This device has one housing type that was evaluated independently for SAR: Aluminum. The device can also be used with different wristband accessories. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager	
DUT Type: Watch		Page 6 of 28	

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996, and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 7 of 28

DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

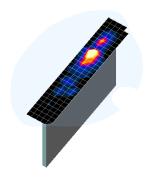


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan	Maximum Zoom Scan	Max	Maximum Zoom Scan Spatial Resolution (mm)		
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
	died ydiedy	72000	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch	Page 8 of 28	

4 TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

4.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

4.3 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet, and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with head tissue-equivalent medium. The device was evaluated with Sport wristband unstrapped and touching the phantom. For Metal Loop and Metal Links wristbands, the device was evaluated with wristbands strapped and the distance between wristbands and the phantom was minimized to represent the spacing created by actual use conditions.

RF EXPOSURE REPORT	Approved by: Technical Manager		
DUT Type: Watch			
	RF EXPOSURE REPORT		

5 RF EXPOSURE LIMITS

Uncontrolled Environment 5.1

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e., as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 RF Exposure Limits for Frequencies Below 6 GHz

Table 5-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT					
	General Population (W/kg) or (mW/g)	Occupational (VV/kg) or (mVV/g)					
Peak Spatial Average SAR Head	1.6	8.0					
Whole Body SAR	0.08	0.4					
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20					

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 10 of 28

6 FCC MEASUREMENT PROCEDURES

Measured and Reported SAR 6.1

Per FCC KDB Publication 447498 D04v01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset-based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 11 of 28

6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg. SAR is required for the third channel, i.e., all channels require testing.
- 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.5 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation, and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power. SAR is measured using the higher number channel.

6.2.6 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Subsequent Test Configuration Procedures 6.2.7

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager	
DUT Type: Watch		Page 12 of 28	

7 RF CONDUCTED POWERS

7.1 WLAN Conducted Powers

Table 7-1
2.4 GHz WLAN Maximum Average RF Power

2.4GHz WIFI (20MHz 802.11b SISO 2.4GHz WIFI (20MHz 802.11g SISO)			2.4GHz WIFI (20MHz 802.11n SISO)					
Freq. [MHz]	Channel	Conducted Power [dBm]	Freq. [MHz]	Channel	Conducted Power [dBm]	Freq. [MHz]	Channel	Conducted Power [dBm]
2412	1	19.08	2412	1	15.92	2412	1	15.63
2437	6	18.90	2437	6	17.35	2437	6	17.06
2462	11	18.97	2462	11	15.56	2462	11	15.59

Table 7-2
5 GHz WLAN Maximum Average RF Power

50	5GHz WIFI (20MHz 802.11a SISO)				5GHz WIFI (20MHz 802.11n SISO)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]	Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]	
	5180	36	16.23		5180	36	16.11	
UNII-1	5200	40	16.29	UNII-1	5200	40	16.15	
OINII- I	5220	44	16.22	UNII-1	5220	44	16.17	
	5240	48	16.18		5240	48	16.23	
	5260	52	16.34		5260	52	16.30	
UNII-2A	5280	56	16.27	UNII-2A	5280	56	16.20	
UNII-ZA	5300	60	16.11	UNII-ZA	5300	60	16.26	
	5320	64	16.09		5320	64	16.19	
	5500	100	16.19		5500	100	16.30	
UNII-2C	5600	120	16.02	UNII-2C	5600	120	16.35	
UNII-2C	5620	124	16.34	UNII-2C	5620	124	16.23	
	5720	144	16.28		5720	144	16.19	
	5745	149	16.12		5745	149	16.18	
UNII-3	5785	157	16.20	UNII-3	5785	157	16.13	
	5825	165	16.05		5825	165	16.10	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

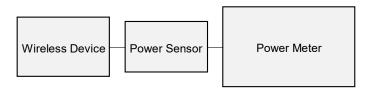


Figure 7-1
Power Measurement Setup

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type:		Page 13 of 28
Watch		g

7.2 Bluetooth Conducted Powers

Table 7-3
Bluetooth Average RF Power

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Conducted Power		
r requericy [wiriz]	Wiodulation	[Mbps]	No.	[dBm]	[mW]	
2402	GFSK	1.0	0	17.26	53.211	
2441	GFSK	1.0	39	17.15	51.880	
2480	GFSK	1.0	78	17.17	52.119	

Note 1: Bluetooth was evaluated with a test mode with 100% transmission duty factor.

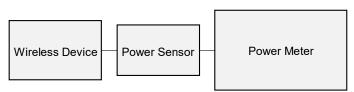


Figure 7-2
Power Measurement Setup

7.3 802.15.4 ab-NB Conducted Powers

Table 7-4 802.15.4 ab-NB Average RF Power

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Conducted Power		
r requericy [imitz]	Woddiation	[Mbps]	Onamie	[dBm]	[mW]	
5728.75	O-QPSK	1.0	Low	15.11	32.434	
5786.25	O-QPSK	1.0	Middle	15.12	32.509	
5846.25	O-QPSK	1.0	High	15.08	32.211	

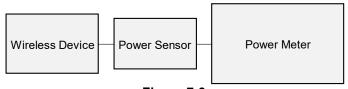
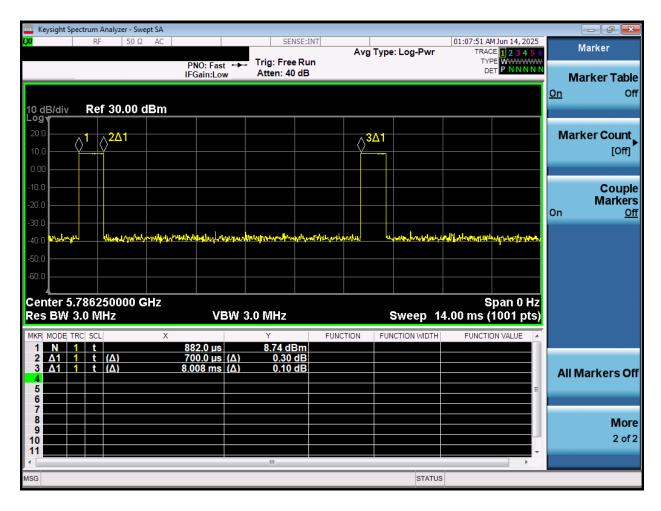



Figure 7-3
Power Measurement Setup

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type:		Page 14 of 28
Watch		Page 14 01 26

7.4 802.15.4 ab-NB Duty Cycle

Figure 7-4 802.15.4 ab-NB Transmission Plot

Equation 7-1 802.15.4 ab-NB Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{0.7 \ \textit{ms}}{8.008 \ \textit{ms}} * 100\% = 8.74\%$$

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type:		Page 15 of 28
Watch		Page 15 01 26

8.1 Tissue Verification

Table 8-1
Measured Head Tissue Properties

Calibrated for Tissue Temp Measured Measured TARGET TARGET										
Calibrated for	T				Measured Dielectric			0/ -1	0/ -1	
Tests Performed on:	Tissue Type	During Calibration (°C)	Frequency (MHz)	Conductivity, σ (S/m)	Constant, ε	Conductivity, σ (S/m)	Dielectric Constant, ε	% dev σ	% dev ε	
OII.		(0)	4	0.746	57.242	0.750	55.000	-0.53%	4.08%	
			6	0.746	56.745	0.750	55.000	-0.53%	3.17%	
			12	0.746	55.667	0.750	55.000	-0.53%	1.21%	
								-0.53%		
07/09/2025	30 Head	24.0	13 14	0.746 0.746	55.565 55.475	0.750 0.750	55.000 55.000	-0.53%	1.03% 0.86%	
0770372023	Sorread	24.0	30	0.748	54.746	0.750	55.000	-0.33%	-0.46%	
			60	0.753	54.009	0.753	54.325	0.00%	-0.58%	
			65	0.754	53.968	0.753	54.213	0.13%	-0.45%	
			150	0.734	52.358	0.760	52.300	2.89%	0.11%	
			2300	1.680	39.256	1.670	39.500	0.60%	-0.62%	
			2310	1.690	39.227	1.679	39.480	0.66%	-0.64%	
			2320	1.701	39.191	1.687	39.460	0.83%	-0.68%	
			2400	1.800	38.871	1.756	39.289	2.51%	-1.06%	
			2450	1.854	38.671	1.800	39.200	3.00%		
		lead 24.6	2480	1.895	38.506	1.833	39.200	3.38%	-1.35% -1.68%	
			2500	1.921	38.441	1.855	39.136	3.56%	-1.78%	
06/23/2025	2450 Head		2510	1.921		1.866		3.54%		
06/23/2023			2535	1.932	38.421 38.357	1.893	39.123 39.092	3.38%	-1.79% -1.88%	
			2550	1.974		1.909	39.092	3.40%	-2.00%	
			2560	1.974	38.290 38.232	1.909	39.060	3.44%	-2.12%	
			2600 2650	2.042	38.028 37.902	1.964 2.018	39.009 38.945	3.97% 3.87%	-2.51% -2.68%	
			2680	2.129	37.902	2.018	38.907	3.80%		
									-3.01%	
			2700	2.157	37.629	2.073	38.882	4.05%	-3.22%	
			2300	1.677	38.672	1.670	39.500	0.42%	-2.10%	
			2310	1.681	38.643	1.679	39.480	0.12%	-2.12%	
			2320	1.688	38.626	1.687	39.460	0.06%	-2.11%	
			2400	1.752	38.550	1.756	39.289	-0.23%	-1.88%	
			2450	1.787	38.439	1.800	39.200	-0.72%	-1.94%	
			2480	1.824	38.422	1.833	39.162	-0.49%	-1.89%	
00/10/2025	0.450 Hood	21.0	2500	1.836	38.401	1.855	39.136	-1.02%	-1.88%	
06/18/2025	2450 Head	21.0	2510	1.837	38.383	1.866	39.123	-1.55%	-1.89%	
			2535	1.845	38.337	1.893	39.092	-2.54%	-1.93%	
			2550	1.858	38.312	1.909	39.073	-2.67%	-1.95%	
			2560	1.871	38.295	1.920	39.060	-2.55%	-1.96%	
			2600	1.922	38.253	1.964	39.009	-2.14%	-1.94%	
			2650	1.936	38.188	2.018	38.945	-4.06%	-1.94%	
			2680	1.972	38.107	2.051	38.907	-3.85%	-2.06%	
			2700	2.002	38.058	2.073	38.882	-3.42%	-2.12%	

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 16 of 28

067: (**C) (**M**12*)	Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET								
S150	Tests Performed	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,		% dev σ	% dev ε						
15180	on:		(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε								
S170				5150	4.488	35.232	4.608	36.050	-2.60%	-2.27%						
15180				5160	4.500	35.215	4.618	36.040	-2.56%	-2.29%						
Signorn Sign				5170	4.514	35.193	4.629	36.030	-2.48%	-2.32%						
18.00 4.657 35.130 4.655 35.986 2.11% 2.38				5180	4.528	35.166	4.635	36.009	-2.31%	-2.34%						
\$210					5190	4.544	35.144	4.645	35.998	-2.17%	-2.37%					
\$220					5200	4.557	35.130	4.655	35.986	-2.11%	-2.38%					
S240							5210	4.568	35.120	4.666	35.975	-2.10%	-2.38%			
\$250				5220	4.575	35.100	4.676	35.963	-2.16%	-2.40%						
S280				5240	4.595	35.047	4.696	35.940	-2.15%	-2.48%						
S270				5250	4.606	35.036	4.706	35.929	-2.12%	-2.49%						
19.0 1.61				5260	4.615	35.021	4.717	35.917	-2.16%	-2.49%						
\$ 5290				5270	4.626	35.000	4.727	35.906	-2.14%	-2.52%						
S300				5280	4.641	34.968	4.737	35.894	-2.03%	-2.58%						
S310				5290	4.659	34.938	4.748	35.883	-1.87%	-2.63%						
S220				5300	4.672	34.921	4.758	35.871	-1.81%	-2.65%						
S500				5310	4.680	34.914	4.768	35.860	-1.85%	-2.64%						
S510				5320	4.688	34.901	4.778	35.849	-1.88%	-2.64%						
5520 4,936 34,478 4,984 35,620 -1,22% 3,176 5540 4,947 34,453 5,004 35,597 -1,14% 3,271 5550 4,958 34,436 5,014 35,586 1,12% 3,271 5560 4,967 34,422 5,024 35,574 1,13% 3,241 5580 4,967 34,422 5,024 35,574 1,13% 3,241 5580 4,967 34,422 5,024 35,574 1,13% 3,241 5580 4,967 34,342 5,065 35,512 1,23% 3,241 5580 5,049 33,436 5,045 35,551 1,23% 3,241 5610 5,031 34,304 5,076 35,518 -0,99% 3,422 5620 5,042 34,301 5,086 35,509 -0,87% 3,391 5600 5,014 34,328 5,065 35,529 1,01% 3,341 5600 5,072 34,284 5,100 35,483 -0,67% 3,341 5600 5,072 34,228 5,107 35,469 -0,78% 3,441 5600 5,072 34,228 5,127 35,460 -0,68% 3,471 5600 5,099 34,222 5,137 35,469 -0,78% 3,461 5600 5,107 34,205 5,147 35,437 -0,78% 3,461 5600 5,107 34,205 5,147 35,437 -0,78% 3,461 5700 5,132 34,146 5,188 35,414 -0,70% 3,581 5710 5,146 34,118 5,178 35,403 -0,62% 3,561 5720 5,160 34,094 5,188 35,414 -0,70% 3,581 5720 5,160 34,094 5,188 35,414 -0,70% 3,581 5720 5,160 34,094 5,188 35,311 -0,54% 3,661 5745 5,194 34,050 5,214 35,363 -0,33% 3,77 5755 5,208 34,039 5,224 35,351 -0,31% 3,77 5755 5,208 34,039 5,224 35,351 -0,31% 3,77 5755 5,208 34,039 5,224 35,351 -0,31% 3,77 5756 5,208 34,039 5,224 35,351 -0,31% 3,77 5757 5,229 34,011 5,245 35,329 -0,37% 3,77 5758 5,229 34,011 5,245 35,329 -0,37% 3,77 5759 5,243 33,962 5,255 35,317 -0,38% 3,77 5785 5,248 33,944 5,270 35,300 -0,40% 3,841 5800 5,249 33,944 5,270 35,300 -0,40% 3,841 5800 5,249 33,944 5,270 35,300 -0,40% 3,841 5800 5,249 33,841 5,270 35,300 -0,40% 3,841 5800 5,249 33,841 5,270 35,300 -0,40% 3,841 5805 5,255 33,930 5,275 35,204 -0,28% 3,801 5805 5,255 33,930 5,275 35,204 -0,28% 3,801 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11% 3,361 5865 5,330 33,837 5,336 35,190 -0,11%				5500	4.897	34.533	4.963	35.643	-1.33%	-3.11%						
5530 4,936 34,479 4,994 35,609 1,16% 3,175 5540 4,947 34,453 5,004 35,597 1,14% 3,275 5550 4,958 34,436 5,014 35,586 1,12% 3,235 5560 4,967 34,422 5,024 35,574 1,13% 3,245 5560 5,049 34,336 5,045 35,551 1,123% 3,235 5600 5,014 34,338 5,065 35,529 1,01% 3,385 5600 5,014 34,338 5,065 35,529 1,01% 3,385 5600 5,014 34,301 5,086 35,506 0,07% 3,395 5600 5,042 34,301 5,086 35,506 0,07% 3,395 5600 5,042 34,301 5,086 35,506 0,07% 3,395 5600 5,042 34,301 5,086 35,506 0,07% 3,395 5600 5,042 34,284 5,106 35,483 0,07% 3,395 5600 5,092 34,228 5,127 35,460 0,68% 3,476 5600 5,092 34,228 5,127 35,460 0,68% 3,476 5600 5,092 34,228 5,127 35,440 0,08% 3,465 5600 5,107 34,205 5,147 35,437 0,78% 3,385 5700 5,132 34,146 5,188 35,414 0,77% 3,385 5700 5,132 34,146 5,188 35,391 0,54% 3,665 5700 5,132 34,146 5,188 35,391 0,54% 3,665 5745 5,164 34,199 5,188 35,391 0,54% 3,676 5755 5,206 34,094 5,188 35,391 0,54% 3,376 5756 5,201 34,045 5,219 35,357 0,34% 3,775 5755 5,208 34,039 5,224 35,351 0,31% 3,775 5755 5,208 34,039 5,224 35,351 0,31% 3,775 5755 5,208 34,039 5,224 35,351 0,31% 3,775 5756 5,229 34,011 5,245 35,329 0,31% 3,775 5757 5,229 34,011 5,245 35,329 0,31% 3,775 5785 5,229 34,011 5,245 35,329 0,31% 3,376 5800 5,249 33,944 5,270 35,300 0,00% 3,344 5800 5,249 33,944 5,270 35,300 0,00% 3,344 5800 5,249 33,944 5,270 35,300 0,00% 3,344 5800 5,249 33,384 5,270 35,300 0,00% 3,344 5805 5,255 33,303 3,877 5,356 35,201 0,01% 3,363 5865 5,330 33,837 5,336 35,190 0,011% 3,363 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364 5866 5,330 33,837 5,336 35,190 0,011% 3,364				5510	4.911	34.513	4.973	35.632	-1.25%	-3.14%						
5540 4,947 34,453 5.004 35,597 -1,14% -3,271 5550 4,958 34,436 5.014 35,586 -1,12% 3,231 5560 4,967 34,422 5.024 35,574 -1,13% -3,241 5580 4,983 34,396 5.045 35,551 -1,23% 3,251 5600 5.014 34,328 5.065 35,529 -1,01% -3,381 5610 5.031 34,304 5.076 35,518 -0,89% -3,421 5620 5.042 34,301 5.086 35,508 -0,87% -3,391 5660 5.042 34,301 5.086 35,508 -0,87% -3,391 5660 5.092 34,228 5.107 35,460 -0,68% -3,471 5660 5.092 34,228 5.127 35,460 -0,68% -3,471 5660 5.099 34,222 5.137 35,460 -0,68% -3,471 5660 5.099 34,222 5.137 35,460 -0,68% -3,471 5660 5.107 34,205 5.147 35,437 -0,78% -3,461 5660 5.107 34,205 5.147 35,437 -0,78% -3,461 5660 5.107 34,205 5.147 35,437 -0,78% -3,461 5660 5.107 34,205 5.147 35,437 -0,78% -3,461 5660 5.107 34,205 5.147 35,437 -0,78% -3,461 5700 5.132 34,146 5.168 35,414 -0,70% -3,561 5710 5.146 34,118 5.178 35,403 -0,62% -3,631 5720 5.160 34,094 5.188 35,391 -0,54% -3,661 5720 5.160 34,094 5.188 35,391 -0,54% -3,671 5755 5.208 34,039 5.224 35,340 -0,27% -3,715 5755 5.208 34,039 5.224 35,340 -0,27% -3,715 5755 5.208 34,039 5.224 35,340 -0,27% -3,715 5755 5.208 34,039 5.224 35,340 -0,27% -3,715 5755 5.229 34,011 5.245 35,330 -0,34% -3,715 5755 5.229 34,011 5.245 35,330 -0,40% -3,841 5800 5.249 33,944 5.270 35,300 -0,40% -3,841 5800 5.249 33,944 5.270 35,300 -0,40% -3,841 5800 5.249 33,984 5.270 35,300 -0,40% -3,841 5805 5.255 33,305 -0,42% -3,301 5865 5.281 33,884 5.296 35,305 -0,42% -3,301 5865 5.281 33,884 5.296 35,271 -0,09% -3,301 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11% -3,341 5865 5.330 33,837 5.336 35,190 -0,11				5520	4.922	34.503	4.983	35.620	-1.22%	-3.14%						
19.0 19.0				5530	4.936	34.479	4.994	35.609	-1.16%	-3.17%						
19.0				5540	4.947	34.453	5.004	35.597	-1.14%	-3.21%						
19.0 19.0				5550	4.958	34.436	5.014	35.586	-1.12%	-3.23%						
19.0 19.0			19.0	5560	4.967	34.422	5.024	35.574	-1.13%	-3.24%						
Section Sect		5200 5000 Hood		5580	4.983	34.396	5.045	35.551	-1.23%	-3.25%						
19.0 5620 5.042 34.301 5.086 35.506 -0.87% -3.399 5640 5.072 34.264 5.106 35.483 -0.67% -3.449 5660 5.092 34.222 5.137 35.449 -0.74% -3.469 5670 5.099 34.222 5.137 35.449 -0.74% -3.469 5680 5.107 34.205 5.147 35.437 -0.78% -3.499 5700 5.132 34.146 5.168 35.414 -0.70% -3.589 5710 5.146 34.118 5.178 35.403 -0.62% -3.639 5720 5.160 34.094 5.188 35.391 -0.54% -3.699 5745 5.194 34.050 5.214 35.363 -0.33% -3.799 5755 5.203 34.045 5.219 35.357 -0.34% -3.799 5765 5.220 34.011 5.245 35.329 -0.31% -3.799 5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5805 5.281 33.884 5.296 35.271 -0.28% -3.899 5805 5.281 33.884 5.296 35.271 -0.28% -3.899 5805 5.320 33.387 5.335 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5.336 35.190 -0.11% -3.849 5805 5.330 33.837 5					5600	5.014	34.328	5.065	35.529	-1.01%	-3.38%					
19.0 5640 5.072 34.264 5.106 35.483 -0.67% -3.445 5660 5.092 34.228 5.127 35.400 -0.68% -3.475 5670 5.099 34.222 5.137 35.404 -0.78% -3.465 5680 5.107 34.205 5.147 35.437 -0.78% -3.465 5690 5.119 34.178 5.158 35.426 -0.76% -3.525 5.700 5.132 34.146 34.118 5.178 35.403 -0.62% -3.565 5.700 5.146 34.118 5.178 35.403 -0.62% -3.665 5.720 5.160 34.094 5.188 35.391 -0.54% -3.665 5.720 5.160 34.094 5.188 35.391 -0.54% -3.665 5.720 5.160 34.094 5.129 35.357 -0.34% -3.715 5.750 5.201 34.045 5.219 35.357 -0.34% -3.715 5.755 5.208 34.039 5.224 35.361 -0.31% -3.715 5.765 5.208 34.039 5.224 35.360 -0.27% -3.715 5.765 5.220 34.029 5.234 35.340 -0.27% -3.715 5.765 5.220 34.029 5.234 35.340 -0.27% -3.715 5.765 5.220 34.015 5.245 35.329 -0.31% -3.735 5.765 5.226 34.039 5.224 35.300 -0.40% -3.845 5.765 5.226 33.930 5.275 35.300 -0.40% -3.845 5.800 5.249 33.944 5.270 35.300 -0.40% -3.845 5.800 5.249 33.944 5.270 35.300 -0.40% -3.845 5.805 5.255 5.281 33.884 5.296 35.211 -0.28% -3.865 5.825 5.281 33.884 5.296 35.211 -0.28% -3.865 5.825 5.281 33.884 5.296 35.211 -0.28% -3.865 5.835 5.835 33.837 5.336 35.190 -0.11% -3.865 5.855 5.330 33.837 5.336 35.190 -0.11% -3.865 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11% -3.845 5.865 5.330 33.837 5.336 35.190 -0.11				5610	5.031	34.304	5.076	35.518	-0.89%	-3.42%						
19.0				_	5620	5.042	34.301	5.086	35.506	-0.87%	-3.39%					
5660 5.099 34.222 5.137 35.449 -0.749% -3.465 5670 5.099 34.222 5.137 35.449 -0.78% -3.485 5680 5.107 34.205 5.147 35.437 -0.78% -3.485 5690 5.119 34.178 5.158 35.426 -0.76% -3.526 5700 5.132 34.146 5.168 35.414 -0.70% -3.535 5710 5.146 34.118 5.178 35.403 -0.62% -3.635 5720 5.160 34.094 5.188 35.391 -0.54% -3.636 5750 5.201 34.045 5.214 35.363 -0.33% -3.71 5755 5.208 34.039 5.224 35.340 -0.27% -3.71 5765 5.229 34.011 5.245 35.329 -0.31% -3.73 5785 5.229 34.011 5.245 35.329 -0.31% -3.73 5785 5.233 33.997 5.255 35.317 -0.38% -3.87	06/24/2025			5640	5.072	34.264	5.106	35.483	-0.67%	-3.44%						
5680 5.107 34.205 5.147 35.437 -0.78% -3.48% 5690 5.119 34.178 5.158 35.426 -0.76% -3.52% 5700 5.132 34.146 5.168 35.414 -0.70% -3.58% 5710 5.146 34.118 5.178 35.403 -0.62% -3.63% 5720 5.160 34.094 5.188 35.391 -0.54% -3.66% 5750 5.201 34.045 5.219 35.357 -0.34% -3.71% 5750 5.201 34.045 5.219 35.351 -0.31% -3.71% 5755 5.208 34.039 5.224 35.340 -0.27% -3.71% 5765 5.220 34.029 5.234 35.340 -0.27% -3.71% 5775 5.229 34.011 5.245 35.329 -0.31% -3.73% 5785 5.235 33.987 5.255 35.317 -0.38% -3.77% 5795	00/24/2023	3200-3000 Ficad		5660	5.092	34.228	5.127	35.460	-0.68%	-3.47%						
5690 5.119 34.178 5.158 35.426 -0.76% -3.52* 5700 5.132 34.146 5.168 35.414 -0.70% -3.58* 5710 5.146 34.118 5.178 35.403 -0.62% -3.63* 5720 5.160 34.094 5.188 35.391 -0.54% -3.66* 5745 5.194 34.050 5.214 35.363 -0.38% -3.71* 5750 5.201 34.045 5.219 35.357 -0.34% -3.71* 5765 5.208 34.039 5.224 35.340 -0.27% -3.71* 5765 5.220 34.029 5.234 35.340 -0.27% -3.71* 5775 5.229 34.011 5.245 35.329 -0.31% -3.73* 5785 5.235 33.987 5.255 35.317 -0.98% -3.77* 5795 5.243 33.944 5.270 35.300 -0.40% -3.84* 5800					5670	5.099	34.222	5.137	35.449	-0.74%	-3.46%					
5700 5.132 34.146 5.168 35.414 -0.70% -3.586 5710 5.146 34.118 5.178 35.403 -0.62% -3.63 5720 5.160 34.094 5.188 35.391 -0.54% -3.66 5745 5.194 34.050 5.214 35.363 -0.38% -3.71 5750 5.201 34.045 5.219 35.357 -0.34% -3.71 5755 5.208 34.039 5.224 35.351 -0.31% -3.71 5765 5.220 34.029 5.234 35.340 -0.27% -3.71 5775 5.229 34.011 5.245 35.329 -0.31% -3.73 5785 5.229 34.011 5.245 35.301 -0.42% -3.80 5795 5.243 33.987 5.265 35.305 -0.42% -3.80 5800 5.249 33.944 5.270 35.300 -0.40% -3.84 5805 <t< td=""><td></td><td></td><td></td><td>5680</td><td>5.107</td><td>34.205</td><td>5.147</td><td>35.437</td><td>-0.78%</td><td>-3.48%</td></t<>				5680	5.107	34.205	5.147	35.437	-0.78%	-3.48%						
5710 5.146 34.118 5.178 35.403 -0.62% -3.63% 5720 5.160 34.094 5.188 35.391 -0.54% -3.66% 5745 5.194 34.050 5.214 35.363 -0.38% -3.71% 5750 5.201 34.045 5.219 35.357 -0.34% -3.71% 5765 5.208 34.039 5.224 35.351 -0.31% -3.71% 5765 5.220 34.029 5.234 35.340 -0.27% -3.71% 5775 5.229 34.011 5.245 35.329 -0.31% -3.73 5785 5.235 33.9862 5.265 35.305 -0.42% -3.80% 5800 5.249 33.944 5.270 35.300 -0.42% -3.80% 5805 5.255 33.930 5.275 35.294 -0.38% -3.84% 5805 5.255 33.930 5.275 35.294 -0.38% -3.84% 5825				5690	5.119	34.178	5.158	35.426	-0.76%	-3.52%						
5720 5.160 34.094 5.188 35.391 -0.54% -3.669 5745 5.194 34.050 5.214 35.363 -0.38% -3.719 5750 5.201 34.045 5.219 35.357 -0.34% -3.719 5755 5.208 34.039 5.224 35.351 -0.31% -3.719 5765 5.220 34.029 5.234 35.340 -0.27% -3.719 5775 5.229 34.011 5.245 35.329 -0.31% -3.739 5785 5.235 33.987 5.255 35.317 -0.38% -3.779 5795 5.243 33.962 5.265 35.305 -0.42% -3.809 5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5805 5.255 33.930 5.275 35.294 -0.38% -3.809 5825 5.281 33.884 5.296 35.271 -0.28% -3.809 5825				5700	5.132	34.146	5.168	35.414	-0.70%	-3.58%						
5745 5.194 34.050 5.214 35.363 -0.38% -3.719 5750 5.201 34.045 5.219 35.357 -0.34% -3.719 5755 5.208 34.039 5.224 35.351 -0.31% -3.719 5765 5.220 34.029 5.234 35.340 -0.27% -3.739 5775 5.229 34.011 5.245 35.329 -0.31% -3.739 5785 5.235 33.987 5.255 35.317 -0.38% -3.779 5795 5.243 33.944 5.270 35.300 -0.42% -3.809 5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5805 5.255 33.930 5.275 35.294 -0.38% -3.869 5825 5.281 33.871 5.305 35.271 -0.28% -3.939 5835 5.294 33.871 5.305 35.230 -0.21% -3.819 5845				5710	5.146	34.118	5.178	35.403	-0.62%	-3.63%						
5750 5.201 34.045 5.219 35.357 -0.34% -3.719 5755 5.208 34.039 5.224 35.351 -0.31% -3.719 5765 5.220 34.029 5.234 35.340 -0.27% -3.719 5775 5.229 34.011 5.245 35.329 -0.31% -3.739 5785 5.235 33.987 5.255 35.317 -0.38% -3.799 5795 5.243 33.962 5.265 35.305 -0.42% -3.809 5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5805 5.255 33.930 5.275 35.294 -0.38% -3.869 5805 5.255 33.930 5.275 35.294 -0.38% -3.869 5825 5.281 33.884 5.296 35.271 -0.28% -3.93 5835 5.294 33.871 5.305 35.200 -0.11% -3.809 5845				5720	5.160	34.094	5.188	35.391	-0.54%	-3.66%						
5755 5.208 34.039 5.224 35.351 -0.31% -3.715 5765 5.220 34.029 5.234 35.340 -0.27% -3.715 5775 5.229 34.011 5.245 35.329 -0.31% -3.73 5785 5.235 33.987 5.255 35.317 -0.38% -3.77 5795 5.243 33.962 5.265 35.305 -0.42% -3.845 5800 5.249 33.944 5.270 35.300 -0.40% -3.845 5805 5.255 33.930 5.275 35.294 -0.38% -3.865 5805 5.255 33.930 5.275 35.294 -0.38% -3.865 5825 5.281 33.864 5.296 35.271 -0.28% -3.93 5835 5.294 33.871 5.305 35.230 -0.21% -3.865 5845 5.307 33.867 5.315 35.210 -0.11% -3.805 5855				5745	5.194	34.050	5.214	35.363	-0.38%	-3.71%						
5765 5.220 34.029 5.234 35.340 -0.27% -3.715 5775 5.229 34.011 5.245 35.329 -0.31% -3.735 5785 5.235 33.967 5.255 35.317 -0.38% -3.775 5795 5.243 33.962 5.265 35.305 -0.42% -3.805 5800 5.249 33.944 5.270 35.300 -0.40% -3.845 5805 5.255 33.930 5.275 35.294 -0.38% -3.865 5825 5.281 33.884 5.296 35.271 -0.28% -3.865 5835 5.294 33.871 5.305 35.230 -0.21% -3.865 5845 5.307 33.867 5.315 35.210 -0.15% -3.815 5855 5.320 33.864 5.320 35.200 -0.11% -3.805 5855 5.320 33.867 5.315 35.197 -0.09% -3.805 5865				5750	5.201	34.045	5.219	35.357	-0.34%	-3.71%						
5775 5.229 34.011 5.245 35.329 -0.31% -3.73 5785 5.235 33.987 5.255 35.317 -0.38% -3.77 5795 5.243 33.962 5.265 35.305 -0.42% -3.80 5800 5.249 33.944 5.270 35.300 -0.40% -3.84 5805 5.249 33.944 5.270 35.300 -0.40% -3.84 5805 5.255 33.930 5.275 35.294 -0.38% -3.86 5825 5.281 33.884 5.296 35.271 -0.28% -3.93 5835 5.294 33.871 5.305 35.230 -0.21% -3.86 5845 5.307 33.867 5.315 35.210 -0.15% -3.81 5850 5.314 33.864 5.320 35.200 -0.11% -3.80 5855 5.320 33.858 5.325 35.197 -0.09% -3.80 5865 <td< td=""><td></td><td></td><td></td><td>5755</td><td>5.208</td><td>34.039</td><td>5.224</td><td>35.351</td><td>-0.31%</td><td>-3.71%</td></td<>				5755	5.208	34.039	5.224	35.351	-0.31%	-3.71%						
5785 5.235 33.987 5.255 35.317 -0.38% -3.775 5795 5.243 33.962 5.265 35.305 -0.42% -3.805 5800 5.249 33.944 5.270 35.300 -0.40% -3.845 5805 5.255 33.930 5.275 35.294 -0.38% -3.865 5825 5.281 33.884 5.296 35.271 -0.28% -3.935 5835 5.294 33.871 5.305 35.230 -0.21% -3.865 5845 5.307 33.867 5.315 35.210 -0.15% -3.815 5850 5.314 33.864 5.320 35.200 -0.11% -3.805 5855 5.320 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865				1	5765	5.220	34.029	5.234	35.340	-0.27%	-3.71%					
5795 5.243 33.962 5.265 35.305 -0.42% -3.805 5800 5.249 33.944 5.270 35.300 -0.40% -3.845 5800 5.249 33.944 5.270 35.300 -0.40% -3.845 5805 5.255 33.930 5.275 35.294 -0.38% -3.865 5825 5.281 33.884 5.296 35.271 -0.28% -3.935 5835 5.294 33.871 5.305 35.230 -0.21% -3.865 5845 5.307 33.867 5.315 35.210 -0.15% -3.815 5850 5.314 33.864 5.320 35.200 -0.11% -3.805 5855 5.320 33.837 5.336 35.197 -0.09% -3.805 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865				5775	5.229	34.011	5.245	35.329	-0.31%	-3.73%						
5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5805 5.255 33.930 5.275 35.294 -0.38% -3.866 5825 5.281 33.884 5.296 35.271 -0.28% -3.869 5835 5.294 33.871 5.305 35.230 -0.21% -3.869 5845 5.307 33.867 5.315 35.210 -0.15% -3.819 5850 5.314 33.864 5.320 35.200 -0.11% -3.809 5865 5.330 33.858 5.325 35.197 -0.09% -3.809 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865				5785	5.235	33.987	5.255	35.317	-0.38%	-3.77%						
5800 5.249 33.944 5.270 35.300 -0.40% -3.849 5805 5.255 33.930 5.275 35.294 -0.38% -3.869 5825 5.281 33.884 5.296 35.271 -0.28% -3.93 5835 5.294 33.871 5.305 35.230 -0.21% -3.869 5845 5.307 33.867 5.315 35.210 -0.15% -3.819 5850 5.314 33.864 5.320 35.200 -0.11% -3.809 5855 5.320 33.858 5.325 35.197 -0.09% -3.809 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865				5795	5.243	33.962	5.265	35.305	-0.42%	-3.80%						
5805 5.255 33.930 5.275 35.294 -0.38% -3.86% 5825 5.281 33.884 5.296 35.271 -0.28% -3.93% 5835 5.294 33.871 5.305 35.230 -0.21% -3.86% 5845 5.307 33.867 5.315 35.210 -0.15% -3.81% 5850 5.314 33.864 5.320 35.200 -0.11% -3.80% 5855 5.320 33.858 5.325 35.197 -0.09% -3.80% 5865 5.330 33.837 5.336 35.190 -0.11% -3.84% 5865 5.330 33.837 5.336 35.190 -0.11% -3.84% 5865 5.330 33.837 5.336 35.190 -0.11% -3.84% 5865 5.330 33.837 5.336 35.190 -0.11% -3.84% 5865 5.330 33.837 5.336 35.190 -0.11% -3.84% 5865				5800	5.249	33.944	5.270	35.300	-0.40%	-3.84%						
5825 5.281 33.884 5.296 35.271 -0.28% -3.936 5835 5.294 33.871 5.305 35.230 -0.21% -3.869 5845 5.307 33.867 5.315 35.210 -0.15% -3.819 5850 5.314 33.864 5.320 35.200 -0.11% -3.809 5855 5.320 33.858 5.325 35.197 -0.09% -3.809 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5875				5800	5.249	33.944	5.270	35.300	-0.40%	-3.84%						
5835 5.294 33.871 5.305 35.230 -0.21% -3.865 5845 5.307 33.867 5.315 35.210 -0.15% -3.815 5850 5.314 33.864 5.320 35.200 -0.11% -3.805 5855 5.320 33.858 5.325 35.197 -0.09% -3.805 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5875				5805	5.255	33.930	5.275	35.294	-0.38%	-3.86%						
5845 5.307 33.867 5.315 35.210 -0.15% -3.815 5850 5.314 33.864 5.320 35.200 -0.11% -3.805 5855 5.320 33.858 5.325 35.197 -0.09% -3.805 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5875 5.342 33.814 5.347 35.183 -0.09% -3.895 5885 5.357 33.799 5.357 35.177 0.00% -3.925							5825	5.281	33.884	5.296	35.271	-0.28%	-3.93%			
5850 5.314 33.864 5.320 35.200 -0.11% -3.809 5855 5.320 33.858 5.325 35.197 -0.09% -3.809 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5875 5.342 33.814 5.347 35.183 -0.09% -3.899 5885 5.357 33.799 5.357 35.177 0.00% -3.929				5835	5.294	33.871	5.305	35.230	-0.21%	-3.86%						
5855 5.320 33.858 5.325 35.197 -0.09% -3.805 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5865 5.330 33.837 5.336 35.190 -0.11% -3.845 5875 5.342 33.814 5.347 35.183 -0.09% -3.895 5885 5.357 33.799 5.357 35.177 0.00% -3.925				5845	5.307		5.315	35.210	-0.15%	-3.81%						
5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5875 5.342 33.814 5.347 35.183 -0.09% -3.899 5885 5.357 33.799 5.357 35.177 0.00% -3.929				5850	5.314	33.864	5.320	35.200	-0.11%	-3.80%						
5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5875 5.342 33.814 5.347 35.183 -0.09% -3.899 5885 5.357 33.799 5.357 35.177 0.00% -3.929			l l	5855	5.320	33.858	5.325	35.197	-0.09%	-3.80%						
5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5875 5.342 33.814 5.347 35.183 -0.09% -3.899 5885 5.357 33.799 5.357 35.177 0.00% -3.929				5865	5.330	33.837	5.336	35.190	-0.11%	-3.84%						
5865 5.330 33.837 5.336 35.190 -0.11% -3.849 5875 5.342 33.814 5.347 35.183 -0.09% -3.899 5885 5.357 33.799 5.357 35.177 0.00% -3.929				5865	5.330	33.837	5.336	35.190	-0.11%	-3.84%						
5875 5.342 33.814 5.347 35.183 -0.09% -3.896 5885 5.357 33.799 5.357 35.177 0.00% -3.926							5865	5.330	33.837	5.336	35.190	-0.11%	-3.84%			
5885 5.357 33.799 5.357 35.177 0.00% -3.929										5865	5.330	33.837	5.336	35.190	-0.11%	-3.84%
									5875	5.342	33.814	5.347	35.183	-0.09%	-3.89%	
5905 5.375 33.754 5.379 35.163 -0.07% -4.019				5885	5.357	33.799	5.357	35.177	0.00%	-3.92%						
			<u> </u>	5905	5.375	33.754	5.379	35.163	-0.07%	-4.01%						

FCC ID: BCG-A3331	Approved by: Technical Manager
DUT Type:	Page 17 of 28
Watch	l age 17 of 20

Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET			
Tests Performed	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε	
on:		(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε			
				5150	4.530	36.203	4.608	36.050	-1.69%	0.42%
			5160	4.540	36.191	4.618	36.040	-1.69%	0.42%	
			5170	4.553	36.166	4.629	36.030	-1.64%	0.38%	
			5180	4.564	36.144	4.635	36.009	-1.53%	0.37%	
			5190	4.579	36.126	4.645	35.998	-1.42%	0.36%	
			5200	4.586	36.108	4.655	35.986	-1.48%	0.34%	
			5210 5220	4.598	36.098	4.666	35.975	-1.46% -1.37%	0.34%	
			5240	4.612 4.638	36.087 36.040	4.676 4.696	35.963 35.940	-1.24%	0.34% 0.28%	
			5250	4.648	36.019	4.706	35.929	-1.23%	0.25%	
			5260	4.655	36.004	4.717	35.917	-1.31%	0.24%	
			5270	4.667	35.991	4.727	35.906	-1.27%	0.24%	
			5280	4.679	35.975	4.737	35.894	-1.22%	0.23%	
			5290	4.690	35.944	4.748	35.883	-1.22%	0.17%	
			5300	4.702	35.921	4.758	35.871	-1.18%	0.14%	
			5310	4.710	35.905	4.768	35.860	-1.22%	0.13%	
			5320	4.723	35.903	4.778	35.849	-1.15%	0.15%	
			5500	4.924	35.563	4.963	35.643	-0.79%	-0.22%	
			5510	4.930	35.552	4.973	35.632	-0.86%	-0.22%	
			5520	4.941	35.537	4.983	35.620	-0.84%	-0.23%	
			5530	4.954	35.503	4.994	35.609	-0.80%	-0.30%	
			5540	4.971	35.468	5.004	35.597	-0.66%	-0.36%	
			5550	4.984	35.443	5.014	35.586	-0.60%	-0.40%	
			5560	4.994	35.437	5.024	35.574	-0.60%	-0.39%	
			5580	5.007	35.412	5.045	35.551	-0.75%	-0.39%	
			5600	5.041	35.368	5.065	35.529	-0.47%	-0.45%	
		0 Head 20.0	5610	5.055	35.363	5.076	35.518	-0.41%	-0.44%	
			5620	5.064	35.357	5.086	35.506	-0.43%	-0.42%	
07/11/2025	5200-5800 Head		5640	5.089	35.298	5.106	35.483	-0.33%	-0.52%	
			5660 5670	5.115 5.122	35.257 35.245	5.127 5.137	35.460 35.449	-0.23% -0.29%	-0.57% -0.58%	
			5680	5.122	35.232	5.137	35.437	-0.25%	-0.58%	
			5690	5.134	35.232	5.158	35.426	-0.25%	-0.58%	
			5700	5.160	35.222	5.168	35.420	-0.15%	-0.60%	
			5710	5.172	35.184	5.178	35.403	-0.12%	-0.62%	
			5720	5.179	35.164	5.188	35.391	-0.12%	-0.64%	
			5745	5.212	35.096	5.214	35.363	-0.04%	-0.76%	
			5750	5.219	35.081	5.219	35.357	0.00%	-0.78%	
			5755	5.225	35.071	5.224	35.351	0.02%	-0.79%	
			5765	5.238	35.056	5.234	35.340	0.08%	-0.80%	
			5775	5.247	35.047	5.245	35.329	0.04%	-0.80%	
			5785	5.260	35.041	5.255	35.317	0.10%	-0.78%	
			5795	5.271	35.032	5.265	35.305	0.11%	-0.77%	
			5800	5.278	35.024	5.270	35.300	0.15%	-0.78%	
			5800	5.278	35.024	5.270	35.300	0.15%	-0.78%	
			5805	5.284	35.014	5.275	35.294	0.17%	-0.79%	
			5825	5.302	34.978	5.296	35.271	0.11%	-0.83%	
			5835	5.311	34.972	5.305	35.230	0.11%	-0.73%	
			5845	5.324	34.961	5.315	35.210	0.17%	-0.71%	
			5850	5.329	34.950	5.320	35.200	0.17%	-0.71%	
			5855	5.336	34.943	5.325	35.197	0.21%	-0.72%	
			5865	5.351	34.911	5.336	35.190	0.28%	-0.79%	
			5865	5.351	34.911	5.336	35.190	0.28%	-0.79%	
			5865	5.351	34.911	5.336	35.190	0.28%	-0.79%	
			5865	5.351	34.911	5.336	35.190	0.28%	-0.79%	
		[5875	5.362	34.878	5.347	35.183	0.28%	-0.87%	
			5885	5.369	34.848	5.357	35.177	0.22%	-0.94%	
			5905	5.394	34.819	5.379	35.163	0.28%	-0.98%	

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 18 of 28

8.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in the SAR System Validation Appendix.

Table 8-2
System Verification Results – 1g

	System Verification TARGET & MEASURED													
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (°C)	Liquid Temp. (°C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 1g (W/kg)	1W Target SAR 1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation 1g (%)	
AM11	2450	HEAD	06/18/2025	19.9	20.0	0.10	750	7551	1323	5.140	53.300	51.400	-3.56%	
AM9	5250	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	3.950	77.900	79.000	1.41%	
AM8	5250	HEAD	07/11/2025	20.4	19.6	0.05	1066	7499	1465	3.820	77.900	76.400	-1.93%	
AM9	5600	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	4.240	81.800	84.800	3.67%	
AM8	5600	HEAD	07/11/2025	20.4	19.6	0.05	1066	7499	1465	4.340	81.800	86.800	6.11%	
AM9	5750	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	3.960	80.700	79.200	-1.86%	
AM8	5750	HEAD	07/11/2025	20.4	19.6	0.05	1066	7499	1465	3.960	80.700	79.200	-1.86%	
AM9	5850	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	3.950	77.400	79.000	2.07%	
AM8	5850	HEAD	07/11/2025	20.4	19.6	0.05	1066	7499	1465	4.100	77.400	82.000	5.94%	

Table 8-3
System Verification Results – 10g

	S	ystem V	erificatio	n
	TA	RGET & I	MEASUR	ΕD

SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (°C)	Liquid Temp. (°C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 10g (W/kg)	1W Target SAR 10g (W/kg)	1W Normalized SAR 10g (W/kg)	Deviation 10g (%)
AM14	13	HEAD	07/09/2025	22.3	22.5	1.00	1004	3746	1237	0.365	0.355	0.365	2.82%
AM11	2450	HEAD	06/18/2025	19.9	20.0	0.10	750	7551	1323	2.400	25.100	24.000	-4.38%
AM16	2450	HEAD	06/23/2025	21.0	23.4	0.10	750	7532	501	2.400	25.100	24.000	-4.38%
AM9	5250	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	1.130	22.500	22.600	0.44%
AM9	5600	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	1.210	23.700	24.200	2.11%
AM9	5750	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	1.130	23.200	22.600	-2.59%
AM9	5850	HEAD	06/24/2025	21.1	19.4	0.05	1066	7782	1646	1.100	22.200	22.000	-0.90%

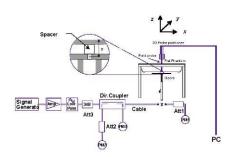


Figure 8-1 System Verification Setup Diagram

Figure 8-2
System Verification Setup Photo

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type:		Page 19 of 28
Watch		1 age 15 61 26

9 SAR DATA SUMMARY

9.1 2.4 GHz WIFI SISO Standalone Head SAR

Table 9-1

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Housing Type	Wristband Type	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#
Head	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	Aluminum	Sport	X4TDQ	99.76	-0.01	2412	1	1.0	20.00	19.08	Front	10	0.339	1.236	1.002	0.420	0.212	A1
Head	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	Aluminum	Metal Loop	X4TDQ	99.76	-0.05	2412	1	1.0	20.00	19.08	Front	10	0.221	1.236	1.002	0.274	0.138	
Head	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	Aluminum	Metal Links	X4TDQ	99.76	-0.02	2412	1	1.0	20.00	19.08	Front	10	0.221	1.236	1.002	0.274	0.138	
				ANSI/I	EEE C95.1 1992 -	SAFETY LIMIT											Head				
				Uncontro	Spatial Per lled Exposure/Gr	ak eneral Population	1										1.6 W/kg (m averaged over				

9.2 2.4 GHz WIFI SISO Standalone Extremity SAR

Table 9-2

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Housing Type	Wristband Type	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 10g SAR [W/kg]	Exposure Ratio (10g SAR)	Plot#
Extremity	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	Aluminum	Sport	X4TDQ	99.76	0.05	2412	1	1.0	20.00	19.08	Back	0	0.011	1.236	1.002	0.014	0.003	
Extremity	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	Aluminum	Metal Loop	X4TDQ	99.76	0.08	2412	1	1.0	20.00	19.08	Back	0	0.010	1.236	1.002	0.012	0.003	
Extremity	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	Aluminum	Metal Links	X4TDQ	99.76	0.05	2412	1	1.0	20.00	19.08	Back	0	0.022	1.236	1.002	0.027	0.006	A2
				ANSI/I	EEE C95.1 1992 -												Extremit				
					Spatial Per												4.0 W/kg (m				
				Uncontro	lled Exposure/G	eneral Population	n										averaged over 1	0 grams			

9.3 5 GHz WIFI SISO Standalone Head SAR

Table 9-3

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Housing Type	Wristband Type	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	U-NII band		Max Allowed Power (dBm)		Test Position	Spacing (mm)	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Sport	3YJ56	93.29	0.05	5260	52	U-NII-2A	6.0	17.00	16.34	Front	10	0.098	1.164	1.072	0.122	0.061	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Metal Loop	3YJ56	93.29	0.03	5260	52	U-NII-2A	6.0	17.00	16.34	Front	10	0.090	1.164	1.072	0.112	0.056	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Metal Links	3YJ56	93.29	-0.17	5260	52	U-NII-2A	6.0	17.00	16.34	Front	10	0.093	1.164	1.072	0.116	0.058	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Sport	3YJ56	93.29	-0.20	5620	124	U-NII-2C	6.0	17.00	16.34	Front	10	0.112	1.164	1.072	0.140	0.070	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Metal Loop	3YJ56	93.29	0.01	5620	124	U-NII-2C	6.0	17.00	16.34	Front	10	0.099	1.164	1.072	0.124	0.062	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Metal Links	3YJ56	93.29	0.02	5620	124	U-NII-2C	6.0	17.00	16.34	Front	10	0.090	1.164	1.072	0.112	0.056	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Sport	3YJ56	93.29	0.02	5785	157	U-NII-3	6.0	17.00	16.20	Front	10	0.134	1.202	1.072	0.173	0.084	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Metal Loop	3YJ56	93.29	-0.08	5785	157	U-NII-3	6.0	17.00	16.20	Front	10	0.131	1.202	1.072	0.169	0.082	
Head	5 GHz WIFI/ IEEE 802.11a	20	OFDM	Aluminum	Metal Links	3YJ56	93.29	0.01	5785	157	U-NII-3	6.0	17.00	16.20	Front	10	0.142	1.202	1.072	0.183	0.089	A3
				u	Sp	.1 1992 - SAFETY satial Peak osure/General Po									ikead 1.6 Wkga (mWg) averaged over 1 gram							

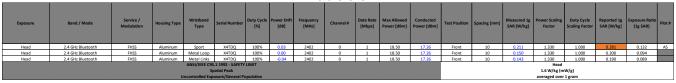

9.4 5 GHz WIFI SISO Standalone Extremity SAR

Table 9-4

9.5 2.4 GHz Bluetooth SISO Standalone Head SAR

Table 9-5

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by:
1 00 lb. Beg-Asss1	IN EXPOSERE REPORT	Technical Manager
DUT Type:		Page 20 of 28
Watch		Page 20 01 20

9.6 2.4 GHz Bluetooth SISO Standalone Extremity SAR

Table 9-6

Exposure	Band / Mode	Service / Modulation	Housing Type	Wristband Type	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 10g SAR [W/kg]		Duty Cycle Scaling Factor		Exposure Ratio (10g SAR)	Plot#
Extremity	2.4 GHz Bluetooth	FHSS	Aluminum	Sport	3YJ56	100%	0.06	2402.00	0	1	18.50	17.26	Back	0	0.010	1.330	1.000	0.013	0.003	
Extremity	2.4 GHz Bluetooth	FHSS	Aluminum	Metal Loop	3YJ56	100%	0.07	2402.00	0	1	18.50	17.26	Back	0	0.006	1.330	1.000	0.008	0.002	
Extremity	2.4 GHz Bluetooth	FHSS	Aluminum	Metal Links	3YJ56	100%	-0.08	2402.00	0	1	18.50	17.26	Back	0	0.011	1.330	1.000	0.015	0.003	A6
				ANSI/IEEE C95	.1 1992 - SAFETY	LIMIT										Extremit				
				Sp	atial Peak											4.0 W/kg (m	W/g)			
			U	ncontrolled Exp	osure/General Po	pulation										averaged over 1	10 grams			

9.7 5 GHz 802.15.4 ab-NB SISO Standalone Head SAR

Table 9-7

Exposure	Band / Mode	Service / Modulation	Housing Type	Wristband Type	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #
Head	802.15.4 ab-NB	O-QPSK	Aluminum	Sport	3YJ56	8.74	0.01	5786.25	Mid	1	16.00	15.12	Front	10	0.013	1.225	1.018	0.016	0.008	
Head	802.15.4 ab-NB	O-QPSK	Aluminum	Metal Loop	3YJ56	8.74	0.08	5786.25	Mid	1	16.00	15.12	Front	10	0.010	1.225	1.018	0.012	0.006	
Head	802.15.4 ab-NB	O-QPSK	Aluminum	Metal Links	3YJ56	8.74	0.01	5786.25	Mid	1	16.00	15.12	Front	10	0.013	1.225	1.018	0.016	0.008	A7
					.1 1992 - SAFETY	LIMIT										Head				
			u		oatial Peak osure/General P	opulation										1.6 W/kg (m averaged over				

Note: The reported SAR was scaled to the 8.90% transmission duty factor.

9.8 5 GHz 802.15.4 ab-NB SISO Standalone Extremity SAR

Table 9-8

Exposure	Band / Mode	Service / Modulation	Housing Type	Wristband Type	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 10g SAR [W/kg]	Power Scaling Factor		Reported 10g SAR [W/kg]		Plot #
Extremity	802.15.4 ab-NB	O-QPSK	Aluminum	Sport	3YJ56	8.74	0.01	5786.25	Mid	1	16.00	15.12	Back	0	0.000	1.225	1.018	0.000	0.000	
Extremity	802.15.4 ab-NB	O-QPSK	Aluminum	Metal Loop	3YJ56	8.74	0.03	5786.25	Mid	1	16.00	15.12	Back	0	0.000	1.225	1.018	0.000	0.000	A8
Extremity	802.15.4 ab-NB	O-QPSK	Aluminum	Metal Links	3YJ56	8.74	0.06	5786.25	Mid	1	16.00	15.12	Back	0	0.000	1.225	1.018	0.000	0.000	
				ANSI/IEEE C95	.1 1992 - SAFETY	LIMIT										Extremit	у			
			u		oatial Peak osure/General P	opulation										4.0 W/kg (m averaged over 1				

Note: The reported SAR was scaled to the 8.90% transmission duty factor.

9.9 NFC Extremity SAR

Table 9-9

					0.00							
Exposure	Band / Mode	Signal Type	Housing Type	Wristband Type	Serial Number	Power Drift [dB]	Frequency [MHz]	Test Position	Spacing [mm]	Measured 10g SAR [W/kg]	Exposure Ratio (10g SAR)	Plot#
Extremity	NFC	В	Aluminum	Sport	PT7FL	0.03	13.56	Back	0	0.000	0.000	A9
Extremity	NFC	В	Aluminum	Metal Loop	PT7FL	0.01	13.56	Back	0	0.000	0.000	
Extremity	NFC	В	Aluminum	Metal Links	PT7FL	0.01	13.56	Back	0	0.000	0.000	
		ANSI/IEEE C95.1 19	92 - SAFETY LIM	IT						Extremity		
		Spatia	l Peak						4.0	W/kg (mW/g)		
		Incontrolled Exposure	e/General Popula	ation					averag	ed over 10 grams		

9.10 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D04v01.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg and 2.0 W/kg for 10g SAR.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type:		Ü
Watch		Page 21 of 28

- 7. This device has one housing type: Aluminum. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
- 8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore, the procedures in FCC KDB Publication 447498 D04v01 Section 5.2 have been applied for extremity and next to mouth (head) conditions.
- 9. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
 single transmission chain operations, the highest measured maximum output power channel for DSSS
 was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to
 the maximum allowed powers and the highest reported DSSS SAR. See Section 6.2.4 for more
 information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 6.2.5 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance.

Bluetooth Notes

1. To determine compliance, Bluetooth SAR was measured with the maximum power condition. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

802.15.4 ab-Nb Notes

1. 802.15.4 ab-NB SAR was scaled to the 8.9% transmission duty factor to determine compliance since the duty factor of the device is limited to 8.9% per manufacturer. See Section 7.4 for the time domain plot and calculation for the duty factor of the device.

FCC ID: BCG-A3331	BCG-A3331 RF EXPOSURE REPORT	
DUT Type: Watch		Page 22 of 28

10 SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.

10.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis was not required.

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 23 of 28

11 EQUIPMENT LIST

Manufacturer Agilent	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	10/23/2024	Annual	10/23/2025	MY45093852
Agilent	E4438C	ESG Vector Signal Generator	11/15/2024	Annual	11/15/2025	MY45092078
Agilent	N5182A	MXG Vector Signal Generator	05/30/2025	Annual	05/30/2026	MY48180366
Agilent	N5182A	MXG Vector Signal Generator	12/05/2024	Annual	12/05/2025	US46240505
Agilent	8753ES	S-Parameter Vector Network Analyzer	01/06/2025	Annual	01/06/2026	MY40001472
Agilent	8753ES	S-Parameter Vector Network Analyzer	09/25/2024	Annual	09/25/2025	MY40003841
Agilent	E5515C	Wireless Communications Test Set	CBT	N/A	CBT	GB46310798
Agilent	E5515C	Wireless Communications Test Set	CBT	N/A	CBT	GB41450275
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433973
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Anritsu	MN8110B	I/O Adaptor	CBT	N/A	CBT	6261747881
Anritsu	ML2496A	Power Meter	06/27/2025	Annual	06/27/2026	1840005
Anritsu	ML2495A	Power Meter	07/03/2025	Annual	07/03/2026	1039008
Anritsu	MA2411B	Pulse Power Sensor	09/05/2024	Annual	09/05/2025	1726262
Anritsu Anritsu	MA2411B MA24106A	Pulse Power Sensor USB Power Sensor	10/21/2024 05/29/2025	Annual Annual	10/21/2025 05/29/2026	1027293 1344554
Anritsu	MA24106A MA24106A	USB Power Sensor USB Power Sensor	10/29/2024	Annual	10/29/2025	1344554
Insize	1108-150	Digital Caliper	2/25/2025	Annual	02/25/2026	711245294
Control Company	4052	Long Stem Thermometer	02/27/2024	Biennial	02/23/2026	240174346
Control Company	4052	Long Stem Thermometer	02/27/2024	Biennial	02/27/2026	240171096
Control Company	4052	Long Stem Thermometer	02/27/2024	Biennial	02/27/2026	240171050
Control Company	4040	Therm./ Clock/ Humidity Monitor	04/15/2024	Biennial	04/15/2026	240310280
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/15/2024	Biennial	10/15/2026	240763503
Control Company	4040	Therm./ Clock/ Humidity Monitor	04/15/2024	Biennial	04/15/2026	240310282
Keysight Technologies	N9020A	MXA Signal Analyzer	07/07/2025	Annual	07/07/2026	MY48010233
Agilent	N9020A	MXA Signal Analyzer	07/07/2025	Biennial	07/07/2027	MY56470202
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	07/03/2025	Annual	07/03/2026	31634
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Seekonk	NC-100	Torque Wrench	CBT	N/A	CBT	22217
Seekonk	NC-100	Torque Wrench	04/02/2024	Biennial	04/02/2026	1262
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	CBT	N/A	CBT	120504
Rohde & Schwarz	CMW500 CMW500	Wideband Radio Communication Tester Wideband Radio Communication Tester	CBT CBT	N/A N/A	CBT	109366 155128
Rohde & Schwarz						
Rohde & Schwarz Rohde & Schwarz	CMW500 CMW500	Wideband Radio Communication Tester Wideband Radio Communication Tester	CBT CBT	N/A N/A	CBT	102060 167112
SPEAG	DAK-3.5	Dielectric Assessment Kit	11/05/2024	Annual	11/05/2025	1277
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	08/07/2024	Annual	08/07/2025	1041
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPEAG	MAIA	Modulation and Audio Interference Analyzer Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1331
SPEAG	MAIA	Modulation and Audio Interference Analyzer Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1390
SPEAG	DAK-12	Dielectric Assessment Kit (4MHz - 3GHz)	03/10/2025	Annual	03/10/2026	1102
SPEAG	CLA-13	Confined Loop Antenna	11/11/2024	Annual	11/11/2025	1004
SPEAG	D2450V2	2450 MHz SAR Dipole	05/13/2025	Annual	05/13/2026	750
SPEAG	D5GHzV2	5 GHz SAR Dipole	11/08/2024	Annual	11/08/2025	1066
SPEAG	DAE4	Dasy Data Acquisition Electronics	01/08/2025	Annual	01/08/2026	1465
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/10/2024	Annual	10/10/2025	1237
SPEAG	DAE4	Dasy Data Acquisition Electronics	09/03/2024	Annual	09/03/2025	1646
SPEAG	DAE4	Dasy Data Acquisition Electronics	04/15/2025	Annual	04/15/2026	1323
	DAE4	Dasy Data Acquisition Electronics	04/09/2025	Annual	04/09/2026	501
SPEAG		SAR Probe	04/16/2025	Annual	04/16/2026	7551
SPEAG	EX3DV4	5,11,1050				
	EX3DV4 EX3DV4	SAR Probe	10/15/2024	Annual	10/15/2025	3746
SPEAG						

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler, or filter were connected to a calibrated source (i.e., a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each equipment item was used solely within its respective calibration period.

		Approved by:
FCC ID: BCG-A3331	RF EXPOSURE REPORT	Technical Manager
DUT Type:		Dogo 24 of 29
Watch	Page 24 of 28	

12 MEASUREMENT UNCERTAINTIES

Applicable for SAR measurements < 6 GHz:

B	SAR measurements < 6 GHz:															
IEEE Tol. Frob. List Sec. List Tol. Frob. List List	а	b	С	d	e=	f	g	h =	i =	k						
Measurement System					f(d,k)			c x f/e	c x g/e							
Measurement System Figure Sec. (± %) Dist. Dist. Div. 1gm 10 gms U, U, U, U, U, U, U, U			Tol.	Prob.		Ci	C _i	1gm	10gms							
Measurement System E2.1 7 N 1 1 1 7.0 7.0 Axial Isotropy E2.2 0.25 N 1 0.7 0.7 0.2 0.2 Hemishperical Isotropy E2.2 0.25 N 1 0.7 0.7 0.2 0.2 Boundary Effect E2.3 2 R 1.732 1 1 1.2 1.2 Linearity E2.4 0.3 N 1 1 1 0.3 0.3 System Detection Limits E2.4 0.25 R 1.732 1 1 0.1 0.1 Modulation Response E2.5 4.8 R 1.732 1 1 0.1 0.1 Modulation Response E2.5 4.8 R 1.732 1 1 0.1 0.1 Modulation Response E2.6 0.3 N 1 1 0.3 0.3 Readout Bectronics E2.6 0.3	Uncertainty Component		(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i						
Probe Calibration		000.	, ,			· ·				,						
Axial Isotropy	easurement System															
Hemishperical Isotropy	obe Calibration	E2.1	7	N	1	1	1	7.0	7.0	∞						
Boundary Effect	ial Isotropy	E2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞						
Linearity	emishperical Isotropy	E2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞						
System Detection Limits	oundary Effect	E2.3	2	R	1.732	1	1	1.2	1.2	∞						
Modulation Response E2.5 4.8 R 1.732 1 1 2.8 2.8 Readout Bectronics E2.6 0.3 N 1 1 1 0.3 0.3 Response Time E2.7 0.8 R 1.732 1 1 0.5 0.5 Integration Time E2.8 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Conditions - Noise E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 0.5 0.5 <	nearity	E2.4	0.3	N	1	1	1	0.3	0.3	∞						
Readout Bectronics E2.6 0.3 N 1 1 0.3 0.3 Response Time E2.7 0.8 R 1.732 1 1 0.5 0.5 Integration Time E2.8 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Conditions - Noise E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 0.5 0.5 Probe Positioning W/ respect to Phantom E6.3 6.7 R 1.732 1 1 2.3 2.3	stem Detection Limits	E2.4	0.25	R	1.732	1	1	0.1	0.1	∞						
Response Time	odulation Response	E2.5	4.8	R	1.732	1	1	2.8	2.8	∞						
Integration Time	adout Bectronics	E2.6	0.3	N	1	1	1	0.3	0.3	∞						
RF Ambient Conditions - Noise E6.1 3 R 1.732 1 1 1.7 1.7 RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E6.2 0.8 R 1.732 1 1 0.5 0.5 Probe Positioning w/ respect to Phantom E6.3 6.7 R 1.732 1 1 3.9 3.9 Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation E5 4 R 1.732 1 1 2.3 2.3 Test Sample Related Test Sample Positioning E4.2 3.12 N 1 1 3.1 3.1 Device Holder Uncertainty E4.1 1.67 N 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 <td <="" colspan="6" td=""><td>sponse Time</td><td>E2.7</td><td>0.8</td><td>R</td><td>1.732</td><td>1</td><td>1</td><td>0.5</td><td>0.5</td><td>∞</td></td>	<td>sponse Time</td> <td>E2.7</td> <td>0.8</td> <td>R</td> <td>1.732</td> <td>1</td> <td>1</td> <td>0.5</td> <td>0.5</td> <td>∞</td>						sponse Time	E2.7	0.8	R	1.732	1	1	0.5	0.5	∞
RF Ambient Conditions - Reflections E6.1 3 R 1.732 1 1 1.7 1.7 Probe Positioner Mechanical Tolerance E6.2 0.8 R 1.732 1 1 0.5 0.5 Probe Positioning W/ respect to Phantom E6.3 6.7 R 1.732 1 1 3.9 3.9 Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation E5 4 R 1.732 1 1 2.3 2.3 Test Sample Related Test Sample Positioning E4.2 3.12 N 1 1 3.1 3.1 Device Holder Uncertainty E4.1 1.67 N 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom Uncertainty (Shape & Thickness tolerances) E3.1 <td>tegration Time</td> <td>E2.8</td> <td>2.6</td> <td>R</td> <td>1.732</td> <td>1</td> <td>1</td> <td>1.5</td> <td>1.5</td> <td>∞</td>	tegration Time	E2.8	2.6	R	1.732	1	1	1.5	1.5	∞						
Probe Positioner Mechanical Tolerance E6.2 0.8 R 1.732 1 1 0.5 0.5 Probe Positioning w/ respect to Phantom E6.3 6.7 R 1.732 1 1 3.9 3.9 Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation E5 4 R 1.732 1 1 2.3 2.3 Test Sample Related Test Sample Positioning E4.2 3.12 N 1 1 1 3.1 3.1 Device Holder Uncertainty E4.1 1.67 N 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	Ambient Conditions - Noise	E6.1	3	R	1.732	1	1	1.7	1.7	∞						
Probe Positioning W/ respect to Phantom E6.3 6.7 R 1.732 1 1 3.9 3.9 Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation E5 4 R 1.732 1 1 2.3 2.3 Test Sample Related Test Sample Positioning E4.2 3.12 N 1 1 1 3.1 3.1 Device Holder Uncertainty E4.1 1.67 N 1 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	Ambient Conditions - Reflections	E6.1	3	R	1.732	1	1	1.7	1.7	∞						
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation Est Sample Related Test Sample Positioning E4.2 3.12 N 1 1 3.1 3.1 3.1 Device Holder Uncertainty E4.1 1.67 N 1 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	obe Positioner Mechanical Tolerance	E6.2	0.8	R	1.732	1	1	0.5	0.5	∞						
Test Sample Related E4.2 3.12 N 1 1 1.732 1 1 2.3 2.3 Test Sample Related Test Sample Positioning E4.2 3.12 N 1 1 1 3.1 3.1 Device Holder Uncertainty E4.1 1.67 N 1 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	obe Positioning w/ respect to Phantom	E6.3	6.7	R	1.732	1	1	3.9	3.9	∞						
Test Sample Positioning		E5	4	R	1.732	1	1	2.3	2.3	∞						
Device Holder Uncertainty E4.1 1.67 N 1 1 1.7 1.7 Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	st Sample Related															
Output Power Variation - SAR drift measurement E2.9 5 R 1.732 1 1 2.9 2.9 SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	st Sample Positioning	E4.2	3.12	N	1	1	1	3.1	3.1	35						
SAR Scaling E6.5 0 R 1.732 1 1 0.0 0.0 Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	evice Holder Uncertainty	E4.1	1.67	N	1	1	1	1.7	1.7	5						
Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) E 3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	utput Power Variation - SAR drift measurement	E2.9	5	R	1.732	1	1	2.9	2.9	∞						
Phantom Uncertainty (Shape & Thickness tolerances) E.3.1 7.6 R 1.73 1.0 1.0 4.4 4.4	kR Scaling	E6.5	0	R	1.732	1	1	0.0	0.0	∞						
	nantom & Tissue Parameters															
	antom Uncertainty (Shape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞						
Liquid Conductivity - measurement uncertainty E3.3 4.3 N 1 0.78 0.71 3.3 3.0	quid Conductivity - measurement uncertainty	E3.3	4.3	N	1	0.78	0.71	3.3	3.0	76						
Liquid Permittivity - measurement uncertainty E3.3 4.2 N 1 0.23 0.26 1.0 1.1	quid Permittivity - measurement uncertainty	E3.3	4.2	N	1	0.23	0.26	1.0	1.1	75						
Liquid Conductivity - Temperature Uncertainty E3.4 3.4 R 1.732 0.78 0.71 1.5 1.4	quid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞						
Liquid Permittivity - Temperature Unceritainty E3.4 0.6 R 1.732 0.23 0.26 0.1 0.1	quid Permittivity - Temperature Unceritainty	E3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞						
Liquid Conductivity - deviation from target values E3.2 5.0 R 1.73 0.64 0.43 1.8 1.2	quid Conductivity - deviation from target values	E3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞						
Liquid Permittivity - deviation from target values E3.2 5.0 R 1.73 0.60 0.49 1.7 1.4	quid Permittivity - deviation from target values	E3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞						
Combined Standard Uncertainty (k=1) RSS 12.2 12.0	ombined Standard Uncertainty (k=1)	•		RSS				12.2	12.0	191						
Expanded Uncertainty k=2 24.4 24.0	panded Uncertainty			k=2				24.4	24.0							
(95% CONFIDENCE LEVEL)	5% CONFIDENCE LEVEL)															

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: BCG-A3331	RF EXPOSURE REPORT	Approved by: Technical Manager
DUT Type: Watch		Page 25 of 28

13 CONCLUSION

13.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g., ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g., age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCG-A3331	A3331 RF EXPOSURE REPORT	
DUT Type: Watch		Page 26 of 28

14 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada; 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

RF EXPOSURE REPORT	
	Page 27 of 28
	RF EXPOSURE REPORT

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCG-A3331	CC ID: BCG-A3331 RF EXPOSURE REPORT	
DUT Type:		Page 28 of 28
Watch		g