

SAR EVALUATION REPORT

Applicant Name:

 Apple, Inc.
 One Apple Park Way
 Cupertino, CA 95014 USA

Date of Testing:

07/15/2019-07/24/2019

Test Site/Location:

PCTEST Lab, Morgan Hill, CA, USA

Document Serial No.:

1C1905130009-01-R1.BCG

FCC ID:
BCG-A2156
APPLICANT:
APPLE, INC.
DUT Type:

Watch

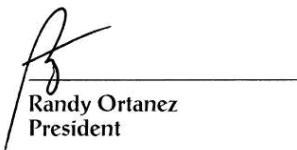
Application Type:

Certification

FCC Rule Part(s):

CFR §2.1093

Model:


A2156

Equipment Class	Band & Mode	Tx Frequency	SAR	
			1g Head (W/kg)	10g Extremity (W/kg)
PCT	UMTS 850	826.40 - 846.60 MHz	< 0.1	0.21
PCT	UMTS 1750	1712.4 - 1752.6 MHz	0.29	0.36
PCT	UMTS 1900	1852.4 - 1907.6 MHz	0.30	0.31
PCT	LTE Band 26 (Cell)	814.7 - 848.3 MHz	< 0.1	0.21
PCT	LTE Band 5 (Cell)	824.7 - 848.3 MHz	< 0.1	0.18
PCT	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.29	0.32
PCT	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A
PCT	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.25	0.26
PCT	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A
PCT	LTE Band 7	2502.5 - 2567.5 MHz	0.33	0.11
PCT	LTE Band 41	2498.5 - 2687.5 MHz	0.20	<0.1
DTS	2.4 GHz WLAN	2412 - 2472 MHz	0.16	<0.1
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.12	<0.1
Simultaneous SAR per KDB 690783 D01v01r03:			0.48	0.41

Note: This revised Test Report (S/N: 1C1905130009-01-R1.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez
President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCG-A2156	PCTEST Engineering Laboratory, Inc. SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 1 of 71

T A B L E O F C O N T E N T S

1	DEVICE UNDER TEST	3
2	LTE INFORMATION.....	7
3	INTRODUCTION.....	8
4	DOSIMETRIC ASSESSMENT.....	9
5	TEST CONFIGURATION POSITIONS	10
6	RF EXPOSURE LIMITS	11
7	FCC MEASUREMENT PROCEDURES.....	12
8	RF CONDUCTED POWERS.....	16
9	SYSTEM VERIFICATION.....	41
10	SAR DATA SUMMARY	45
11	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	63
12	SAR MEASUREMENT VARIABILITY	66
13	EQUIPMENT LIST	67
14	MEASUREMENT UNCERTAINTIES	68
15	CONCLUSION	69
16	REFERENCES.....	70
APPENDIX A: SAR TEST PLOTS		
APPENDIX B: SAR DIPOLE VERIFICATION PLOTS		
APPENDIX C: PROBE AND DIPOLE CALIBRATION CERTIFICATES		
APPENDIX D: SAR TISSUE SPECIFICATIONS		
APPENDIX E: SAR SYSTEM VALIDATION		
APPENDIX F: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS		

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 2 of 71

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band mode implemented in this device for SAR purposes.

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 3 of 71

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Table 1.3.1 Summary Maximum and Nominal Conducted Powers – UMTS Mode

Mode / Band		Modulated Average (dBm)		
		3GPP WCDMA	3GPP HSDPA	3GPP HSUPA
UMTS Band 5 (850 MHz)	Maximum	25.0	25.0	25.0
	Nominal	24.0	24.0	24.0
UMTS Band 4 (1750 MHz)	Maximum	24.0	24.0	24.0
	Nominal	23.0	23.0	23.0
UMTS Band 2 (1900 MHz)	Maximum	24.0	24.0	24.0
	Nominal	23.0	23.0	23.0

Table 1.3.2 Summary Maximum and Nominal Conducted Powers – LTE Mode

Mode / Band		Modulated Average (dBm)
LTE Band 26 (Cell)	Maximum	25.0
	Nominal	24.0
LTE Band 5 (Cell)	Maximum	25.0
	Nominal	24.0
LTE Band 66 (AWS)	Maximum	24.0
	Nominal	23.0
LTE Band 4 (AWS)	Maximum	24.0
	Nominal	23.0
LTE Band 25 (PCS)	Maximum	24.0
	Nominal	23.0
LTE Band 2 (PCS)	Maximum	24.0
	Nominal	23.0
LTE Band 7	Maximum	23.5
	Nominal	22.5
LTE Band 41	Maximum	23.5
	Nominal	22.5

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 4 of 71

Table 1.3.3 Summary Maximum Conducted Powers – WiFi Mode

Mode / Band		Modulated Average (dBm)				
		Ch. 1	Ch. 2-10	Ch. 11	Ch. 12	Ch. 13
IEEE 802.11b (2.4 GHz)	Maximum		19.0		18.0	
IEEE 802.11g (2.4 GHz)	Maximum	17.5	18.5	17.0	15.0	7.0
IEEE 802.11n (2.4 GHz)	Maximum	17.5	18.5	17.0	15.0	7.0

Table 1.3.4 Summary Maximum and Nominal Conducted Powers – Bluetooth Mode

Mode / Band		Modulated Average (dBm)
Bluetooth BDR/LE		17.5
Bluetooth EDR		13.0
Bluetooth HDR4		12.5
Bluetooth HDR8		10.0

1.4 DUT Antenna Locations

A diagram showing the location of the device antennas can be found in Appendix F.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-1
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Extremity
1	UMTS + 2.4 GHz Wi-Fi	Yes	Yes
2	UMTS + 2.4 GHz Bluetooth	Yes	Yes
3	LTE + 2.4 GHz Wi-Fi	Yes	Yes
4	LTE + 2.4 GHz Bluetooth	Yes	Yes

1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
2. All licensed modes share the same antenna path and cannot transmit simultaneously.

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 5 of 71

3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN scenario.
4. This device supports VOLTE.
5. This device supports VoWIFI.

1.7 Miscellaneous SAR Test Considerations

(A) WIFI

This device supports channel 1-13 for 2.4 GHz WLAN. However, due to the reduced output power for channels 12 and 13, channels 1, 6, and 11 were considered for SAR testing per KDB 248227 D01v02r02.

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04. This device is limited to 27 RB on the uplink for 16QAM modulation. Additional measurements were evaluated to support SAR test exclusion for 16 QAM as described in Section 7.5.4.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

1.8 Guidance Applied

- FCC KDB Publication 941225 D01v03r01, D05v02r05 (3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance, Wrist-worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR measurements up to 6 GHz)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10.

1.10 Device Housing Types and Wristband Types

This device has four housing types that were evaluated independently for SAR: Aluminum, Stainless Steel, Titanium, and Ceramic. The device can also be used with different wristband accessories. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.

FCC ID: BCG-A2156	PCTEST Engineering Laboratory, Inc. SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 6 of 71

2 LTE INFORMATION

LTE Information					
Form Factor	Watch				
Frequency Range of each LTE transmission band	LTE Band 26 (Cell) (814.7 - 848.3 MHz) LTE Band 5 (Cell) (824.7 - 848.3 MHz) LTE Band 66 (AWS) (1710.7 - 1779.3 MHz) LTE Band 4 (AWS) (1710.7 - 1754.3 MHz) LTE Band 25 (PCS) (1850.7 - 1914.3 MHz) LTE Band 2 (PCS) (1850.7 - 1909.3 MHz) LTE Band 7 (2502.5 - 2567.5 MHz) LTE Band 41 (2498.5 - 2687.5 MHz)				
Channel Bandwidths	LTE Band 26 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz LTE Band 5 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz LTE Band 66 (AWS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 4 (AWS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 25 (PCS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 2 (PCS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 7: 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 41: 5 MHz, 10 MHz, 15 MHz, 20 MHz				
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High
LTE Band 26 (Cell): 1.4 MHz	814.7 (26697)	831.5 (26865)	848.3 (27033)		
LTE Band 26 (Cell): 3 MHz	815.5 (26705)	831.5 (26865)	847.5 (27025)		
LTE Band 26 (Cell): 5 MHz	816.5 (26715)	831.5 (26865)	846.5 (27015)		
LTE Band 26 (Cell): 10 MHz	819 (26740)	831.5 (26865)	844 (26990)		
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)		
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)		
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)		
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
LTE Band 66 (AWS): 1.4 MHz	1710.7 (131979)	1745 (132322)	1779.3 (132665)		
LTE Band 66 (AWS): 3 MHz	1711.5 (131987)	1745 (132322)	1778.5 (132657)		
LTE Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5 (132647)		
LTE Band 66 (AWS): 10 MHz	1715 (132022)	1745 (132322)	1775 (132622)		
LTE Band 66 (AWS): 15 MHz	1717.5 (132047)	1745 (132322)	1772.5 (132597)		
LTE Band 66 (AWS): 20 MHz	1720 (132072)	1745 (132322)	1770 (132572)		
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)		
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)		
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)		
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)		
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)		
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)		
LTE Band 25 (PCS): 1.4 MHz	1850.7 (26047)	1882.5 (26365)	1914.3 (26683)		
LTE Band 25 (PCS): 3 MHz	1851.5 (26055)	1882.5 (26365)	1913.5 (26675)		
LTE Band 25 (PCS): 5 MHz	1852.5 (26065)	1882.5 (26365)	1912.5 (26665)		
LTE Band 25 (PCS): 10 MHz	1855 (26090)	1882.5 (26365)	1910 (26640)		
LTE Band 25 (PCS): 15 MHz	1857.5 (26115)	1882.5 (26365)	1907.5 (26615)		
LTE Band 25 (PCS): 20 MHz	1860 (26140)	1882.5 (26365)	1905 (26590)		
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)		
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)		
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)		
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)		
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)		
LTE Band 7: 5 MHz	2502.5 (20775)	2535 (21100)	2567.5 (21425)		
LTE Band 7: 10 MHz	2505 (20800)	2535 (21100)	2565 (21400)		
LTE Band 7: 15 MHz	2507.5 (20825)	2535 (21100)	2562.5 (21375)		
LTE Band 7: 20 MHz	2510 (20850)	2535 (21100)	2560 (21350)		
LTE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
LTE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
LTE Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
LTE Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
UE Category	1				
Modulations Supported in UL	QPSK, 16QAM				
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3-6.2.5? (manufacturer attestation to be provided)	YES				
A-MPR (Additional MPR) disabled for SAR Testing?	YES				
LTE Additional Information	This device does not support full CA features on 3GPP Release 12. All uplink communications are identical to the Release 8 Specifications. The following LTE Release 12 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, eICIC, WiFi Offloading, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.				

FCC ID: BCG-A2156	PCTEST [®] ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			Page 7 of 71

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

**Equation 3-1
SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

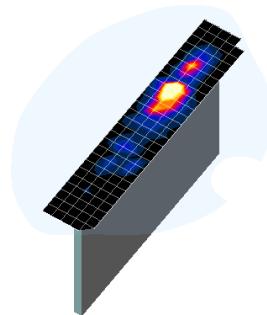
where:

σ = conductivity of the tissue-simulating material (S/m)

ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]


FCC ID: BCG-A2156	PCTEST [®] ENGINEERING LABORATORY, INC.		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 8 of 71

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04.

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1).
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

**Figure 4-1
Sample SAR Area Scan**

**Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04***

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) (x,y,z)
			Uniform Grid		Graded Grid	
			$\Delta z_{zoom}(n)$	$\Delta z_{zoom}(1)*$	$\Delta z_{zoom}(n>1)*$	
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≤ 3	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≤ 2.5	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤ 2	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 22

FCC ID: BCG-A2156	PCTEST® ENGINEERING LABORATORY, INC.			SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			

5 TEST CONFIGURATION POSITIONS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

5.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

5.1 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with body tissue-equivalent medium. The device was evaluated with Sport wristband unstrapped and touching the phantom. For Metal Loop and Metal Links wristbands, the device was evaluated with wristbands strapped and the distance between wristbands and the phantom was minimized to represent the spacing created by actual use conditions.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 10 of 71

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT <i>General Population (W/kg) or (mW/g)</i>	CONTROLLED ENVIRONMENT <i>Occupational (W/kg) or (mW/g)</i>
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Approved by: Quality Manager Page 11 of 71

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 “3G SAR Measurement Procedures.”

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a “point SAR” at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all “1s” or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 12 of 71

7.4.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all “1s”. SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

7.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all “1s”. The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

7.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 13 of 71

7.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg for 1g SAR and > 3.625 W/kg for 10g SAR, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to $\frac{1}{2}$ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg for 1g SAR and < 3.625 for 10g SAR.
- e. This device can only operate with 16 QAM on the uplink with less than or equal to 27 RB. For 16 QAM configurations with 10 MHz, 15 MHz, and 20 MHz bandwidths, LTE powers for RB size of 15 ("50%RB") and 27 ("100% RB") with offsets to upper edge, middle, and lower edge of the channel are additionally measured for both QPSK and 16 QAM modulations to support comparison and SAR test exclusion per section 5.2.4 and 5.3.

7.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 14 of 71

7.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

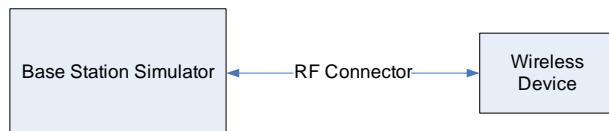
A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.6.2 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is $\leq 0.8 \text{ W/kg}$, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is $> 0.8 \text{ W/kg}$, SAR is required for that position using the next highest measured output power channel. When any reported SAR is $> 1.2 \text{ W/kg}$, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is $> 1.2 \text{ W/kg}$. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.


FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 15 of 71

8 RF CONDUCTED POWERS

8.1 UMTS Conducted Powers

3GPP Release Version	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]			AWS Band [dBm]			PCS Band [dBm]			3GPP MPR [dB]
			4132	4183	4233	1312	1412	1513	9262	9400	9538	
99	WCDMA	12.2 kbps RMC	24.48	24.18	24.16	23.47	23.43	23.07	23.47	23.49	23.37	-
99		12.2 kbps AMR	24.18	24.17	24.16	23.29	23.22	23.22	23.60	23.57	23.51	-
6	HSDPA	Subtest 1	24.45	24.40	24.28	23.46	23.42	23.34	23.43	23.44	23.27	0
6		Subtest 2	23.48	23.39	23.32	22.40	22.36	22.37	22.37	22.45	22.27	0
6		Subtest 3	22.92	22.87	22.75	21.91	21.90	21.85	21.94	21.99	21.83	0.5
6		Subtest 4	22.71	22.63	22.52	21.65	21.62	21.70	21.71	21.76	21.58	0.5
6	HSUPA	Subtest 1	23.07	23.08	23.00	22.75	22.90	22.83	23.01	22.99	22.86	0
6		Subtest 2	21.57	21.56	21.45	20.65	20.61	20.62	20.76	20.84	20.67	2
6		Subtest 3	22.50	22.46	22.36	21.36	21.38	21.40	21.51	21.61	21.40	1
6		Subtest 4	21.76	21.71	21.67	20.84	20.79	20.77	20.97	21.15	20.74	2
6		Subtest 5	23.80	23.77	23.64	22.91	22.89	22.88	23.01	23.09	22.90	0

This device does not support DC-HSDPA.

**Figure 8-1
Power Measurement Setup**

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			

8.2 LTE Conducted Powers

8.2.1 LTE Band 26

Table 8-1
LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 26 (Cell) 10 MHz Bandwidth			Design MPR [dB]
			Low Channel	Mid Channel	High Channel	
			26740 (819.0 MHz)	26865 (831.5 MHz)	26990 (844.0 MHz)	
Conducted Power [dBm]						
QPSK	1	0	24.13	24.14	24.13	0
	1	25	24.11	24.04	24.12	0
	1	49	24.09	24.06	24.01	0
	25	0	23.61	23.71	23.76	1
	25	12	23.61	23.68	23.70	1
	25	25	23.69	23.65	23.57	1
	50	0	23.73	23.69	23.72	1
	15	0	23.70	23.77	23.75	1
	15	17	23.68	23.75	23.72	1
	15	35	23.82	23.67	23.56	1
	27	0	23.63	23.69	23.72	1
	27	12	23.67	23.65	23.68	1
	27	23	23.64	23.62	23.57	1
16QAM	1	0	23.79	23.76	23.48	1
	1	25	23.89	23.78	23.69	1
	1	49	23.77	23.77	23.64	1
	25	0	22.70	22.60	22.60	2
	25	12	22.69	22.59	22.42	2
	25	25	22.67	22.55	22.54	2
	15	0	22.69	22.60	22.59	2
	15	17	22.57	22.52	22.55	2
	15	35	22.58	22.47	22.40	2
	27	0	22.54	22.47	22.62	2
	27	12	22.56	22.44	22.57	2
	27	23	22.58	22.37	22.46	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 17 of 71

Table 8-2
LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

LTE Band 26 (Cell) 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	24.10	24.14	24.09	0
	1	12	24.09	24.08	24.04	0
	1	24	24.02	24.00	23.95	0
	12	0	23.65	23.68	23.64	1
	12	6	23.62	23.66	23.57	1
	12	13	23.61	23.65	23.53	1
	25	0	23.61	23.68	23.55	1
16QAM	1	0	23.77	23.72	23.48	1
	1	12	23.90	23.67	23.39	1
	1	24	23.68	23.67	23.32	1
	12	0	22.77	22.84	22.77	2
	12	6	22.74	22.81	22.75	2
	12	13	22.70	22.79	22.64	2
	25	0	22.76	22.74	22.69	2

Table 8-3
LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

LTE Band 26 (Cell) 3 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	24.08	24.07	24.06	0
	1	7	24.09	24.05	23.96	0
	1	14	24.11	24.04	23.95	0
	8	0	23.61	23.62	23.51	1
	8	4	23.60	23.60	23.49	1
	8	7	23.57	23.61	23.45	1
	15	0	23.64	23.63	23.52	1
16QAM	1	0	23.83	23.62	23.70	1
	1	7	23.86	23.64	23.51	1
	1	14	23.90	23.41	23.57	1
	8	0	22.77	22.85	22.64	2
	8	4	22.77	22.79	22.64	2
	8	7	22.75	22.71	22.65	2
	15	0	22.72	22.72	22.59	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 18 of 71

Table 8-4
LTE Band 26 (Cell) Conducted Powers – 1.4 MHz Bandwidth

LTE Band 26 (Cell) 1.4 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26697 (814.7 MHz)	26865 (831.5 MHz)	27033 (848.3 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	24.06	24.12	23.76	0
	1	2	24.12	24.11	24.12	0
	1	5	24.10	24.11	24.08	0
	3	0	24.10	24.10	24.08	0
	3	2	24.07	24.08	24.06	0
	3	3	24.05	24.12	24.08	0
	6	0	23.62	23.67	23.47	1
16QAM	1	0	23.86	23.47	23.33	1
	1	2	23.73	23.72	23.25	1
	1	5	23.77	23.71	23.27	1
	3	0	23.50	23.56	23.24	1
	3	2	23.51	23.56	23.38	1
	3	3	23.53	23.55	23.35	1
	6	0	22.75	22.79	22.69	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 19 of 71

8.2.2 LTE Band 5

Table 8-5
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 5 (Cell) 10 MHz Bandwidth	Design MPR [dB]
			Mid Channel	
			20525 (836.5 MHz)	
QPSK	1	0	24.14	0
	1	25	23.95	0
	1	49	23.96	0
	25	0	23.42	1
	25	12	23.32	1
	25	25	23.39	1
	50	0	23.35	1
	15	0	22.93	1
	15	17	23.01	1
	15	35	23.07	1
	27	0	22.97	1
	27	12	22.94	1
	27	23	23.02	1
16QAM	1	0	23.46	1
	1	25	23.43	1
	1	49	23.33	1
	25	0	22.25	2
	25	12	22.19	2
	25	25	22.21	2
	15	0	22.60	2
	15	17	22.60	2
	15	35	22.61	2
	27	0	22.47	2
	27	12	22.42	2
	27	23	22.49	2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 20 of 71

Table 8-6
LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

LTE Band 5 (Cell) 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	24.00	24.14	24.08	0
	1	12	23.98	24.12	24.05	0
	1	24	23.90	24.11	24.01	0
	12	0	23.22	23.16	23.24	1
	12	6	23.20	23.19	23.20	1
	12	13	23.21	23.27	23.16	1
	25	0	23.28	23.23	23.23	1
16QAM	1	0	23.69	23.66	23.68	1
	1	12	23.78	23.61	23.29	1
	1	24	23.59	23.59	23.24	1
	12	0	22.60	22.42	22.51	2
	12	6	22.60	22.47	22.43	2
	12	13	22.62	22.51	22.42	2
	25	0	22.63	22.53	22.44	2

Table 8-7
LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

LTE Band 5 (Cell) 3 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.98	23.96	23.76	0
	1	7	23.98	23.97	23.71	0
	1	14	23.97	23.98	23.71	0
	8	0	23.39	23.30	23.28	1
	8	4	23.39	23.30	23.24	1
	8	7	23.39	23.39	23.23	1
	15	0	23.42	23.30	23.24	1
16QAM	1	0	23.71	23.44	23.21	1
	1	7	23.64	23.47	23.37	1
	1	14	23.55	23.54	23.27	1
	8	0	22.66	22.50	22.39	2
	8	4	22.64	22.48	22.44	2
	8	7	22.65	22.53	22.46	2
	15	0	22.63	22.43	22.45	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 21 of 71

Table 8-8
LTE Band 5 (Cell) Conducted Powers – 1.4 MHz Bandwidth

LTE Band 5 (Cell) 1.4 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	24.10	24.05	24.03	0
	1	2	24.03	24.06	24.01	0
	1	5	24.04	24.07	24.00	0
	3	0	24.13	24.00	24.01	0
	3	2	24.13	23.99	24.00	0
	3	3	24.12	23.98	23.99	0
	6	0	23.55	23.45	23.33	1
16QAM	1	0	23.57	23.44	23.32	1
	1	2	23.55	23.30	23.17	1
	1	5	23.60	23.39	23.22	1
	3	0	23.52	23.38	23.37	1
	3	2	23.57	23.31	23.30	1
	3	3	23.65	23.38	23.15	1
	6	0	22.72	22.59	22.39	2

FCC ID: BCG-A2156	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 22 of 71	

8.2.3 LTE Band 66

Table 8-9
LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

LTE Band 66 (AWS) 20 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.04	23.04	23.35	0
	1	50	22.94	23.13	23.16	0
	1	99	22.88	23.15	23.10	0
	50	0	22.36	22.36	22.49	1
	50	25	22.33	22.34	22.33	1
	50	50	22.39	22.39	22.40	1
	100	0	22.42	22.35	22.48	1
	15	0	23.22	23.21	23.17	0
	15	42	23.23	23.13	23.23	0
	15	85	23.28	23.18	23.24	0
	27	0	22.33	22.29	22.31	1
	27	37	22.38	22.35	22.35	1
	27	73	22.43	22.36	22.38	1
16QAM	1	0	22.45	22.38	22.49	1
	1	50	22.39	22.49	22.51	1
	1	99	22.42	22.52	22.57	1
	15	0	22.37	22.34	22.28	1
	15	42	22.34	22.39	22.32	1
	15	85	22.40	22.34	22.38	1
	27	0	21.41	21.45	21.39	2
	27	37	21.39	21.43	21.44	2
	27	73	21.51	21.40	21.50	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 23 of 71

Table 8-10
LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

LTE Band 66 (AWS) 15 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	22.99	22.93	23.21	0
	1	36	22.89	23.03	23.20	0
	1	74	22.88	23.06	23.28	0
	36	0	22.26	22.29	22.32	1
	36	18	22.31	22.27	22.34	1
	36	37	22.28	22.28	22.36	1
	75	0	22.44	22.33	22.52	1
	15	0	23.14	23.15	23.12	0
	15	30	23.21	23.16	23.20	0
	15	60	23.24	23.19	23.12	0
	27	0	22.27	22.30	22.33	1
	27	24	22.34	22.29	22.38	1
	27	48	22.29	22.31	22.39	1
16QAM	1	0	22.56	22.40	22.27	1
	1	36	22.31	22.31	22.53	1
	1	74	22.40	22.62	22.64	1
	15	0	22.31	22.33	22.30	1
	15	30	22.35	22.36	22.41	1
	15	60	22.38	22.41	22.36	1
	27	0	21.38	21.41	21.46	2
	27	24	21.48	21.42	21.52	2
	27	48	21.38	21.42	21.50	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 24 of 71

Table 8-11
LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

LTE Band 66 (AWS) 10 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	22.99	22.94	23.08	0
	1	25	22.97	23.02	23.14	0
	1	49	22.95	23.08	23.03	0
	25	0	22.33	22.35	22.39	1
	25	12	22.36	22.35	22.40	1
	25	25	22.42	22.37	22.38	1
	50	0	22.39	22.30	22.38	1
	15	0	22.36	22.42	22.45	1
	15	17	22.40	22.39	22.46	1
	15	35	22.42	22.42	22.40	1
	27	0	22.34	22.37	22.41	1
	27	12	22.40	22.34	22.41	1
	27	23	22.39	22.36	22.42	1
16QAM	1	0	22.54	22.53	22.46	1
	1	25	22.53	22.50	22.45	1
	1	49	22.45	22.51	22.49	1
	25	0	21.65	21.42	21.48	2
	25	12	21.60	21.37	21.48	2
	25	25	21.57	21.41	21.47	2
	15	0	21.41	21.34	21.53	2
	15	17	21.56	21.35	21.53	2
	15	35	21.59	21.38	21.51	2
	27	0	21.61	21.39	21.47	2
	27	12	21.40	21.35	21.45	2
	27	23	21.39	21.38	21.43	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 25 of 71

Table 8-12
LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth

LTE Band 66 (AWS) 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.18	23.05	23.11	0
	1	12	23.13	23.12	23.15	0
	1	24	23.11	23.11	23.00	0
	12	0	22.36	22.30	22.38	1
	12	6	22.37	22.30	22.40	1
	12	13	22.36	22.32	22.43	1
	25	0	22.36	22.32	22.41	1
16QAM	1	0	22.61	22.52	22.56	1
	1	12	22.61	22.58	22.59	1
	1	24	22.54	22.54	22.46	1
	12	0	21.43	21.50	21.58	2
	12	6	21.49	21.50	21.63	2
	12	13	21.48	21.52	21.60	2
	25	0	21.39	21.42	21.56	2

Table 8-13
LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

LTE Band 66 (AWS) 3 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.09	22.91	23.05	0
	1	7	22.97	22.94	23.04	0
	1	14	22.97	22.96	23.02	0
	8	0	22.29	22.28	22.35	1
	8	4	22.28	22.27	22.36	1
	8	7	22.29	22.27	22.36	1
	15	0	22.31	22.29	22.36	1
16QAM	1	0	22.42	22.46	22.63	1
	1	7	22.48	22.46	22.70	1
	1	14	22.57	22.61	22.78	1
	8	0	21.41	21.47	21.51	2
	8	4	21.40	21.47	21.48	2
	8	7	21.45	21.47	21.54	2
	15	0	21.39	21.40	21.48	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			Page 26 of 71

Table 8-14
LTE Band 66 (AWS) Conducted Powers – 1.4 MHz Bandwidth

LTE Band 66 (AWS) 1.4 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.12	22.71	23.15	0
	1	2	23.07	22.88	23.12	0
	1	5	23.03	22.92	23.14	0
	3	0	23.14	23.06	23.13	0
	3	2	23.11	23.05	23.16	0
	3	3	23.12	23.09	23.13	0
	6	0	22.31	22.27	22.32	1
16QAM	1	0	22.61	22.43	22.38	1
	1	2	22.58	22.41	22.48	1
	1	5	22.49	22.41	22.41	1
	3	0	22.28	22.34	22.45	1
	3	2	22.38	22.38	22.56	1
	3	3	22.34	22.31	22.46	1
	6	0	21.35	21.43	21.56	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 27 of 71

8.2.4 LTE Band 25

Table 8-15
LTE Band 25 (AWS) Conducted Powers - 20 MHz Bandwidth

LTE Band 25 (PCS) 20 MHz Bandwidth						Design MPR [dB]
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	
			26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	
Conducted Power [dBm]						
QPSK	1	0	23.57	23.68	23.75	0
	1	50	23.64	23.74	23.62	0
	1	99	23.63	23.73	23.58	0
	50	0	22.97	22.96	22.93	1
	50	25	22.96	22.98	22.92	1
	50	50	22.99	22.95	22.98	1
	100	0	22.95	22.97	22.96	1
	15	0	23.84	23.88	23.76	0
	15	42	23.86	23.91	23.68	0
	15	85	23.84	23.91	23.68	0
	27	0	22.98	22.97	22.79	1
	27	37	22.97	22.96	22.88	1
	27	73	22.95	22.94	22.91	1
16QAM	1	0	22.77	22.94	22.86	1
	1	50	22.98	22.90	22.61	1
	1	99	22.80	22.98	22.72	1
	15	0	22.86	22.84	22.75	1
	15	42	22.91	22.86	22.73	1
	15	85	22.92	22.85	22.62	1
	27	0	21.91	21.90	21.81	2
	27	37	21.97	21.91	21.76	2
	27	73	21.89	21.90	21.81	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 28 of 71

Table 8-16
LTE Band 25 (PCS) Conducted Powers - 15 MHz Bandwidth

LTE Band 25 (PCS) 15 MHz Bandwidth						Design MPR [dB]
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	
			26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	
Conducted Power [dBm]						
QPSK	1	0	23.41	23.45	23.49	
	1	36	23.48	23.46	23.47	
	1	74	23.49	23.54	23.37	
	36	0	22.70	22.69	22.58	
	36	18	22.78	22.72	22.60	
	36	37	22.75	22.67	22.63	
	75	0	22.82	22.83	22.83	
	15	0	23.57	23.58	23.44	
	15	30	23.71	23.66	23.46	
	15	60	23.65	23.61	23.32	
	27	0	22.65	22.72	22.54	
	27	24	22.83	22.77	22.57	
	27	48	22.78	22.69	22.54	
16QAM	1	0	22.90	22.92	22.90	1
	1	36	22.94	22.91	22.68	
	1	74	22.98	22.94	22.83	
	15	0	22.71	22.62	22.50	
	15	30	22.82	22.68	22.53	
	15	60	22.75	22.62	22.50	
	27	0	21.70	21.66	21.51	
	27	24	21.82	21.75	21.50	
	27	48	21.73	21.70	21.53	

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 29 of 71

Table 8-17
LTE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth

LTE Band 25 (PCS) 10 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.43	23.39	23.33	0
	1	25	23.46	23.42	23.32	0
	1	49	23.52	23.47	23.22	0
	25	0	22.72	22.78	22.62	1
	25	12	22.75	22.79	22.66	1
	25	25	22.82	22.81	22.64	1
	50	0	22.71	22.75	22.72	1
	15	0	22.80	22.82	22.63	1
	15	17	22.80	22.83	22.71	1
	15	35	22.89	22.78	22.60	1
	27	0	22.74	22.75	22.62	1
	27	12	22.73	22.76	22.66	1
	27	23	22.80	22.80	22.63	1
16QAM	1	0	22.97	22.90	22.88	1
	1	25	22.95	22.91	22.79	1
	1	49	22.96	22.96	22.53	1
	25	0	21.78	21.88	21.67	2
	25	12	21.76	21.81	21.71	2
	25	25	21.85	21.79	21.70	2
	15	0	21.80	21.85	21.77	2
	15	17	21.80	21.84	21.75	2
	15	35	21.78	21.89	21.78	2
	27	0	21.79	21.77	21.69	2
	27	12	21.77	21.80	21.73	2
	27	23	21.82	21.66	21.70	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 30 of 71

Table 8-18
LTE Band 25 (PCS) Conducted Powers - 5 MHz Bandwidth

LTE Band 25 (PCS) 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26065 (1852.5 MHz)	26365 (1882.5 MHz)	26665 (1912.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.60	23.63	23.41	0
	1	12	23.66	23.60	23.33	0
	1	24	23.63	23.61	23.17	0
	12	0	22.79	22.83	22.62	1
	12	6	22.78	22.82	22.60	1
	12	13	22.79	22.83	22.51	1
	25	0	22.80	22.82	22.61	1
16QAM	1	0	22.93	22.92	22.78	1
	1	12	22.98	22.98	22.68	1
	1	24	22.96	22.96	22.44	1
	12	0	21.92	21.99	21.78	2
	12	6	21.89	21.96	21.70	2
	12	13	21.91	22.00	21.63	2
	25	0	21.93	21.95	21.76	2

Table 8-19
LTE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth

LTE Band 25 (PCS) 3 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26055 (1851.5 MHz)	26365 (1882.5 MHz)	26675 (1913.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.53	23.51	23.39	0
	1	7	23.54	23.52	23.30	0
	1	14	23.54	23.53	23.21	0
	8	0	22.73	22.78	22.52	1
	8	4	22.71	22.78	22.43	1
	8	7	22.74	22.77	22.44	1
	15	0	22.74	22.80	22.46	1
16QAM	1	0	22.96	22.98	22.74	1
	1	7	22.93	22.99	22.62	1
	1	14	22.91	22.90	22.43	1
	8	0	21.85	21.81	21.65	2
	8	4	21.85	21.93	21.57	2
	8	7	21.83	21.97	21.54	2
	15	0	21.88	21.93	21.53	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 31 of 71

Table 8-20
LTE Band 25 (PCS) Conducted Powers – 1.4 MHz Bandwidth

LTE Band 25 (PCS) 1.4 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			26047 (1850.7 MHz)	26365 (1882.5 MHz)	26683 (1914.3 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	23.40	23.42	23.38	0
	1	2	23.40	23.45	23.28	0
	1	5	23.37	23.41	23.25	0
	3	0	23.41	23.43	23.25	0
	3	2	23.47	23.44	23.23	0
	3	3	23.46	23.43	23.24	0
	6	0	22.45	22.50	22.37	1
16QAM	1	0	22.98	22.74	22.55	1
	1	2	22.84	22.74	22.66	1
	1	5	22.91	22.94	22.56	1
	3	0	22.74	22.86	22.50	1
	3	2	22.71	22.81	22.49	1
	3	3	22.77	22.80	22.51	1
	6	0	21.88	21.93	21.60	2

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 32 of 71

8.2.5 LTE Band 7

Table 8-21
LTE Band 7 Conducted Powers - 20 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 7 20 MHz Bandwidth			Design MPR [dB]
			Low Channel 20850 (2510.0 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21350 (2560.0 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	22.88	22.74	22.53	0
	1	50	22.85	22.58	22.66	0
	1	99	22.82	22.48	22.57	0
	50	0	21.89	21.69	21.80	1
	50	25	21.76	21.67	21.79	1
	50	50	21.73	21.68	21.85	1
	100	0	21.86	21.84	21.87	1
	15	0	22.74	22.58	22.63	0
	15	42	22.68	22.57	22.71	0
	15	85	22.62	22.55	22.74	0
	27	0	21.85	21.70	21.73	1
	27	37	21.81	21.70	21.80	1
	27	73	21.73	21.73	21.85	1
16QAM	1	0	21.97	21.70	21.90	1
	1	50	21.94	21.75	22.00	1
	1	99	21.80	21.53	21.98	1
	15	0	21.74	21.67	21.68	1
	15	42	21.76	21.61	21.67	1
	15	85	21.68	21.59	21.73	1
	27	0	20.81	20.66	20.73	2
	27	37	20.77	20.69	20.78	2
	27	73	20.69	20.59	20.75	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 33 of 71

Table 8-22
LTE Band 7 Conducted Powers - 15 MHz Bandwidth

LTE Band 7 15 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			20825 (2507.5 MHz)	21100 (2535.0 MHz)	21375 (2562.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	22.92	22.46	22.65	0
	1	36	23.00	22.49	22.81	0
	1	74	22.97	22.38	22.73	0
	36	0	21.93	21.73	21.78	1
	36	18	21.85	21.78	21.84	1
	36	37	21.83	21.78	21.85	1
	75	0	21.89	21.79	21.92	1
	15	0	22.70	22.69	22.61	0
	15	30	22.73	22.60	22.78	0
	15	60	22.64	22.54	22.73	0
	27	0	21.87	21.73	21.80	1
	27	24	21.82	21.80	21.91	1
	27	48	21.76	21.76	21.87	1
16QAM	1	0	21.92	21.91	21.92	1
	1	36	22.00	21.98	21.97	1
	1	74	21.97	21.83	21.99	1
	15	0	21.67	21.63	21.67	1
	15	30	21.71	21.63	21.78	1
	15	60	21.64	21.58	21.75	1
	27	0	20.82	20.65	20.74	2
	27	24	20.79	20.67	20.84	2
	27	48	20.71	20.58	20.75	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 34 of 71

Table 8-23
LTE Band 7 Conducted Powers – 10 MHz Bandwidth

LTE Band 7 10 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			20800 (2505.0 MHz)	21100 (2535.0 MHz)	21400 (2565.0 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	22.78	22.52	22.72	0
	1	25	22.81	22.49	22.71	0
	1	49	22.87	22.45	22.74	0
	25	0	22.00	21.84	21.96	1
	25	12	21.97	21.79	21.95	1
	25	25	21.91	21.78	22.00	1
	50	0	21.90	21.76	21.94	1
	15	0	22.00	21.87	21.95	1
	15	17	21.96	21.84	22.00	1
	15	35	21.90	21.87	22.00	1
	27	0	21.96	21.81	21.95	1
	27	12	21.93	21.78	21.96	1
	27	23	21.88	21.77	22.00	1
16QAM	1	0	21.78	21.86	22.00	1
	1	25	21.76	21.95	21.96	1
	1	49	21.92	21.99	21.99	1
	25	0	20.84	20.66	20.82	2
	25	12	20.84	20.65	20.85	2
	25	25	20.74	20.65	20.89	2
	15	0	20.88	20.71	20.80	2
	15	17	20.74	20.74	20.85	2
	15	35	20.69	20.76	20.86	2
	27	0	20.90	20.74	20.84	2
	27	12	20.81	20.70	20.82	2
	27	23	20.76	20.69	20.79	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 35 of 71

Table 8-24
LTE Band 7 Conducted Powers – 5 MHz Bandwidth

LTE Band 7 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	Design MPR [dB]
			20775 (2502.5 MHz)	21100 (2535.0 MHz)	21425 (2567.5 MHz)	
			Conducted Power [dBm]			
QPSK	1	0	22.91	22.75	22.89	0
	1	12	22.94	22.75	22.85	0
	1	24	22.94	22.71	22.85	0
	12	0	22.00	21.79	21.97	1
	12	6	21.95	21.81	21.97	1
	12	13	21.99	21.80	21.99	1
	25	0	21.97	21.81	21.97	1
16QAM	1	0	21.87	21.97	21.96	1
	1	12	22.00	21.98	21.94	1
	1	24	21.90	21.84	21.99	1
	12	0	20.78	20.63	20.79	2
	12	6	20.81	20.68	20.78	2
	12	13	20.84	20.66	20.89	2
	25	0	20.82	20.70	20.87	2

8.2.6 LTE Band 41

Table 8-25
LTE Band 41 Conducted Powers - 20 MHz Bandwidth

LTE Band 41 20 MHz Bandwidth								
Modulation	RB Size	RB Offset	Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel	Design MPR [dB]
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	
			Conducted Power [dBm]					
QPSK	1	0	22.70	22.91	22.64	22.89	22.82	0
	1	50	22.95	22.94	22.67	22.86	22.85	0
	1	99	22.96	22.85	22.57	22.87	22.75	0
	50	0	21.88	21.59	21.65	21.67	21.87	1
	50	25	21.80	21.60	21.65	21.76	21.80	1
	50	50	21.75	21.56	21.62	21.77	21.73	1
	100	0	21.84	21.61	21.66	21.75	21.85	1
	15	0	22.84	22.75	22.80	22.78	22.99	0
	15	42	22.88	22.75	22.82	22.94	22.93	0
	15	85	22.85	22.69	22.72	22.96	22.84	0
	27	0	21.79	21.63	21.70	21.68	21.92	1
	27	37	21.80	21.66	21.72	21.83	21.88	1
	27	73	21.75	21.57	21.64	21.81	21.76	1
16QAM	1	0	21.48	21.56	21.66	21.46	21.87	1
	1	50	21.87	21.63	21.60	21.69	21.96	1
	1	99	21.92	21.52	21.55	21.64	21.75	1
	15	0	21.23	21.16	21.28	21.21	21.44	1
	15	42	21.28	21.20	21.30	21.36	21.38	1
	15	85	21.25	21.12	21.17	21.42	21.32	1
	27	0	20.14	20.06	20.09	20.10	20.25	2
	27	37	20.18	20.04	20.08	20.26	20.20	2
	27	73	20.09	20.00	20.01	20.28	20.12	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 36 of 71

Table 8-26
LTE Band 41 Conducted Powers - 15 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 41 15 MHz Bandwidth					Design MPR [dB]
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	
			Conducted Power [dBm]					
QPSK	1	0	22.71	22.56	22.62	22.65	22.82	0
	1	36	22.89	22.61	22.67	22.77	22.88	0
	1	74	22.77	22.52	22.57	22.75	22.79	0
	36	0	21.58	21.47	21.49	21.58	21.69	1
	36	18	21.61	21.49	21.51	21.69	21.65	1
	36	37	21.58	21.47	21.47	21.68	21.64	1
	75	0	21.62	21.49	21.49	21.66	21.63	1
	15	0	22.67	22.58	22.61	22.63	22.77	0
	15	30	22.76	22.63	22.67	22.80	22.76	0
	15	60	22.68	22.54	22.55	22.78	22.66	0
	27	0	21.66	21.51	21.53	21.58	21.71	1
	27	24	21.66	21.55	21.56	21.73	21.70	1
	27	48	21.60	21.47	21.48	21.69	21.62	1
16QAM	1	0	21.63	21.62	21.50	21.58	21.66	1
	1	36	21.90	21.58	21.45	21.72	21.70	1
	1	74	21.77	21.48	21.38	21.68	21.64	1
	15	0	21.23	21.15	21.18	21.23	21.37	1
	15	30	21.36	21.25	21.24	21.43	21.36	1
	15	60	21.28	21.14	21.15	21.37	21.21	1
	27	0	20.17	20.10	20.08	20.12	20.26	2
	27	24	20.22	20.12	20.08	20.27	20.22	2
	27	48	20.15	20.05	20.02	20.25	20.19	2

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 37 of 71

Table 8-27
LTE Band 41 Conducted Powers - 10 MHz Bandwidth

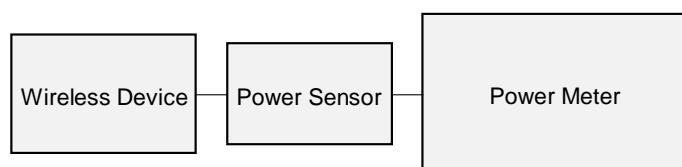
Modulation	RB Size	RB Offset	LTE Band 41 10 MHz Bandwidth						Design MPR [dB]
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)		
Conducted Power [dBm]									
QPSK	1	0	22.73	22.62	22.63	22.71	22.82	0	
	1	25	22.73	22.62	22.63	22.75	22.82	0	
	1	49	22.75	22.61	22.60	22.77	22.82	0	
	25	0	21.67	21.54	21.55	21.65	21.69	1	
	25	12	21.67	21.54	21.53	21.72	21.69	1	
	25	25	21.68	21.54	21.54	21.75	21.70	1	
	50	0	21.59	21.49	21.50	21.66	21.64	1	
	15	0	21.68	21.61	21.62	21.68	21.79	1	
	15	17	21.70	21.60	21.60	21.76	21.75	1	
	15	35	21.71	21.58	21.58	21.78	21.74	1	
	27	0	21.63	21.52	21.53	21.61	21.68	1	
	27	12	21.62	21.50	21.53	21.68	21.65	1	
	27	23	21.65	21.51	21.51	21.71	21.67	1	
16QAM	1	0	21.66	21.61	21.67	21.62	21.86	1	
	1	25	21.71	21.54	21.64	21.68	21.76	1	
	1	49	21.85	21.61	21.54	21.66	21.64	1	
	25	0	20.17	20.06	20.10	20.19	20.20	2	
	25	12	20.17	20.07	20.10	20.25	20.21	2	
	25	25	20.20	20.07	20.10	20.27	20.19	2	
	15	0	20.31	20.18	20.20	20.29	20.33	2	
	15	17	20.29	20.16	20.21	20.39	20.23	2	
	15	35	20.32	20.17	20.15	20.41	20.26	2	
	27	0	20.17	20.02	20.08	20.15	20.23	2	
	27	12	20.17	20.01	20.07	20.29	20.20	2	
	27	23	20.18	20.04	20.04	20.24	20.21	2	

Table 8-28
LTE Band 41 Conducted Powers - 5 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 41 5 MHz Bandwidth						Design MPR [dB]
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)		
Conducted Power [dBm]									
QPSK	1	0	22.48	22.56	22.52	22.59	22.67	0	
	1	12	22.52	22.43	22.53	22.62	22.56	0	
	1	24	22.52	22.41	22.52	22.63	22.56	0	
	12	0	21.67	21.59	21.59	21.68	21.74	1	
	12	6	21.68	21.56	21.59	21.71	21.69	1	
	12	13	21.69	21.57	21.61	21.73	21.71	1	
	25	0	21.65	21.57	21.59	21.72	21.69	1	
16QAM	1	0	21.64	21.07	21.58	21.60	21.13	1	
	1	12	21.71	21.54	21.57	21.68	21.65	1	
	1	24	21.68	21.57	21.66	21.62	21.67	1	
	12	0	20.16	20.15	20.15	20.25	20.26	2	
	12	6	20.18	20.14	20.14	20.35	20.22	2	
	12	13	20.27	20.16	20.15	20.33	20.22	2	
	25	0	20.14	20.10	20.09	20.25	20.15	2	

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 38 of 71

8.3 WLAN Conducted Powers


Table 8-29
2.4 GHz WLAN Maximum Average RF Power

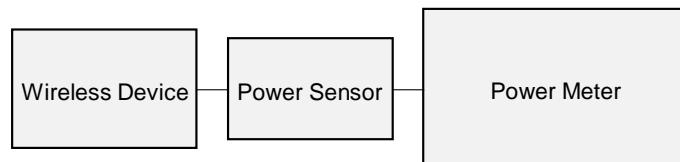
2.4GHz Conducted Power [dBm]					
Freq [MHz]	Channel	IEEE Transmission Mode			Average
		802.11b	802.11g	802.11n	
		Average	Average	Average	
2412	1	18.99	17.45	17.50	
2417	2	N/A	18.46	18.50	
2437	6	18.95	18.47	18.49	
2457	10	N/A	18.50	18.50	
2462	11	19.00	16.98	16.90	

Note: The bolded data rates and channel above were tested for SAR.

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Figure 8-2
Power Measurement Setup


FCC ID: BCG-A2156	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 39 of 71	

8.4 Bluetooth Conducted Powers

Table 8-30
Bluetooth Average RF Power

Frequency [MHz]	Modulation	Data Rate [Mbps]	Channel No.	Avg Conducted Power	
				[dBm]	[mW]
2402	GFSK	1.0	0	15.65	36.728
2441	GFSK	1.0	39	15.80	38.019
2480	GFSK	1.0	78	15.55	35.892

Note: The bolded data rates and channel above were tested for SAR.
Bluetooth was evaluated with a test mode with 100% transmission duty factor.

Figure 8-3
Power Measurement Setup

FCC ID: BCG-A2156	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 40 of 71	

9 SYSTEM VERIFICATION

9.1 Tissue Verification

Table 9-1
Measured Head Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ϵ	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ϵ	% dev σ	% dev ϵ
7/15/2019	835H	21.9	820	0.892	41.704	0.899	41.578	-0.78%	0.30%
			835	0.906	41.499	0.900	41.500	0.67%	0.00%
			850	0.921	41.309	0.916	41.500	0.55%	-0.46%
7/18/2019	835H	21.6	820	0.868	40.397	0.899	41.578	-3.45%	-2.84%
			835	0.882	40.191	0.900	41.500	-2.00%	-3.15%
			850	0.896	39.993	0.916	41.500	-2.18%	-3.63%
7/18/2019	1750H	21.8	1710	1.347	39.382	1.348	40.142	-0.07%	-1.89%
			1750	1.371	39.339	1.371	40.079	0.00%	-1.85%
			1790	1.393	39.296	1.394	40.016	-0.07%	-1.80%
7/16/2019	1900H	21.4	1850	1.432	40.131	1.400	40.000	2.29%	0.33%
			1880	1.450	40.075	1.400	40.000	3.57%	0.19%
			1910	1.469	40.028	1.400	40.000	4.93%	0.07%
7/18/2019	1900H	21.8	1850	1.431	39.200	1.400	40.000	2.21%	-2.00%
			1880	1.450	39.158	1.400	40.000	3.57%	-2.11%
			1910	1.469	39.111	1.400	40.000	4.93%	-2.22%
7/20/2019	2450H	21.4	2400	1.768	37.936	1.756	39.289	0.68%	-3.44%
			2450	1.805	37.862	1.800	39.200	0.28%	-3.41%
			2500	1.845	37.766	1.855	39.136	-0.54%	-3.50%
			2550	1.884	37.692	1.909	39.073	-1.31%	-3.53%
			2600	1.924	37.593	1.964	39.009	-2.04%	-3.63%
			2650	1.962	37.510	2.018	38.945	-2.78%	-3.68%
			2700	2.000	37.404	2.073	38.882	-3.52%	-3.80%
7/24/2019	2450H	23.5	2400	1.813	40.157	1.756	39.289	3.25%	2.21%
			2450	1.874	39.955	1.800	39.200	4.11%	1.93%
			2500	1.930	39.749	1.855	39.136	4.04%	1.57%
			2550	1.992	39.541	1.909	39.073	4.35%	1.20%
			2600	2.050	39.329	1.964	39.009	4.38%	0.82%
			2650	2.112	39.133	2.018	38.945	4.66%	0.48%
			2700	2.168	38.920	2.073	38.882	4.58%	0.10%

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			

Table 9-2
Measured Body Tissue Properties

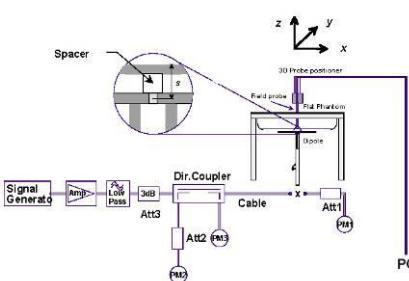
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ϵ	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ϵ	% dev σ	% dev ϵ
7/20/2019	835B	21.1	820	0.975	53.523	0.969	55.258	0.62%	-3.14%
			835	0.990	53.349	0.970	55.200	2.06%	-3.35%
			850	1.005	53.181	0.988	55.154	1.72%	-3.58%
7/22/2019	835B	21.6	820	0.935	54.326	0.969	55.258	-3.51%	-1.69%
			835	0.942	54.276	0.970	55.200	-2.89%	-1.67%
			850	0.948	54.227	0.988	55.154	-4.05%	-1.68%
7/22/2019	1750B	21.6	1710	1.406	52.555	1.463	53.537	-3.90%	-1.83%
			1750	1.433	52.529	1.488	53.432	-3.70%	-1.69%
			1790	1.460	52.480	1.514	53.326	-3.57%	-1.59%
7/22/2019	1750B	21.1	1710	1.401	52.437	1.463	53.537	-4.24%	-2.05%
			1750	1.429	52.387	1.488	53.432	-3.97%	-1.96%
			1790	1.455	52.337	1.514	53.326	-3.90%	-1.85%
7/20/2019	1900B	22.4	1850	1.507	51.698	1.520	53.300	-0.86%	-3.01%
			1880	1.527	51.651	1.520	53.300	0.46%	-3.09%
			1910	1.547	51.619	1.520	53.300	1.78%	-3.15%
7/22/2019	1900B	21.1	1850	1.500	52.239	1.520	53.300	-1.32%	-1.99%
			1880	1.520	52.175	1.520	53.300	0.00%	-2.11%
			1910	1.540	52.151	1.520	53.300	1.32%	-2.16%
7/22/2019	2450B	22.1	2400	1.971	51.916	1.902	52.767	3.63%	-1.61%
			2450	2.040	51.729	1.950	52.700	4.62%	-1.84%
			2500	2.113	51.532	2.021	52.636	4.55%	-2.10%
			2550	2.183	51.357	2.092	52.573	4.35%	-2.31%
			2600	2.257	51.142	2.163	52.509	4.35%	-2.60%
			2650	2.330	50.948	2.234	52.445	4.30%	-2.85%
			2700	2.402	50.724	2.305	52.382	4.21%	-3.17%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			

9.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.


Table 9-3
System Verification Results – 1g

System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
AM4	835	HEAD	07/15/2019	23.1	21.9	0.200	4d180	7532	1.870	9.600	9.350	-2.60%
AM4	835	HEAD	07/18/2019	23.2	21.6	0.200	4d180	7532	1.870	9.600	9.350	-2.60%
AM7	1750	HEAD	07/18/2019	21.8	21.6	0.100	1104	3837	3.770	36.400	37.700	3.57%
AM7	1900	HEAD	07/16/2019	22.6	21.4	0.100	5d026	3837	3.980	40.200	39.800	-1.00%
AM7	1900	HEAD	07/18/2019	21.8	21.6	0.100	5d026	3837	4.090	40.200	40.900	1.74%
AM2	2450	HEAD	07/20/2019	22.9	21.6	0.100	750	7490	5.420	53.100	54.200	2.07%
AM5	2450	HEAD	07/24/2019	19.7	21.6	0.100	921	3318	5.480	53.100	54.800	3.20%
AM2	2600	HEAD	07/20/2019	22.9	21.6	0.100	1042	7490	5.750	57.700	57.500	-0.35%
AM5	2600	HEAD	07/24/2019	19.7	21.6	0.100	1069	3318	5.390	56.900	53.900	-5.27%

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 43 of 71

Table 9-4
System Verification Results – 10g

SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	System Verification TARGET & MEASURED		1 W Target SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g} (%)
							Source SN	Probe SN			
AM4	835	BODY	07/20/2019	23.5	21.1	0.200	4d180	7532	1.340	6.310	6.18%
AM6	835	BODY	07/22/2019	22.1	20.1	0.200	4d040	7427	1.240	6.240	6.200
AM6	1750	BODY	07/22/2019	22.1	20.1	0.100	1083	7427	1.920	19.700	19.200
AM7	1750	BODY	07/22/2019	21.9	21.2	0.100	1104	3837	1.920	19.600	19.200
AM7	1900	BODY	07/20/2019	21.6	20.4	0.100	5d181	3837	1.960	20.900	19.600
AM7	1900	BODY	07/22/2019	21.9	21.2	0.100	5d026	3837	2.060	21.200	20.600
AM4	2450	BODY	07/22/2019	21.7	22.1	0.100	921	7532	2.480	23.800	24.800
AM4	2600	BODY	07/22/2019	21.7	22.1	0.100	1069	7532	2.470	24.800	24.700

Figure 9-1
System Verification Setup Diagram

Figure 9-2
System Verification Setup Photo

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 44 of 71

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

Table 10-1
UMTS Head SAR

MEASUREMENT RESULTS															
FREQUENCY		Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Side	Spacing	Housing Type	Wristband Type	Device Serial Number	Duty Cycle	SAR (1g)	Reported SAR (1g)	Plot #
MHz	Ch.														
836.60	4183	UMTS 850	RMC	25.0	24.18	0.20	Front	10 mm	Aluminum	Sport	D92YT026MW7C	1:1	0.000	1.208	0.000
836.60	4183	UMTS 850	RMC	25.0	24.18	0.16	Front	10 mm	Aluminum	Metal Links	D92YT028MW7C	1:1	0.001	1.208	0.001
836.60	4183	UMTS 850	RMC	25.0	24.18	-0.17	Front	10 mm	Aluminum	Metal Loop	D92YT028MW7C	1:1	0.000	1.208	0.000
836.60	4183	UMTS 850	RMC	25.0	24.18	0.19	Front	10 mm	Stainless Steel	Sport	D92YT024MW88	1:1	0.001	1.208	0.001
836.60	4183	UMTS 850	RMC	25.0	24.18	0.17	Front	10 mm	Stainless Steel	Metal Links	D92YT024MW88	1:1	0.000	1.208	0.000
836.60	4183	UMTS 850	RMC	25.0	24.18	0.12	Front	10 mm	Stainless Steel	Metal Loop	D92YT02DMW88	1:1	0.000	1.208	0.000
836.60	4183	UMTS 850	RMC	25.0	24.18	0.17	Front	10 mm	Titanium	Sport	D92YV005MW8G	1:1	0.002	1.208	0.002
836.60	4183	UMTS 850	RMC	25.0	24.18	0.19	Front	10 mm	Titanium	Metal Links	D92YV00CMW8G	1:1	0.000	1.208	0.000
836.60	4183	UMTS 850	RMC	25.0	24.18	0.16	Front	10 mm	Titanium	Metal Loop	D92YV00EMW8G	1:1	0.001	1.208	0.001
836.60	4183	UMTS 850	RMC	25.0	24.18	0.17	Front	10 mm	Ceramic	Sport	D92YV017MW8J	1:1	0.000	1.208	0.000
836.60	4183	UMTS 850	RMC	25.0	24.18	0.20	Front	10 mm	Ceramic	Metal Links	D92YV019MW8J	1:1	0.002	1.208	0.002
836.60	4183	UMTS 850	RMC	25.0	24.18	-0.11	Front	10 mm	Ceramic	Metal Loop	D92YV01DMW8J	1:1	0.000	1.208	0.000
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.04	Front	10 mm	Aluminum	Sport	D92YT026MW7C	1:1	0.127	1.140	0.145
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.16	Front	10 mm	Aluminum	Metal Links	D92YT026MW7C	1:1	0.203	1.140	0.231
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.02	Front	10 mm	Aluminum	Metal Loop	D92YT028MW7C	1:1	0.253	1.140	0.288
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.09	Front	10 mm	Stainless Steel	Sport	D92YT024MW88	1:1	0.111	1.140	0.127
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.12	Front	10 mm	Stainless Steel	Metal Links	D92YT024MW88	1:1	0.193	1.140	0.220
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.04	Front	10 mm	Stainless Steel	Metal Loop	D92YT024MW88	1:1	0.185	1.140	0.211
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.02	Front	10 mm	Titanium	Sport	D92YV001MW8G	1:1	0.137	1.140	0.156
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.04	Front	10 mm	Titanium	Metal Links	D92YV001MW8G	1:1	0.206	1.140	0.235
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.04	Front	10 mm	Titanium	Metal Loop	D92YV00EMW8G	1:1	0.230	1.140	0.262
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.06	Front	10 mm	Ceramic	Sport	D92YV01AMW8J	1:1	0.137	1.140	0.156
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.09	Front	10 mm	Ceramic	Metal Links	D92YV01DMW8J	1:1	0.210	1.140	0.239
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.01	Front	10 mm	Ceramic	Metal Loop	D92YV01DMW8J	1:1	0.251	1.140	0.286
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.05	Front	10 mm	Aluminum	Sport	D92YT026MW7C	1:1	0.172	1.125	0.194
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.08	Front	10 mm	Aluminum	Metal Links	D92YT026MW7C	1:1	0.200	1.125	0.225
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.06	Front	10 mm	Aluminum	Metal Loop	D92YT028MW7C	1:1	0.228	1.125	0.257
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.03	Front	10 mm	Stainless Steel	Sport	D92YT024MW88	1:1	0.134	1.125	0.151
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.03	Front	10 mm	Stainless Steel	Metal Links	D92YT024MW88	1:1	0.269	1.125	0.303
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.02	Front	10 mm	Stainless Steel	Metal Loop	D92YT02DMW88	1:1	0.215	1.125	0.242
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.05	Front	10 mm	Titanium	Sport	D92YV00CMW8G	1:1	0.164	1.125	0.185
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.08	Front	10 mm	Titanium	Metal Links	D92YV00CMW8G	1:1	0.240	1.125	0.270
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.09	Front	10 mm	Titanium	Metal Loop	D92YV00CMW8G	1:1	0.243	1.125	0.273
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.05	Front	10 mm	Ceramic	Sport	D92YV017MW8J	1:1	0.195	1.125	0.219
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.03	Front	10 mm	Ceramic	Metal Links	D92YV017MW8J	1:1	0.203	1.125	0.228
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.06	Front	10 mm	Ceramic	Metal Loop	D92YV01AMW8J	1:1	0.203	1.125	0.228
ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Head							
Spatial Peak								1.6 W/kg (mW/g)							
Uncontrolled Exposure/General Population								averaged over 1 gram							

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 45 of 71

Table 10-2
LTE Band 26 Head SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.																(W/kg)			
831.50	26865	Md	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.16	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	0.09	1	Front	10 mm	Aluminum	QPSK	25	0	D92YT028MW7C	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.12	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT026MW7C	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.09	1	Front	10 mm	Aluminum	QPSK	25	0	D92YT026MW7C	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	0.10	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	0.11	1	Front	10 mm	Aluminum	QPSK	25	0	D92YT028MW7C	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.16	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT020DMW88	1:1	0.001	1.219	0.001
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	0.18	1	Front	10 mm	Stainless Steel	QPSK	25	0	D92YT020DMW88	1:1	0.001	1.057	0.001
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.17	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.001	1.219	A4
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.13	1	Front	10 mm	Stainless Steel	QPSK	25	0	D92YT024MW88	1:1	0.001	1.057	0.001
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	0.04	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	0.18	1	Front	10 mm	Stainless Steel	QPSK	25	0	D92YT024MW88	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.01	0	Front	10 mm	Titanium	QPSK	1	0	D92Y000CMW8G	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	0.16	1	Front	10 mm	Titanium	QPSK	25	0	D92Y000CMW8G	1:1	0.001	1.057	0.001
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.14	0	Front	10 mm	Titanium	QPSK	1	0	D92Y005MW8G	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.19	1	Front	10 mm	Titanium	QPSK	25	0	D92Y005MW8G	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	0.02	0	Front	10 mm	Titanium	QPSK	1	0	D92Y000EMW8G	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	0.14	1	Front	10 mm	Titanium	QPSK	25	0	D92Y000EMW8G	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.14	0	Front	10 mm	Ceramic	QPSK	1	0	D92Y017MW8J	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	0.15	1	Front	10 mm	Ceramic	QPSK	25	0	D92Y017MW8J	1:1	0.001	1.057	0.001
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	-0.14	0	Front	10 mm	Ceramic	QPSK	1	0	D92Y014MW8J	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.11	1	Front	10 mm	Ceramic	QPSK	25	0	D92Y014MW8J	1:1	0.000	1.057	0.000
831.50	26865	Md	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	0.16	0	Front	10 mm	Ceramic	QPSK	1	0	D92Y010MW8J	1:1	0.000	1.219	0.000
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	-0.09	1	Front	10 mm	Ceramic	QPSK	25	0	D92Y010MW8J	1:1	0.000	1.057	0.000

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Head
1.6 W/kg (mW/g)
averaged over 1 gram

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 46 of 71

Table 10-3
LTE Band 5 Head SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.																(W/kg)			
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	-0.10	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT026MW7C	1:1	0.001	1.219	0.001
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.19	1	Front	10 mm	Aluminum	QPSK	25	0	D92YT026MW7C	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	0.11	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	0.06	1	Front	10 mm	Aluminum	QPSK	25	0	D92YT028MW7C	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.19	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.20	1	Front	10 mm	Aluminum	QPSK	25	0	D92YT028MW7C	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	-0.18	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.10	1	Front	10 mm	Stainless Steel	QPSK	25	0	D92YT024MW88	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	0.02	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	0.13	1	Front	10 mm	Stainless Steel	QPSK	25	0	D92YT024MW88	1:1	0.001	1.143	0.001
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.14	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT022DMW88	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.15	1	Front	10 mm	Stainless Steel	QPSK	25	0	D92YT022DMW88	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	0.19	0	Front	10 mm	Titanium	QPSK	1	0	D92YV00EMW8G	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.16	1	Front	10 mm	Titanium	QPSK	25	0	D92YV00EMW8G	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	0.19	0	Front	10 mm	Titanium	QPSK	1	0	D92YV00CMW8G	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	0.14	1	Front	10 mm	Titanium	QPSK	25	0	D92YV00CMW8G	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.04	0	Front	10 mm	Titanium	QPSK	1	0	D92YV005MW8G	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.01	1	Front	10 mm	Titanium	QPSK	25	0	D92YV005MW8G	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	0.19	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV019MW8J	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.13	1	Front	10 mm	Ceramic	QPSK	25	0	D92YV019MW8J	1:1	0.000	1.143	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	0.08	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01DMW8J	1:1	0.002	1.219	0.002
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	-0.14	1	Front	10 mm	Ceramic	QPSK	25	0	D92YV01DMW8J	1:1	0.002	1.143	0.002
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.10	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV017MW8J	1:1	0.000	1.219	0.000
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.19	1	Front	10 mm	Ceramic	QPSK	25	0	D92YV017MW8J	1:1	0.000	1.143	0.000

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Head
1.6 W/kg (mW/g)
averaged over 1 gram

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 47 of 71

Table 10-4
LTE Band 66 Head SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.																	(W/kg)		
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	-0.02	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT026MW7C	1:1	0.132	1.161	0.153
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	0.06	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT026MW7C	1:1	0.111	1.125	0.125
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	0.13	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT026MW7C	1:1	0.211	1.161	0.245
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	0.09	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT026MW7C	1:1	0.173	1.125	0.195
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	-0.05	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.226	1.161	0.262
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	-0.09	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT028MW7C	1:1	0.176	1.125	0.198
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	0.09	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT02AMW8B	1:1	0.119	1.161	0.138
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	-0.02	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT02AMW8B	1:1	0.102	1.125	0.115
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	0.08	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT02DMW8B	1:1	0.184	1.161	0.214
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	0.05	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT02DMW8B	1:1	0.152	1.125	0.171
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	0.12	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW8B	1:1	0.199	1.161	0.231
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	-0.04	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT024MW8B	1:1	0.173	1.125	0.195
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	-0.06	0	Front	10 mm	Titanium	QPSK	1	0	D92YV00EMW8G	1:1	0.130	1.161	0.151
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	0.02	1	Front	10 mm	Titanium	QPSK	50	0	D92YV00EMW8G	1:1	0.108	1.125	0.122
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	0.13	0	Front	10 mm	Titanium	QPSK	1	0	D92YV00CMW8G	1:1	0.239	1.161	0.277
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	-0.04	1	Front	10 mm	Titanium	QPSK	50	0	D92YV00CMW8G	1:1	0.206	1.125	0.232
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	0.00	0	Front	10 mm	Titanium	QPSK	1	0	D92YV005MW8G	1:1	0.218	1.161	0.253
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	0.05	1	Front	10 mm	Titanium	QPSK	50	0	D92YV005MW8G	1:1	0.181	1.125	0.204
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	0.06	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV017MW8J	1:1	0.128	1.161	0.149
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	0.00	1	Front	10 mm	Ceramic	QPSK	50	0	D92YV017MW8J	1:1	0.107	1.125	0.120
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	-0.11	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01AMW8J	1:1	0.136	1.161	0.158
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	0.01	1	Front	10 mm	Ceramic	QPSK	50	0	D92YV01AMW8J	1:1	0.121	1.125	0.136
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	0.17	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01DMW8J	1:1	0.247	1.161	0.287
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	0.10	1	Front	10 mm	Ceramic	QPSK	50	0	D92YV01DMW8J	1:1	0.214	1.125	A6

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Head
1.6 W/kg (mW/g)
averaged over 1 gram

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 48 of 71

Table 10-5
LTE Band 25 Head SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.																(W/kg)			
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	-0.05	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.205	1.059	0.217
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	0.06	1	Front	10 mm	Aluminum	QPSK	50	50	D92YT028MW7C	1:1	0.143	1.002	0.143
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	0.02	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.224	1.059	0.237
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	-0.08	1	Front	10 mm	Aluminum	QPSK	50	50	D92YT028MW7C	1:1	0.187	1.002	0.187
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	0.08	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT026MW7C	1:1	0.228	1.059	0.241
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	0.10	1	Front	10 mm	Aluminum	QPSK	50	50	D92YT026MW7C	1:1	0.201	1.002	0.201
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	0.11	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.156	1.059	0.165
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	0.06	1	Front	10 mm	Stainless Steel	QPSK	50	50	D92YT024MW88	1:1	0.121	1.002	0.121
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	0.05	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT022DMW88	1:1	0.174	1.059	0.184
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	0.13	1	Front	10 mm	Stainless Steel	QPSK	50	50	D92YT022DMW88	1:1	0.150	1.002	0.150
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	0.17	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.220	1.059	0.233
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	-0.18	1	Front	10 mm	Stainless Steel	QPSK	50	50	D92YT024MW88	1:1	0.175	1.002	0.175
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	0.07	0	Front	10 mm	Titanium	QPSK	1	0	D92YV005MW8G	1:1	0.159	1.059	0.168
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	-0.18	1	Front	10 mm	Titanium	QPSK	50	50	D92YV005MW8G	1:1	0.108	1.002	0.108
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	0.14	0	Front	10 mm	Titanium	QPSK	1	0	D92YV00CMW8G	1:1	0.236	1.059	0.250
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	-0.12	1	Front	10 mm	Titanium	QPSK	50	50	D92YV00CMW8G	1:1	0.192	1.002	0.192
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	-0.14	0	Front	10 mm	Titanium	QPSK	1	0	D92YV00EMW8G	1:1	0.218	1.059	0.231
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	0.04	1	Front	10 mm	Titanium	QPSK	50	50	D92YV00EMW8G	1:1	0.216	1.002	0.216
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	0.13	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01DMW8J	1:1	0.204	1.059	0.216
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	0.01	1	Front	10 mm	Ceramic	QPSK	50	50	D92YV01DMW8J	1:1	0.145	1.002	0.145
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	-0.06	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01MW8J	1:1	0.169	1.059	0.179
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	-0.08	1	Front	10 mm	Ceramic	QPSK	50	50	D92YV01MW8J	1:1	0.123	1.002	0.123
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	-0.07	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01AMW8J	1:1	0.179	1.059	0.190
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	-0.12	1	Front	10 mm	Ceramic	QPSK	50	50	D92YV01AMW8J	1:1	0.154	1.002	0.154

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Head
1.6 W/kg (mW/g)
averaged over 1 gram

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 49 of 71

Table 10-6
LTE Band 7 Head SAR

MEASUREMENT RESULTS																					
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #	
MHz	Ch.																(W/kg)				
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.19	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.284	1.153	0.327	A8
2535.00	21100	Mid	LTE Band 7	20	Sport	23.5	22.74	-0.06	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT028MW7C	1:1	0.274	1.191	0.326	
2560.00	21350	High	LTE Band 7	20	Sport	23.5	22.66	-0.19	0	Front	10 mm	Aluminum	QPSK	1	50	D92YT028MW7C	1:1	0.269	1.213	0.326	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	-0.20	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT028MW7C	1:1	0.249	1.151	0.287	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	0.20	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT026MW7C	1:1	0.188	1.153	0.217	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	-0.18	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT026MW7C	1:1	0.150	1.151	0.173	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	0.10	0	Front	10 mm	Aluminum	QPSK	1	0	D92YT024MW7C	1:1	0.187	1.153	0.216	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	0.09	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT024MW7C	1:1	0.177	1.151	0.204	
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.14	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.276	1.153	0.318	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	0.05	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT024MW88	1:1	0.211	1.151	0.243	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	0.12	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT024MW88	1:1	0.184	1.153	0.212	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	0.15	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT020MW88	1:1	0.150	1.151	0.173	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.02	0	Front	10 mm	Stainless Steel	QPSK	1	0	D92YT020MW88	1:1	0.210	1.153	0.242	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	0.14	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT020MW88	1:1	0.162	1.151	0.186	
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.17	0	Front	10 mm	Titanium	QPSK	1	0	D92YV003MW8G	1:1	0.189	1.153	0.218	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	-0.07	1	Front	10 mm	Titanium	QPSK	50	0	D92YV003MW8G	1:1	0.149	1.151	0.171	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	-0.19	0	Front	10 mm	Titanium	QPSK	1	0	D92YV005MW8G	1:1	0.156	1.153	0.180	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	-0.20	1	Front	10 mm	Titanium	QPSK	50	0	D92YV005MW8G	1:1	0.123	1.151	0.142	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.01	0	Front	10 mm	Titanium	QPSK	1	0	D92YV000CMW8G	1:1	0.186	1.153	0.214	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	-0.01	1	Front	10 mm	Titanium	QPSK	50	0	D92YV000CMW8G	1:1	0.142	1.151	0.163	
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.05	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV019MW8J	1:1	0.248	1.153	0.286	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	-0.03	1	Front	10 mm	Ceramic	QPSK	50	0	D92YV019MW8J	1:1	0.174	1.151	0.200	
2510.00	20850	Low	LTE Band 7	20	Metal Link	23.5	22.88	0.10	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01AMW8J	1:1	0.161	1.153	0.186	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	-0.12	1	Front	10 mm	Ceramic	QPSK	50	0	D92YV01AMW8J	1:1	0.128	1.151	0.147	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.07	0	Front	10 mm	Ceramic	QPSK	1	0	D92YV01BMW8J	1:1	0.187	1.153	0.216	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	-0.14	1	Front	10 mm	Ceramic	QPSK	50	0	D92YV01BMW8J	1:1	0.154	1.151	0.177	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head 1.6 W/kg (mW/g) averaged over 1 gram											

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 50 of 71

Table 10-7
LTE Band 41 Head SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Spacing	Housing Type	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor (1g)	Reported SAR (1g) (W/kg)	Plot #
MHz	Ch.																			
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	-0.14	0	Front	10 mm	Aluminum	QPSK	1	99	D92YT028MW7C	1:1.58	0.172	1.132	0.195
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	-0.01	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT028MW7C	1:1.58	0.132	1.153	0.152
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	0.03	0	Front	10 mm	Aluminum	QPSK	1	99	D92YT024MW7C	1:1.58	0.143	1.132	0.162
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	0.05	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT024MW7C	1:1.58	0.100	1.153	0.115
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	-0.16	0	Front	10 mm	Aluminum	QPSK	1	99	D92YT026MW7C	1:1.58	0.127	1.132	0.144
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	0.09	1	Front	10 mm	Aluminum	QPSK	50	0	D92YT026MW7C	1:1.58	0.098	1.153	0.113
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	-0.20	0	Front	10 mm	Stainless Steel	QPSK	1	99	D92YT025MW88	1:1.58	0.123	1.132	0.139
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	0.08	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT025MW88	1:1.58	0.096	1.153	0.111
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	0.02	0	Front	10 mm	Stainless Steel	QPSK	1	99	D92YT024MW88	1:1.58	0.116	1.132	0.131
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	0.02	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT024MW88	1:1.58	0.085	1.153	0.098
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	-0.04	0	Front	10 mm	Stainless Steel	QPSK	1	99	D92YT024MW88	1:1.58	0.104	1.132	0.118
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	0.02	1	Front	10 mm	Stainless Steel	QPSK	50	0	D92YT024MW88	1:1.58	0.071	1.153	0.082
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	0.04	0	Front	10 mm	Titanium	QPSK	1	99	D92Y003MW8G	1:1.58	0.134	1.132	0.152
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	0.03	1	Front	10 mm	Titanium	QPSK	50	0	D92Y003MW8G	1:1.58	0.092	1.153	0.106
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	0.09	0	Front	10 mm	Titanium	QPSK	1	99	D92Y001MW8G	1:1.58	0.117	1.132	0.132
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	-0.01	1	Front	10 mm	Titanium	QPSK	50	0	D92Y001MW8G	1:1.58	0.086	1.153	0.099
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	-0.07	0	Front	10 mm	Titanium	QPSK	1	99	D92Y00EMW8G	1:1.58	0.122	1.132	0.138
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	0.03	1	Front	10 mm	Titanium	QPSK	50	0	D92Y00EMW8G	1:1.58	0.087	1.153	0.100
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	0.05	0	Front	10 mm	Ceramic	QPSK	1	99	D92Y019MW8J	1:1.58	0.174	1.132	0.197
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	0.14	1	Front	10 mm	Ceramic	QPSK	50	0	D92Y019MW8J	1:1.58	0.128	1.153	0.148
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	-0.03	0	Front	10 mm	Ceramic	QPSK	1	99	D92Y019MW8J	1:1.58	0.119	1.132	0.135
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	0.09	1	Front	10 mm	Ceramic	QPSK	50	0	D92Y019MW8J	1:1.58	0.106	1.153	0.122
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	0.03	0	Front	10 mm	Ceramic	QPSK	1	99	D92Y01DMW8J	1:1.58	0.141	1.132	0.160
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	-0.11	1	Front	10 mm	Ceramic	QPSK	50	0	D92Y01DMW8J	1:1.58	0.102	1.153	0.118

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Head
1.6 W/kg (mW/g)
averaged over 1 gram

Table 10-8
2.4 GHz WLAN Head SAR

MEASUREMENT RESULTS																			
FREQUENCY		Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Side	Spacing	Housing Type	Wristband Type	Device Serial Number	Data Rate (Mbps)	Duty Cycle (%)	SAR (1g) (W/kg)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g) (W/kg)	Plot #
MHz	Ch.																		
2462	11	802.11b	DSSS	22	19.0	19.00	-0.17	Front	10 mm	Aluminum	Sport	D92YT028MW7C	1	100.0	0.157	1.000	1.000	0.157	A10
2462	11	802.11b	DSSS	22	19.0	19.00	-0.19	Front	10 mm	Aluminum	Metal Links	D92YT028MW7C	1	100.0	0.114	1.000	1.000	0.114	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.07	Front	10 mm	Aluminum	Metal Loop	D92YT028MW7C	1	100.0	0.124	1.000	1.000	0.124	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.13	Front	10 mm	Stainless Steel	Sport	D92YT025MW88	1	100.0	0.115	1.000	1.000	0.115	
2462	11	802.11b	DSSS	22	19.0	19.00	0.00	Front	10 mm	Stainless Steel	Metal Links	D92YT024MW88	1	100.0	0.081	1.000	1.000	0.081	
2462	11	802.11b	DSSS	22	19.0	19.00	0.17	Front	10 mm	Stainless Steel	Metal Loop	D92YT025MW88	1	100.0	0.090	1.000	1.000	0.090	
2462	11	802.11b	DSSS	22	19.0	19.00	0.15	Front	10 mm	Titanium	Sport	D92Y00CMW8G	1	100.0	0.126	1.000	1.000	0.126	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.07	Front	10 mm	Titanium	Metal Links	D92Y001MW8G	1	100.0	0.085	1.000	1.000	0.085	
2462	11	802.11b	DSSS	22	19.0	19.00	0.01	Front	10 mm	Titanium	Metal Loop	D92Y00CMW8G	1	100.0	0.099	1.000	1.000	0.099	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.19	Front	10 mm	Ceramic	Sport	D92Y01AMW8J	1	100.0	0.120	1.000	1.000	0.120	
2462	11	802.11b	DSSS	22	19.0	19.00	0.15	Front	10 mm	Ceramic	Metal Links	D92Y01DMW8J	1	100.0	0.107	1.000	1.000	0.107	
2462	11	802.11b	DSSS	22	19.0	19.00	0.01	Front	10 mm	Ceramic	Metal Loop	D92Y01DMW8J	1	100.0	0.097	1.000	1.000	0.097	

ANSI / IEEE C95.1 1992 - SAFETY LIMIT

Spatial Peak

Uncontrolled Exposure/General Population

Head

1.6 W/kg (mW/g)

averaged over 1 gram

FCC ID: BCG-A2156

SAR EVALUATION REPORT

Approved by:

Quality Manager

Document S/N: 1C1905130009-01-R1.BCG

Test Dates: 07/15/2019-07/24/2019

DUT Type: Watch

Page 51 of 71

Table 10-9
Bluetooth Head SAR

MEASUREMENT RESULTS																		
FREQUENCY		Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Side	Spacing	Housing Type	Wristband Type	Device Serial Number	Data Rate (Mbps)	Duty Cycle (%)	SAR (1g) (W/kg)	Scaling Factor (Cond Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g) (W/kg)	Plot #
MHz	Ch.																	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.18	Front	10 mm	Aluminum	Sport	D92YT028MW7C	1	100	0.080	1.479	1.000	0.118	A11
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.06	Front	10 mm	Aluminum	Metal Links	D92YT028MW7C	1	100	0.048	1.479	1.000	0.071	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.04	Front	10 mm	Aluminum	Metal Loop	D92YT028MW7C	1	100	0.062	1.479	1.000	0.092	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.05	Front	10 mm	Stainless Steel	Sport	D92YT024MW88	1	100	0.052	1.479	1.000	0.077	
2441.00	39	Bluetooth	FHSS	17.5	15.80	-0.05	Front	10 mm	Stainless Steel	Metal Links	D92YT024MW88	1	100	0.042	1.479	1.000	0.062	
2441.00	39	Bluetooth	FHSS	17.5	15.80	-0.18	Front	10 mm	Stainless Steel	Metal Loop	D92YT024MW88	1	100	0.052	1.479	1.000	0.077	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.03	Front	10 mm	Titanium	Sport	D92YV00CMW8G	1	100	0.062	1.479	1.000	0.092	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.06	Front	10 mm	Titanium	Metal Links	D92YV00EMW8G	1	100	0.055	1.479	1.000	0.081	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.05	Front	10 mm	Titanium	Metal Loop	D92YV00EMW8G	1	100	0.050	1.479	1.000	0.074	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.05	Front	10 mm	Ceramic	Sport	D92YV01AMW8J	1	100	0.070	1.479	1.000	0.104	
2441.00	39	Bluetooth	FHSS	17.5	15.80	-0.02	Front	10 mm	Ceramic	Metal Links	D92YV01DMW8J	1	100	0.051	1.479	1.000	0.075	
2441.00	39	Bluetooth	FHSS	17.5	15.80	0.15	Front	10 mm	Ceramic	Metal Loop	D92YV01AMW8J	1	100	0.047	1.479	1.000	0.070	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head 1.6 W/kg (mW/g) averaged over 1 gram										

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT						Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch						Page 52 of 71

10.2 Standalone Extremity SAR Data

Table 10-10
UMTS Extremity SAR Data

MEASUREMENT RESULTS																
FREQUENCY		Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Housing Type	Wristband Type	Device Serial Number	Duty Cycle	Side	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.													(W/kg)	(W/kg)	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.18	0 mm	Aluminum	Sport	D92YT026MW7C	1:1	back	1.208	0.078	0.094	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.04	0 mm	Aluminum	Metal Links	D92YT028MW7C	1:1	back	1.208	0.177	0.214	A12
836.60	4183	UMTS 850	RMC	25.0	24.18	0.20	0 mm	Aluminum	Metal Loop	D92YT028MW7C	1:1	back	1.208	0.137	0.165	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.17	0 mm	Stainless Steel	Sport	D92YT024MW88	1:1	back	1.208	0.076	0.092	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.16	0 mm	Stainless Steel	Metal Links	D92YT024MW88	1:1	back	1.208	0.154	0.186	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.04	0 mm	Stainless Steel	Metal Loop	D92YT024MW88	1:1	back	1.208	0.118	0.143	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.12	0 mm	Titanium	Sport	D92YV00CMW8G	1:1	back	1.208	0.086	0.104	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.16	0 mm	Titanium	Metal Links	D92YV005MW8G	1:1	back	1.208	0.144	0.174	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.18	0 mm	Titanium	Metal Loop	D92YV005MW8G	1:1	back	1.208	0.107	0.129	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.04	0 mm	Ceramic	Sport	D92YV019MW8J	1:1	back	1.208	0.078	0.094	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.15	0 mm	Ceramic	Metal Links	D92YV019MW8J	1:1	back	1.208	0.130	0.157	
836.60	4183	UMTS 850	RMC	25.0	24.18	0.07	0 mm	Ceramic	Metal Loop	D92YV01AMW8J	1:1	back	1.208	0.100	0.121	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.15	0 mm	Aluminum	Sport	D92YT028MW7C	1:1	back	1.140	0.173	0.197	
1712.40	1312	UMTS 1750	RMC	24.0	23.47	-0.21	0 mm	Aluminum	Metal Links	D92YT028MW7C	1:1	back	1.130	0.263	0.297	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.20	0 mm	Aluminum	Metal Links	D92YT026MW7C	1:1	back	1.140	0.314	0.358	A13
1752.60	1513	UMTS 1750	RMC	24.0	23.07	0.10	0 mm	Aluminum	Metal Links	D92YT024MW7C	1:1	back	1.239	0.275	0.341	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.13	0 mm	Aluminum	Metal Loop	D92YT026MW7C	1:1	back	1.140	0.276	0.315	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.17	0 mm	Stainless Steel	Sport	D92YT02DMW88	1:1	back	1.140	0.157	0.179	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.17	0 mm	Stainless Steel	Metal Links	D92YT024MW88	1:1	back	1.140	0.262	0.299	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.11	0 mm	Stainless Steel	Metal Loop	D92YT02DMW88	1:1	back	1.140	0.177	0.202	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.13	0 mm	Titanium	Sport	D92YV00CMW8G	1:1	back	1.140	0.126	0.144	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.17	0 mm	Titanium	Metal Links	D92YV005MW8G	1:1	back	1.140	0.204	0.233	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.09	0 mm	Titanium	Metal Loop	D92YV001MW8G	1:1	back	1.140	0.196	0.223	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.06	0 mm	Ceramic	Sport	D92YV019MW8J	1:1	back	1.140	0.085	0.097	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	-0.15	0 mm	Ceramic	Metal Links	D92YV017MW8J	1:1	back	1.140	0.303	0.345	
1732.40	1412	UMTS 1750	RMC	24.0	23.43	0.13	0 mm	Ceramic	Metal Loop	D92YV019MW8J	1:1	back	1.140	0.181	0.206	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.16	0 mm	Aluminum	Sport	D92YT026MW7C	1:1	back	1.125	0.174	0.196	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.07	0 mm	Aluminum	Metal Links	D92YT026MW7C	1:1	back	1.125	0.226	0.254	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.03	0 mm	Aluminum	Metal Loop	D92YT028MW7C	1:1	back	1.125	0.276	0.311	A14
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.14	0 mm	Stainless Steel	Sport	D92YT025MW88	1:1	back	1.125	0.086	0.097	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.01	0 mm	Stainless Steel	Metal Links	D92YT024MW88	1:1	back	1.125	0.143	0.161	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.06	0 mm	Stainless Steel	Metal Loop	D92YT024MW88	1:1	back	1.125	0.189	0.213	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.13	0 mm	Titanium	Sport	D92YV001MW8G	1:1	back	1.125	0.110	0.124	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.16	0 mm	Titanium	Metal Links	D92YV001MW8G	1:1	back	1.125	0.096	0.108	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.12	0 mm	Titanium	Metal Loop	D92YV001MW8G	1:1	back	1.125	0.140	0.158	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.20	0 mm	Ceramic	Sport	D92YV017MW8J	1:1	back	1.125	0.131	0.147	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	0.00	0 mm	Ceramic	Metal Links	D92YV017MW8J	1:1	back	1.125	0.215	0.242	
1880.00	9400	UMTS 1900	RMC	24.0	23.49	-0.02	0 mm	Ceramic	Metal Loop	D92YV019MW8J	1:1	back	1.125	0.081	0.091	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Extremity 4.0 W/kg (mW/g) averaged over 10 gram								

FCC ID: BCG-A2156	PCTEST [®] ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 53 of 71

Table 10-11
LTE Band 26 Extremity SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g) (W/kg)	Reported SAR (10g) (W/kg)	Plot #
MHz	Ch.																			
831.50	26865	Mid	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.20	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.219	0.096	0.117
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	-0.02	1	Aluminum	D92YT026MW7C	QPSK	25	0	0 mm	back	1:1	1.057	0.095	0.100
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.10	0	Aluminum	D92YT028MW7C	QPSK	1	0	0 mm	back	1:1	1.219	0.174	0.212
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.21	1	Aluminum	D92YT028MW7C	QPSK	25	0	0 mm	back	1:1	1.057	0.169	0.179
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	-0.18	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.219	0.123	0.150
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	-0.02	1	Aluminum	D92YT026MW7C	QPSK	25	0	0 mm	back	1:1	1.057	0.119	0.126
831.50	26865	Mid	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.20	0	Stainless Steel	D92YT024MW8B	QPSK	1	0	0 mm	back	1:1	1.219	0.093	0.113
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	0.09	1	Stainless Steel	D92YT024MW8B	QPSK	25	0	0 mm	back	1:1	1.057	0.089	0.094
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.14	0	Stainless Steel	D92YT024MW8B	QPSK	1	0	0 mm	back	1:1	1.219	0.137	0.167
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	-0.11	1	Stainless Steel	D92YT024MW8B	QPSK	25	0	0 mm	back	1:1	1.057	0.134	0.142
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	0.15	0	Stainless Steel	D92YT022MW8B	QPSK	1	0	0 mm	back	1:1	1.219	0.126	0.154
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	0.13	1	Stainless Steel	D92YT022MW8B	QPSK	25	0	0 mm	back	1:1	1.057	0.116	0.123
831.50	26865	Mid	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.12	0	Titanium	D92YY000CMW8G	QPSK	1	0	0 mm	back	1:1	1.219	0.085	0.104
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	-0.02	1	Titanium	D92YY000CMW8G	QPSK	25	0	0 mm	back	1:1	1.057	0.084	0.089
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.05	0	Titanium	D92YY000EMW8G	QPSK	1	0	0 mm	back	1:1	1.219	0.135	0.165
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.14	1	Titanium	D92YY000EMW8G	QPSK	25	0	0 mm	back	1:1	1.057	0.132	0.140
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	0.20	0	Titanium	D92YY001MW8G	QPSK	1	0	0 mm	back	1:1	1.219	0.114	0.139
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	0.16	1	Titanium	D92YY001MW8G	QPSK	25	0	0 mm	back	1:1	1.057	0.110	0.116
831.50	26865	Mid	LTE Band 26 (Cell)	10	Sport	25.0	24.14	0.09	0	Ceramic	D92YY019MW8J	QPSK	1	0	0 mm	back	1:1	1.219	0.076	0.093
844.00	26990	High	LTE Band 26 (Cell)	10	Sport	24.0	23.76	0.12	1	Ceramic	D92YY019MW8J	QPSK	25	0	0 mm	back	1:1	1.057	0.076	0.080
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Links	25.0	24.14	0.12	0	Ceramic	D92YY01AMW8J	QPSK	1	0	0 mm	back	1:1	1.219	0.095	0.116
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Links	24.0	23.76	0.19	1	Ceramic	D92YY01AMW8J	QPSK	25	0	0 mm	back	1:1	1.057	0.072	0.076
831.50	26865	Mid	LTE Band 26 (Cell)	10	Metal Loop	25.0	24.14	-0.19	0	Ceramic	D92YY01AMW8J	QPSK	1	0	0 mm	back	1:1	1.219	0.095	0.116
844.00	26990	High	LTE Band 26 (Cell)	10	Metal Loop	24.0	23.76	0.11	1	Ceramic	D92YY01AMW8J	QPSK	25	0	0 mm	back	1:1	1.057	0.094	0.099
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Extremity 4.0 W/kg (mW/g) averaged over 10 gram											

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT										Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch										Page 54 of 71

Table 10-12
LTE Band 5 Extremity SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.																	(W/kg)	(W/kg)	
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	0.19	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.219	0.101	0.123
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.13	1	Aluminum	D92YT028MW7C	QPSK	25	0	0 mm	back	1:1	1.143	0.092	0.105
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	0.01	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.219	0.126	0.154
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	0.17	1	Aluminum	D92YT026MW7C	QPSK	25	0	0 mm	back	1:1	1.143	0.110	0.126
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.09	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.219	0.109	0.133
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.09	1	Aluminum	D92YT026MW7C	QPSK	25	0	0 mm	back	1:1	1.143	0.095	0.109
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	0.11	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.219	0.077	0.094
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.15	1	Stainless Steel	D92YT024MW88	QPSK	25	0	0 mm	back	1:1	1.143	0.069	0.079
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	-0.04	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.219	0.114	0.139
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	0.02	1	Stainless Steel	D92YT024MW88	QPSK	25	0	0 mm	back	1:1	1.143	0.103	0.118
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.17	0	Stainless Steel	D92YT02DMMW88	QPSK	1	0	0 mm	back	1:1	1.219	0.101	0.123
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.20	1	Stainless Steel	D92YT02DMMW88	QPSK	25	0	0 mm	back	1:1	1.143	0.088	0.101
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	0.12	0	Titanium	D92YV001MW8G	QPSK	1	0	0 mm	back	1:1	1.219	0.076	0.093
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	0.19	1	Titanium	D92YV001MW8G	QPSK	25	0	0 mm	back	1:1	1.143	0.070	0.080
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	0.02	0	Titanium	D92YV00CMW8G	QPSK	1	0	0 mm	back	1:1	1.219	0.146	0.178
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	0.12	1	Titanium	D92YV00CMW8G	QPSK	25	0	0 mm	back	1:1	1.143	0.133	0.152
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	-0.05	0	Titanium	D92YV005MW8G	QPSK	1	0	0 mm	back	1:1	1.219	0.087	0.106
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	-0.04	1	Titanium	D92YV005MW8G	QPSK	25	0	0 mm	back	1:1	1.143	0.081	0.093
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	25.0	24.14	-0.16	0	Ceramic	D92YV01DMW8J	QPSK	1	0	0 mm	back	1:1	1.219	0.063	0.077
836.50	20525	Md	LTE Band 5 (Cell)	10	Sport	24.0	23.42	-0.13	1	Ceramic	D92YV01DMW8J	QPSK	25	0	0 mm	back	1:1	1.143	0.056	0.064
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	25.0	24.14	-0.17	0	Ceramic	D92YV017MW8J	QPSK	1	0	0 mm	back	1:1	1.219	0.098	0.119
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Links	24.0	23.42	-0.17	1	Ceramic	D92YV01DMW8J	QPSK	25	0	0 mm	back	1:1	1.143	0.094	0.107
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	25.0	24.14	0.11	0	Ceramic	D92YV019MW8J	QPSK	1	0	0 mm	back	1:1	1.219	0.100	0.122
836.50	20525	Md	LTE Band 5 (Cell)	10	Metal Loop	24.0	23.42	0.15	1	Ceramic	D92YV019MW8J	QPSK	25	0	0 mm	back	1:1	1.143	0.093	0.106
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Extremity 4.0 W/kg (mW/g) averaged over 10 gram											

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 55 of 71

Table 10-13
LTE Band 66 Extremity SAR

MEASUREMENT RESULTS																			Plot #	
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #
MHz	Ch.																			
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	0.01	0	Aluminum	D92YT028MW7C	QPSK	1	0	0 mm	back	1:1	1.161	0.147	0.171
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	-0.02	1	Aluminum	D92YT028MW7C	QPSK	50	0	0 mm	back	1:1	1.125	0.119	0.134
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	0.04	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.161	0.267	0.310
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	0.09	1	Aluminum	D92YT026MW7C	QPSK	50	0	0 mm	back	1:1	1.125	0.218	0.245
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	0.05	0	Aluminum	D92YT028MW7C	QPSK	1	0	0 mm	back	1:1	1.161	0.236	0.274
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	-0.02	1	Aluminum	D92YT028MW7C	QPSK	50	0	0 mm	back	1:1	1.125	0.190	0.214
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	-0.06	0	Stainless Steel	D92YT026MW88	QPSK	1	0	0 mm	back	1:1	1.161	0.115	0.134
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	-0.04	1	Stainless Steel	D92YT026MW88	QPSK	50	0	0 mm	back	1:1	1.125	0.067	0.075
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	0.10	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.161	0.238	0.276
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	-0.18	1	Stainless Steel	D92YT024MW88	QPSK	50	0	0 mm	back	1:1	1.125	0.224	0.252
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	-0.18	0	Stainless Steel	D92YT026MW88	QPSK	1	0	0 mm	back	1:1	1.161	0.205	0.238
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	0.12	1	Stainless Steel	D92YT026MW88	QPSK	50	0	0 mm	back	1:1	1.125	0.171	0.192
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	-0.01	0	Titanium	D92YV001MW8G	QPSK	1	0	0 mm	back	1:1	1.161	0.110	0.128
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	-0.05	1	Titanium	D92YV001MW8G	QPSK	50	0	0 mm	back	1:1	1.125	0.094	0.106
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	-0.17	0	Titanium	D92YV005MW8G	QPSK	1	0	0 mm	back	1:1	1.161	0.154	0.179
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	-0.13	1	Titanium	D92YV005MW8G	QPSK	50	0	0 mm	back	1:1	1.125	0.141	0.159
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	-0.16	0	Titanium	D92YV000CMW8G	QPSK	1	0	0 mm	back	1:1	1.161	0.115	0.134
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	0.03	1	Titanium	D92YV000CMW8G	QPSK	50	0	0 mm	back	1:1	1.125	0.095	0.107
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	24.0	23.35	0.01	0	Ceramic	D92YV01BMW8J	QPSK	1	0	0 mm	back	1:1	1.161	0.068	0.079
1770.00	132572	High	LTE Band 66 (AWS)	20	Sport	23.0	22.49	0.13	1	Ceramic	D92YV01BMW8J	QPSK	50	0	0 mm	back	1:1	1.125	0.053	0.060
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	24.0	23.35	-0.15	0	Ceramic	D92YV01DMW8J	QPSK	1	0	0 mm	back	1:1	1.161	0.190	0.221
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Links	23.0	22.49	-0.03	1	Ceramic	D92YV01DMW8J	QPSK	50	0	0 mm	back	1:1	1.125	0.158	0.178
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	24.0	23.35	-0.18	0	Ceramic	D92YV01AMW8J	QPSK	1	0	0 mm	back	1:1	1.161	0.276	0.320
1770.00	132572	High	LTE Band 66 (AWS)	20	Metal Loop	23.0	22.49	0.02	1	Ceramic	D92YV01AMW8J	QPSK	50	0	0 mm	back	1:1	1.125	0.228	0.257

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Extremity
4.0 W/kg (mW/g)
averaged over 10 gram

FCC ID: BCG-A2156	PCTEST [®] ENGINEERING LABORATORY, INC.					SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019					DUT Type: Watch	Page 56 of 71

Table 10-14
LTE Band 25 Extremity SAR

MEASUREMENT RESULTS																				Plot #	
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)		
MHz	Cl.																	(W/kg)	(W/kg)		
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	0.08	0	Aluminum	D92YT024MW7C	QPSK	1	0	0 mm	back	1:1	1.059	0.163	0.173	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	-0.02	1	Aluminum	D92YT024MW7C	QPSK	50	50	0 mm	back	1:1	1.002	0.135	0.135	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	0.09	0	Aluminum	D92YT028MW7C	QPSK	1	0	0 mm	back	1:1	1.059	0.249	0.264	A18
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	-0.08	1	Aluminum	D92YT028MW7C	QPSK	50	50	0 mm	back	1:1	1.002	0.211	0.211	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	-0.18	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.059	0.217	0.230	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	-0.15	1	Aluminum	D92YT026MW7C	QPSK	50	50	0 mm	back	1:1	1.002	0.188	0.188	
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	-0.12	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.059	0.152	0.161	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	-0.15	1	Stainless Steel	D92YT024MW88	QPSK	50	50	0 mm	back	1:1	1.002	0.115	0.115	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	-0.18	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.059	0.172	0.182	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	-0.12	1	Stainless Steel	D92YT024MW88	QPSK	50	50	0 mm	back	1:1	1.002	0.154	0.154	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	0.21	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.059	0.208	0.220	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	0.18	1	Stainless Steel	D92YT024MW88	QPSK	50	50	0 mm	back	1:1	1.002	0.179	0.179	
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	-0.12	0	Titanium	D92YV00EMW8G	QPSK	1	0	0 mm	back	1:1	1.059	0.095	0.101	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	-0.16	1	Titanium	D92YV00EMW8G	QPSK	50	50	0 mm	back	1:1	1.002	0.075	0.075	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	-0.16	0	Titanium	D92YV005MW8G	QPSK	1	0	0 mm	back	1:1	1.059	0.086	0.091	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	-0.04	1	Titanium	D92YV005MW8G	QPSK	50	50	0 mm	back	1:1	1.002	0.068	0.068	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	0.08	0	Titanium	D92YV001MW8G	QPSK	1	0	0 mm	back	1:1	1.059	0.141	0.149	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	0.01	1	Titanium	D92YV001MW8G	QPSK	50	50	0 mm	back	1:1	1.002	0.123	0.123	
1905.00	26590	High	LTE Band 25 (PCS)	20	Sport	24.0	23.75	-0.16	0	Ceramic	D92YV01DMW8J	QPSK	1	0	0 mm	back	1:1	1.059	0.061	0.065	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Sport	23.0	22.99	-0.12	1	Ceramic	D92YV01DMW8J	QPSK	50	50	0 mm	back	1:1	1.002	0.053	0.053	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Links	24.0	23.75	-0.13	0	Ceramic	D92YV019MW8J	QPSK	1	0	0 mm	back	1:1	1.059	0.056	0.059	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Links	23.0	22.99	0.09	1	Ceramic	D92YV019MW8J	QPSK	50	50	0 mm	back	1:1	1.002	0.041	0.041	
1905.00	26590	High	LTE Band 25 (PCS)	20	Metal Loop	24.0	23.75	-0.05	0	Ceramic	D92YV01AMW8J	QPSK	1	0	0 mm	back	1:1	1.059	0.143	0.151	
1860.00	26140	Low	LTE Band 25 (PCS)	20	Metal Loop	23.0	22.99	-0.13	1	Ceramic	D92YV019MW8J	QPSK	50	50	0 mm	back	1:1	1.002	0.079	0.079	

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population

Extremity
4.0 W/kg (mW/g)
averaged over 10 gram

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT										Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch										Page 57 of 71

Table 10-15
LTE Band 7 Extremity SAR

MEASUREMENT RESULTS																					
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #	
MHz	Ch.																	(W/kg)	(W/kg)		
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.20	0	Aluminum	D92YT028MW7C	QPSK	1	0	0 mm	back	1:1	1.153	0.091	0.105	A19
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	0.11	1	Aluminum	D92YT028MW7C	QPSK	50	0	0 mm	back	1:1	1.151	0.061	0.070	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	-0.10	0	Aluminum	D92YT026MW7C	QPSK	1	0	0 mm	back	1:1	1.153	0.072	0.083	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	-0.19	1	Aluminum	D92YT026MW7C	QPSK	50	0	0 mm	back	1:1	1.151	0.065	0.075	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.16	0	Aluminum	D92YT02AMW7C	QPSK	1	0	0 mm	back	1:1	1.153	0.061	0.070	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	0.09	1	Aluminum	D92YT02AMW7C	QPSK	50	0	0 mm	back	1:1	1.151	0.048	0.055	
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.14	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.153	0.036	0.042	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	-0.13	1	Stainless Steel	D92YT024MW88	QPSK	50	0	0 mm	back	1:1	1.151	0.028	0.032	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	-0.03	0	Stainless Steel	D92YT024MW88	QPSK	1	0	0 mm	back	1:1	1.153	0.051	0.059	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	0.14	1	Stainless Steel	D92YT02DMW88	QPSK	50	0	0 mm	back	1:1	1.151	0.049	0.056	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.13	0	Stainless Steel	D92YT02DMW88	QPSK	1	0	0 mm	back	1:1	1.153	0.043	0.050	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	0.03	1	Stainless Steel	D92YT02DMW88	QPSK	50	0	0 mm	back	1:1	1.151	0.028	0.032	
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.15	0	Titanium	D92YY000CMW8G	QPSK	1	0	0 mm	back	1:1	1.153	0.040	0.046	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	-0.09	1	Titanium	D92YY000CMW8G	QPSK	50	0	0 mm	back	1:1	1.151	0.035	0.040	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	-0.11	0	Titanium	D92YY000CMW8G	QPSK	1	0	0 mm	back	1:1	1.153	0.037	0.043	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	-0.17	1	Titanium	D92YY000CMW8G	QPSK	50	0	0 mm	back	1:1	1.151	0.018	0.021	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.19	0	Titanium	D92YY005MW8G	QPSK	1	0	0 mm	back	1:1	1.153	0.018	0.021	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	-0.13	1	Titanium	D92YY005MW8G	QPSK	50	0	0 mm	back	1:1	1.151	0.014	0.016	
2510.00	20850	Low	LTE Band 7	20	Sport	23.5	22.88	-0.13	0	Ceramic	D92YV019MW8J	QPSK	1	0	0 mm	back	1:1	1.153	0.031	0.036	
2510.00	20850	Low	LTE Band 7	20	Sport	22.5	21.89	-0.18	1	Ceramic	D92YV019MW8J	QPSK	50	0	0 mm	back	1:1	1.151	0.027	0.031	
2510.00	20850	Low	LTE Band 7	20	Metal Links	23.5	22.88	-0.14	0	Ceramic	D92YV017MW8J	QPSK	1	0	0 mm	back	1:1	1.153	0.028	0.032	
2510.00	20850	Low	LTE Band 7	20	Metal Links	22.5	21.89	-0.11	1	Ceramic	D92YV017MW8J	QPSK	50	0	0 mm	back	1:1	1.151	0.023	0.026	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	23.5	22.88	-0.15	0	Ceramic	D92YV019MW8J	QPSK	1	0	0 mm	back	1:1	1.153	0.022	0.025	
2510.00	20850	Low	LTE Band 7	20	Metal Loop	22.5	21.89	-0.18	1	Ceramic	D92YV019MW8J	QPSK	50	0	0 mm	back	1:1	1.151	0.019	0.022	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Extremity 4.0 W/kg (mW/g) averaged over 10 gram																
Spatial Peak																					
Uncontrolled Exposure/General Population																					

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT										Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch										Page 58 of 71

Table 10-16
LTE Band 41 Extremity SAR

MEASUREMENT RESULTS																			Plot #		
FREQUENCY		Mode	Bandwidth [MHz]	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Housing Type	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	Scaling Factor	SAR (10g)	Reported SAR (10g)	Plot #	
MHz	Ch.																				
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	-0.18	0	Aluminum	D92YT027MW7C	QPSK	1	99	0 mm	back	1:1.58	1.132	0.044	0.050	
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	0.07	1	Aluminum	D92YT027MW7C	QPSK	50	0	0 mm	back	1:1.58	1.153	0.040	0.046	
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	0.01	0	Aluminum	D92YT026MW7C	QPSK	1	99	0 mm	back	1:1.58	1.132	0.049	0.055	
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	0.07	1	Aluminum	D92YT024MW7C	QPSK	50	0	0 mm	back	1:1.58	1.153	0.043	0.050	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	-0.04	0	Aluminum	D92YT024MW7C	QPSK	1	99	0 mm	back	1:1.58	1.132	0.050	0.057	A20
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	0.13	1	Aluminum	D92YT024MW8B	QPSK	50	0	0 mm	back	1:1.58	1.153	0.030	0.035	
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	0.11	0	Stainless Steel	D92YT024MW8B	QPSK	1	99	0 mm	back	1:1.58	1.132	0.021	0.024	
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	-0.08	1	Stainless Steel	D92YT024MW8B	QPSK	50	0	0 mm	back	1:1.58	1.153	0.015	0.017	
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	-0.13	0	Stainless Steel	D92YT024MW8B	QPSK	1	99	0 mm	back	1:1.58	1.132	0.018	0.020	
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	-0.18	1	Stainless Steel	D92YT024MW8B	QPSK	50	0	0 mm	back	1:1.58	1.153	0.013	0.015	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	-0.09	0	Stainless Steel	D92YT024MW8B	QPSK	1	99	0 mm	back	1:1.58	1.132	0.016	0.018	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	0.08	1	Stainless Steel	D92YT024MW8B	QPSK	50	0	0 mm	back	1:1.58	1.153	0.011	0.013	
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	-0.09	0	Titanium	D92YV004MW8G	QPSK	1	99	0 mm	back	1:1.58	1.132	0.014	0.016	
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	-0.02	1	Titanium	D92YV005MW8G	QPSK	50	0	0 mm	back	1:1.58	1.153	0.007	0.008	
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	0.15	0	Titanium	D92YV001MW8G	QPSK	1	99	0 mm	back	1:1.58	1.132	0.025	0.028	
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	0.10	1	Titanium	D92YV001MW8G	QPSK	50	0	0 mm	back	1:1.58	1.153	0.013	0.015	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	-0.15	0	Titanium	D92YV003CMW8G	QPSK	1	99	0 mm	back	1:1.58	1.132	0.005	0.006	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	-0.08	1	Titanium	D92YV003CMW8G	QPSK	50	0	0 mm	back	1:1.58	1.153	0.005	0.006	
2506.00	39750	Low	LTE Band 41	20	Sport	23.5	22.96	0.08	0	Ceramic	D92YV017MW8J	QPSK	1	99	0 mm	back	1:1.58	1.132	0.012	0.014	
2506.00	39750	Low	LTE Band 41	20	Sport	22.5	21.88	-0.17	1	Ceramic	D92YV017MW8J	QPSK	50	0	0 mm	back	1:1.58	1.153	0.009	0.010	
2506.00	39750	Low	LTE Band 41	20	Metal Links	23.5	22.96	-0.11	0	Ceramic	D92YV019MW8J	QPSK	1	99	0 mm	back	1:1.58	1.132	0.035	0.040	
2506.00	39750	Low	LTE Band 41	20	Metal Links	22.5	21.88	-0.15	1	Ceramic	D92YV019MW8J	QPSK	50	0	0 mm	back	1:1.58	1.153	0.026	0.030	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	23.5	22.96	0.06	0	Ceramic	D92YV01DMW8J	QPSK	1	99	0 mm	back	1:1.58	1.132	0.011	0.012	
2506.00	39750	Low	LTE Band 41	20	Metal Loop	22.5	21.88	-0.09	1	Ceramic	D92YV01DMW8J	QPSK	50	0	0 mm	back	1:1.58	1.153	0.008	0.009	

ANSI / IEEE C95.1 1992 - SAFETY LIMIT

Spatial Peak

Uncontrolled Exposure/General Population

Extremity

4.0 W/kg (mW/g)

averaged over 10 gram

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT										Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch										Page 59 of 71

Table 10-17
2.4 GHz WLAN Extremity SAR

MEASUREMENT RESULTS																			
FREQUENCY		Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Housing Type	Wristband Type	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	SAR (10g) (W/kg)	Reported SAR (10g) (W/kg)	Plot #
MHz	Ch.																		
2462	11	802.11b	DSSS	22	19.0	19.00	0.15	0 mm	Aluminum	Sport	D92YT026MW7C	1	back	100.0	1.000	1.000	0.050	0.050	A21
2462	11	802.11b	DSSS	22	19.0	19.00	0.15	0 mm	Aluminum	Metal Links	D92YT026MW7C	1	back	100.0	1.000	1.000	0.050	0.050	
2462	11	802.11b	DSSS	22	19.0	19.00	0.11	0 mm	Aluminum	Metal Loop	D92YT026MW7C	1	back	100.0	1.000	1.000	0.032	0.032	
2462	11	802.11b	DSSS	22	19.0	19.00	0.15	0 mm	Stainless Steel	Sport	D92YT02DMW88	1	back	100.0	1.000	1.000	0.050	0.050	
2462	11	802.11b	DSSS	22	19.0	19.00	0.18	0 mm	Stainless Steel	Metal Links	D92YT02DMW88	1	back	100.0	1.000	1.000	0.044	0.044	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.09	0 mm	Stainless Steel	Metal Loop	D92YT02DMW88	1	back	100.0	1.000	1.000	0.034	0.034	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.02	0 mm	Titanium	Sport	D92YV001MW8G	1	back	100.0	1.000	1.000	0.034	0.034	
2462	11	802.11b	DSSS	22	19.0	19.00	0.12	0 mm	Titanium	Metal Links	D92YV001MW8G	1	back	100.0	1.000	1.000	0.037	0.037	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.06	0 mm	Titanium	Metal Loop	D92YV001MW8G	1	back	100.0	1.000	1.000	0.031	0.031	
2462	11	802.11b	DSSS	22	19.0	19.00	0.15	0 mm	Ceramic	Sport	D92YV017MW8J	1	back	100.0	1.000	1.000	0.022	0.022	
2462	11	802.11b	DSSS	22	19.0	19.00	-0.17	0 mm	Ceramic	Metal Links	D92YV017MW8J	1	back	100.0	1.000	1.000	0.018	0.018	
2462	11	802.11b	DSSS	22	19.0	19.00	0.17	0 mm	Ceramic	Metal Loop	D92YV017MW8J	1	back	100.0	1.000	1.000	0.010	0.010	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Extremity									
Spatial Peak										4.0 W/kg (mW/g)									
Uncontrolled Exposure/General Population										averaged over 10 gram									

Table 10-18
Bluetooth Extremity SAR

MEASUREMENT RESULTS																		
FREQUENCY		Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Housing Type	Wristband Type	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Scaling Factor (Cond Power)	Scaling Factor (Duty Cycle)	SAR (10g) (W/kg)	Reported SAR (10g) (W/kg)	Plot #
MHz	Ch.																	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.13	0 mm	Aluminum	Sport	D92YT026MW7C	1	back	100	1.479	1.000	0.020	0.030	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.10	0 mm	Aluminum	Metal Links	D92YT026MW7C	1	back	100	1.479	1.000	0.019	0.028	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.05	0 mm	Aluminum	Metal Loop	D92YT026MW7C	1	back	100	1.479	1.000	0.010	0.015	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.06	0 mm	Stainless Steel	Sport	D92YT02DMW88	1	back	100	1.479	1.000	0.022	0.033	A22
2441	39	Bluetooth	FHSS	17.5	15.80	0.03	0 mm	Stainless Steel	Metal Links	D92YT02DMW88	1	back	100	1.479	1.000	0.019	0.028	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.13	0 mm	Stainless Steel	Metal Loop	D92YT02DMW88	1	back	100	1.479	1.000	0.021	0.031	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.09	0 mm	Titanium	Sport	D92YV000CMW8G	1	back	100	1.479	1.000	0.014	0.021	
2441	39	Bluetooth	FHSS	17.5	15.80	0.05	0 mm	Titanium	Metal Links	D92YV000CMW8G	1	back	100	1.479	1.000	0.013	0.019	
2441	39	Bluetooth	FHSS	17.5	15.80	0.11	0 mm	Titanium	Metal Loop	D92YV000CMW8G	1	back	100	1.479	1.000	0.007	0.010	
2441	39	Bluetooth	FHSS	17.5	15.80	0.20	0 mm	Ceramic	Sport	D92YV01DMW8J	1	back	100	1.479	1.000	0.021	0.031	
2441	39	Bluetooth	FHSS	17.5	15.80	0.15	0 mm	Ceramic	Metal Links	D92YV01DMW8J	1	back	100	1.479	1.000	0.013	0.019	
2441	39	Bluetooth	FHSS	17.5	15.80	-0.05	0 mm	Ceramic	Metal Loop	D92YV01DMW8J	1	back	100	1.479	1.000	0.017	0.025	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Extremity								
Spatial Peak										4.0 W/kg (mW/g)								
Uncontrolled Exposure/General Population										averaged over 10 gram								

10.3 SAR Test Notes

General Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
2. Batteries are fully charged at the beginning of the SAR measurements.
3. Liquid tissue depth was at least 15.0 cm for all frequencies.
4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg and 2.0 W/kg for 10g SAR.

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 60 of 71

7. This device has four housing types: Aluminum, Stainless Steel, Titanium, and Ceramic. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore, the procedures in FCC KDB Publication 447498 D01v06 Section 6.2 have been applied for extremity and next to mouth (head) conditions.

UMTS Notes:

1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations and ≤ 2.0 W/kg for 10g SAR then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations and > 1.5 W/kg for 10g SAR, testing at the other channels was required for such test configurations.
5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
6. This device can only operate with 16 QAM on the uplink with less than or equal to 27 RB. QPSK and 16QAM LTE powers for RB size of 15 ("50% RB") and 27 ("100% RB") were additionally measured to support comparison and SAR test exclusion per KDB 941225 D05v02r04 Section 5.2.4 and 5.3.

WLAN Notes:

1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.2 for more information.
2. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. The maximum

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 61 of 71

achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8 MHz, VBW = 50 MHz, and detector = peak per guidance of Section 6.0 b) of ANSI C63. 10-2013 and KDB 558074 D01 v04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100.

Bluetooth Notes

1. To determine compliance, Bluetooth SAR was measured with the maximum power condition. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 62 of 71

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR or 10g SAR for all the simultaneous transmitting antennas in a specific physical test configuration is ≤ 1.6 W/kg or ≤ 4.0 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

11.3 Head SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wristband types was used as a conservative evaluation for the simultaneous transmission analysis.

Table 11-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Head at 1.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Head SAR	UMTS 850	0.002	0.157	0.159
	UMTS 1750	0.288	0.157	0.445
	UMTS 1900	0.303	0.157	0.460
	LTE Band 26 (Cell)	0.001	0.157	0.158
	LTE Band 5 (Cell)	0.002	0.157	0.159
	LTE Band 66 (AWS)	0.287	0.157	0.444
	LTE Band 25 (PCS)	0.250	0.157	0.407
	LTE Band 7	0.327	0.157	0.484
	LTE Band 41	0.197	0.157	0.354

FCC ID: BCG-A2156	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch		Page 63 of 71

Table 11-2
Simultaneous Transmission Scenario with Bluetooth (Head at 1.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Head SAR	UMTS 850	0.002	0.118	0.120
	UMTS 1750	0.288	0.118	0.406
	UMTS 1900	0.303	0.118	0.421
	LTE Band 26 (Cell)	0.001	0.118	0.119
	LTE Band 5 (Cell)	0.002	0.118	0.120
	LTE Band 66 (AWS)	0.287	0.118	0.405
	LTE Band 25 (PCS)	0.250	0.118	0.368
	LTE Band 7	0.327	0.118	0.445
	LTE Band 41	0.197	0.118	0.315

11.4 Extremity SAR Simultaneous Transmission Analysis

Table 11-3
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Extremity at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Extremity SAR	UMTS 850	0.214	0.050	0.264
	UMTS 1750	0.358	0.050	0.408
	UMTS 1900	0.311	0.050	0.361
	LTE Band 26 (Cell)	0.212	0.050	0.262
	LTE Band 5 (Cell)	0.178	0.050	0.228
	LTE Band 66 (AWS)	0.320	0.050	0.370
	LTE Band 25 (PCS)	0.264	0.050	0.314
	LTE Band 7	0.105	0.050	0.155
	LTE Band 41	0.057	0.050	0.107

FCC ID: BCG-A2156	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 64 of 71	

Table 11-4
Simultaneous Transmission Scenario with Bluetooth (Extremity at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Extremity SAR	UMTS 850	0.214	0.033	0.247
	UMTS 1750	0.358	0.033	0.391
	UMTS 1900	0.311	0.033	0.344
	LTE Band 26 (Cell)	0.212	0.033	0.245
	LTE Band 5 (Cell)	0.178	0.033	0.211
	LTE Band 66 (AWS)	0.320	0.033	0.353
	LTE Band 25 (PCS)	0.264	0.033	0.297
	LTE Band 7	0.105	0.033	0.138
	LTE Band 41	0.057	0.033	0.090

11.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06.

FCC ID: BCG-A2156	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 65 of 71	

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.80 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g SAR and <3.75 W/kg for 10g SAR for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis was not required.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 66 of 71

13 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E5515C	Wireless Communications Test Set	2/28/2018	Biennial	2/28/2020	GB41450275
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Agilent	E4440A	PSA Series Spectrum Analyzer	11/14/2018	Annual	11/14/2019	MY46186272
Agilent	NS182A	MXG Vector Signal Generator	11/28/2018	Annual	11/28/2019	MY47420603
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	8753ES	Network Analyzer	3/19/2019	Annual	3/19/2020	MY40001472
Agilent	E4438C	ESG Vector Signal Generator	6/27/2019	Annual	6/27/2020	MY45093852
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Anritsu	MA24106A	USB Power Sensor	5/6/2019	Annual	5/6/2020	1231538
Anritsu	MA24106A	USB Power Sensor	6/21/2019	Annual	6/21/2020	1244515
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	1507619111
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330158
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini Circuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
Mini Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini Circuits	LP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	Bw-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
Pasternack	NC-100	Torque Wrench	5/10/2018	Biennial	5/10/2020	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	6/26/2019	Annual	6/26/2020	108843
Rohde & Schwarz	CMW500	Radio Communication Tester	4/15/2019	Annual	4/15/2020	167284
Rohde & Schwarz	CMW500	Radio Communication Tester	4/17/2019	Annual	4/17/2020	167285
SPEAG	D835V2	835 MHz SAR Dipole	5/18/2018	Biennial	5/18/2020	4d180
SPEAG	D835V2	835 MHz SAR Dipole	6/20/2019	Annual	6/20/2020	4d040
SPEAG	D1750V2	1750 MHz SAR Dipole	9/7/2017	Biennial	9/7/2019	1104
SPEAG	D1750V2	1750 MHz SAR Dipole	6/19/2019	Annual	6/19/2020	1083
SPEAG	D1900V2	1900 MHz SAR Dipole	5/14/2018	Biennial	5/14/2020	5d026
SPEAG	D1900V2	1900 MHz SAR Dipole	9/7/2017	Biennial	9/7/2019	5d181
SPEAG	D2450V2	2450 MHz SAR Dipole	6/14/2019	Biennial	6/14/2020	750
SPEAG	D2450V2	2450 MHz SAR Dipole	11/12/2018	Annual	11/12/2019	921
SPEAG	D2600V2	2600 MHz SAR Dipole	6/14/2019	Biennial	6/14/2020	1042
SPEAG	D2600V2	2600 MHz SAR Dipole	9/11/2017	Biennial	9/11/2019	1069
SPEAG	EX3DV4	SAR Probe	4/12/2019	Annual	4/12/2020	7532
SPEAG	EX3DV4	SAR Probe	1/28/2019	Annual	1/28/2020	3837
SPEAG	EX3DV4	SAR Probe	1/24/2019	Annual	1/24/2020	7490
SPEAG	ES3DV3	SAR Probe	11/19/2018	Annual	11/19/2019	3318
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7427
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/17/2019	Annual	4/17/2020	501
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/15/2019	Annual	1/15/2020	1532
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2018	Annual	8/14/2019	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	1403
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

Note: Each equipment item was used solely within its respective calibration period.

FCC ID: BCG-A2156	PCTEST [®] ENGINEERING LABORATORY, INC.			SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch			

14 MEASUREMENT UNCERTAINTIES

a	c	d	e = f(d,k)	f	g	h = c x f/e	i = c x g/e	k
Uncertainty Component	Tol. (± %)	Prob. Distr.	Div.	c _l 1gm	c _l 10 gms	1gm u _l (± %)	10gms u _l (± %)	v _l
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Uncertainty	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)						RSS	11.5	11.3
Expanded Uncertainty (95% CONFIDENCE LEVEL)						k=2	23.0	22.6

FCC ID: BCG-A2156	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 69 of 71

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCG-A2156	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 70 of 71

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Setembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCG-A2156	PCTEST® Engineering Laboratory, Inc.		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1905130009-01-R1.BCG	Test Dates: 07/15/2019-07/24/2019	DUT Type: Watch	Page 71 of 71	

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV005MW8G

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 MHz Head Medium parameters used (interpolated):

$f = 836.6$ MHz; $\sigma = 0.908$ S/m; $\epsilon_r = 41.479$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-15-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7532; ConvF(10.45, 10.45, 10.45) @ 836.6 MHz; Calibrated: 4/12/2019

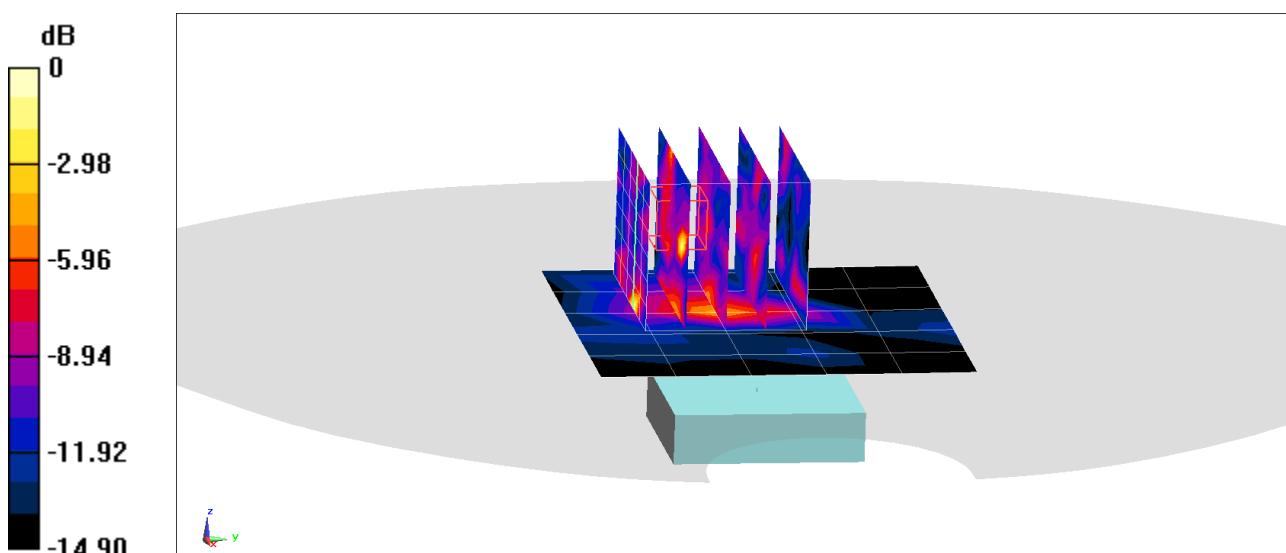
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: UMTS 850, Head SAR, Front side, Mid.ch,
Titanium, Sport Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.5120 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.00279 W/kg

SAR(1 g) = 0.00172 W/kg

0 dB = 0.00240 W/kg = -26.20 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Head Medium parameters used (interpolated):

$f = 1732.4$ MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 39.358$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN3837; ConvF(8.03, 8.03, 8.03) @ 1732.4 MHz; Calibrated: 1/28/2019

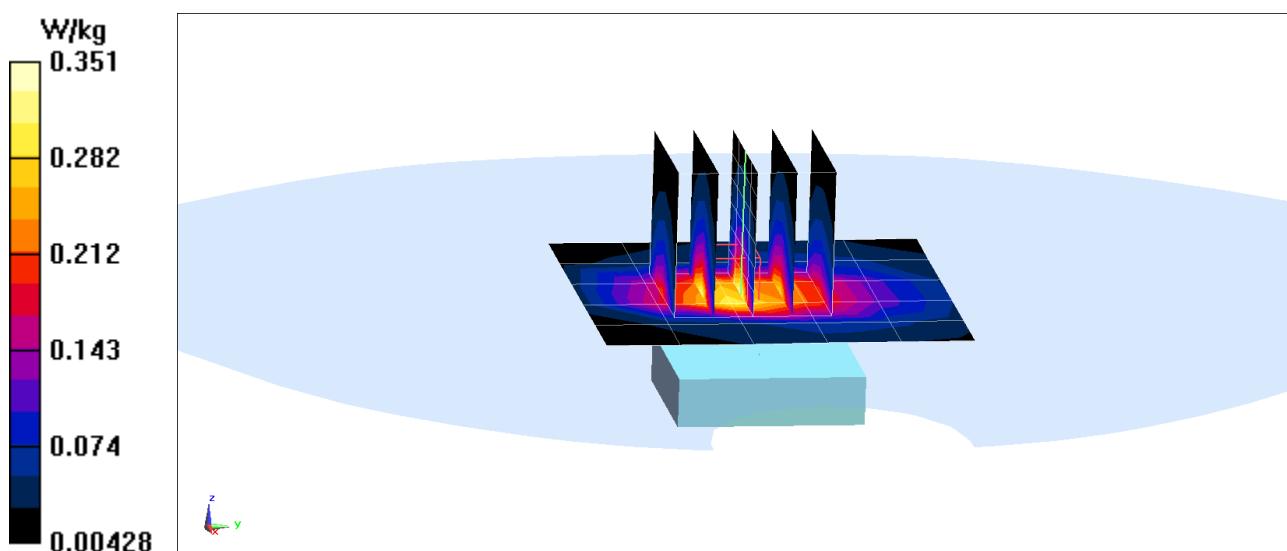
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: UMTS 1750, Head SAR, Front side, Mid.ch,
Aluminum, Metal Loop Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.08 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.253 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT024MW88

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Head Medium parameters used:

$f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.158$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN3837; ConvF(7.85, 7.85, 7.85) @ 1880 MHz; Calibrated: 1/28/2019

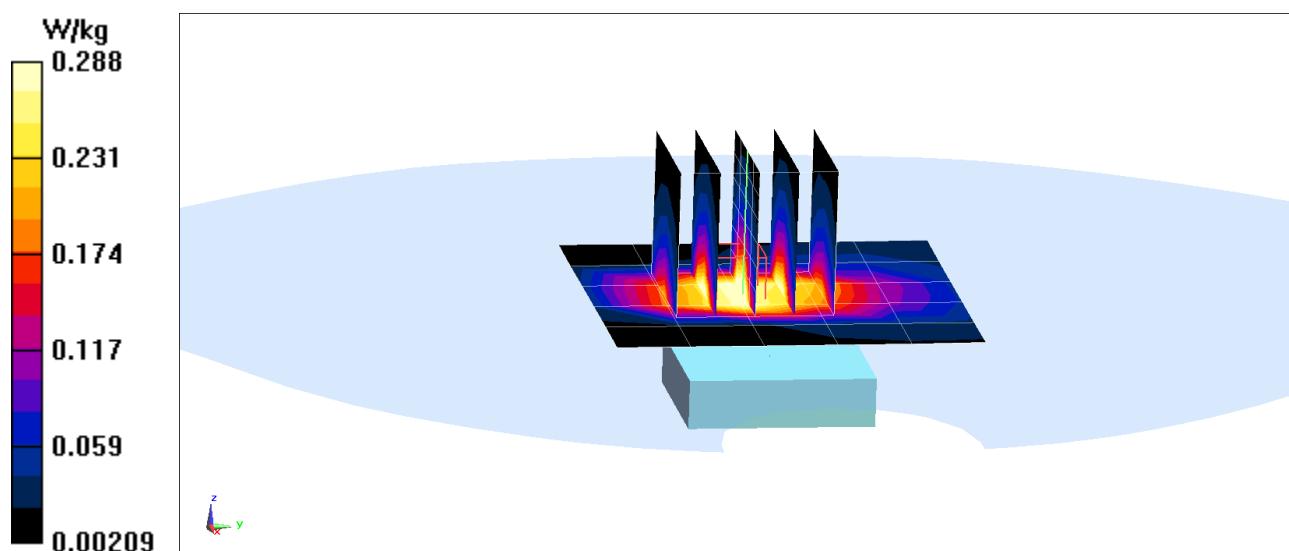
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: UMTS 1900, Head SAR, Front side, Mid.ch
Stainless Steel, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.89 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.471 W/kg

SAR(1 g) = 0.269 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT02AMW88

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1

Medium: 835 MHz Head Medium parameters used (interpolated):

$f = 831.5$ MHz; $\sigma = 0.879$ S/m; $\epsilon_r = 40.239$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 23.2°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7532; ConvF(10.45, 10.45, 10.45) @ 831.5 MHz; Calibrated: 4/12/2019

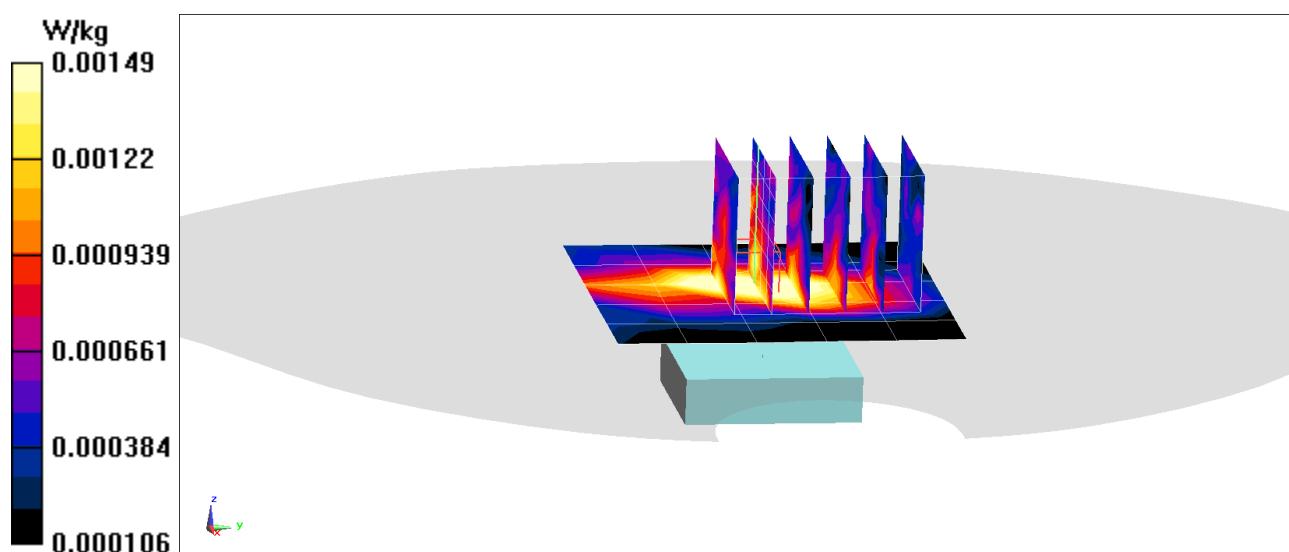
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 26 (Cell.), Head SAR, Front side, Mid.ch,
10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Stainless Steel, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.089 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.00162 W/kg

SAR(1 g) = 0.00121 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV01DMW8J

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: 835 MHz Head Medium parameters used (interpolated):

$f = 836.5$ MHz; $\sigma = 0.883$ S/m; $\epsilon_r = 40.171$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 23.2°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7532; ConvF(10.45, 10.45, 10.45) @ 836.5 MHz; Calibrated: 4/12/2019

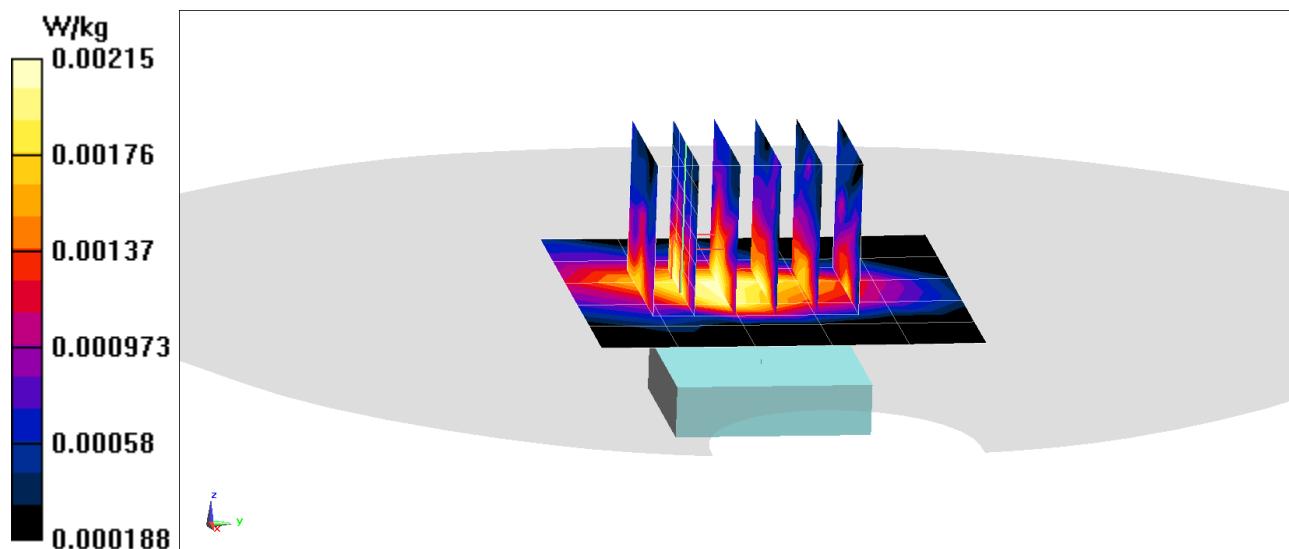
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 5 (Cell.), Head SAR, Front side, Mid.ch,
10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Ceramic, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.508 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.00246 W/kg

SAR(1 g) = 0.00187 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV01DMW8J

Communication System: UID 0, _LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Head Medium parameters used (interpolated):

$f = 1770$ MHz; $\sigma = 1.382$ S/m; $\epsilon_r = 39.317$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN3837; ConvF(8.03, 8.03, 8.03) @ 1770 MHz; Calibrated: 1/28/2019

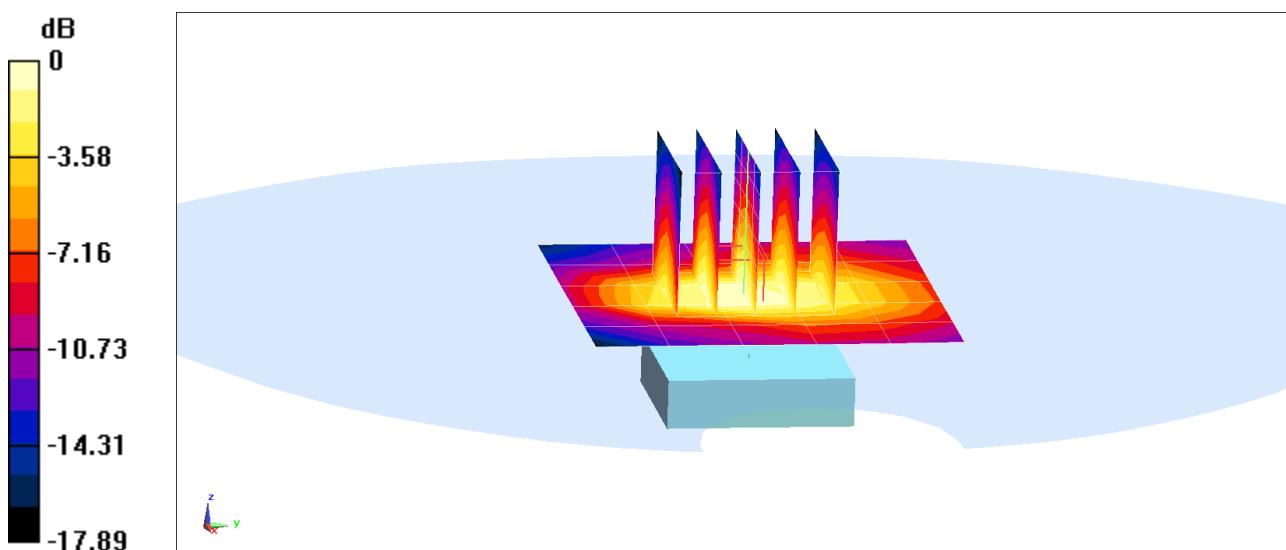
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 66 (AWS), Head SAR, Front side, High.ch,
20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Ceramic, Metal Loop Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.99 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.247 W/kg

0 dB = 0.344 W/kg = -4.63 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV00CMW8G

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Head Medium parameters used (interpolated):

$f = 1905$ MHz; $\sigma = 1.466$ S/m; $\epsilon_r = 40.036$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-16-2019; Ambient Temp: 22.6°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3837; ConvF(7.85, 7.85, 7.85) @ 1905 MHz; Calibrated: 1/28/2019

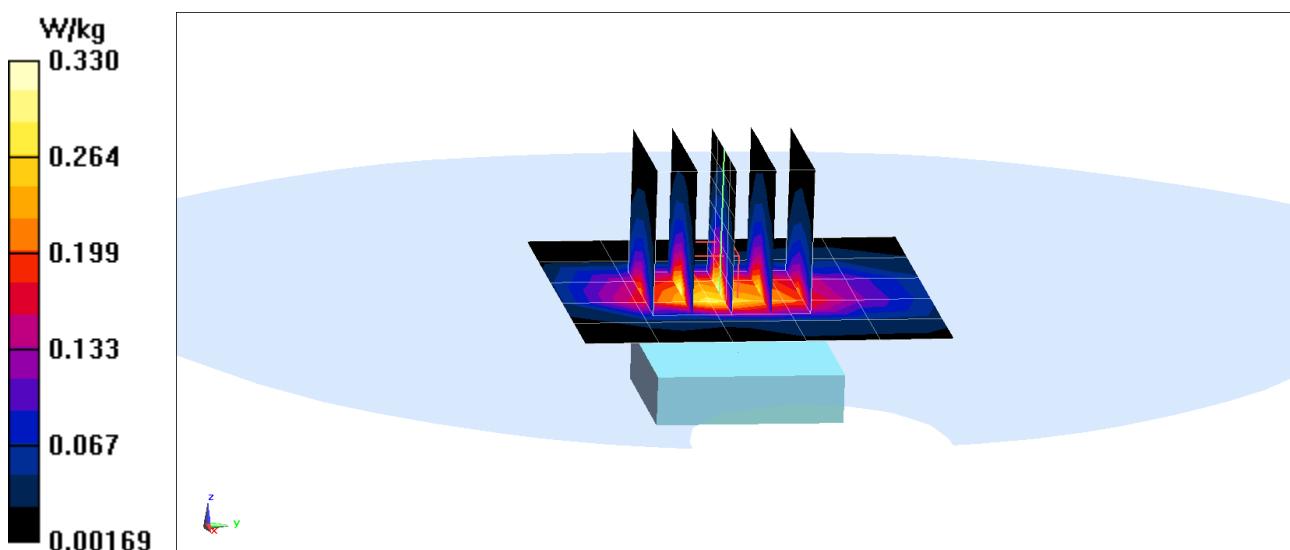
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 25 (PCS), Head SAR, Front side, High.ch,
20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Titanium, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.72 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.413 W/kg

SAR(1 g) = 0.236 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, _LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used (interpolated):

$f = 2510$ MHz; $\sigma = 1.942$ S/m; $\epsilon_r = 39.707$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-24-2019; Ambient Temp: 19.7°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3318; ConvF(4.59, 4.59, 4.59) @ 2510 MHz; Calibrated: 11/19/2018

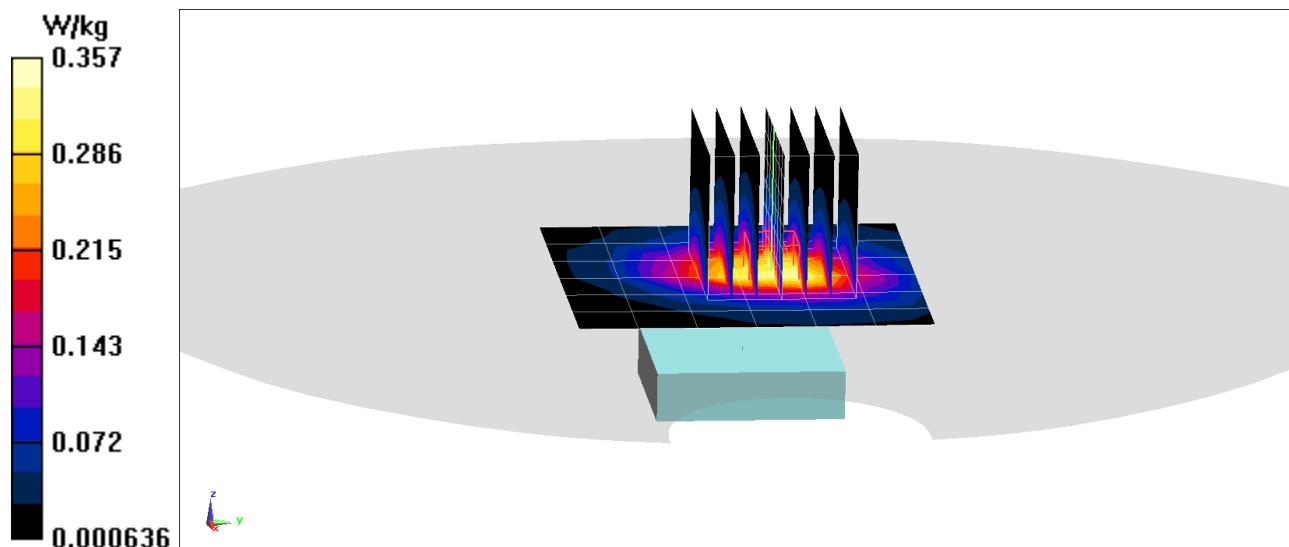
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/14/2018

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 7, Head SAR, Front side, Low.ch,
20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Aluminum, Sport Wristband**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.12 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.534 W/kg

SAR(1 g) = 0.284 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV019MW8J

Communication System: UID 0, _LTE Band 41; Frequency: 2506 MHz; Duty Cycle: 1:1.58

Medium: 2450 MHz Head Medium parameters used (interpolated):

$f = 2506$ MHz; $\sigma = 1.937$ S/m; $\epsilon_r = 39.724$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-24-2019; Ambient Temp: 19.7°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3318; ConvF(4.59, 4.59, 4.59) @ 2506 MHz; Calibrated: 11/19/2018

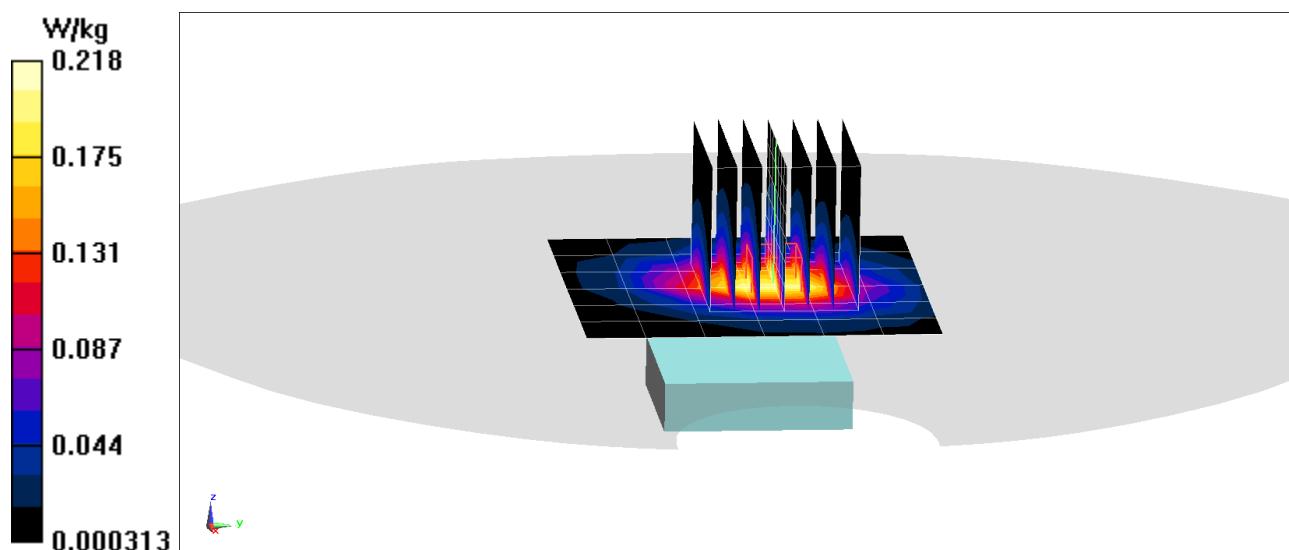
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/14/2018

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 41, Head SAR, Front side, Low.ch,
20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset
Ceramic, Sport Wristband**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.15 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.322 W/kg

SAR(1 g) = 0.174 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used (interpolated):

$f = 2462$ MHz; $\sigma = 1.815$ S/m; $\epsilon_r = 37.839$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2019; Ambient Temp: 22.9°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7490; ConvF(7.74, 7.74, 7.74) @ 2462 MHz; Calibrated: 1/24/2019

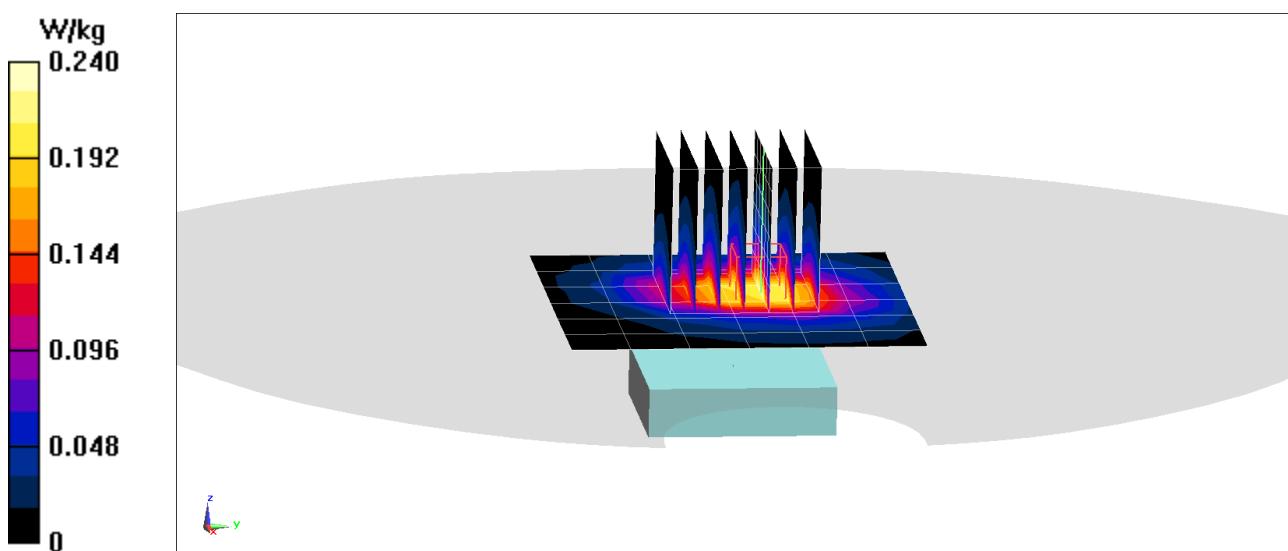
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1532; Calibrated: 1/15/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Head SAR, Ch 11, 1 Mbps, Front Side Aluminum, Sport Wristband


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.914 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.157 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used (interpolated):

$f = 2441$ MHz; $\sigma = 1.798$ S/m; $\epsilon_r = 37.875$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2019; Ambient Temp: 22.9°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7490; ConvF(7.74, 7.74, 7.74) @ 2441 MHz; Calibrated: 1/24/2019

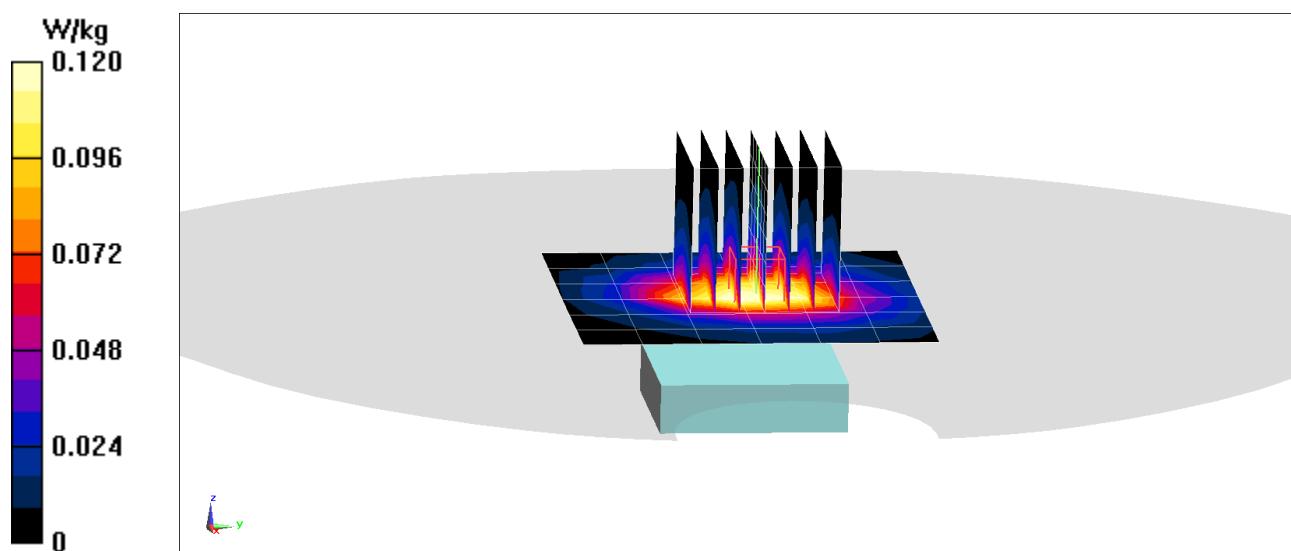
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1532; Calibrated: 1/15/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: Bluetooth, Head SAR, Ch 39, 1 Mbps, Front Side
Aluminum, Sport Wristband**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.058 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.080 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 MHz Body Medium parameters used (interpolated):

$f = 836.6$ MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 53.331$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-20-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7532; ConvF(10.14, 10.14, 10.14) @ 836.6 MHz; Calibrated: 4/12/2019

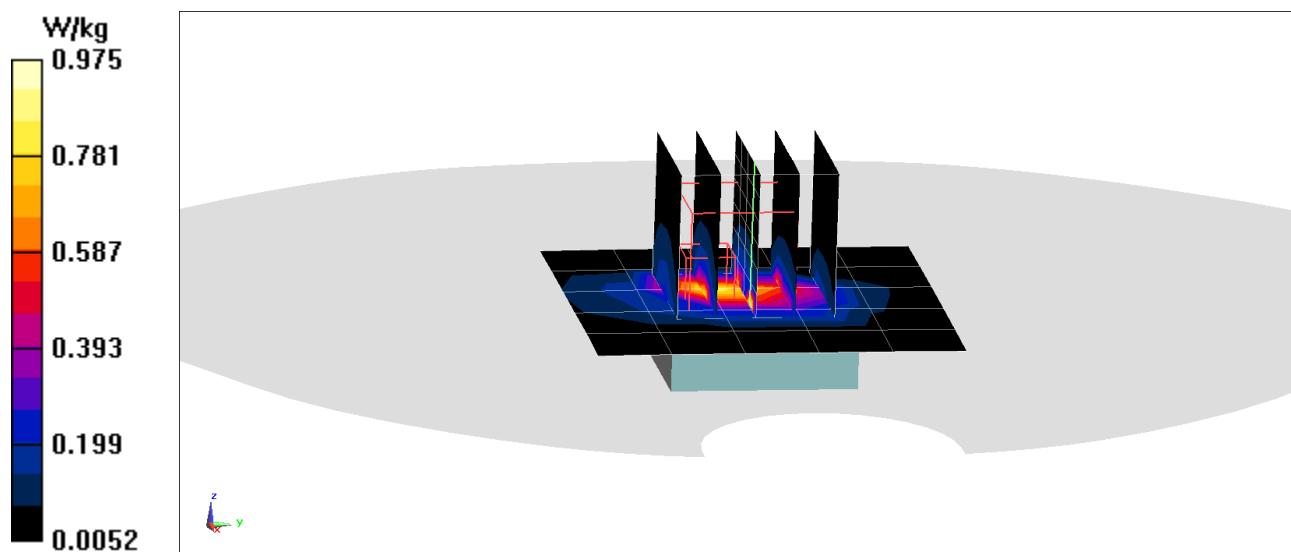
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: UMTS 850, Extremity SAR, Back side, Mid.ch
Aluminum, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.14 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(10 g) = 0.177 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT026MW7C

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Body Medium parameters used (interpolated):

$f = 1732.4$ MHz; $\sigma = 1.421$ S/m; $\epsilon_r = 52.54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7427; ConvF(8.14, 8.14, 8.14) @ 1732.4 MHz; Calibrated: 2/19/2019

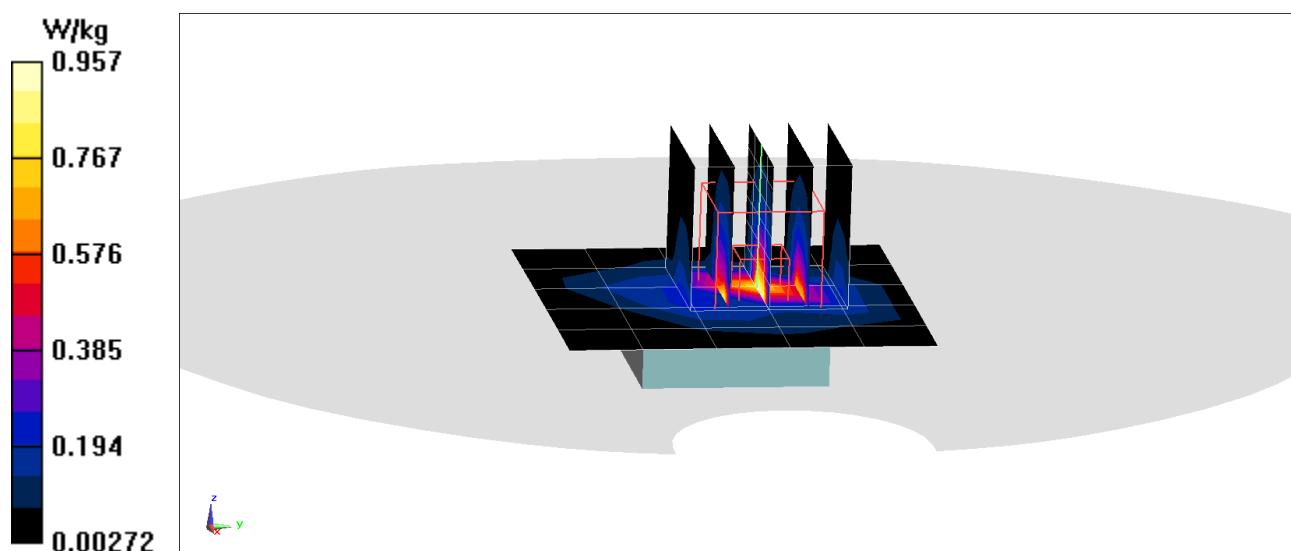
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2019

Phantom: SAM Sub; Type: QD 000 P40 CC; Serial: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: UMTS 1750, Extremity SAR, Back side, Mid.ch
Aluminum, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.34 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(10 g) = 0.314 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Body Medium parameters used:

$f = 1880$ MHz; $\sigma = 1.527$ S/m; $\epsilon_r = 51.651$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-20-2019; Ambient Temp: 21.6°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3837; ConvF(7.54, 7.54, 7.54) @ 1880 MHz; Calibrated: 1/28/2019

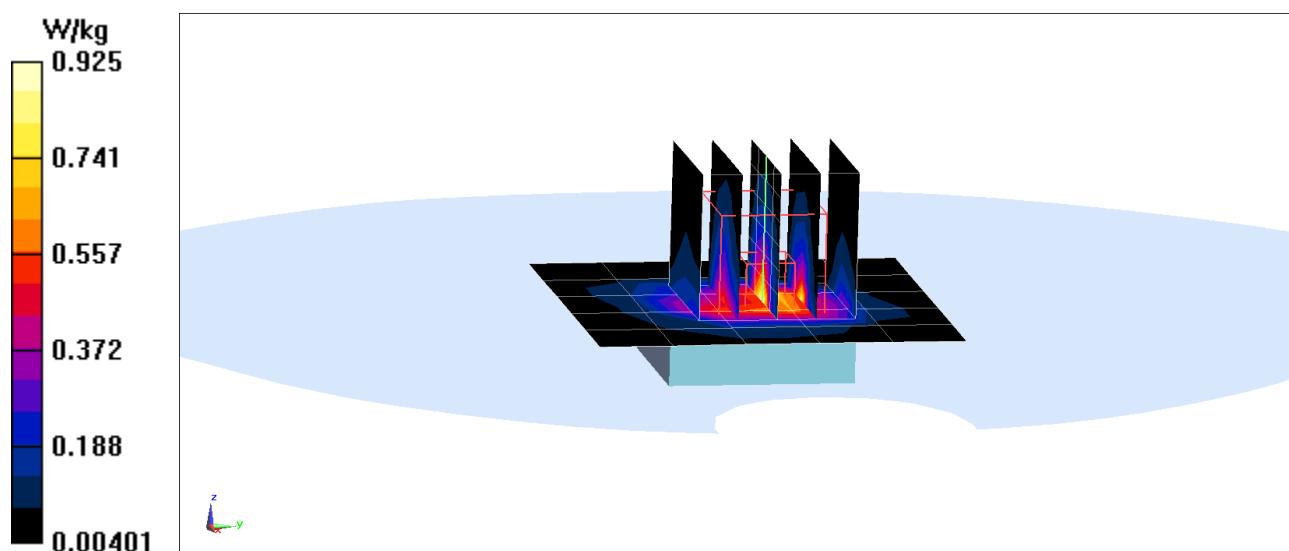
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: UMTS 1900, Extremity SAR, Back side, Mid.ch
Aluminum, Metal Loop Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.58 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(10 g) = 0.276 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1

Medium: 835 MHz Body Medium parameters used (interpolated):

$f = 831.5$ MHz; $\sigma = 0.986$ S/m; $\epsilon_r = 53.39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-20-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7532; ConvF(10.14, 10.14, 10.14) @ 831.5 MHz; Calibrated: 4/12/2019

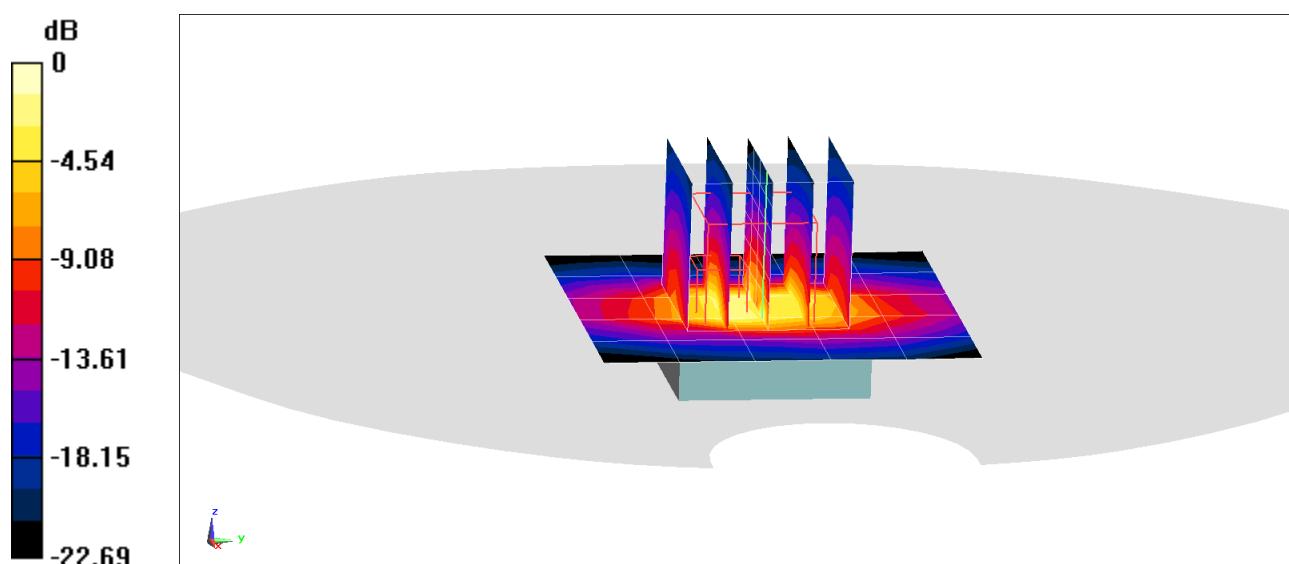
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 26 (Cell.), Extremity SAR, Back side, Mid.ch,
10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Aluminum, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.47 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(10 g) = 0.174 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV00CMW8G

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: 835 MHz Body Medium parameters used (interpolated):

$f = 836.5$ MHz; $\sigma = 0.943$ S/m; $\epsilon_r = 54.271$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7427; ConvF(10.18, 10.18, 10.18) @ 836.5 MHz; Calibrated: 2/19/2019

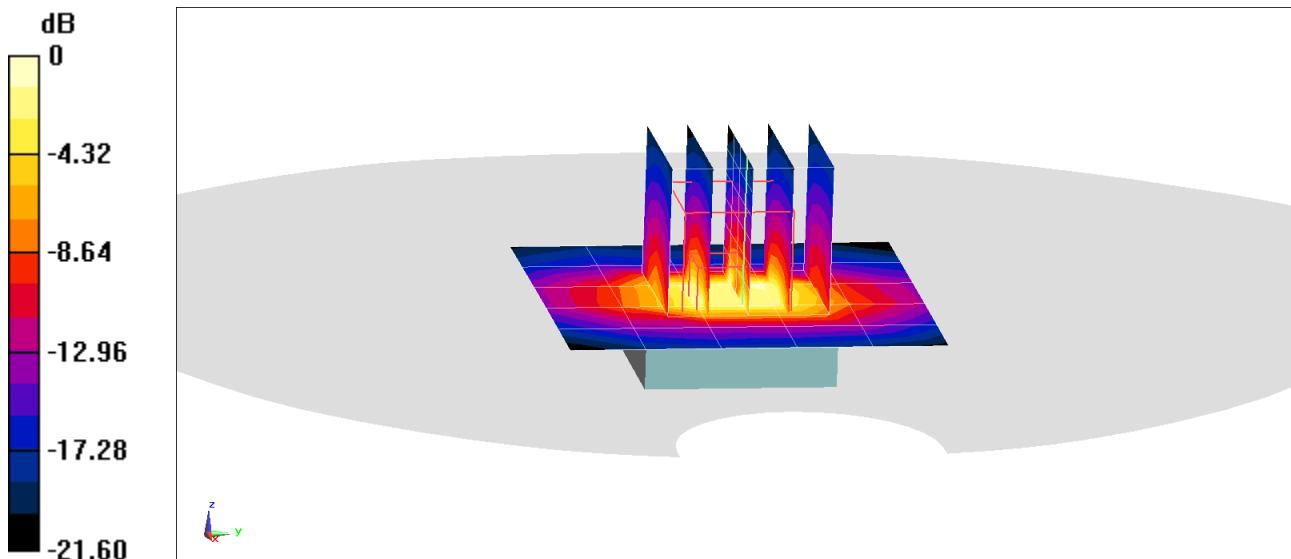
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2019

Phantom: SAM Sub; Type: QD 000 P40 CC; Serial: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 5 (Cell.), Extremity SAR, Back side, Mid.ch,
10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Titanium, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.53 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(10 g) = 0.146 W/kg

0 dB = 0.779 W/kg = -1.08 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YV01AMW8J

Communication System: UID 0, _LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Body Medium parameters used (interpolated):

$f = 1770$ MHz; $\sigma = 1.442$ S/m; $\epsilon_r = 52.362$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN3837; ConvF(7.72, 7.72, 7.72) @ 1770 MHz; Calibrated: 1/28/2019

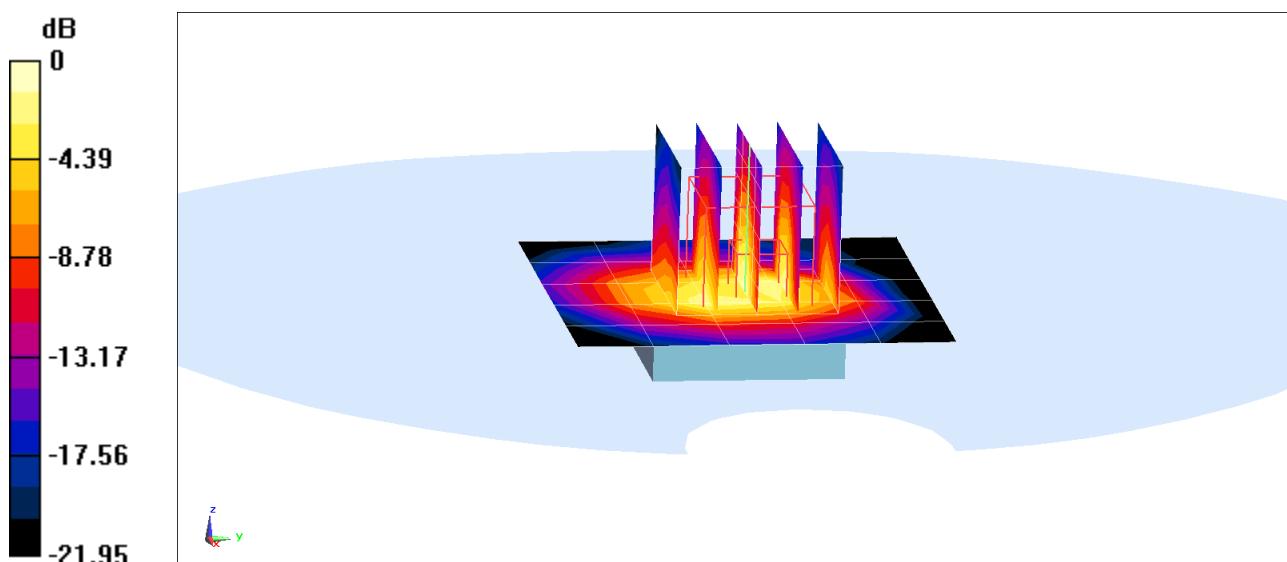
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 66 (AWS), Extremity SAR, Back side, High.ch,
20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Ceramic, Metal Loop Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.49 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(10 g) = 0.276 W/kg

0 dB = 0.954 W/kg = -0.20 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Body Medium parameters used (interpolated):

$f = 1905$ MHz; $\sigma = 1.537$ S/m; $\epsilon_r = 52.155$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN3837; ConvF(7.54, 7.54, 7.54) @ 1905 MHz; Calibrated: 1/28/2019

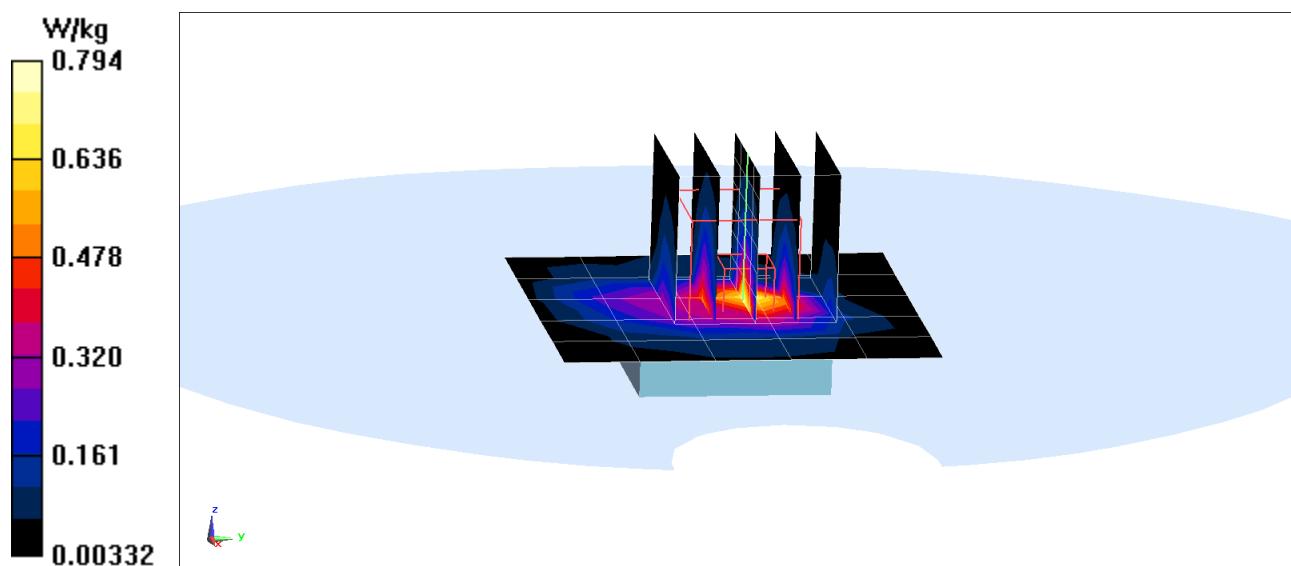
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 25 (PCS), Extremity SAR, Back side, High.ch,
20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Aluminum, Metal Links Wristband**


Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.14 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.985 W/kg

SAR(10 g) = 0.249 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT028MW7C

Communication System: UID 0, _LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Body Medium parameters used (interpolated):

$f = 2510$ MHz; $\sigma = 2.127$ S/m; $\epsilon_r = 51.497$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7532; ConvF(7.66, 7.66, 7.66) @ 2510 MHz; Calibrated: 4/12/2019

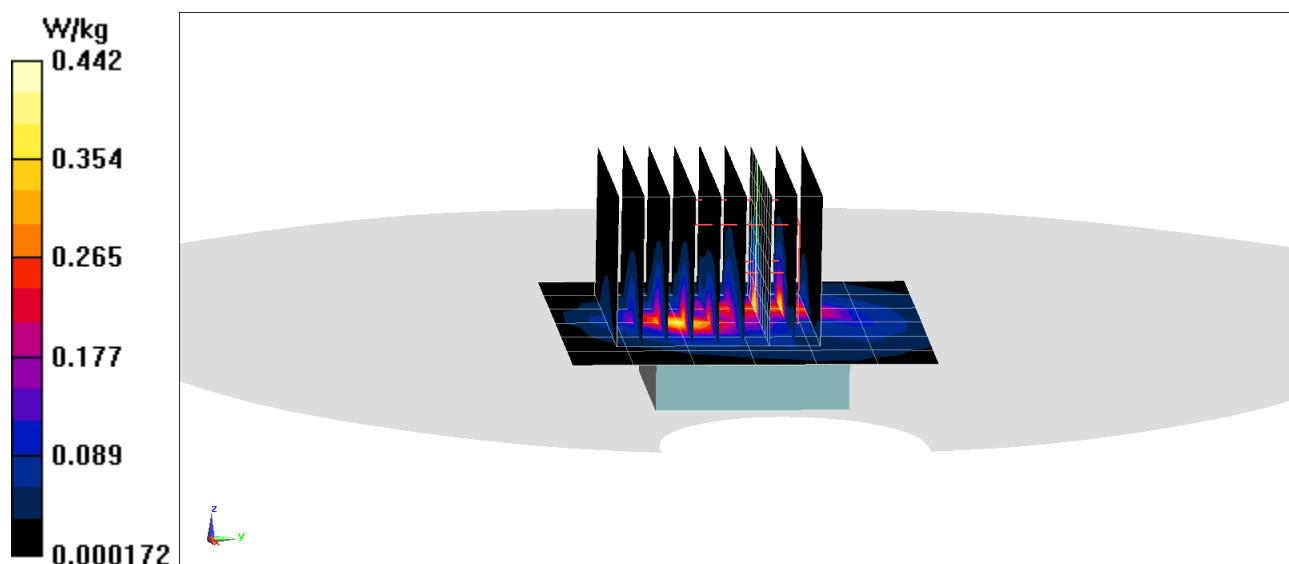
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 7, Extremity SAR, Back side, Low.ch,
20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset
Aluminum, Sport Wristband**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (10x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.13 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 0.666 W/kg

SAR(10 g) = 0.091 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT02AMW7C

Communication System: UID 0, _LTE Band 41; Frequency: 2506 MHz; Duty Cycle: 1:1.58

Medium: 2450 MHz Body Medium parameters used (interpolated):

$f = 2506$ MHz; $\sigma = 2.121$ S/m; $\epsilon_r = 51.511$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7532; ConvF(7.66, 7.66, 7.66) @ 2506 MHz; Calibrated: 4/12/2019

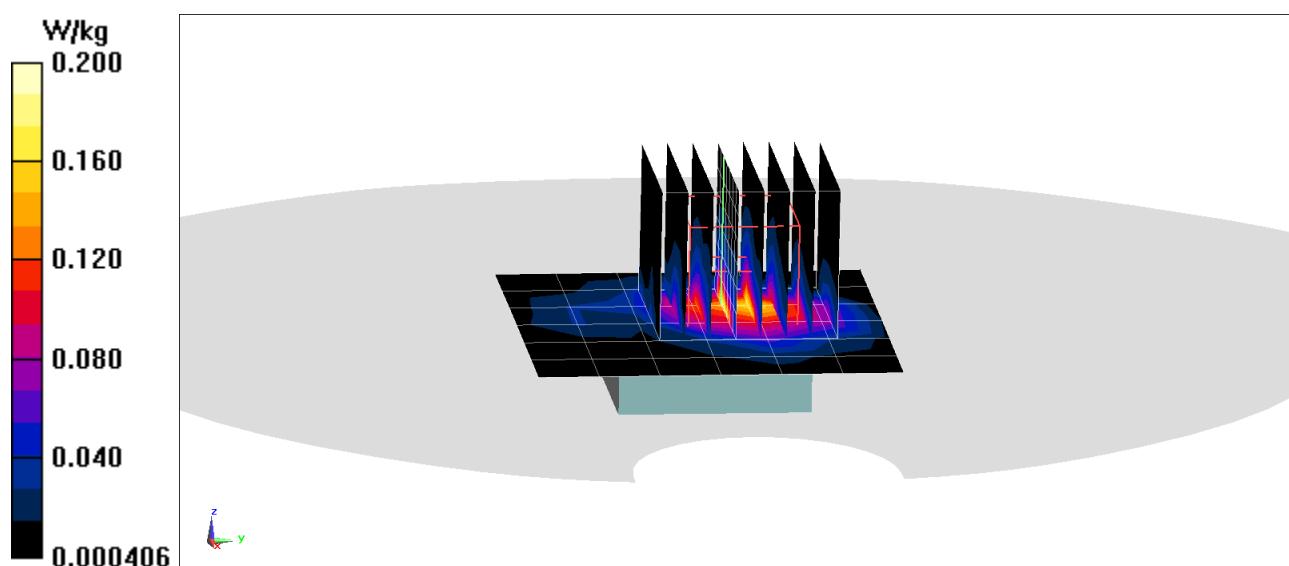
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: LTE Band 41, Extremity SAR, Back side, Low.ch,
20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset
Aluminum, Metal Loop Wristband**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.618 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(10 g) = 0.050 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT026MW7C

Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Body Medium parameters used (interpolated):

$f = 2462$ MHz; $\sigma = 2.058$ S/m; $\epsilon_r = 51.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7532; ConvF(7.66, 7.66, 7.66) @ 2462 MHz; Calibrated: 4/12/2019

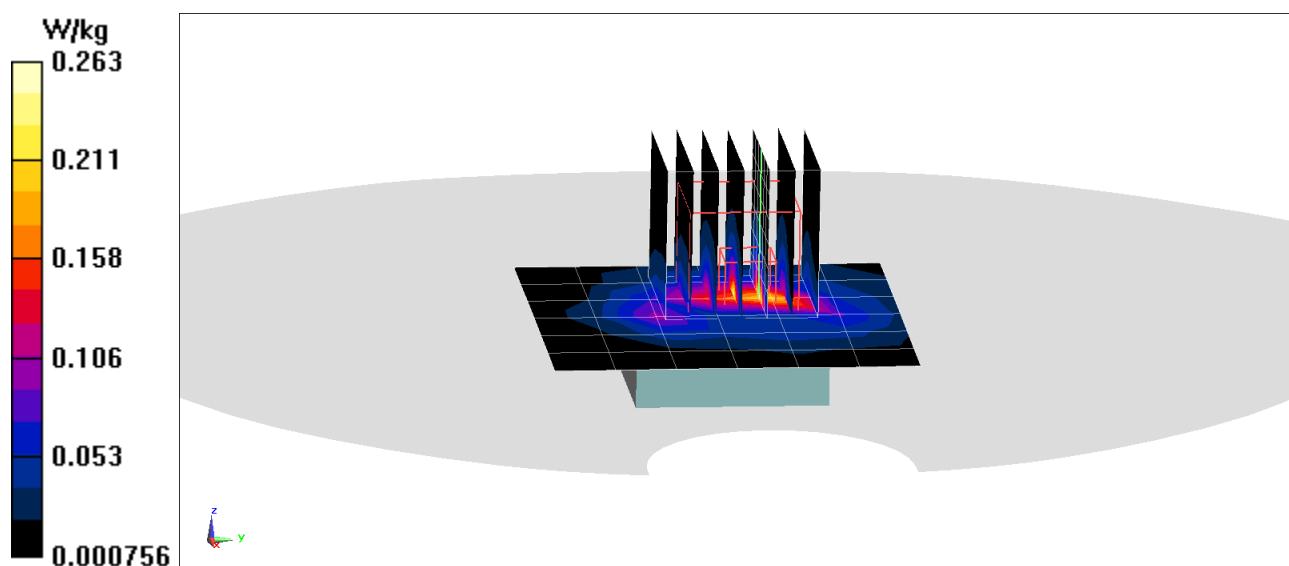
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Extremity SAR, Ch 11, 1 Mbps, Back Side Aluminum, Sport Wristband


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.217 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.377 W/kg

SAR(10 g) = 0.050 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A2156; Type: Watch; Serial: D92YT02DMW88

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Body Medium parameters used (interpolated):

$f = 2441$ MHz; $\sigma = 2.028$ S/m; $\epsilon_r = 51.763$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7532; ConvF(7.66, 7.66, 7.66) @ 2441 MHz; Calibrated: 4/12/2019

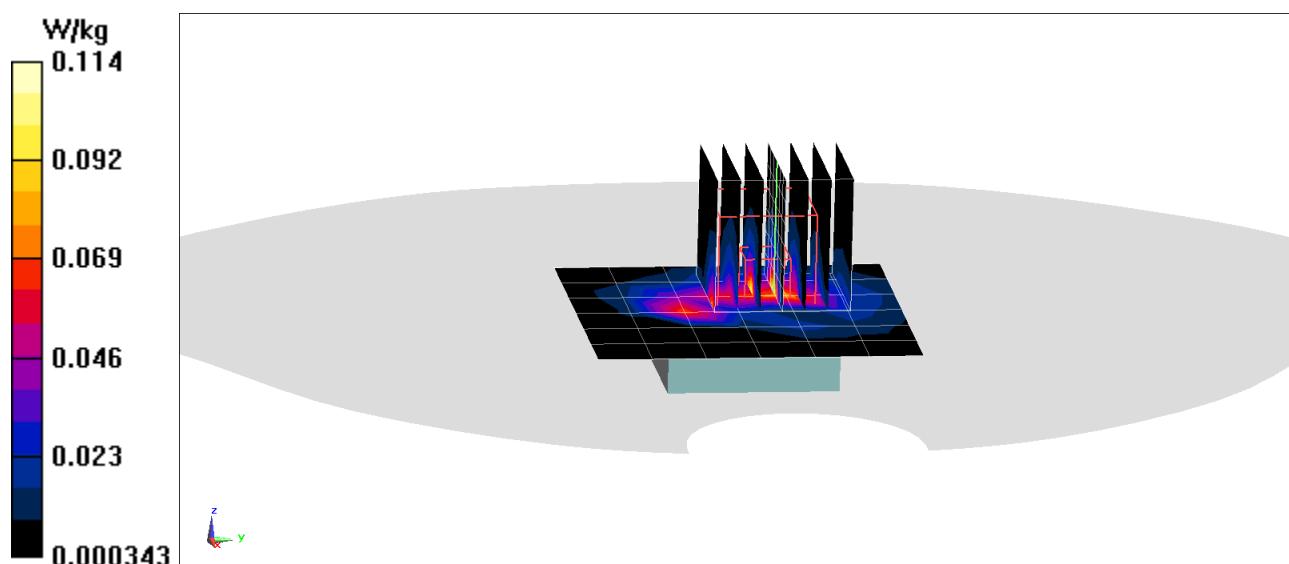
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

**Mode: Bluetooth, Extremity SAR, Ch 39, 1 Mbps, Back Side
Stainless Steel, Sport Wristband**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.166 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(10 g) = 0.022 W/kg

APPENDIX B: SYSTEM VERIFICATION

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d180

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 MHz Head Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.906 \text{ S/m}$; $\epsilon_r = 41.499$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-15-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7532; ConvF(10.45, 10.45, 10.45) @ 835 MHz; Calibrated: 4/12/2019

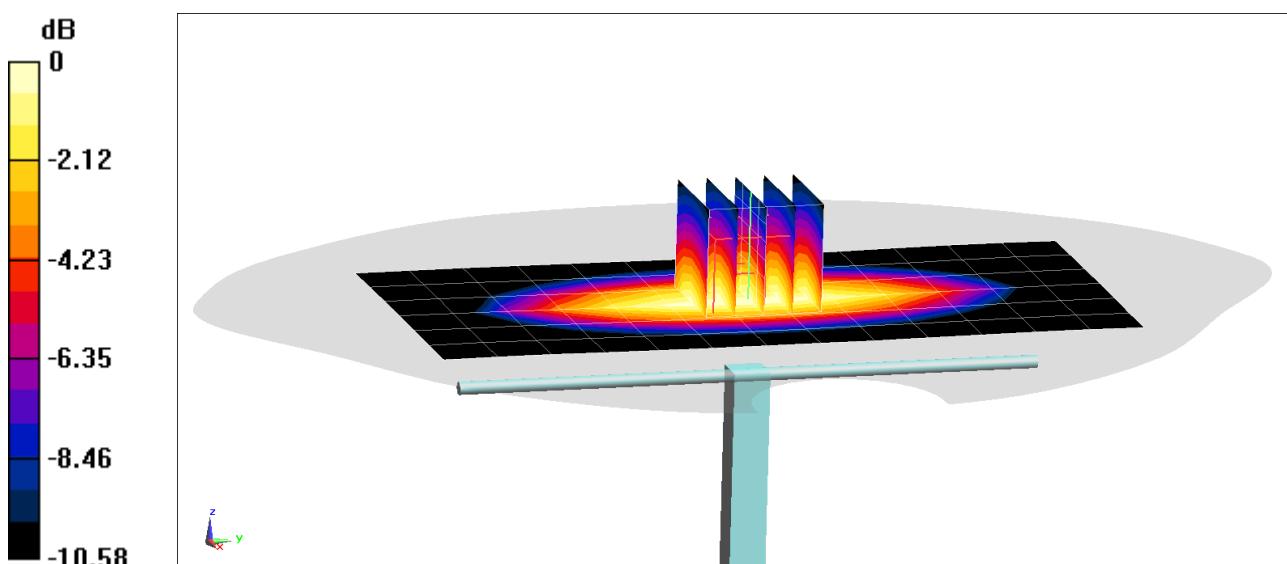
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 2.73 W/kg

SAR(1 g) = 1.87 W/kg

Deviation(1 g) = -2.60%;

0 dB = 2.46 W/kg = 3.91 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d180

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 MHz Head Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.882 \text{ S/m}$; $\epsilon_r = 40.191$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-18-2019; Ambient Temp: 23.2°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7532; ConvF(10.45, 10.45, 10.45) @ 835 MHz; Calibrated: 4/12/2019

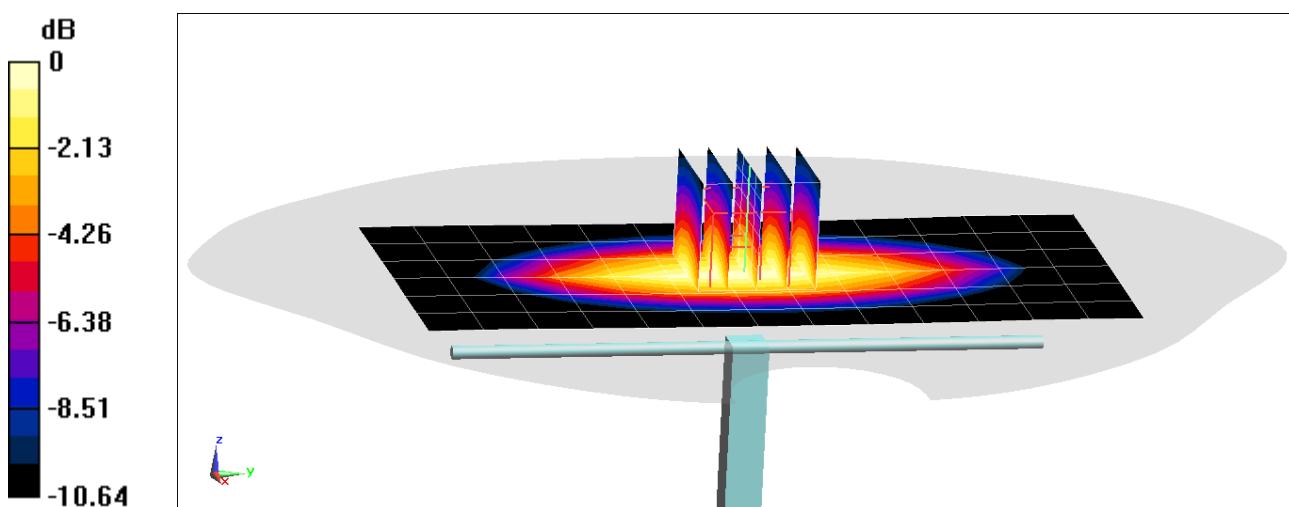
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 2.82 W/kg

SAR(1 g) = 1.87 W/kg

Deviation(1 g) = -2.60%

0 dB = 2.50 W/kg = 3.98 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1104

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Head Medium parameters used:

$f = 1750$ MHz; $\sigma = 1.371$ S/m; $\epsilon_r = 39.339$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN3837; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/28/2019

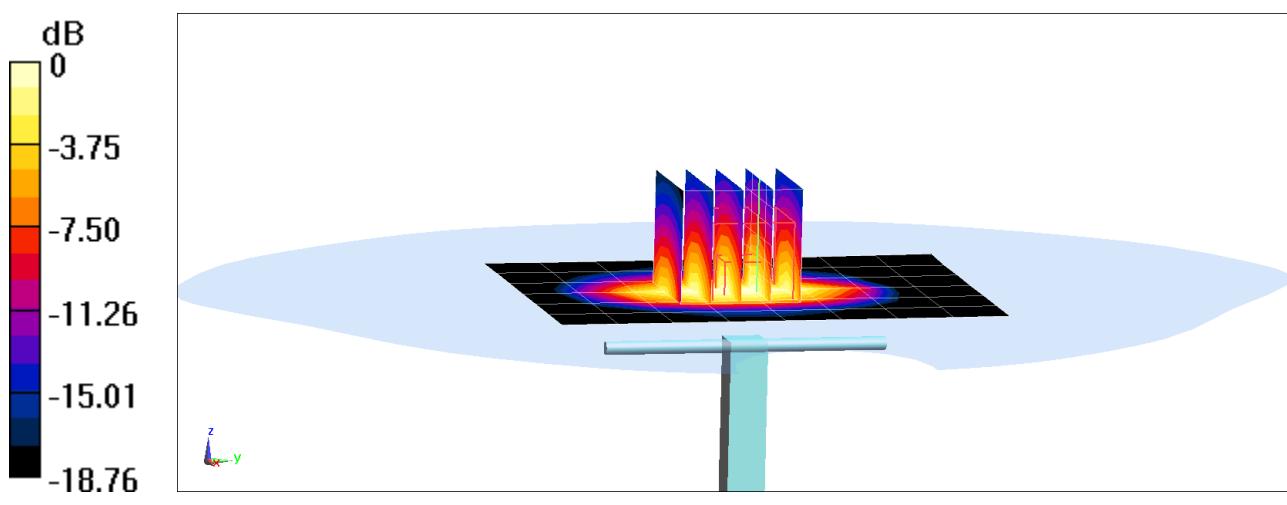
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.24 W/kg

SAR(1 g) = 3.77 W/kg

Deviation(1 g) = 3.57%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d026

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Head Medium parameters used (interpolated):

$f = 1900$ MHz; $\sigma = 1.463$ S/m; $\epsilon_r = 40.044$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-16-2019; Ambient Temp: 22.6°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3837; ConvF(7.85, 7.85, 7.85) @ 1900 MHz; Calibrated: 1/28/2019

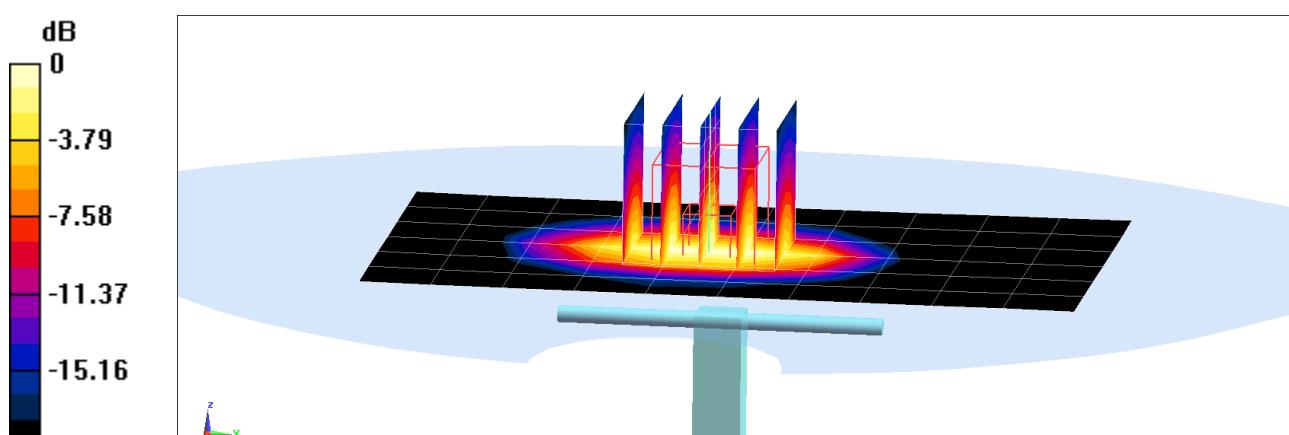
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.82 W/kg

SAR(1 g) = 3.98 W/kg

Deviation(1 g) = -1.00%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d026

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Head Medium parameters used (interpolated):

$f = 1900$ MHz; $\sigma = 1.463$ S/m; $\epsilon_r = 39.127$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN3837; ConvF(7.85, 7.85, 7.85) @ 1900 MHz; Calibrated: 1/28/2019

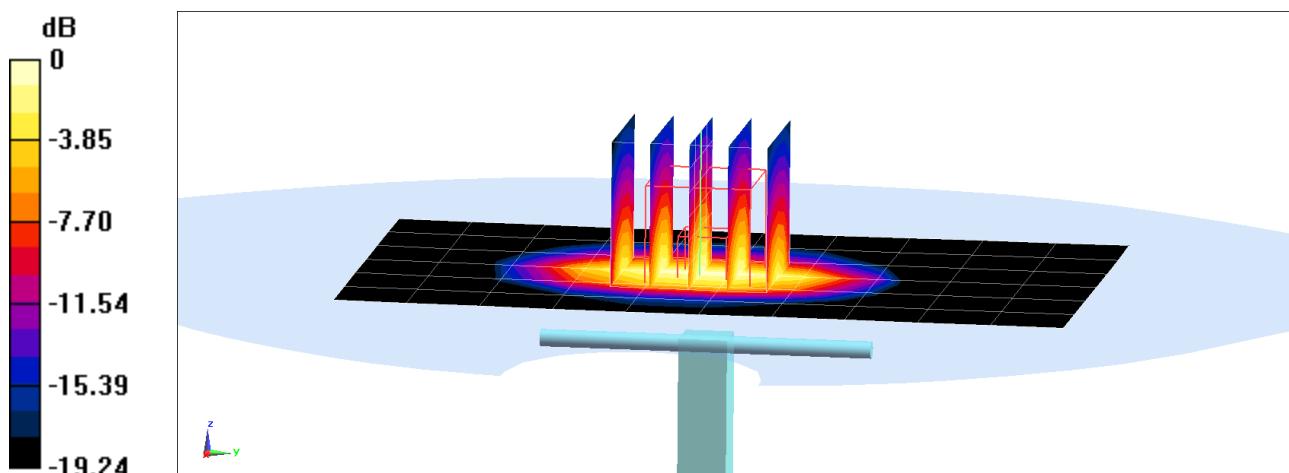
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.96 W/kg

SAR(1 g) = 4.09 W/kg

Deviation(1 g) = 1.74%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 750

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.805$ S/m; $\epsilon_r = 37.862$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2019; Ambient Temp: 22.9°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7490; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 1/24/2019

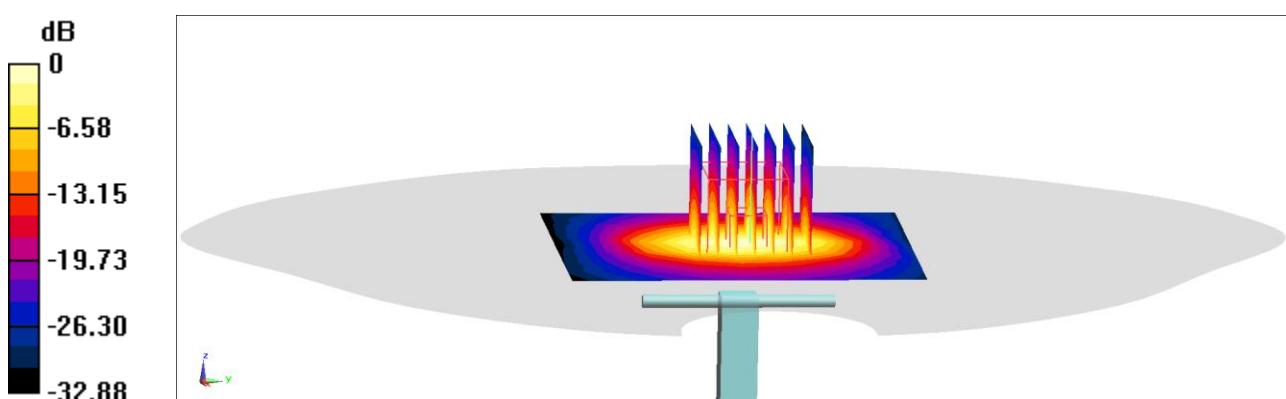
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1532; Calibrated: 1/15/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.3 W/kg

SAR(1 g) = 5.42 W/kg

Deviation(1 g) = 2.07%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.874$ S/m; $\epsilon_r = 39.955$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-24-2019; Ambient Temp: 19.7°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3318; ConvF(4.59, 4.59, 4.59) @ 2450 MHz; Calibrated: 11/19/2018

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/14/2018

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.6 W/kg

SAR(1 g) = 5.48 W/kg

Deviation(1 g) = 3.20%;

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1042

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used:

$f = 2600$ MHz; $\sigma = 1.924$ S/m; $\epsilon_r = 37.593$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2019; Ambient Temp: 22.9°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7490; ConvF(7.48, 7.48, 7.48) @ 2600 MHz; Calibrated: 1/24/2019

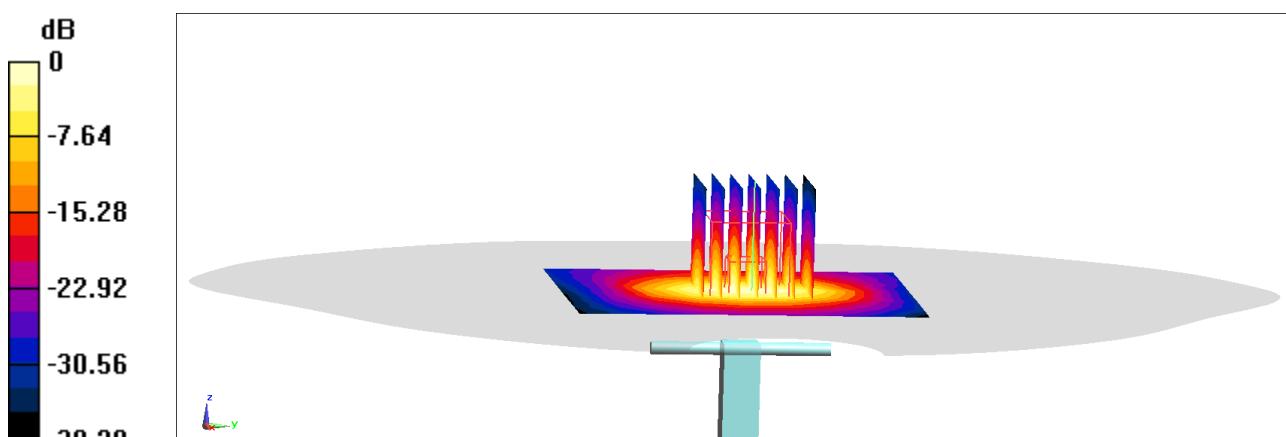
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1532; Calibrated: 1/15/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.3 W/kg

SAR(1 g) = 5.75 W/kg

Deviation(1 g) = -0.35%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Head Medium parameters used:

$f = 2600$ MHz; $\sigma = 2.05$ S/m; $\epsilon_r = 39.329$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-24-2019; Ambient Temp: 19.7°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3318; ConvF(4.47, 4.47, 4.47) @ 2600 MHz; Calibrated: 11/19/2018

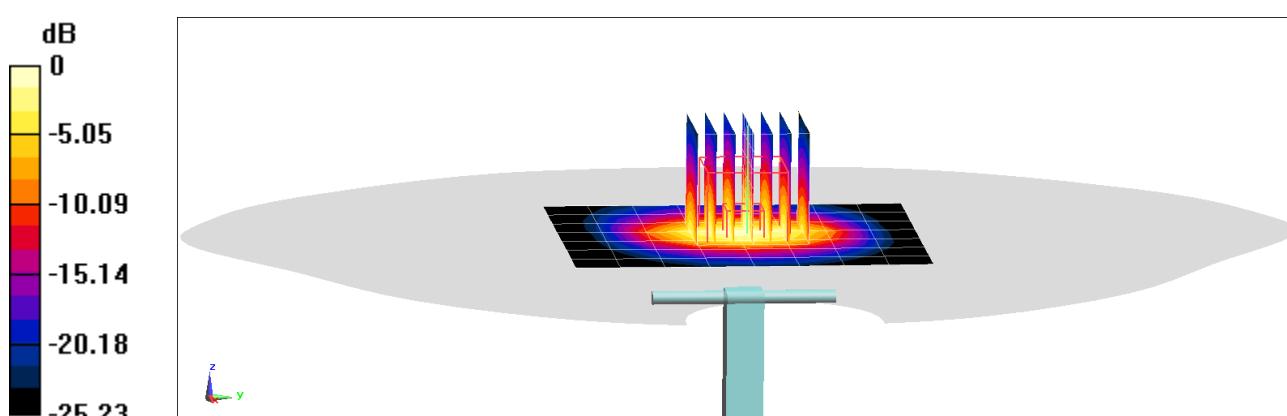
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 8/14/2018

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1936

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.3 W/kg

SAR(1 g) = 5.39 W/kg

Deviation(1 g) = -5.27%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d180

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 MHz Body Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.99 \text{ S/m}$; $\epsilon_r = 53.349$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-20-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7532; ConvF(10.14, 10.14, 10.14) @ 835 MHz; Calibrated: 4/12/2019

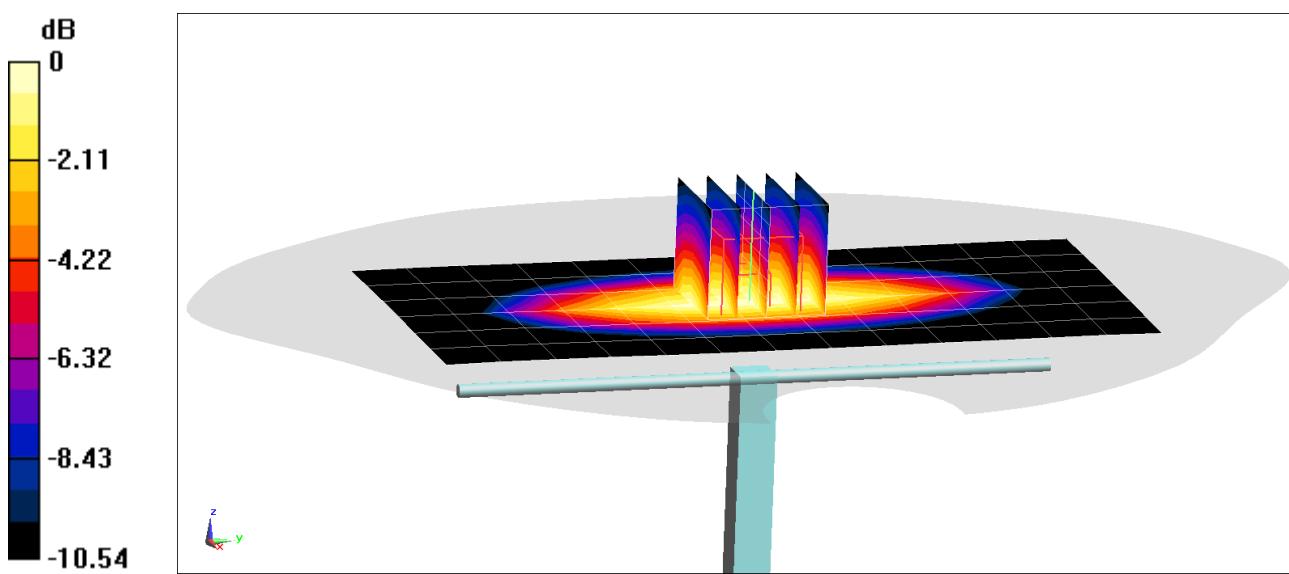
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 3.07 W/kg

SAR(10 g) = 1.34 W/kg

Deviation(10 g) = 6.18%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d040

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 MHz Body Medium parameters used:

$f = 835 \text{ MHz}$; $\sigma = 0.942 \text{ S/m}$; $\epsilon_r = 54.276$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-22-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7427; ConvF(10.18, 10.18, 10.18) @ 835 MHz; Calibrated: 2/19/2019

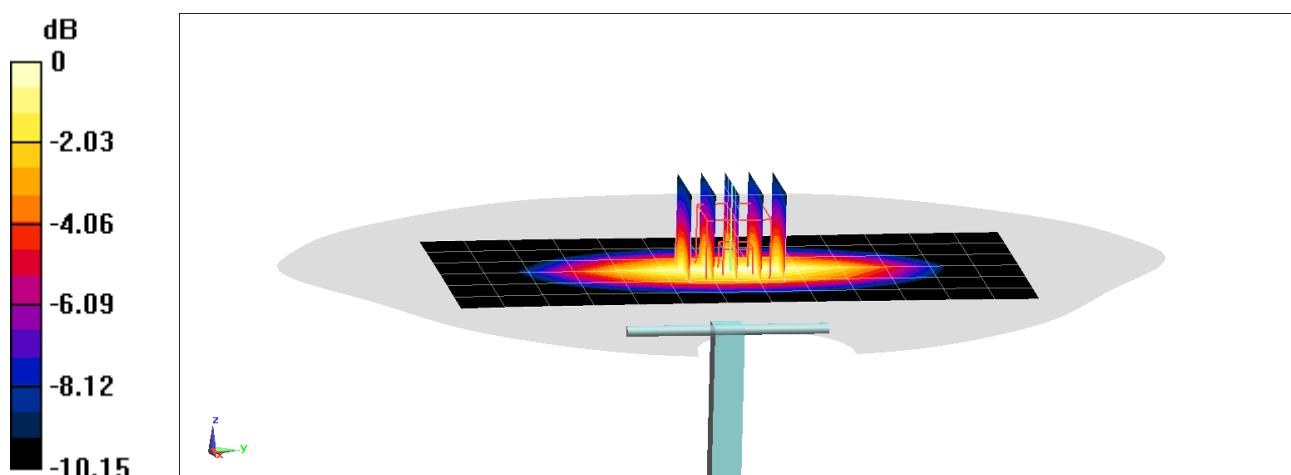
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2019

Phantom: SAM Sub; Type: QD 000 P40 CC; Serial: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 2.78 W/kg

SAR(10 g) = 1.24 W/kg

Deviation(10 g) = -0.64%

0 dB = 2.46 W/kg = 3.91 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1083

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Body Medium parameters used:

$f = 1750$ MHz; $\sigma = 1.433$ S/m; $\epsilon_r = 52.529$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7427; ConvF(8.14, 8.14, 8.14) @ 1750 MHz; Calibrated: 2/19/2019

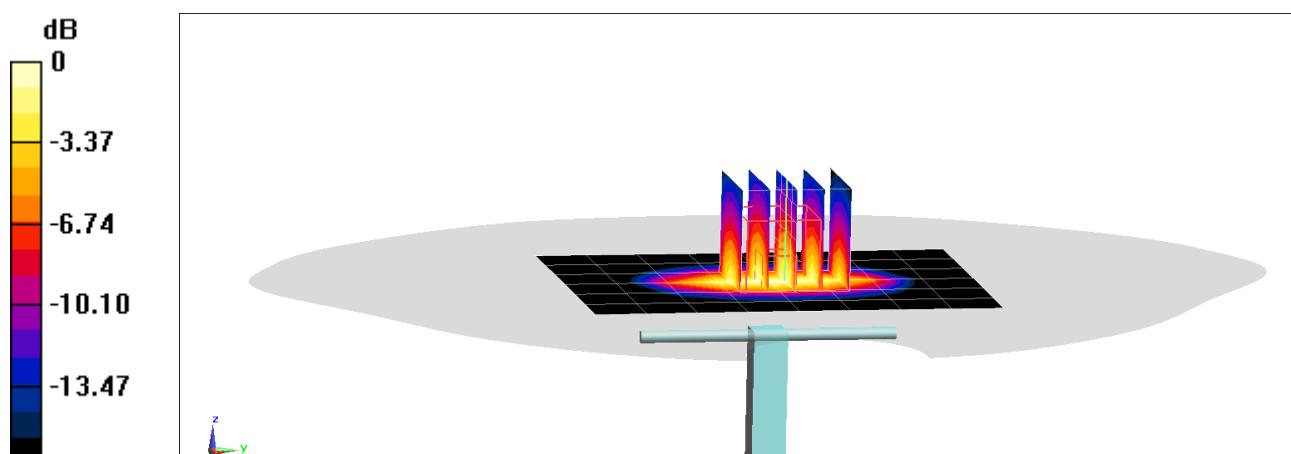
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 2/13/2019

Phantom: SAM Sub; Type: QD 000 P40 CC; Serial: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.29 W/kg

SAR(10 g) = 1.92 W/kg

Deviation(10 g) = -2.54%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1104

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1750 MHz Body Medium parameters used:

$f = 1750 \text{ MHz}$; $\sigma = 1.429 \text{ S/m}$; $\epsilon_r = 52.387$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN3837; ConvF(7.72, 7.72, 7.72) @ 1750 MHz; Calibrated: 1/28/2019

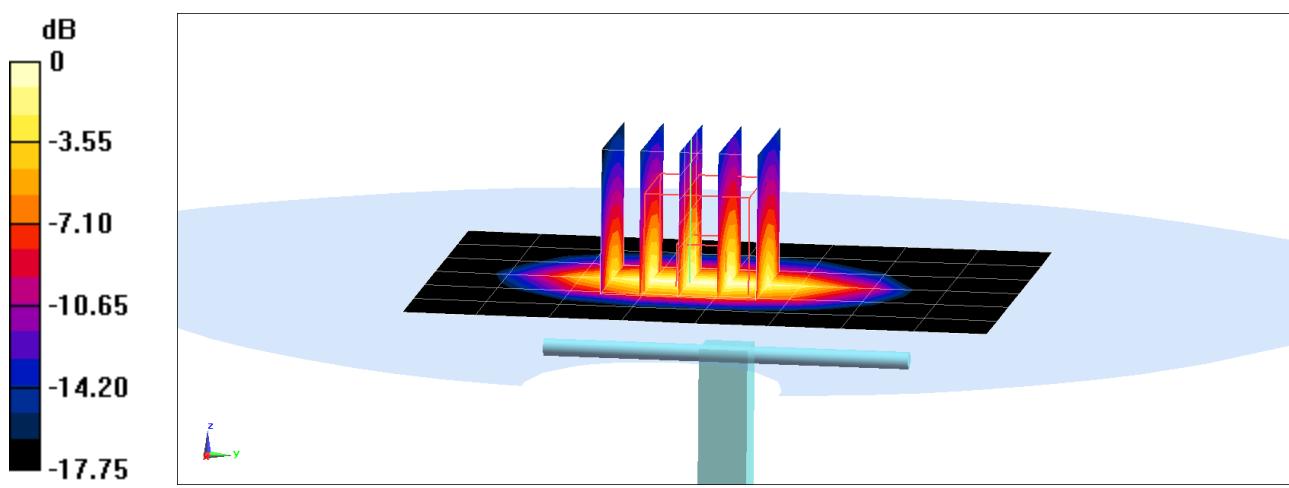
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 6.94 W/kg

SAR(10 g) = 1.92 W/kg

Deviation(10 g) = -2.04%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d181

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Body Medium parameters used (interpolated):

$f = 1900 \text{ MHz}$; $\sigma = 1.54 \text{ S/m}$; $\epsilon_r = 51.63$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2019; Ambient Temp: 21.6°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3837; ConvF(7.54, 7.54, 7.54) @ 1900 MHz; Calibrated: 1/28/2019

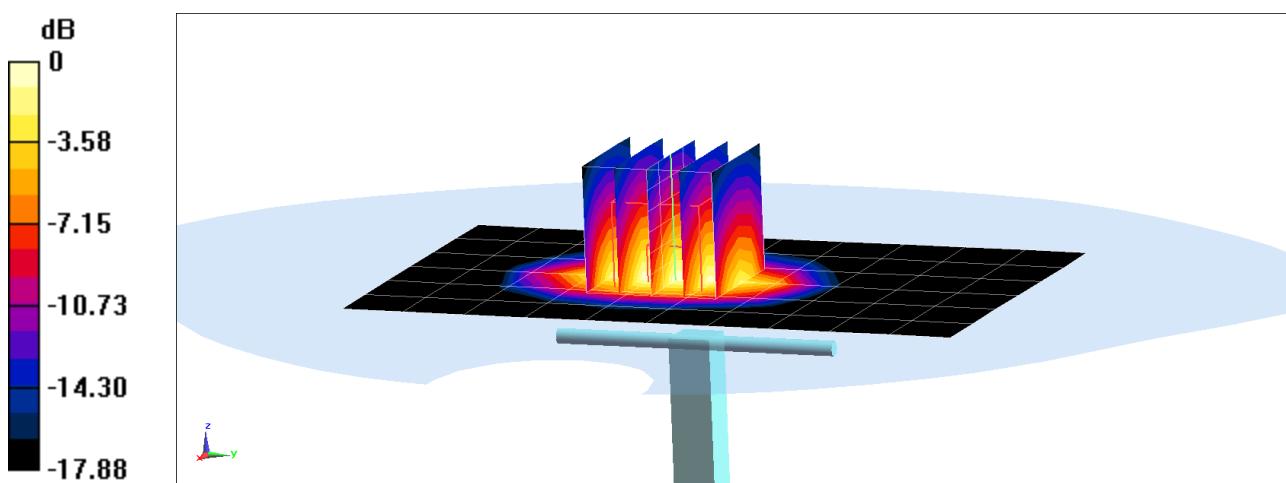
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 7.08 W/kg

SAR(10 g) = 1.96 W/kg

Deviation(10 g) = -6.22%

0 dB = 5.58 W/kg = 7.47 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d026

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz Body Medium parameters used (interpolated):

$f = 1900$ MHz; $\sigma = 1.533$ S/m; $\epsilon_r = 52.159$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN3837; ConvF(7.54, 7.54, 7.54) @ 1900 MHz; Calibrated: 1/28/2019

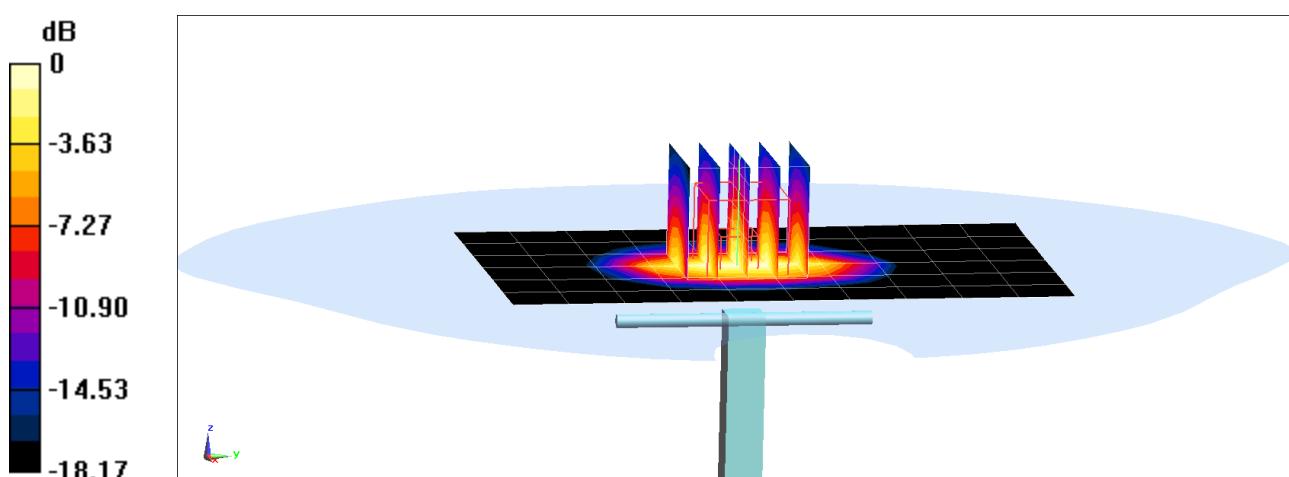
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn793; Calibrated: 1/15/2019

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.48 W/kg

SAR(10 g) = 2.06 W/kg

Deviation(10 g) = -2.83%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.729$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7532; ConvF(7.66, 7.66, 7.66) @ 2450 MHz; Calibrated: 4/12/2019

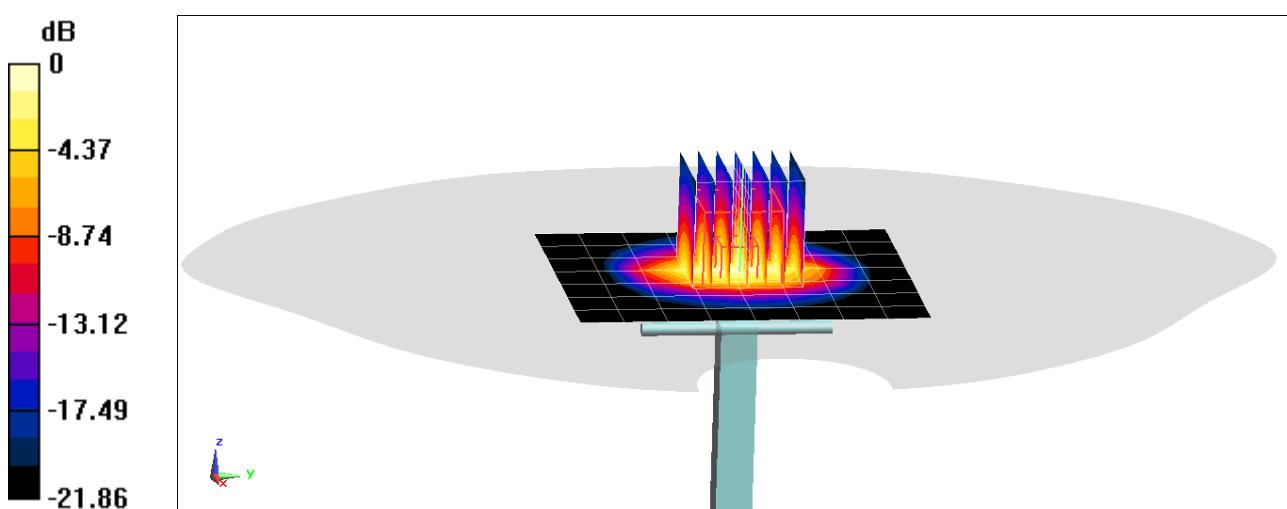
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.0 W/kg

SAR(10 g) = 2.48 W/kg

Deviation(10 g) = 4.20%

0 dB = 8.96 W/kg = 9.52 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2450 MHz Body Medium parameters used:

$f = 2600$ MHz; $\sigma = 2.257$ S/m; $\epsilon_r = 51.142$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2019; Ambient Temp: 21.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7532; ConvF(7.47, 7.47, 7.47) @ 2600 MHz; Calibrated: 4/12/2019

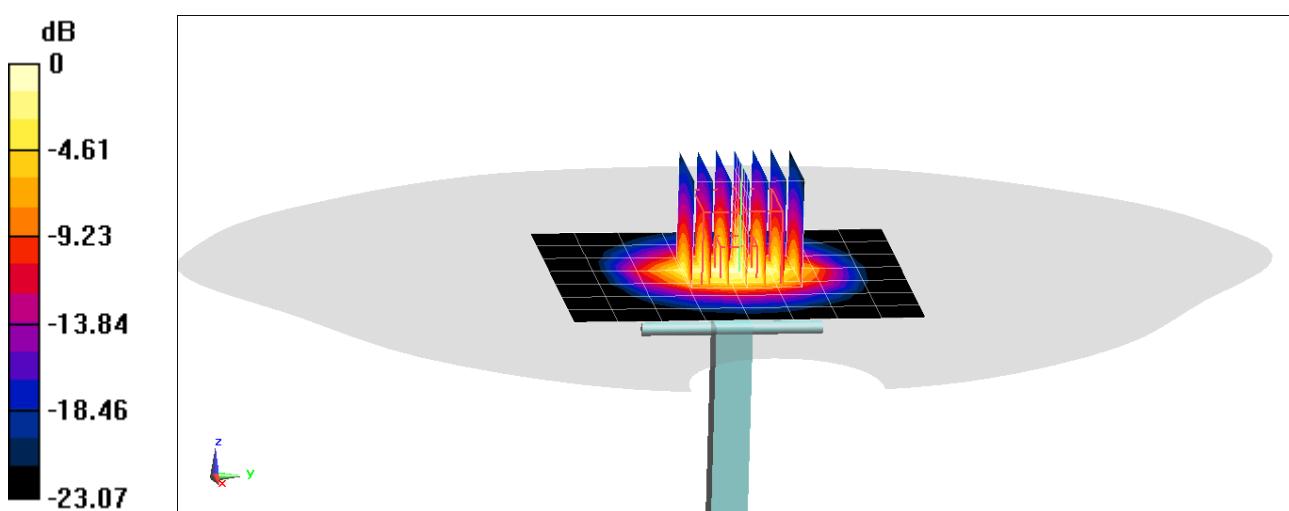
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/17/2019

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1179

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.1 W/kg

SAR(10 g) = 2.47 W/kg

Deviation(10 g) = -0.40%

0 dB = 9.45 W/kg = 9.75 dBW/kg

APPENDIX C: PROBE CALIBRATION

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client

PC Test

Certificate No.: **D835V2-4d180-May18**

CALIBRATION CERTIFICATE

Object **D835V2- SN:4d180**

Calibration procedure(s) **QA-CAL-05.v10**
Calibration procedure for dipole validation kits above 700 MHz

SC ✓
5/31/2018

Calibration date: **May 18, 2018**

BN ✓
06/01/2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:	Name	Function	Signature
	Manu Seitz	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: May 22, 2018

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.60 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.22 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.31 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω - 5.1 $j\Omega$
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω - 8.2 $j\Omega$
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.396 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2014

DASY5 Validation Report for Head TSL

Date: 17.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d180

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

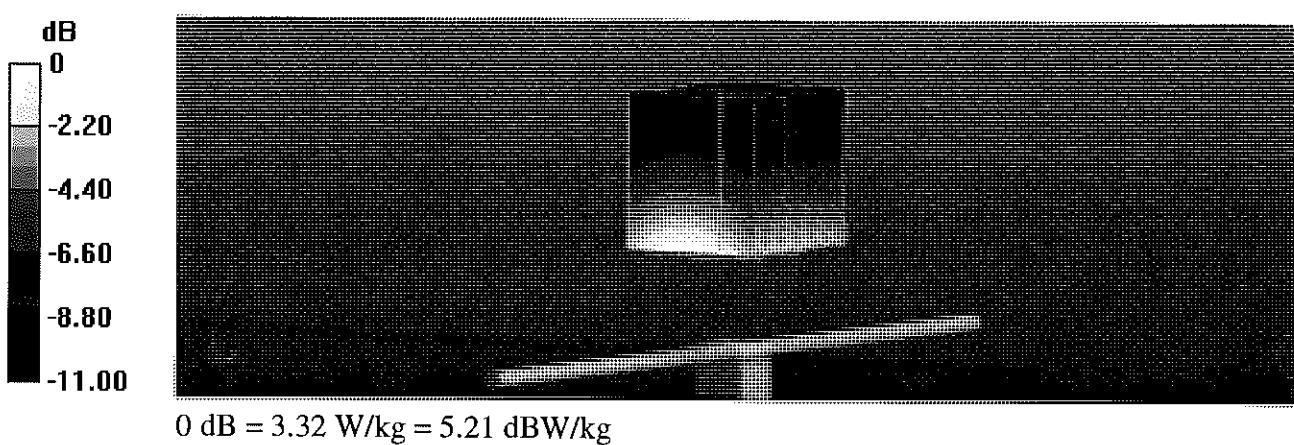
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

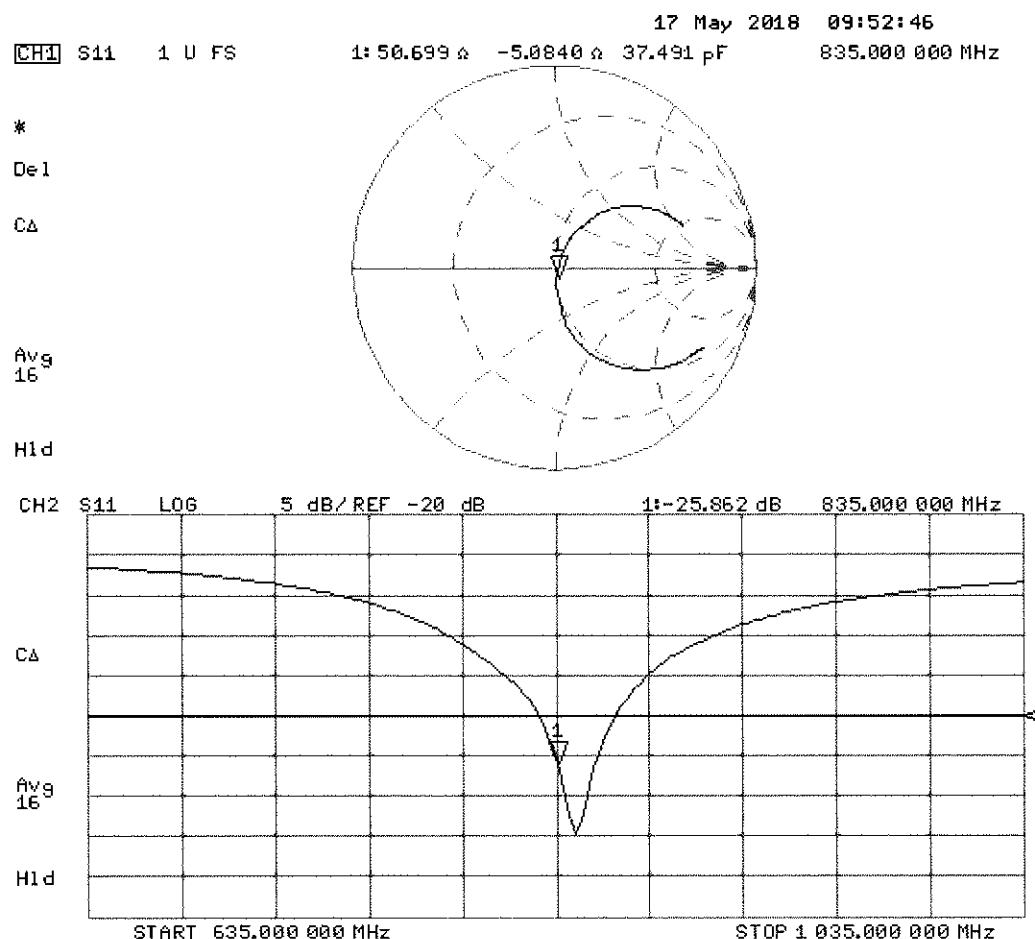
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.39 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.78 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.32 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d180

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

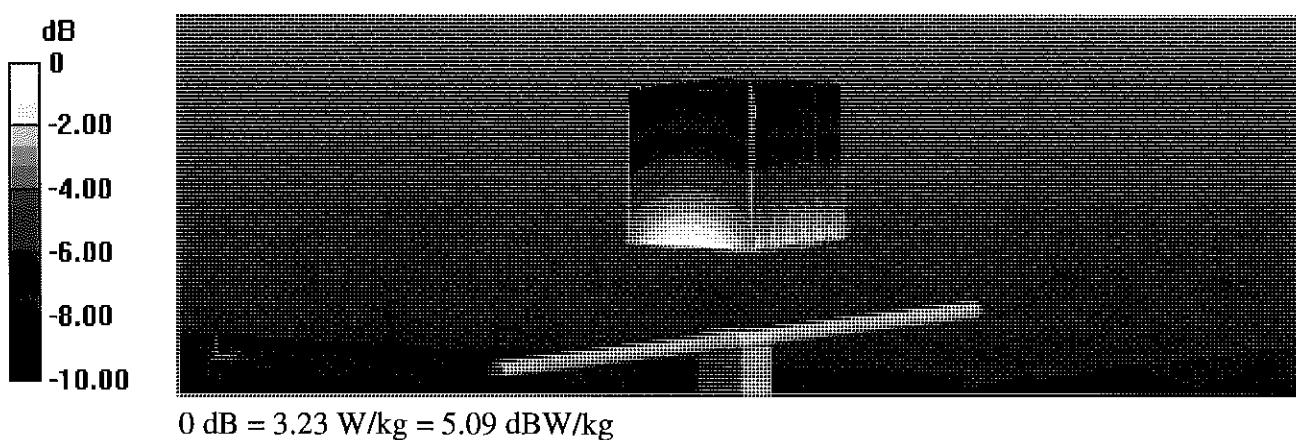
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

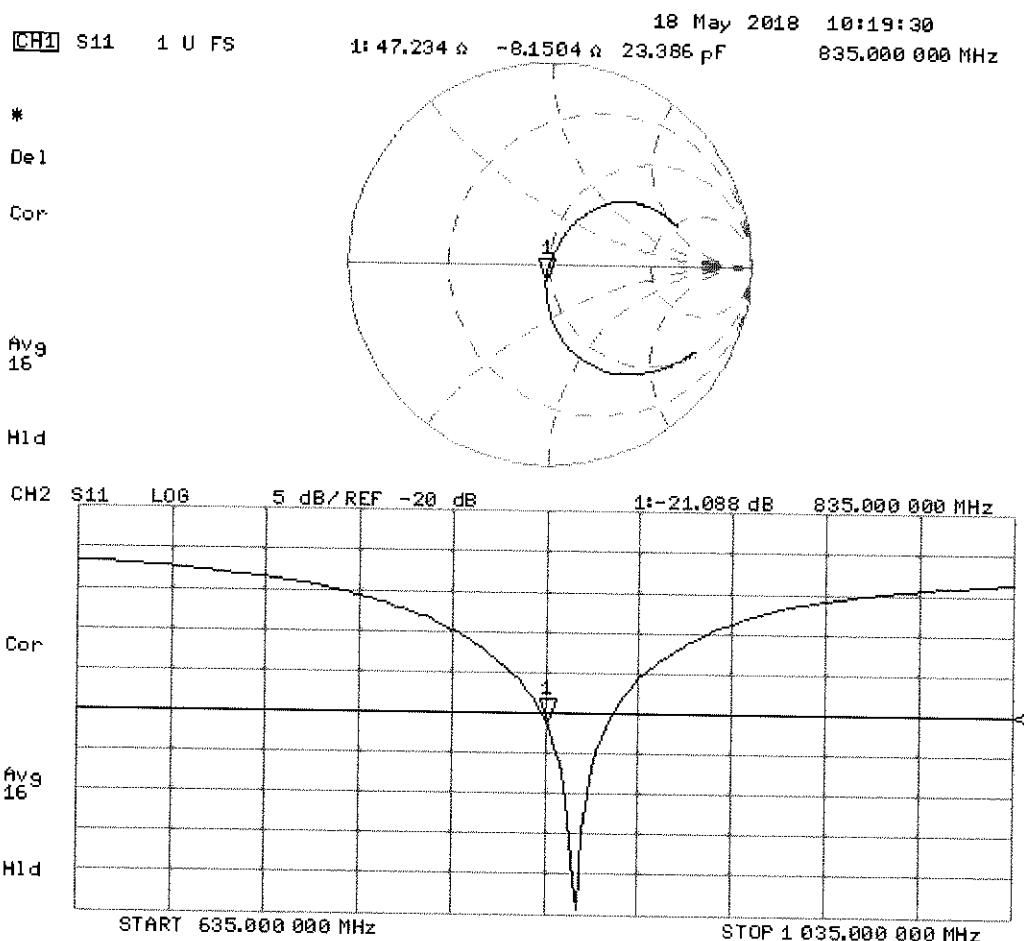
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.80 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.23 W/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object D835V2 – SN: 4d180

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 16, 2019

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

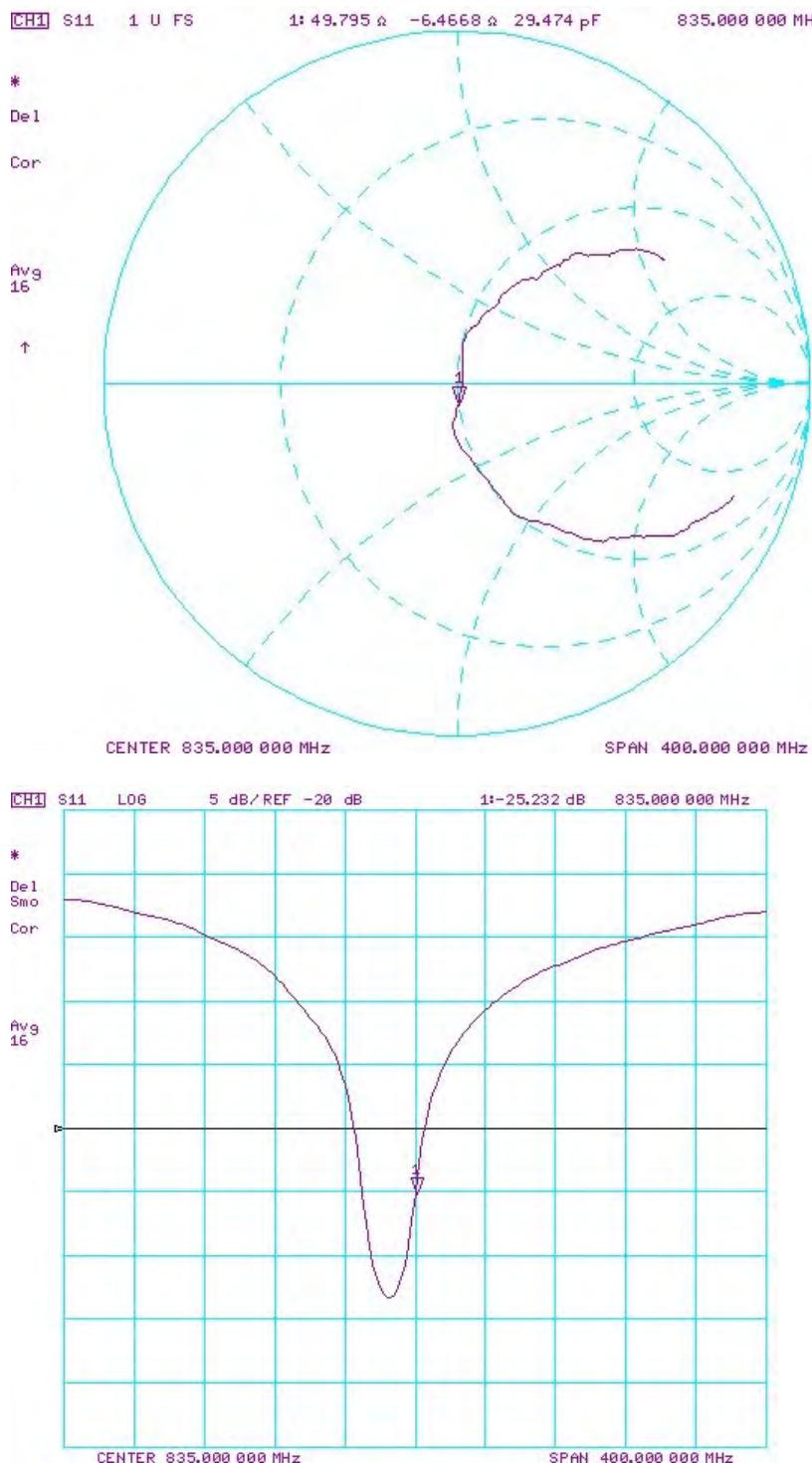
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

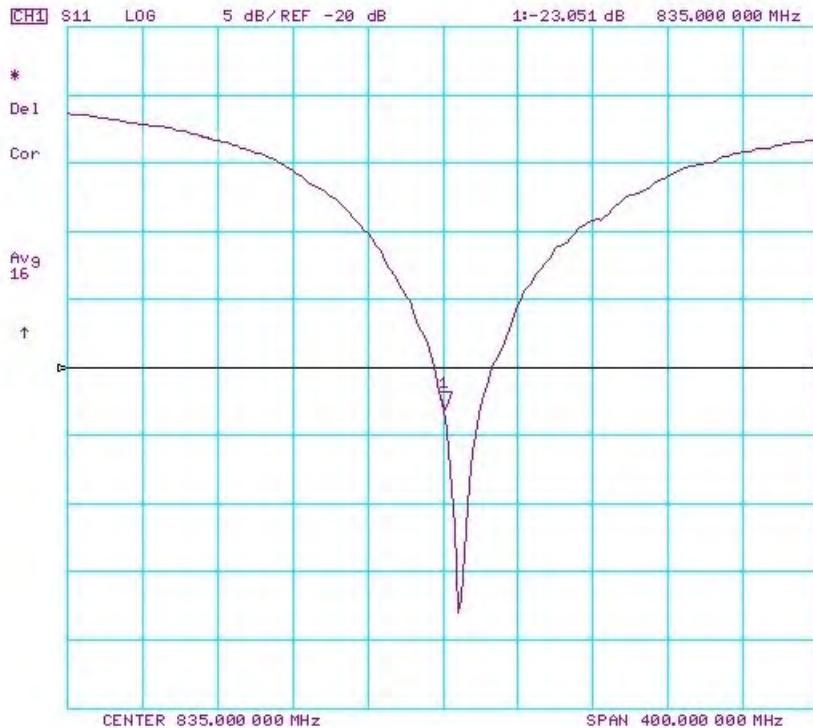
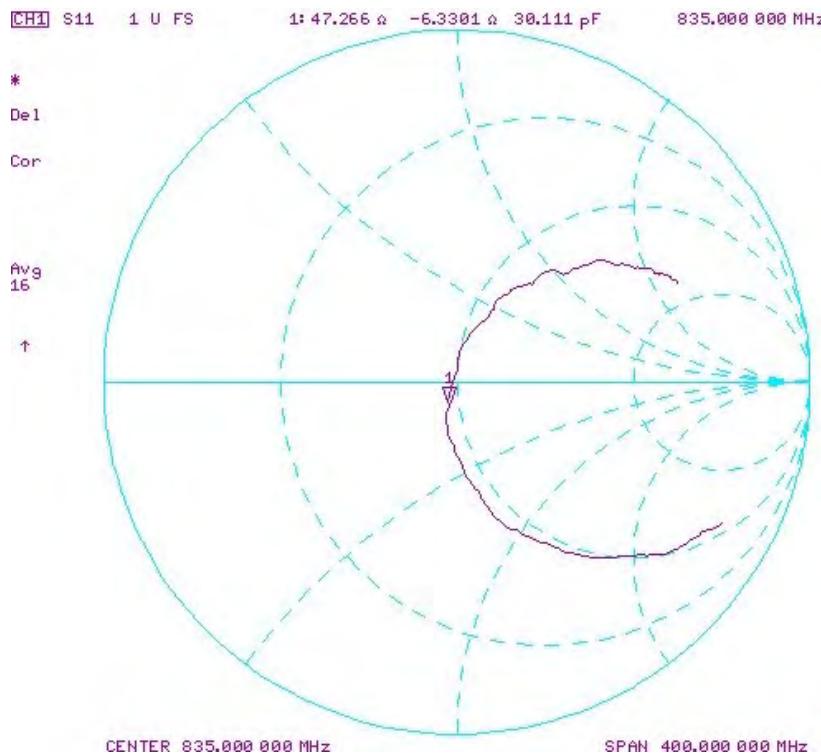
Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 1 of 4
-------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL	
5/18/2018	5/16/2019	1.396	1.92	1.99	3.65%	1.244	1.3	4.50%	50.7	49.8	0.9	-5.1	-6.5	1.4	-25.9	-25.2	2.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	Measured Body SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL	
5/18/2018	5/16/2019	1.396	1.918	2.05	6.88%	1.262	1.34	6.18%	47.2	47.3	0.1	-8.2	-6.3	1.9	-21.1	-23.1	-9.20%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 3 of 4
-------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D835V2 – SN: 4d180	Date Issued: 05/16/2019	Page 4 of 4
-------------------------------	----------------------------	-------------

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D835V2-4d040_Jun19**

CALIBRATION CERTIFICATE

Object **D835V2 - SN:4d040** ✓ ATM 6/28/19

Calibration procedure(s) **QA CAL-05.v11**
 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 6/28/19

Calibration date: **June 20, 2019**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name	Function	Signature
	Manu Seitz	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.8 \pm 6 %	0.91 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.50 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	55.4 \pm 6 %	0.98 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.53 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.24 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 4.1 $j\Omega$
Return Loss	- 27.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 6.5 $j\Omega$
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 20.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

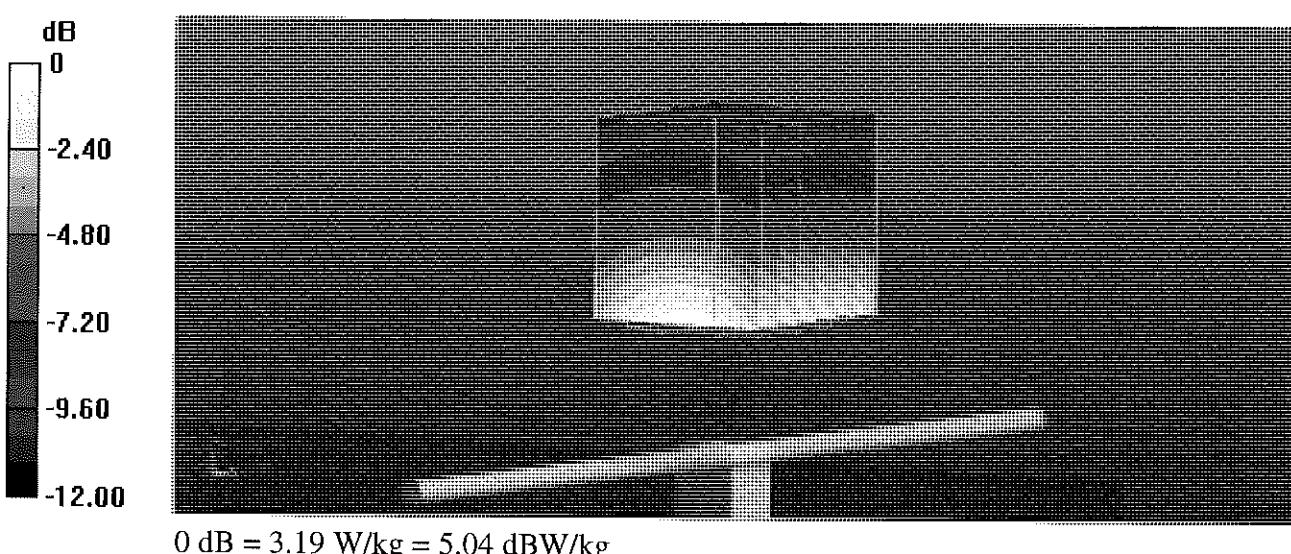
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

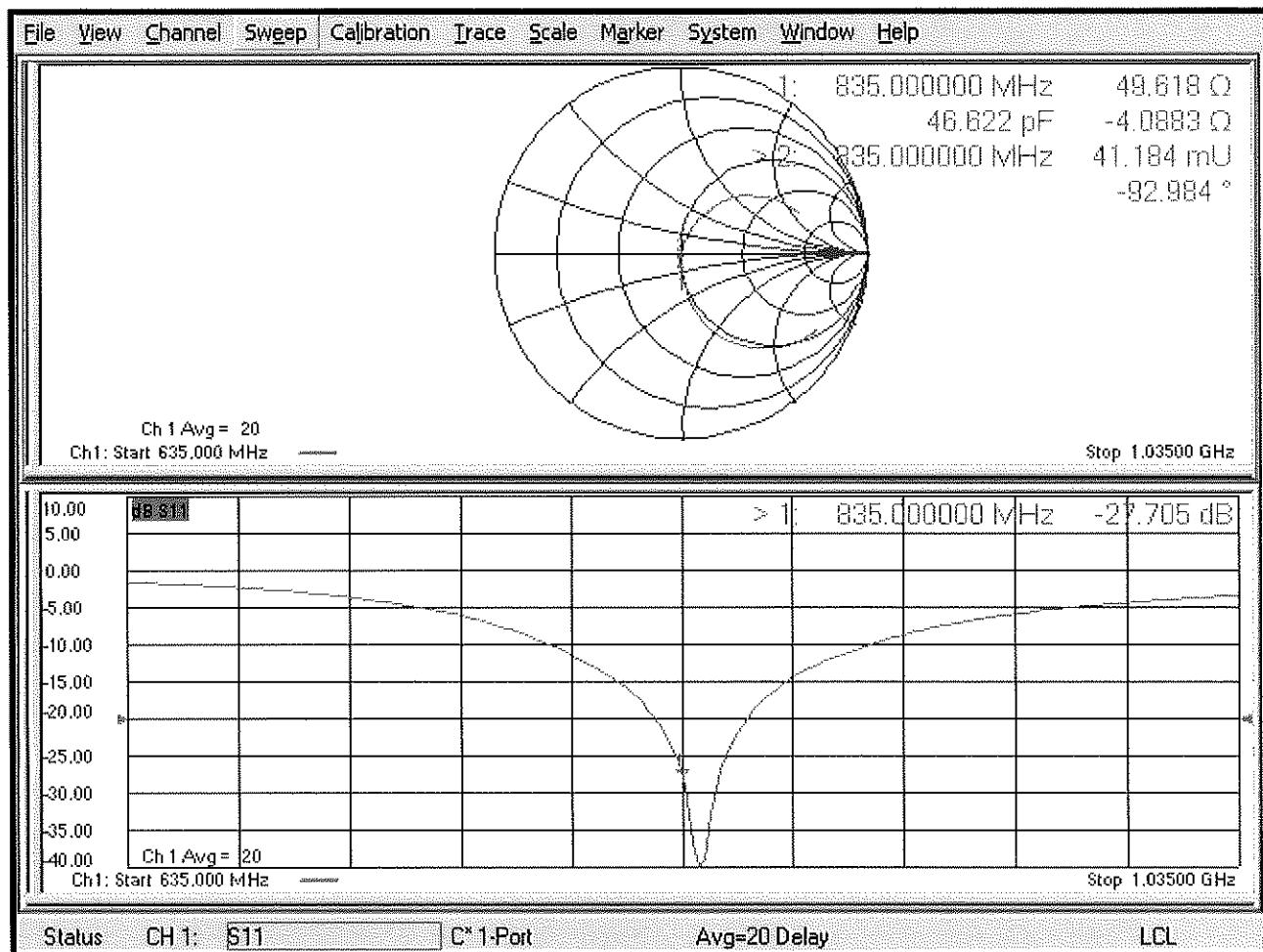
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.05 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.19 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

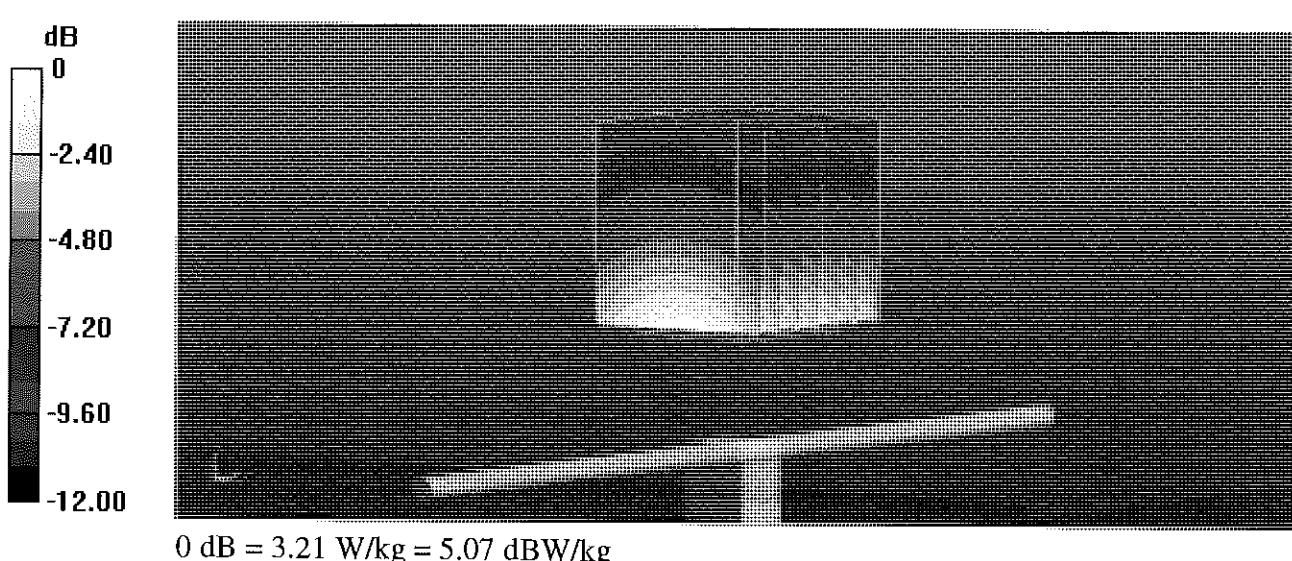
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

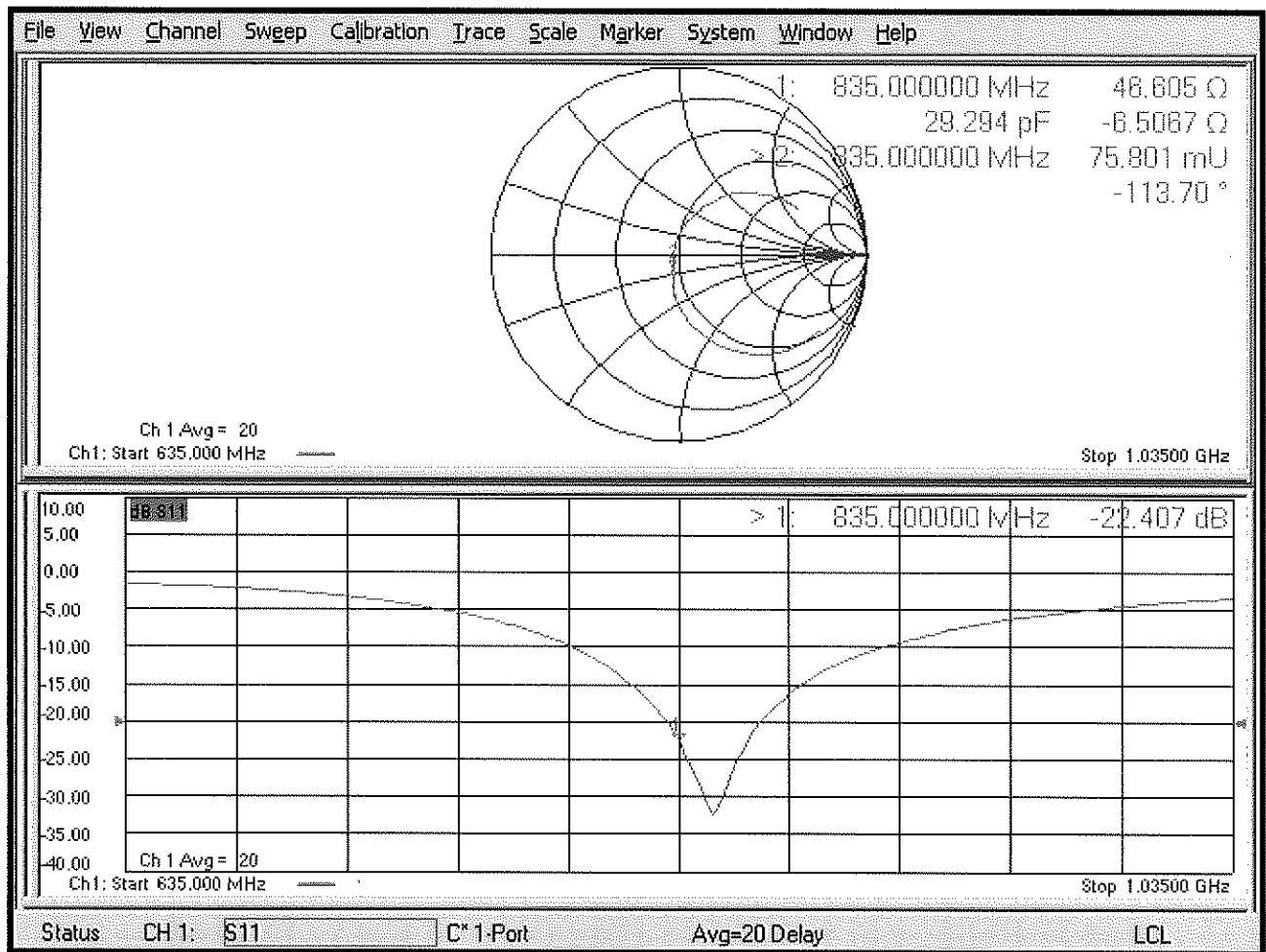
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.73 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.21 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kaliibratorienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D1750V2-1104_Sep17**

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:1104					
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz					
Calibration date:	September 07, 2017					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.						
Calibration Equipment used (M&TE critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18			
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18			
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18			
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18			
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18			
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18			
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18			
Secondary Standards	ID #	Check Date (In house)	Scheduled Check			
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18			
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18			
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-16)	In house check: Oct-18			
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (In house check Oct-16)	In house check: Oct-18			
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (In house check Oct-16)	In house check: Oct-17			
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature 			
Approved by:	Katja Pokovic	Technical Manager				
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			Issued: September 7, 2017			

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 0.2 $j\Omega$
Return Loss	- 41.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω - 0.7 $j\Omega$
Return Loss	- 28.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2013

DASY5 Validation Report for Head TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

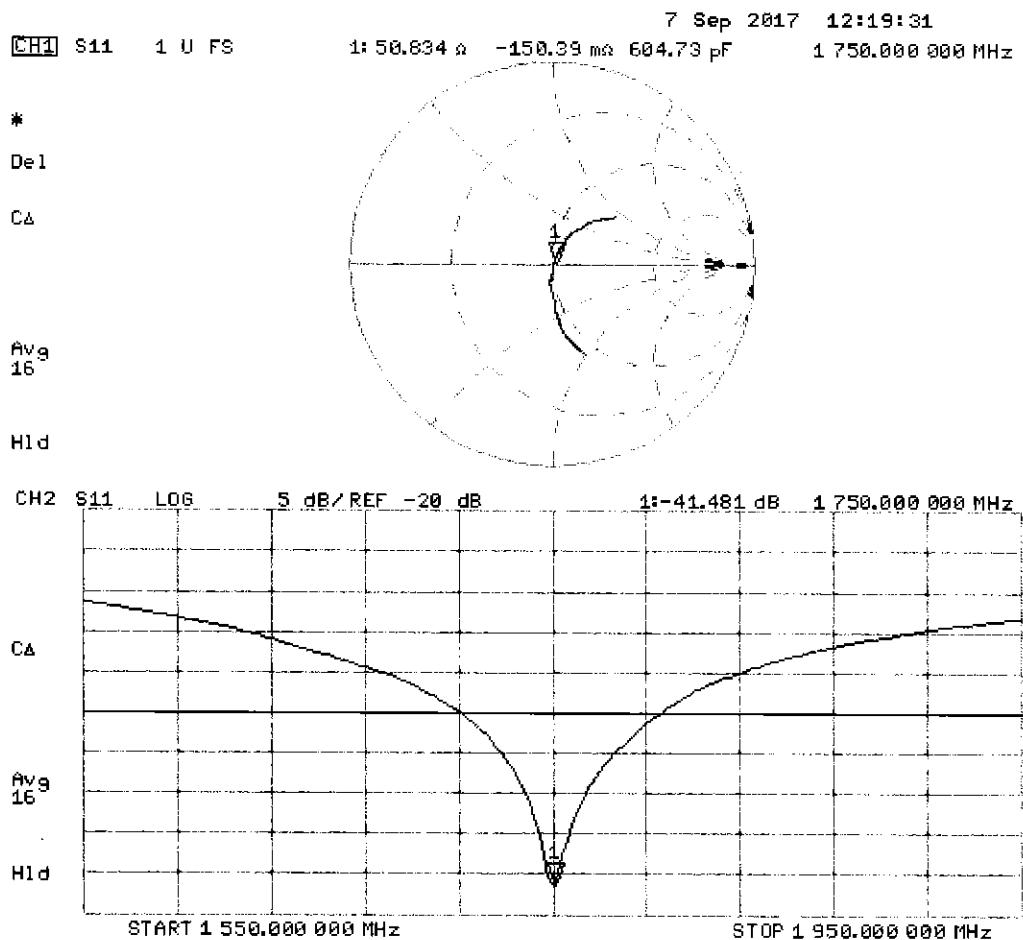
- Probe: EX3DV4 - SN7349; ConvF(8.73, 8.73, 8.73); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.9 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.81 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: $f = 1750 \text{ MHz}$; $\sigma = 1.46 \text{ S/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

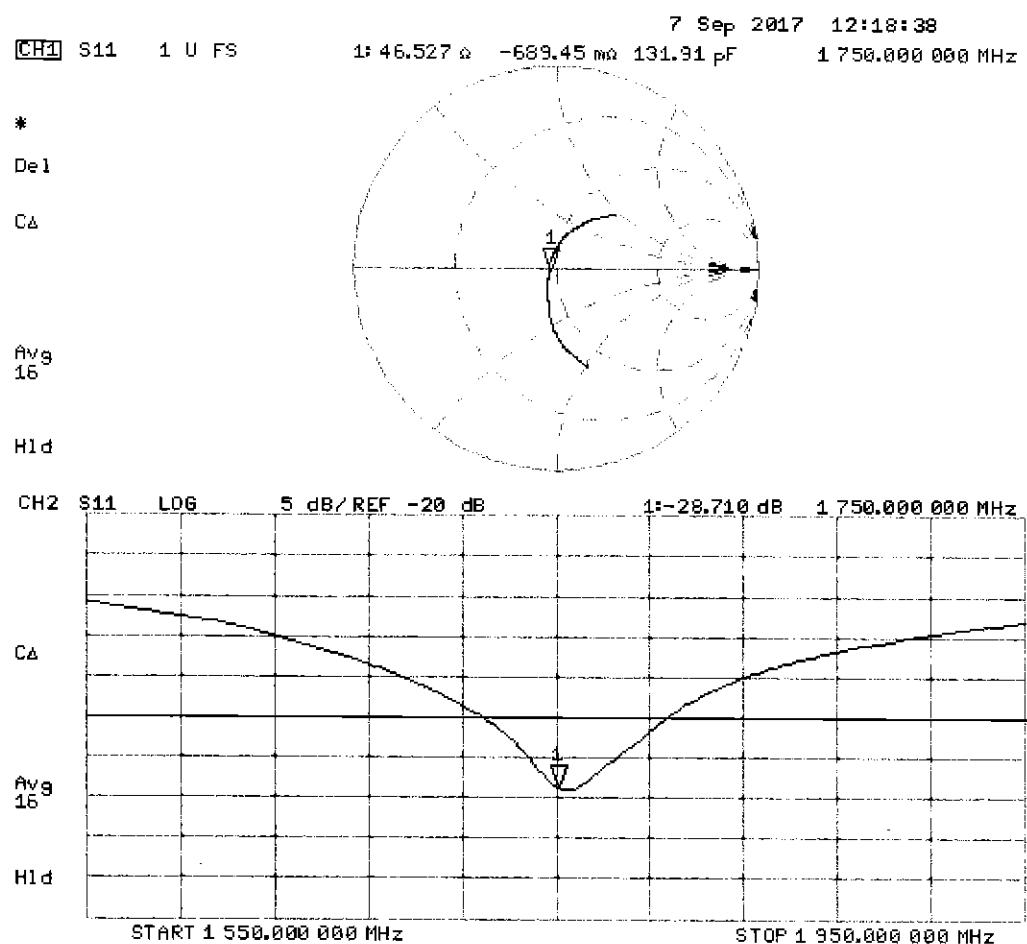
- Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 99.30 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 15.6 W/kg


SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object D1750V2 – SN: 1104

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 07, 2018

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

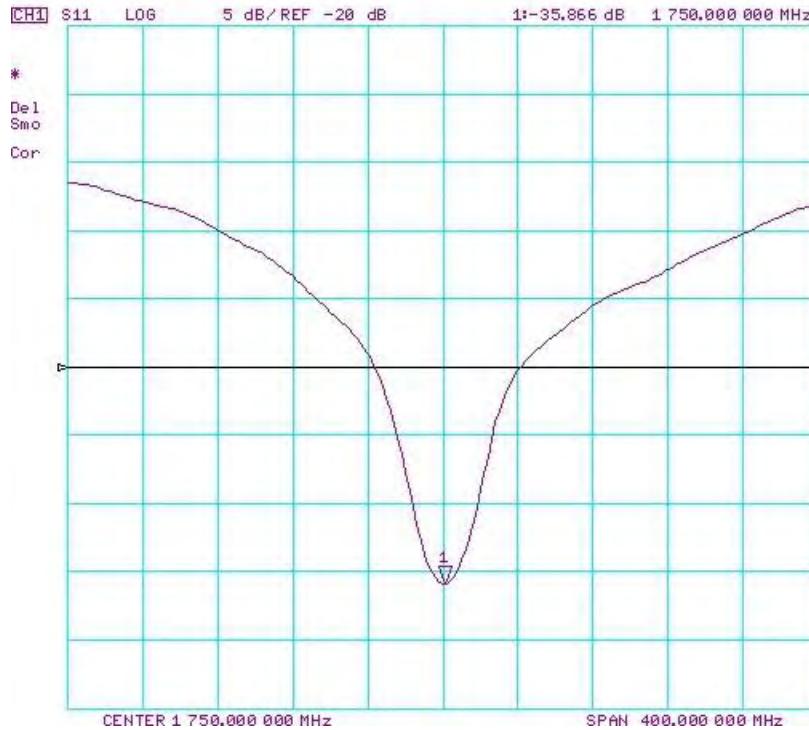
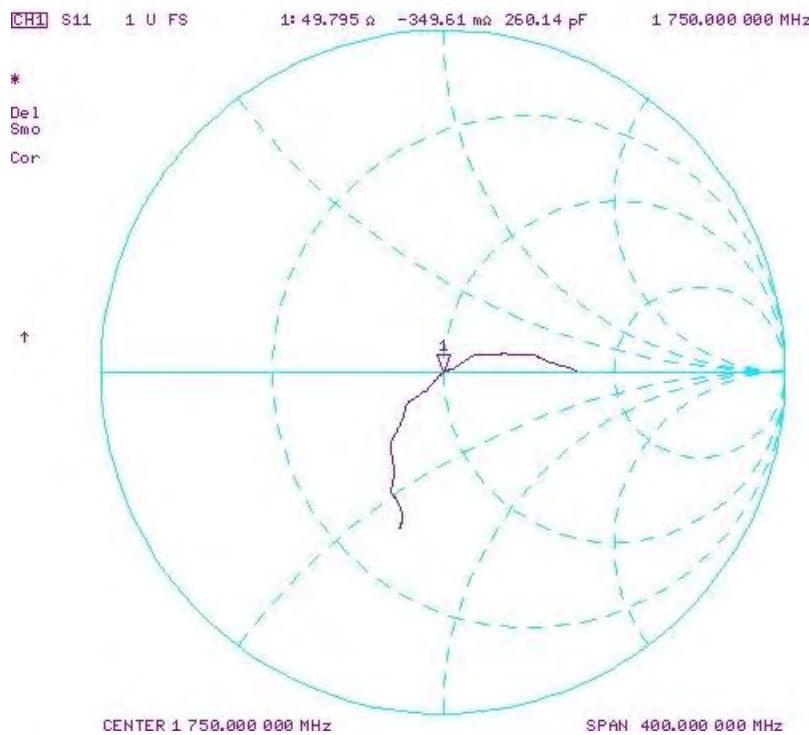
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	

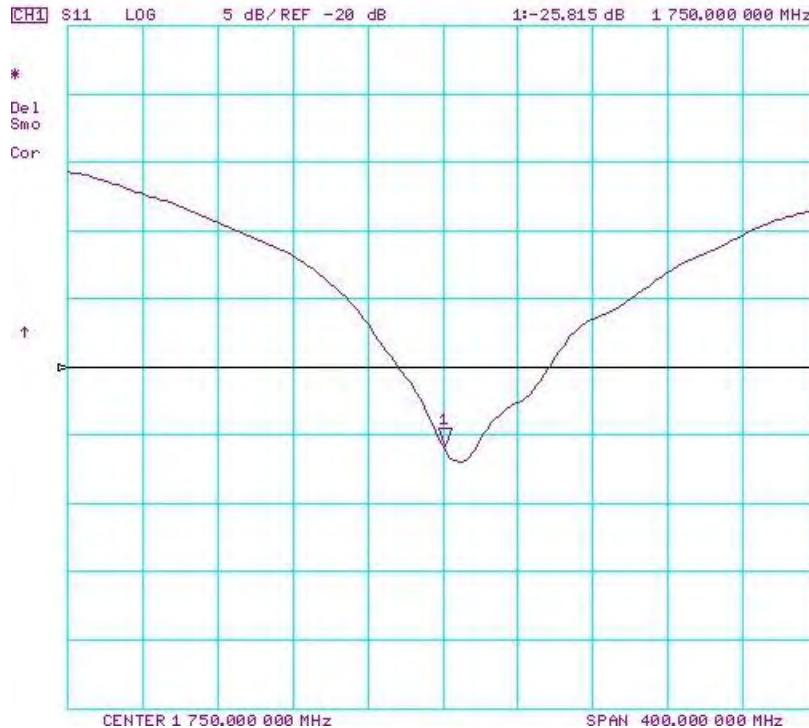
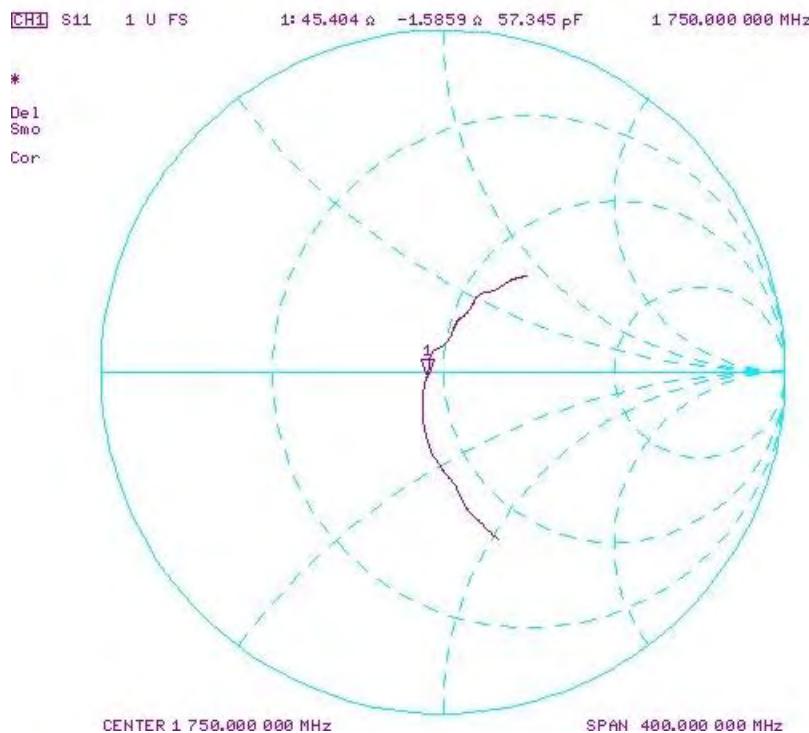
Object: D1750V2 – SN: 1104	Date Issued: 09/07/2018	Page 1 of 4
-------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.217	3.64	3.62	-0.59%	1.92	1.94	1.04%	50.8	49.8	1	-0.2	-0.3	0.1	-41.5	-35.9	13.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.217	3.66	3.84	4.92%	1.96	2.07	5.61%	46.527	45.4	1.1	-0.69	-1.6	0.9	-28.7	-25.8	10.10%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1750V2 – SN: 1104	Date Issued: 09/07/2018	Page 3 of 4
-------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1750V2 – SN: 1104	Date Issued: 09/07/2018	Page 4 of 4
-------------------------------	----------------------------	-------------

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D1750V2-1083_Jun19**

CALIBRATION CERTIFICATE

Object **D1750V2 - SN:1083**

Calibration procedure(s) **QA CAL-05.v11**
Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: **June 19, 2019**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Name Katja Pokovic	Function Technical Manager	Signature

Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.0 \pm 6 %	1.34 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.1 W/kg \pm 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.0 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	53.9 \pm 6 %	1.46 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg \pm 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.7 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 1.1 $j\Omega$
Return Loss	- 38.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 2.4 $j\Omega$
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.220 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 19.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

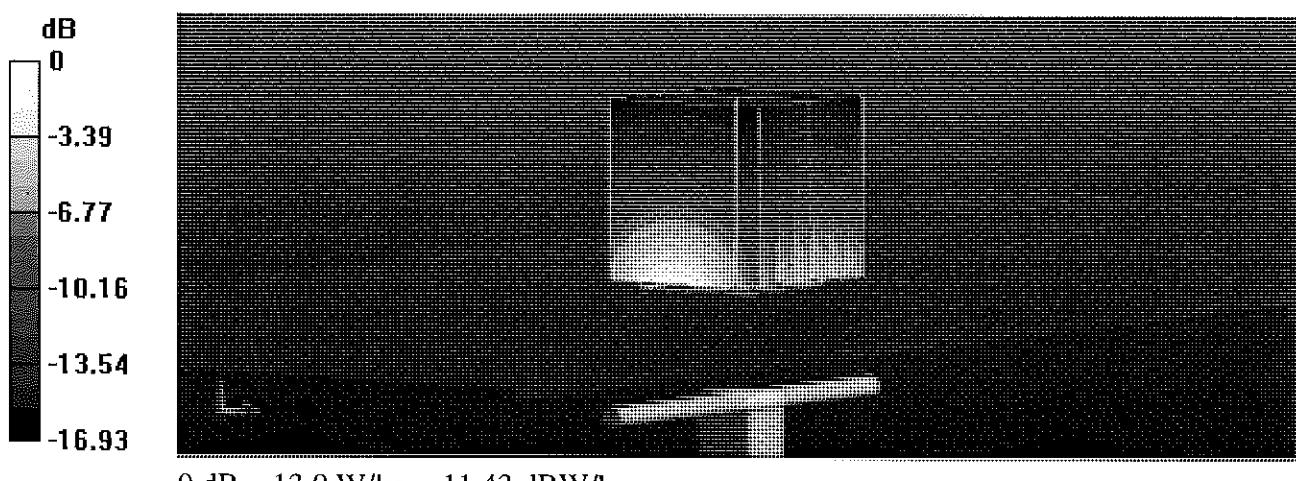
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

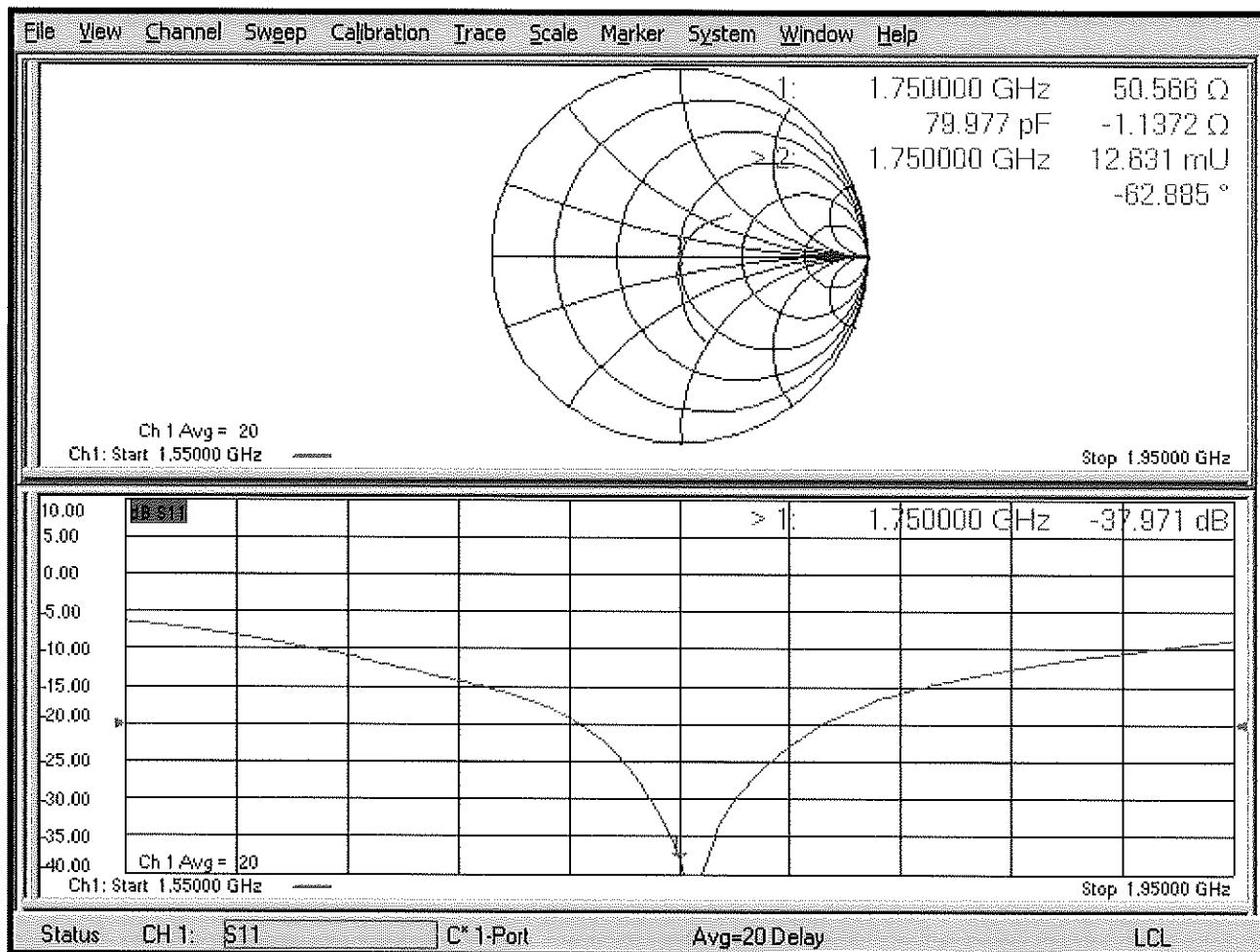
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.8 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 8.91 W/kg; SAR(10 g) = 4.7 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

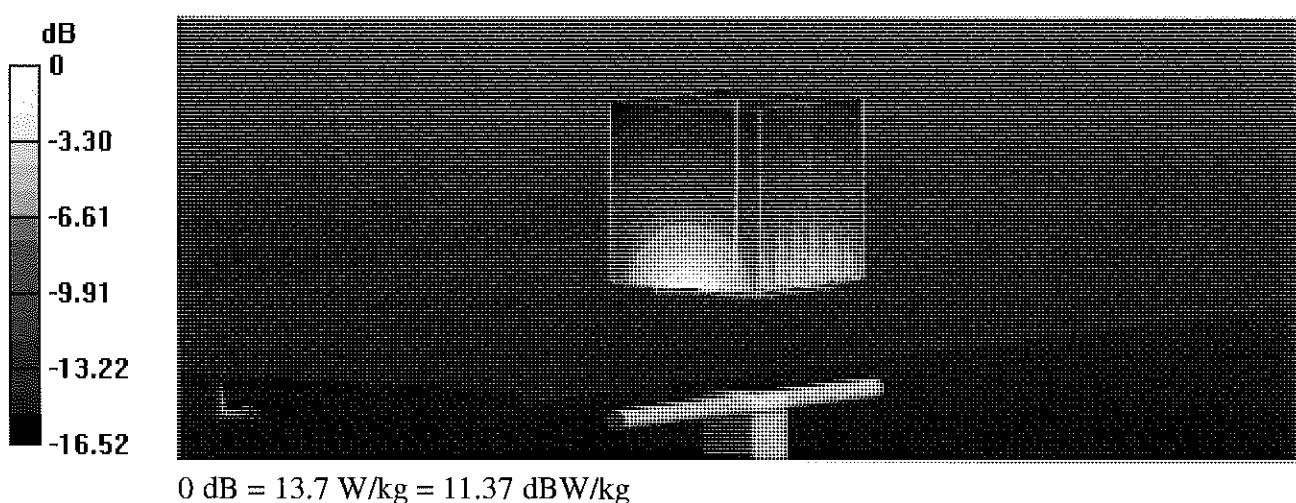
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

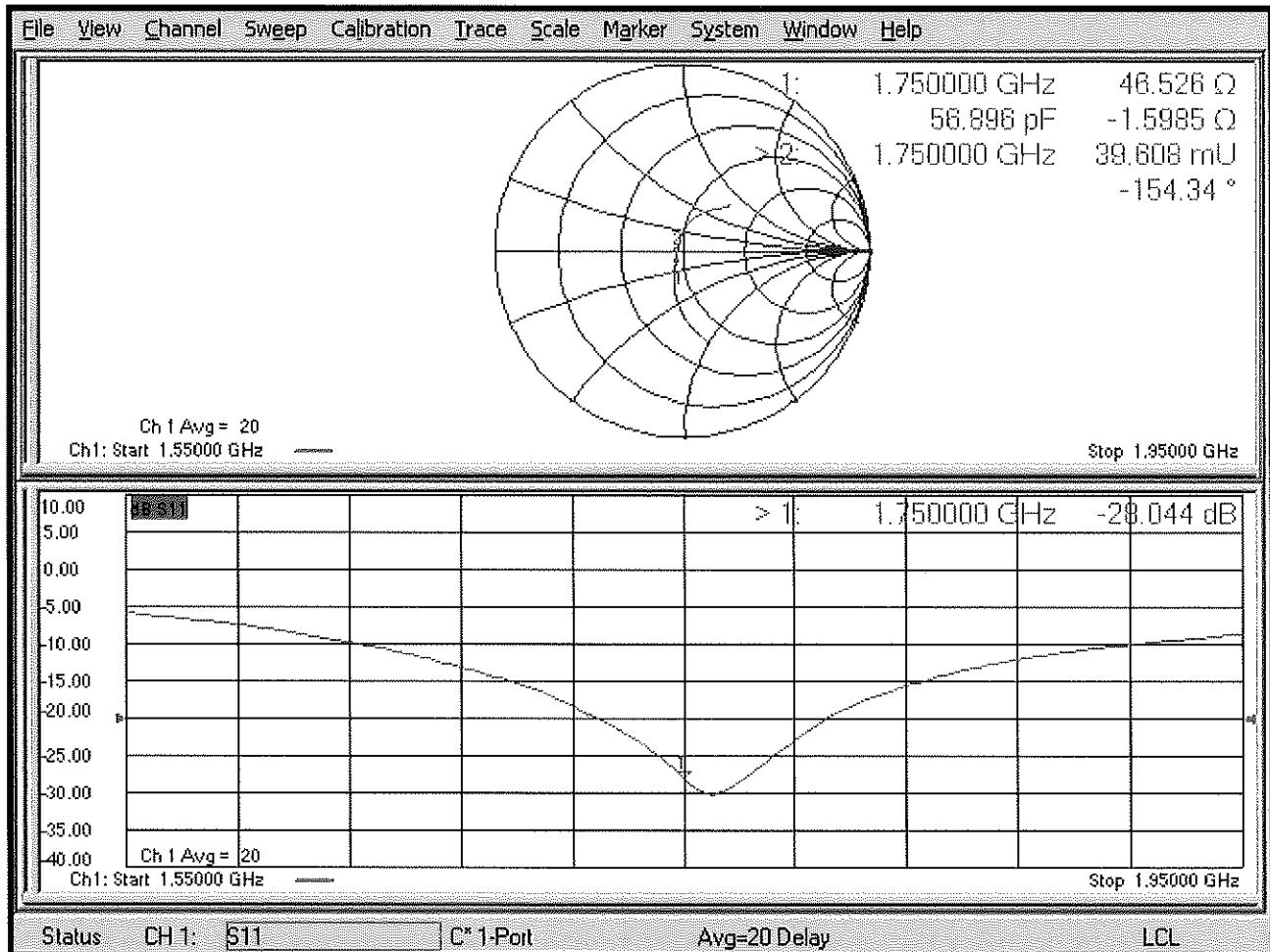
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.45, 8.45, 8.45) @ 1750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.8 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.88 W/kg

Maximum value of SAR (measured) = 13.7 W/kg

Impedance Measurement Plot for Body TSL

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No.: D1900V2-5d026-May18

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d026

Calibration procedure(s)

Calibration of the power sensor with the above 100 W

SC ✓
5/31/2018

Calibration date:

May 14, 2018

BN ✓
06/01/2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: May 14, 2018

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.2 \pm 6 %	1.35 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	55.3 \pm 6 %	1.46 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.9 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.0 \Omega + 8.0 j\Omega$
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.1 \Omega + 7.4 j\Omega$
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2002

DASY5 Validation Report for Head TSL

Date: 14.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

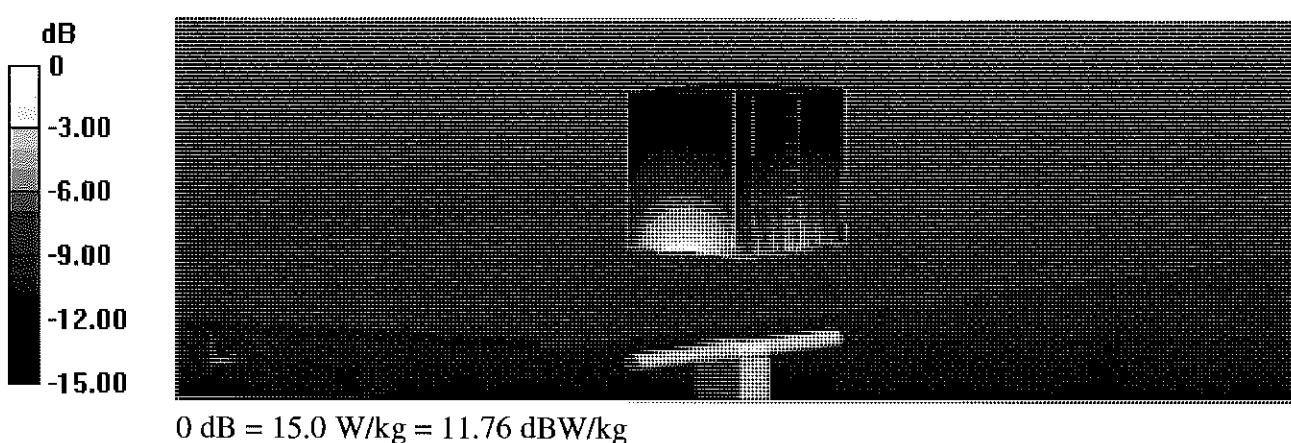
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

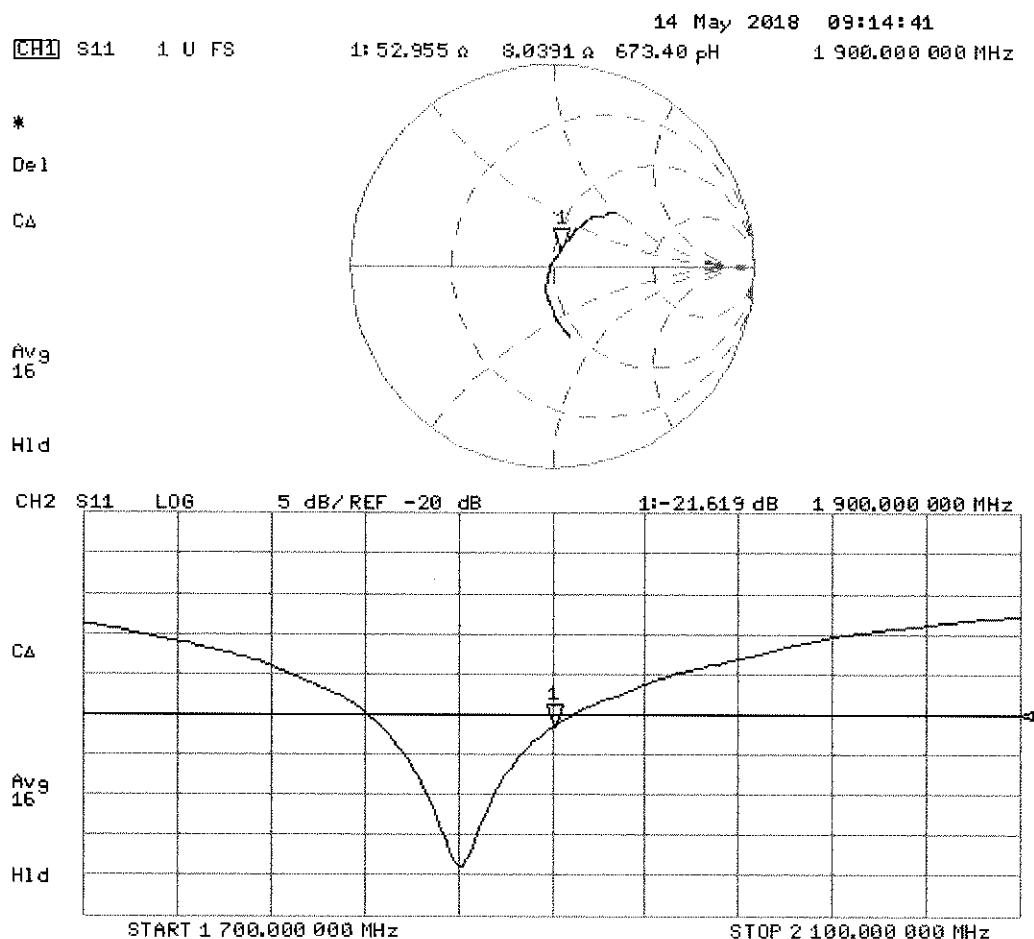
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.9 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

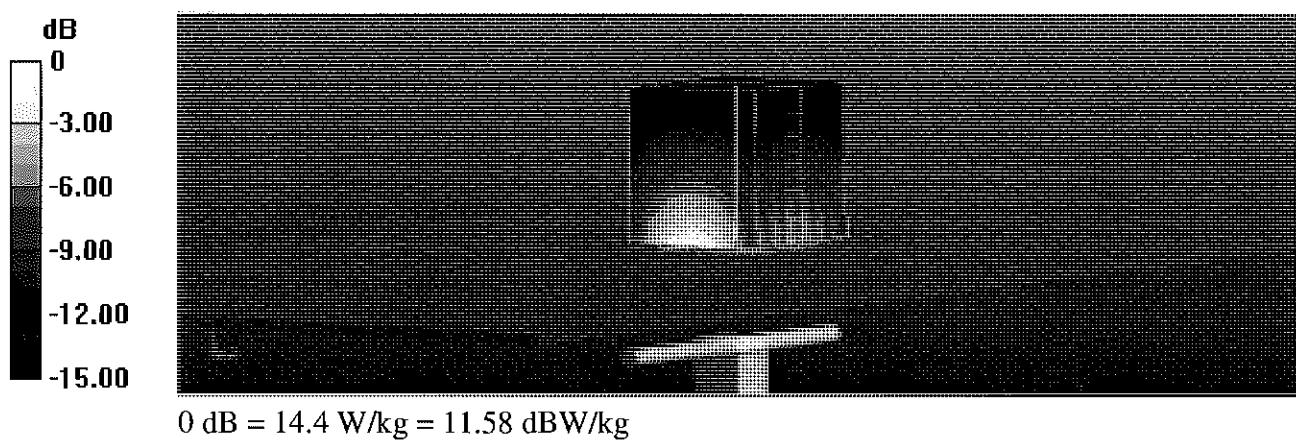
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

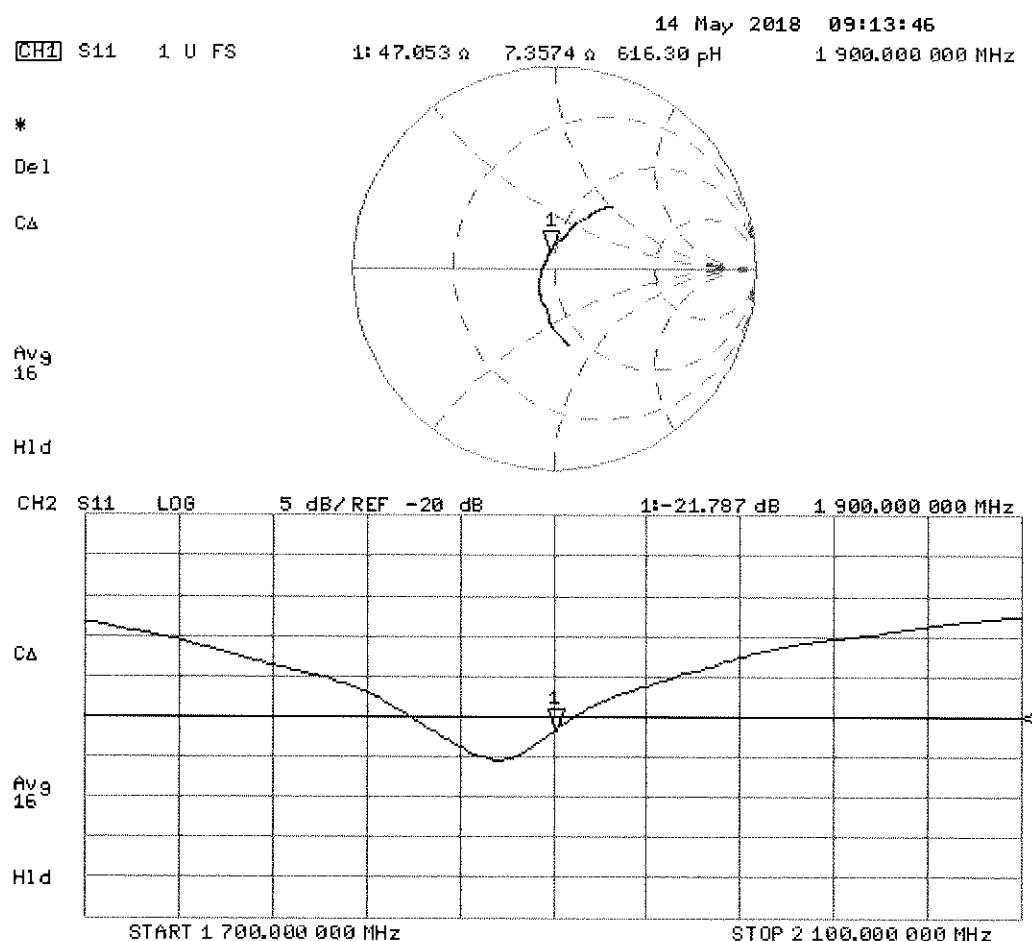
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.5 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object D1900V2 – SN: 5d026

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 14, 2019

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

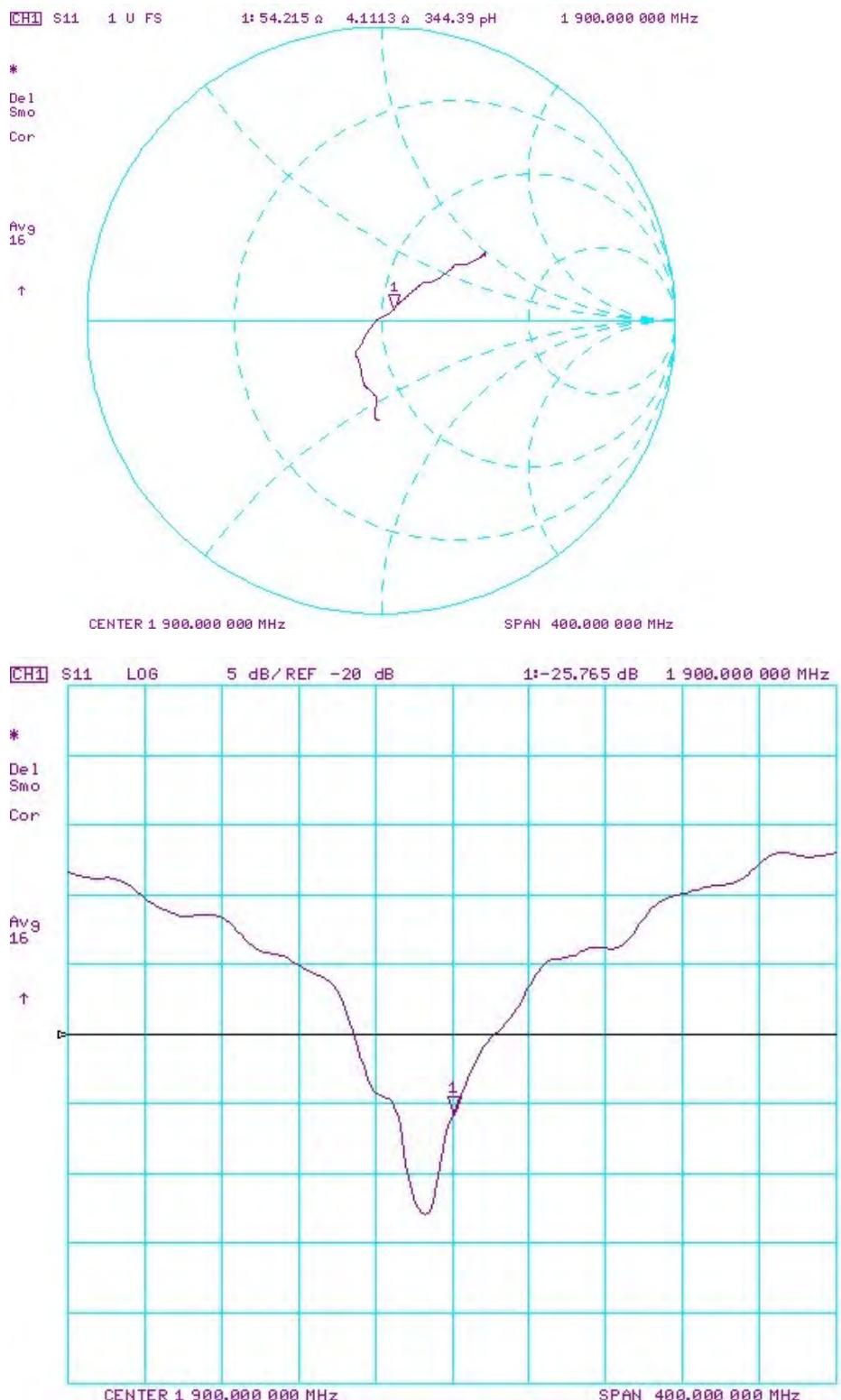
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/11/2018	Annual	9/11/2019	1045
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Parker Jones	Team Lead Engineer	<i>Parker Jones</i>
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	<i>KOK</i>

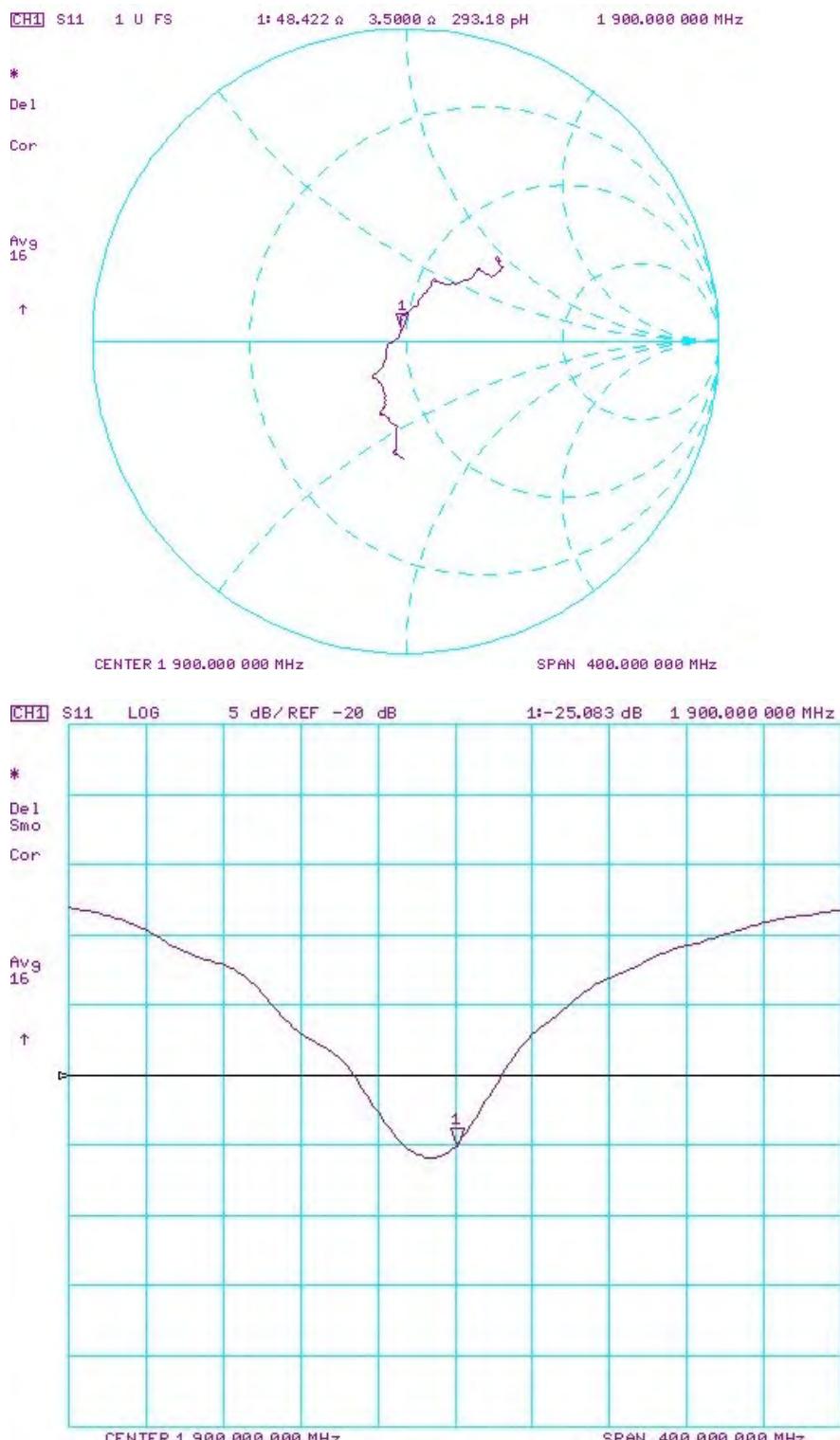
Object: D1900V2 – SN: 5d026	Date Issued: 05/14/2019	Page 1 of 4
--------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/14/2018	5/14/2019	1.199	4.02	3.98	-1.00%	2.11	2.05	-2.64%	53	54.2	1.2	8	4.1	3.9	-21.6	-25.8	-19.30% PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/14/2018	5/14/2019	1.199	3.99	3.97	-0.50%	2.12	2.04	-3.77%	47.1	48.4	1.3	7.4	3.5	3.9	-21.8	-25.1	-15.10% PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1900V2 – SN: 5d026	Date Issued: 05/14/2019	Page 3 of 4
--------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D1900V2 – SN: 5d026	Date Issued: 05/14/2019	Page 4 of 4
--------------------------------	----------------------------	-------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D1900V2-5d181_Sep17

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d181

Calibration procedure(s) QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

SC ✓
10/03/2018

Calibration date: September 07, 2017

SC ✓
9/7/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18

Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37990585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by: Name: Jeton Kastrati Function: Laboratory Technician

Signature:

Approved by: Name: Katja Pokovic Function: Technical Manager

Signature:

Issued: September 7, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConVF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	39.0 \pm 6 %	1.38 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.5 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	54.3 \pm 6 %	1.47 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.7 \Omega + 4.6 \text{ j}\Omega$
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.2 \Omega + 5.6 \text{ j}\Omega$
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 23, 2013

DASY5 Validation Report for Head TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d181

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

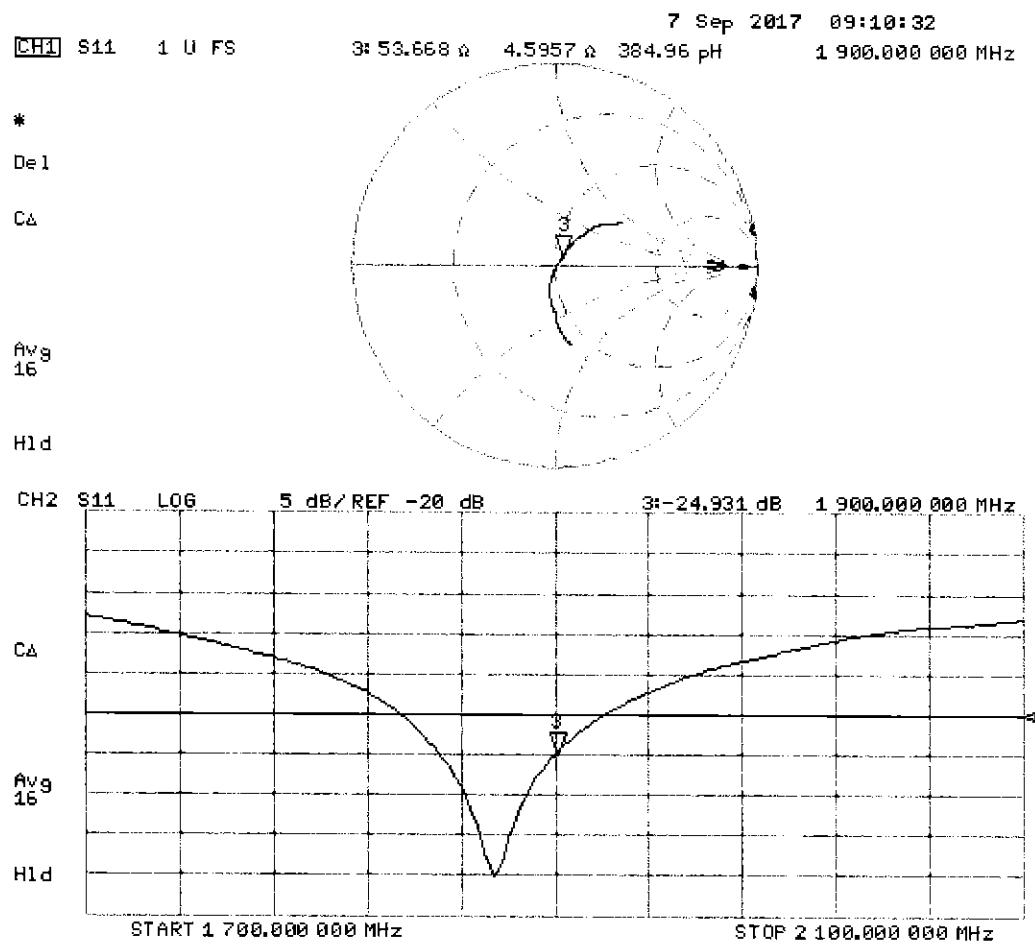
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 106.8 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (measured) = 14.8 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d181

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

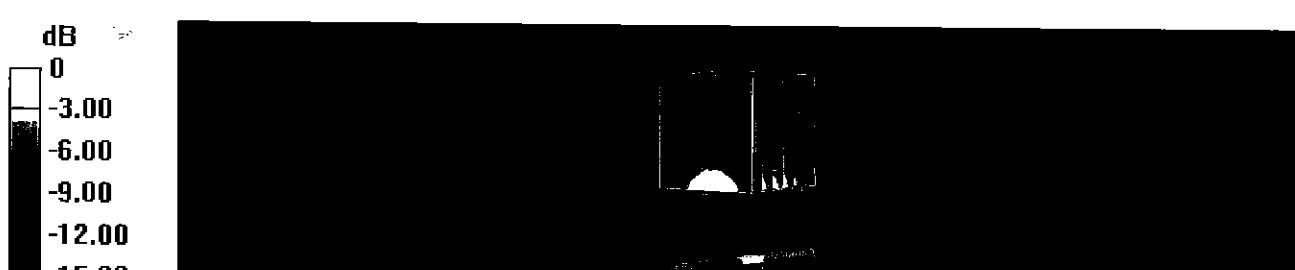
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

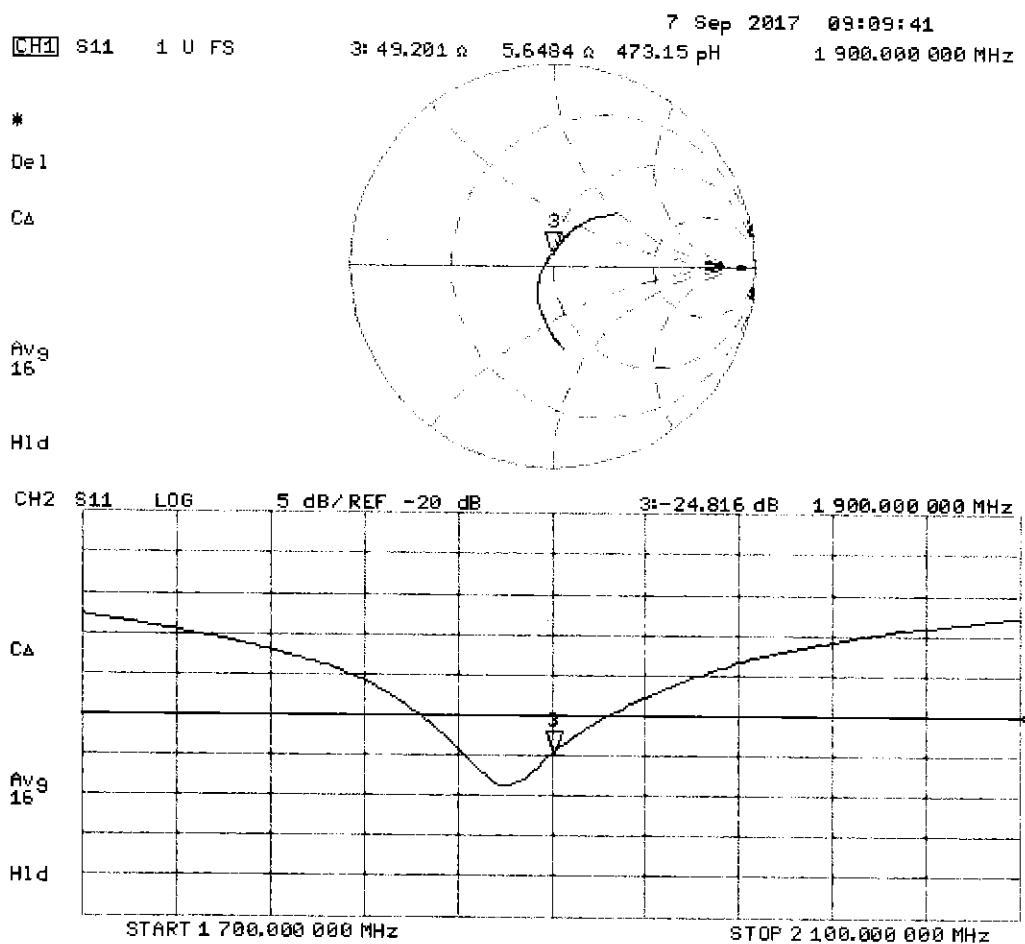
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object	D1900V2 – SN: 5d181
Calibration procedure(s)	Procedure for Calibration Extension for SAR Dipoles.
Extended Calibration date:	September 07, 2018
Description:	SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

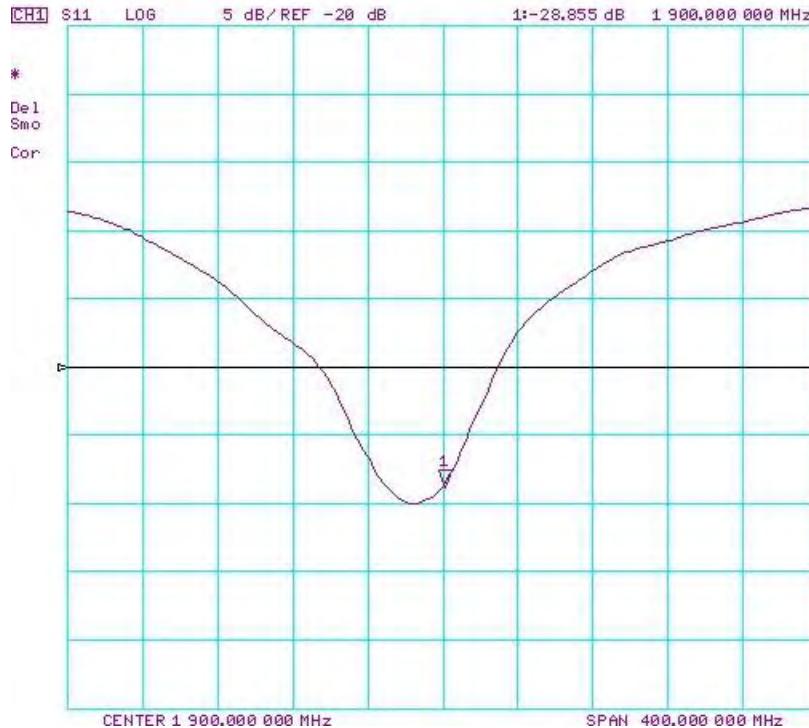
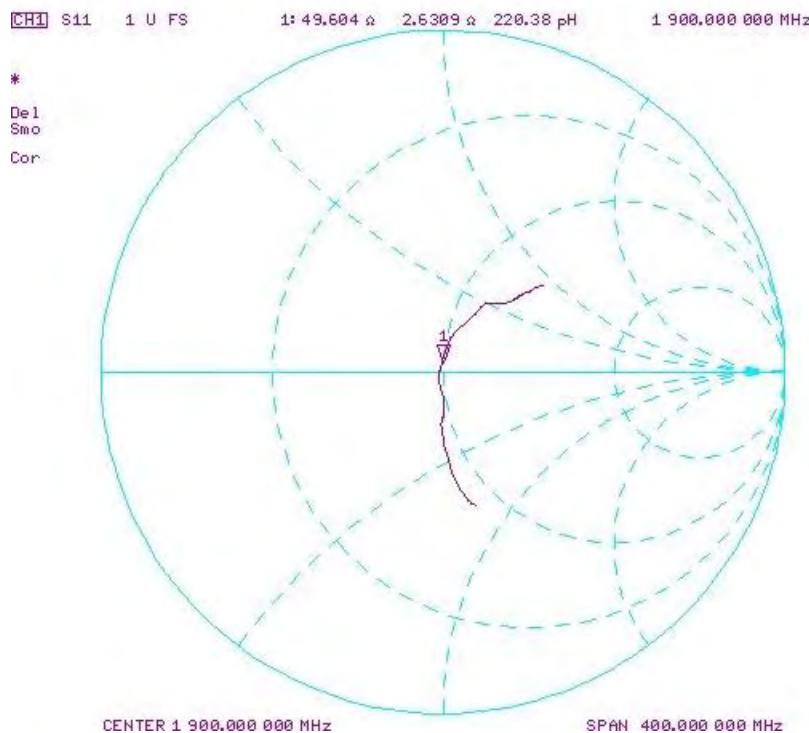
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	P5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3131
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	604

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	

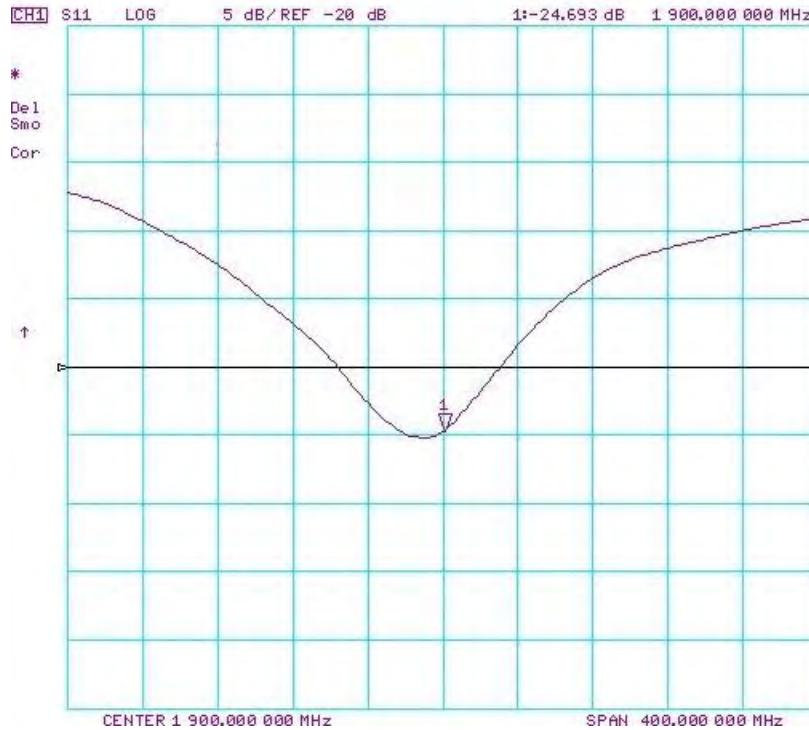
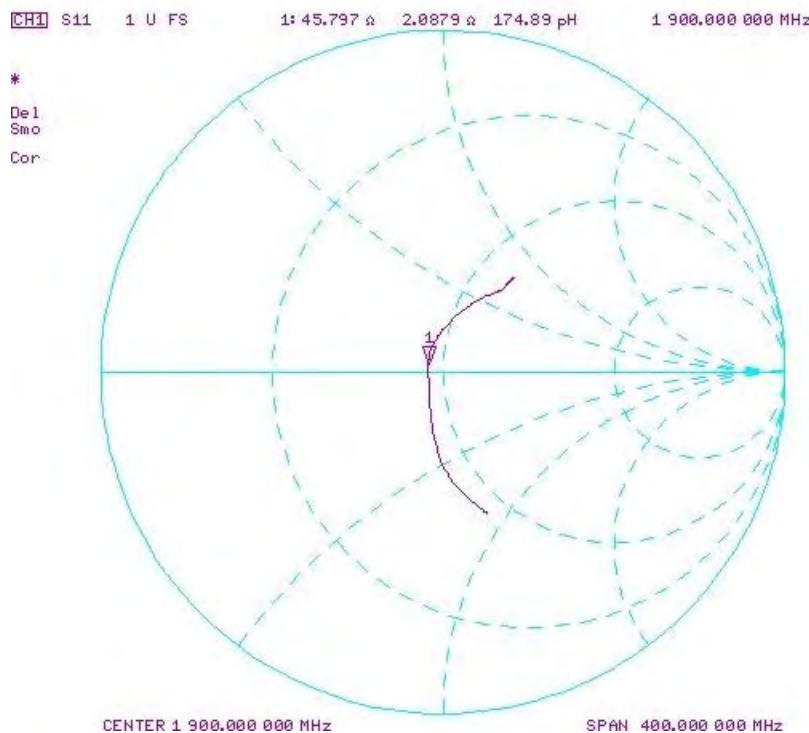
Object: D1900V2 – SN: 5d181	Date Issued: 09/07/2018	Page 1 of 4
--------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION



Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.2	3.95	3.99	1.01%	2.06	2.07	0.49%	53.7	49.6	4.1	4.6	2.6	2	-24.9	-28.9	-16.10% PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Real	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.2	3.95	4.13	4.56%	2.09	2.14	2.39%	49.2	45.8	3.4	5.6	2.1	3.5	-24.8	-24.7	0.40% PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D1900V2 – SN: 5d181	Date Issued: 09/07/2018	Page 3 of 4
--------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D2450V2-750_Jun19**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN:750**

*✓ ATM
6/28/19*

Calibration procedure(s) **QA CAL-05.v11**
 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: **June 14, 2019**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name	Function	Signature
	Michael Weber	Laboratory Technician	<i>M. Weber</i>
Approved by:	Katja Pokovic	Technical Manager	<i>K. Pokovic</i>

Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.7 \Omega + 3.9 j\Omega$
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.3 \Omega + 6.2 j\Omega$
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

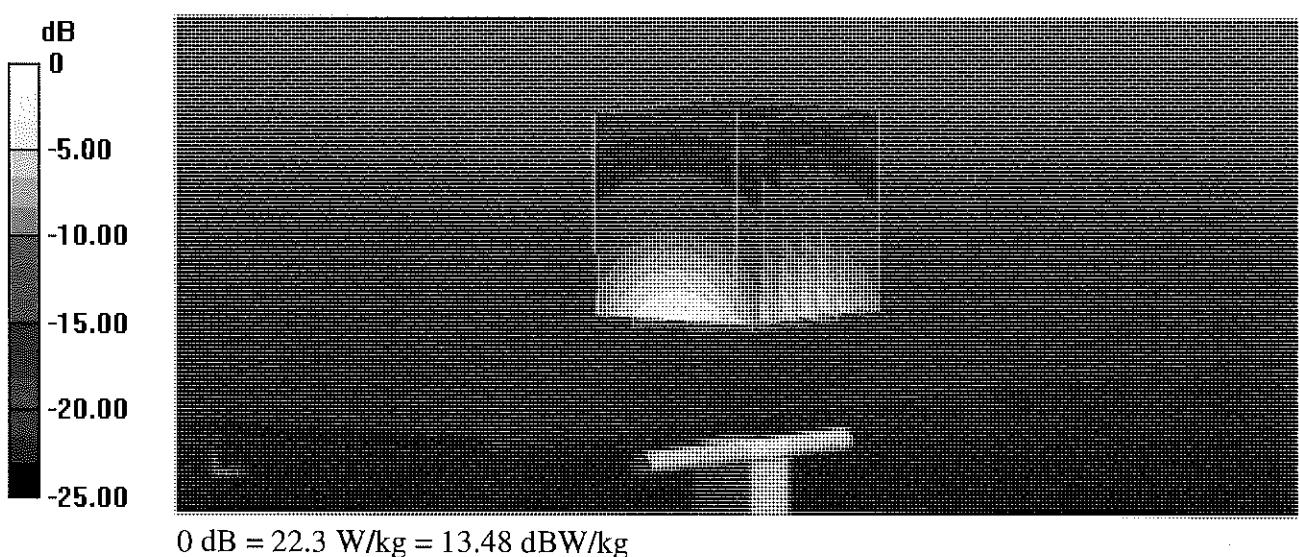
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

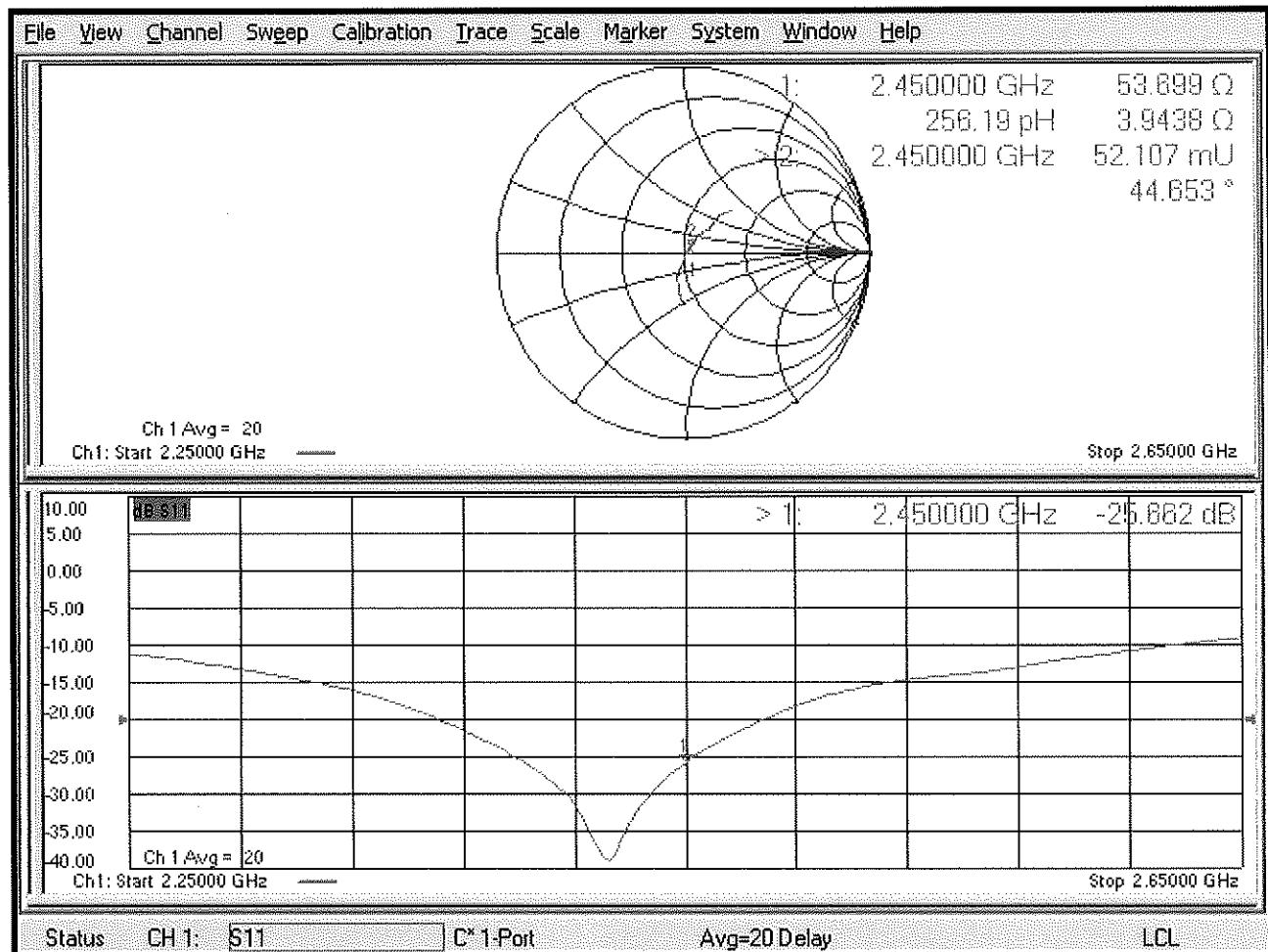
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.9 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.34 W/kg

Maximum value of SAR (measured) = 22.3 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³

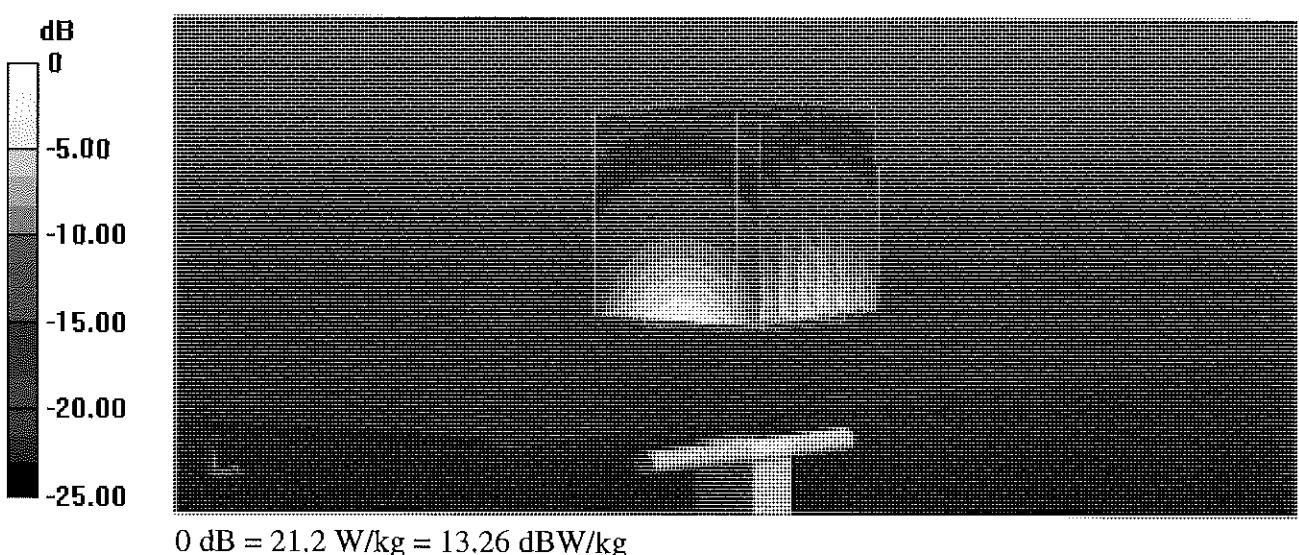
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

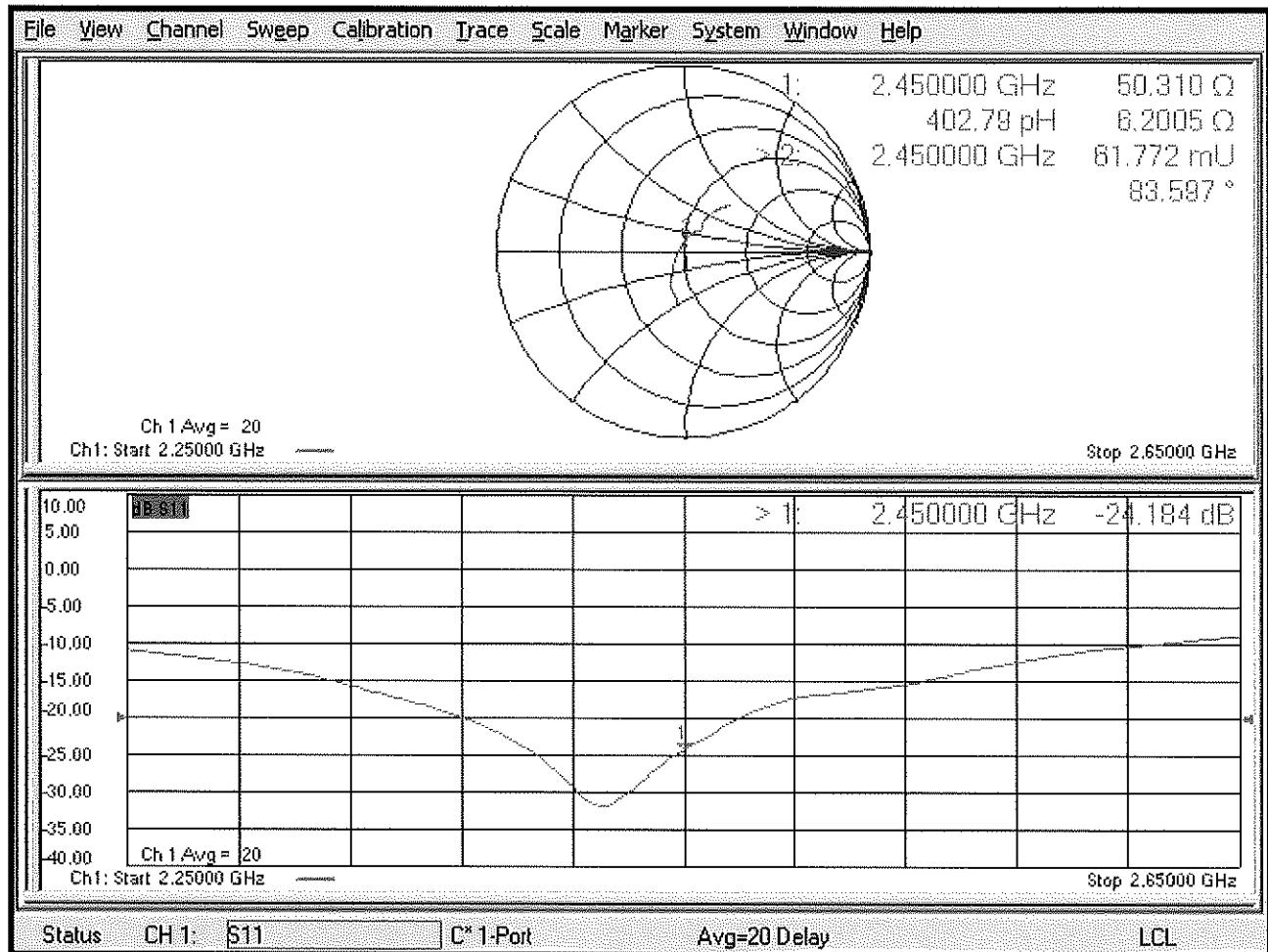
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.6 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

Impedance Measurement Plot for Body TSL

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No.: **D2450V2-921_Nov18**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN:921**

Calibration procedure(s) **QA CAL-05.v10**
Calibration procedure for dipole validation kits above 700 MHz

SC ✓
 14/12/18

Calibration date: **November 12, 2018**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name	Function	Signature
	Manu Seitz	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 12, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.7 \Omega + 6.5 j\Omega$
Return Loss	- 22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.7 \Omega + 7.8 j\Omega$
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

DASY5 Validation Report for Head TSL

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

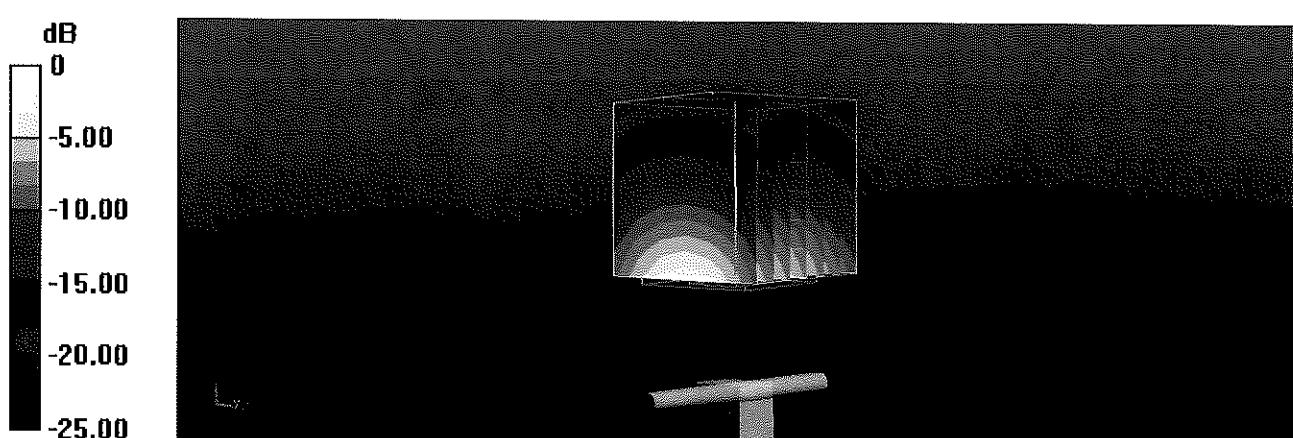
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

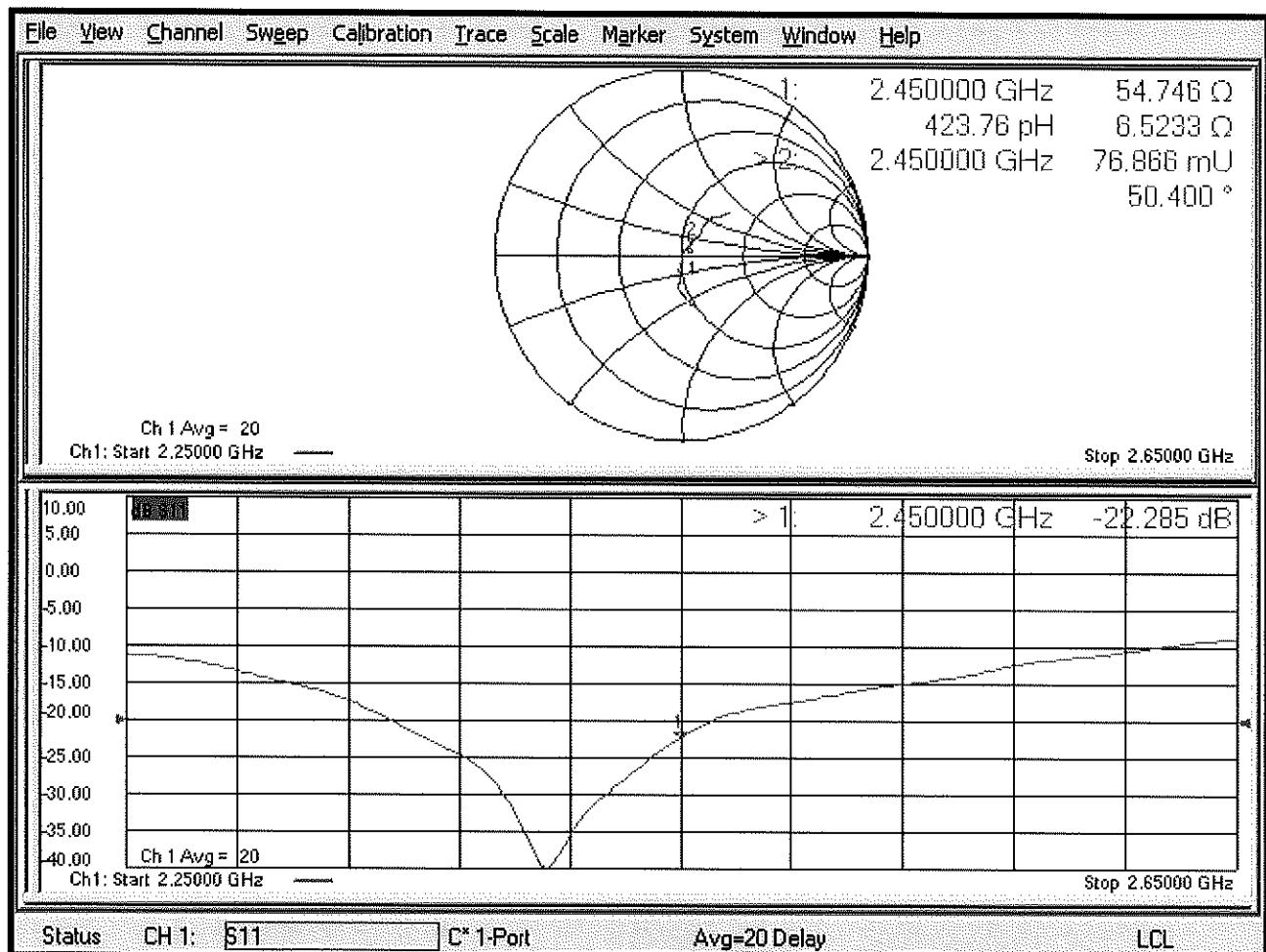
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.7 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 22.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

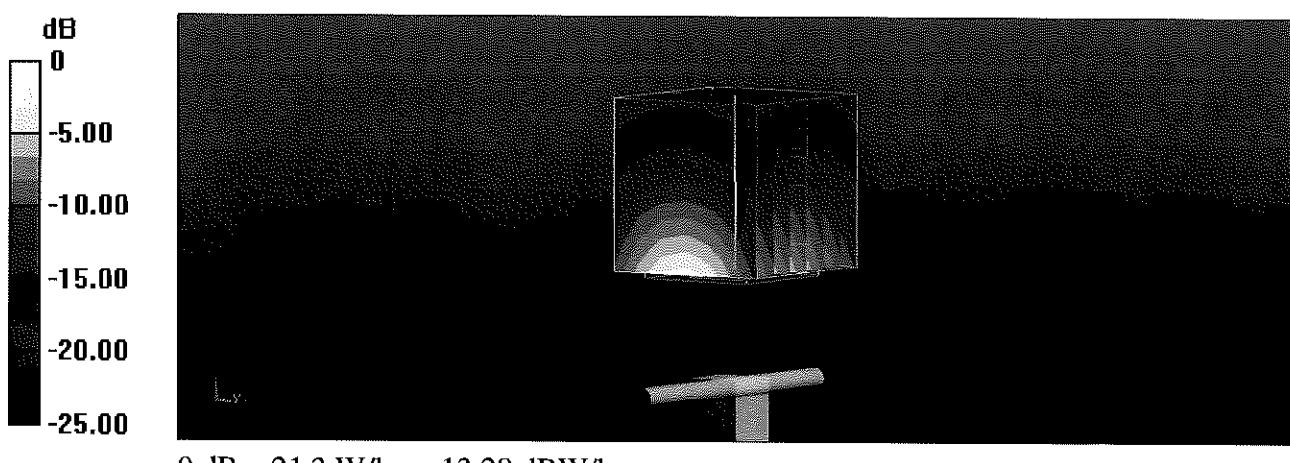
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

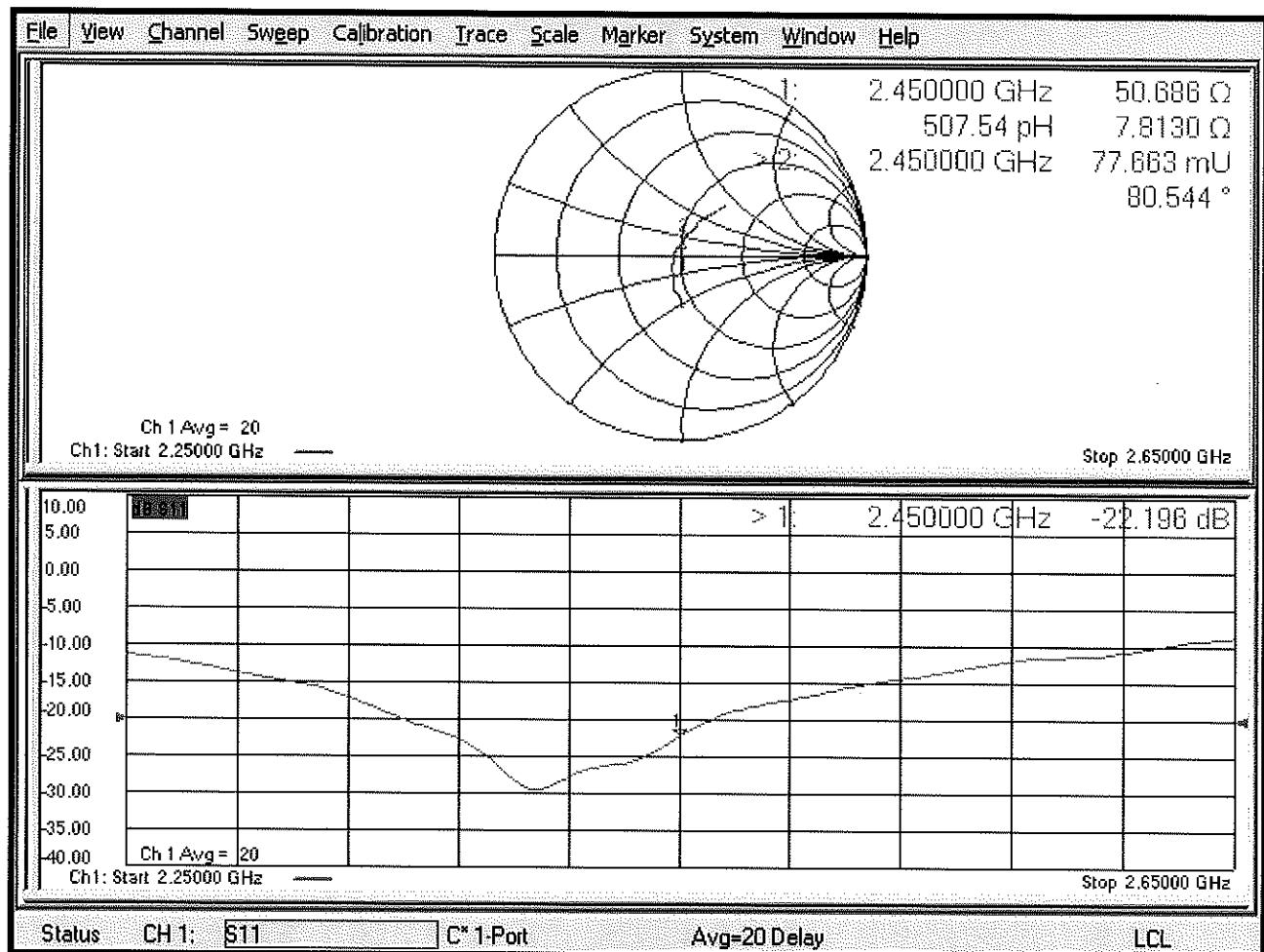
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.6 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

Impedance Measurement Plot for Body TSL

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 0108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: **D2600V2-1042_Jun19**

CALIBRATION CERTIFICATE

Object **D2600V2 - SN:1042**

✓ ATM 6/28/19

Calibration procedure(s) **QA CAL-05.v11**
 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: **June 14, 2019**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name	Function	Signature
	Michael Weber	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	37.3 \pm 6 %	2.03 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.7 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.9 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	50.5 \pm 6 %	2.22 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.2 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.9 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 8.4 $j\Omega$
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 6.2 $j\Omega$
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 37.3$; $\rho = 1000$ kg/m³

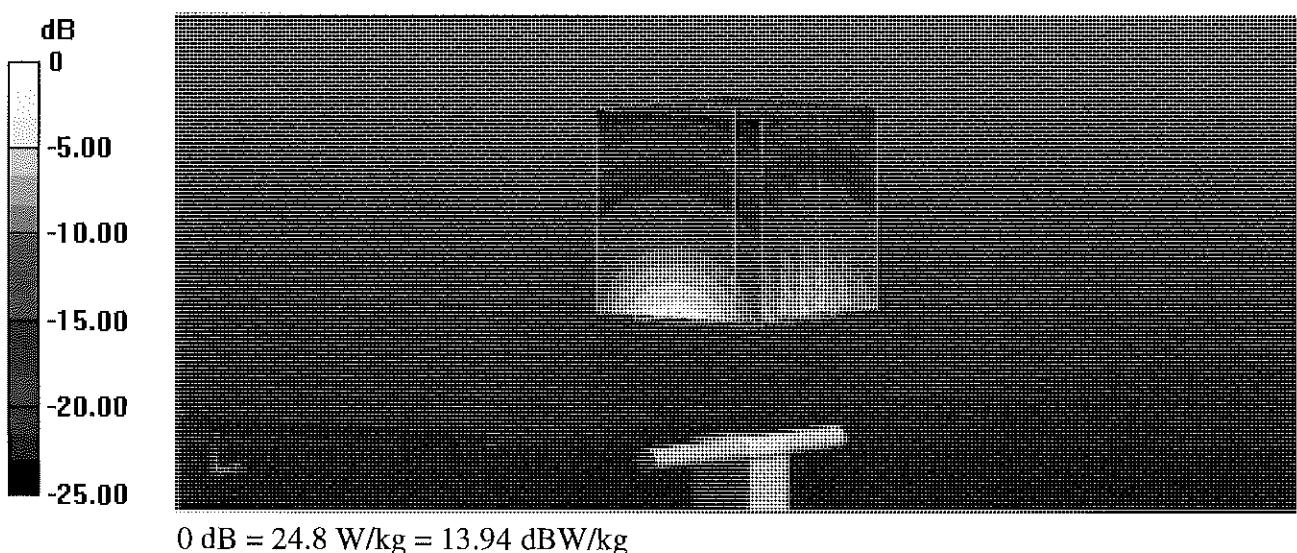
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

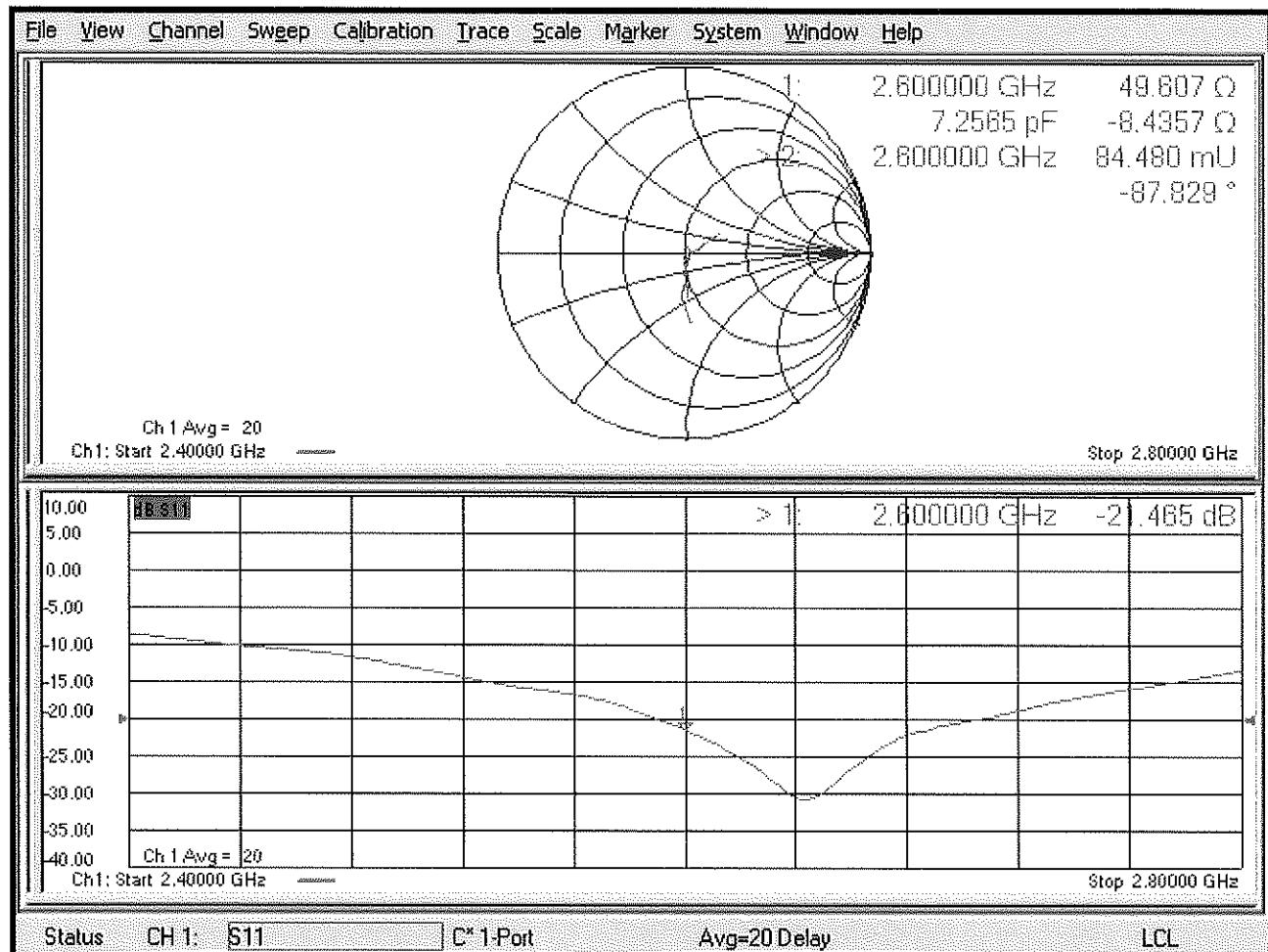
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 120.0 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.57 W/kg

Maximum value of SAR (measured) = 24.8 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 50.5$; $\rho = 1000$ kg/m³

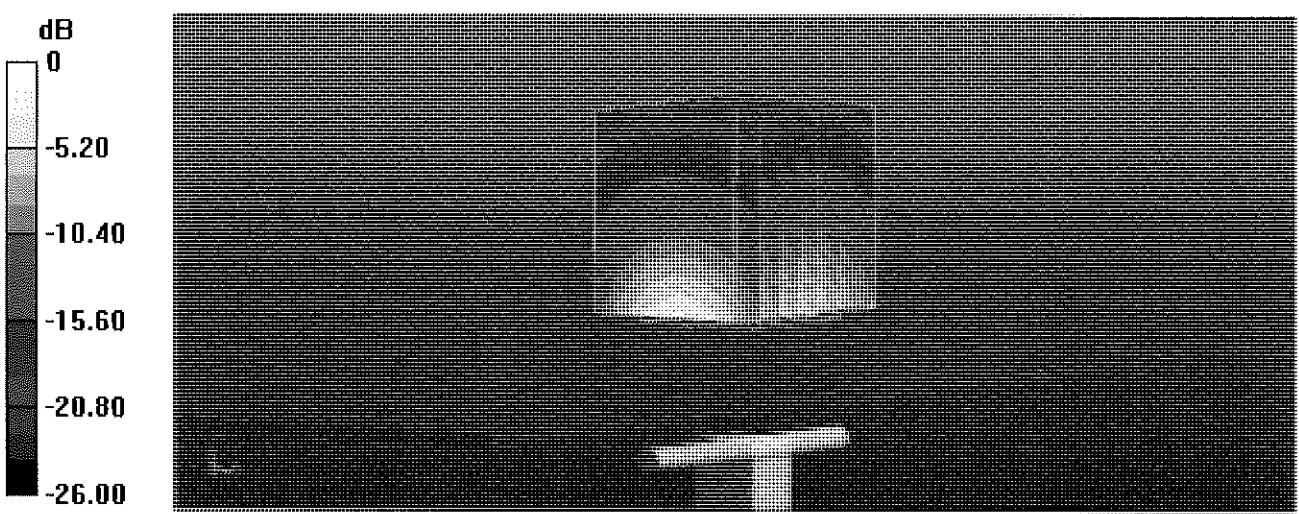
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

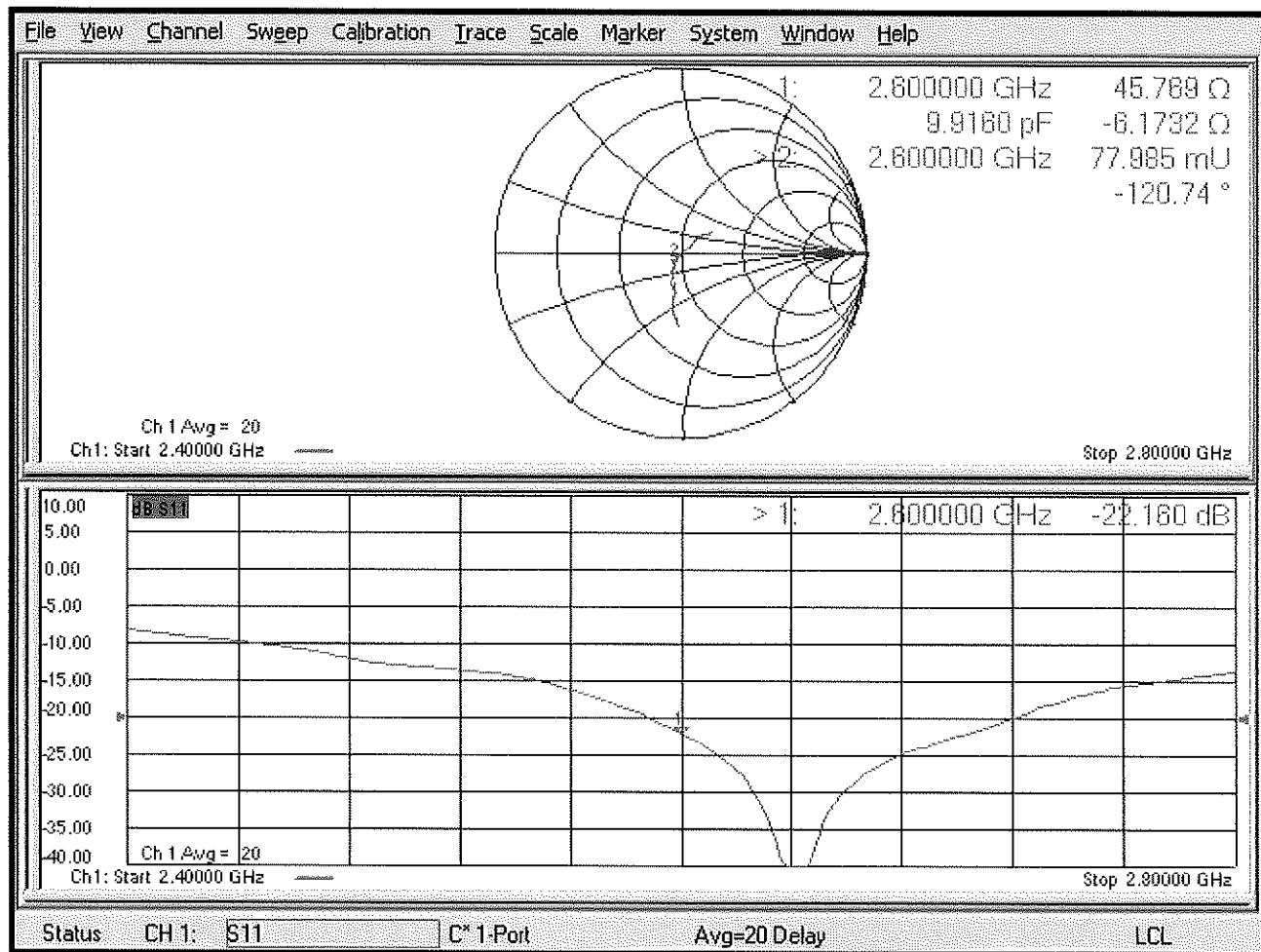
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.3 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.3 W/kg

Maximum value of SAR (measured) = 23.7 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D2600V2-1069_Sep17**

CALIBRATION CERTIFICATE

Object **D2600V2 - SN:1069**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

SC ✓
 10/03/2017

Calibration date: **September 11, 2017**

SC ✓
 9/10/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02621)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by: Name **Michael Weber** Function **Laboratory Technician**

Signature

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Issued: September 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 6.1 $j\Omega$
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 4.7 $j\Omega$
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: $f = 2600 \text{ MHz}$; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 37.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

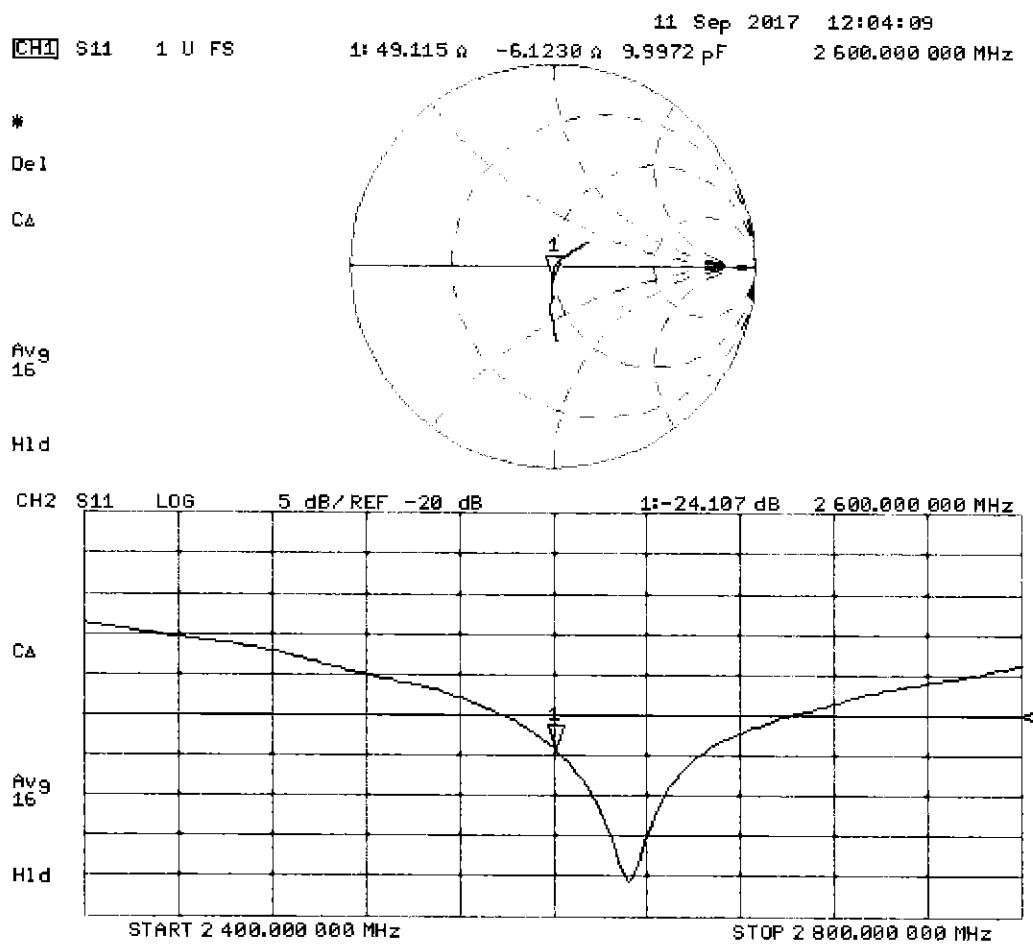
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 115.4 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (measured) = 24.5 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.23$ S/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

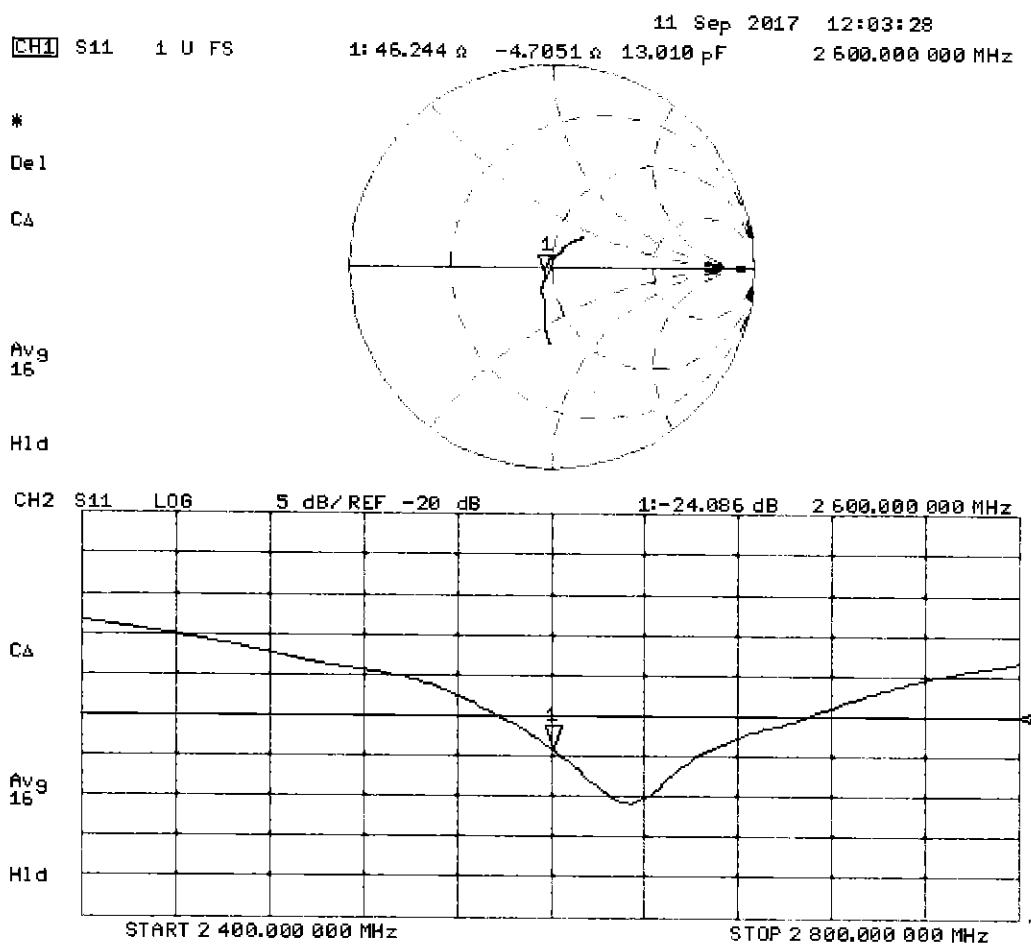
- Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.7 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.9 W/kg


SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654

<http://www.pctest.com>

Certification of Calibration

Object	D2600V2 – SN: 1069
Calibration procedure(s)	Procedure for Calibration Extension for SAR Dipoles.
Extended Calibration date:	September 10, 2018
Description:	SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

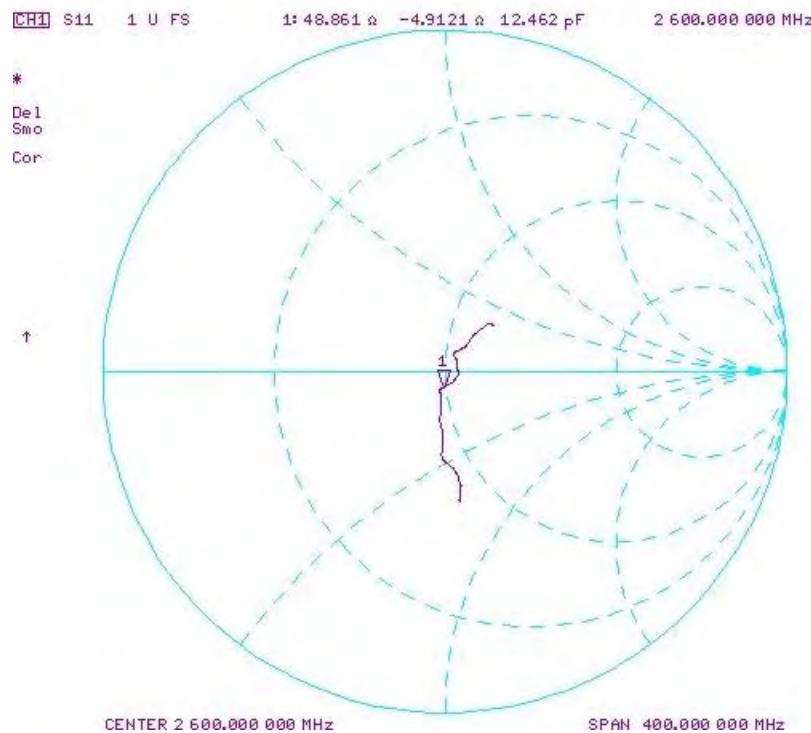
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	ES3DV3	SAR Probe	4/12/2018	Annual	4/12/2019	3275
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/12/2018	Annual	4/12/2019	501

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	

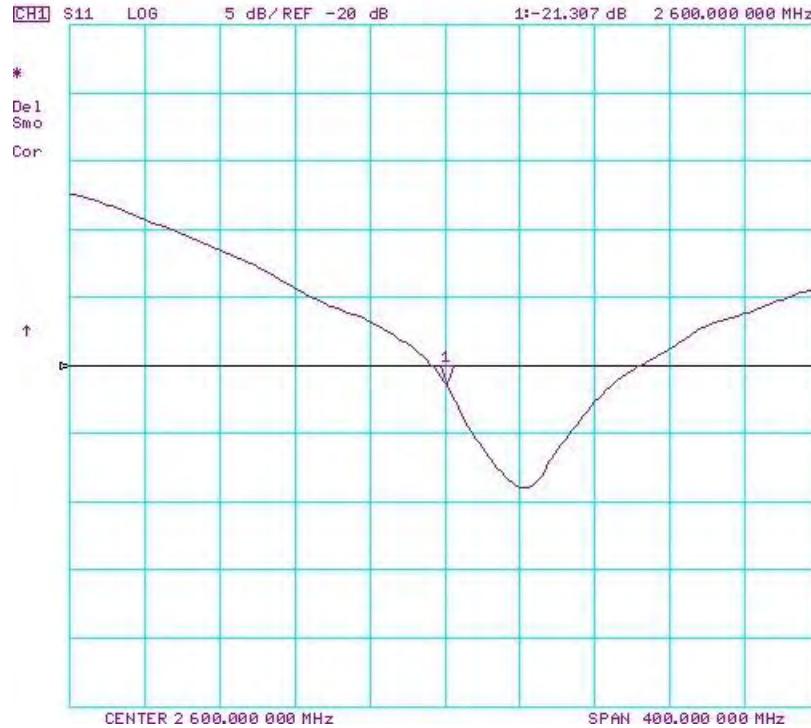
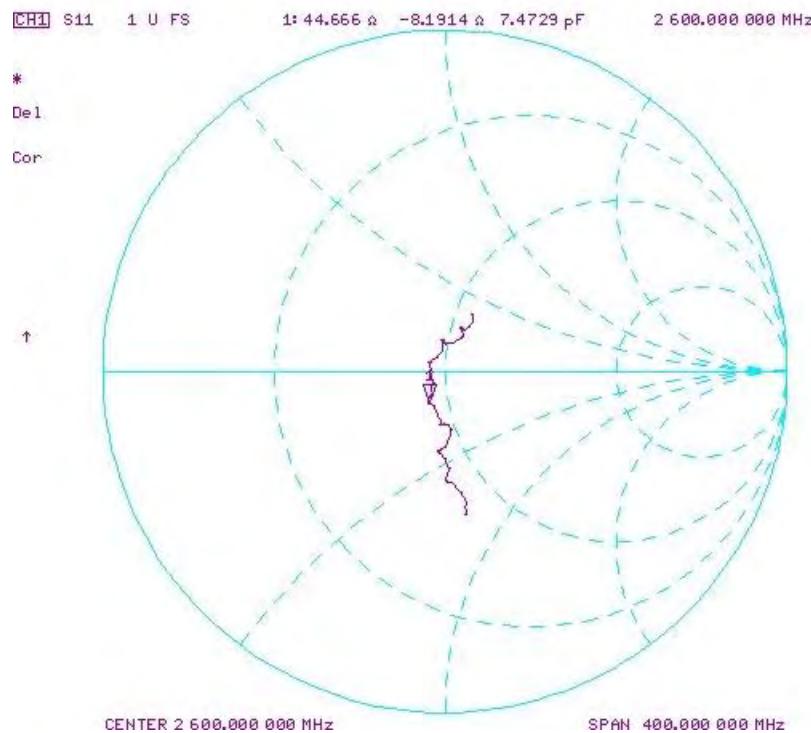
Object: D2600V2 – SN: 1069	Date Issued: 09/10/2018	Page 1 of 4
-------------------------------	----------------------------	-------------

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/10/2018	1.152	5.69	5.52	-2.99%	2.54	2.51	-1.18%	49.1	48.9	0.2	-6.1	-4.9	1.2	-24.1	-25.8	-7.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/10/2018	1.152	5.53	5.28	-4.52%	2.48	2.36	-5.24%	46.2	44.7	1.5	-4.7	-8.2	3.5	-24.1	-21.3	11.60%	PASS

Impedance & Return-Loss Measurement Plot for Head TSL

Object: D2600V2 – SN: 1069	Date Issued: 09/10/2018	Page 3 of 4
-------------------------------	----------------------------	-------------

Impedance & Return-Loss Measurement Plot for Body TSL

Object: D2600V2 – SN: 1069	Date Issued: 09/10/2018	Page 4 of 4
-------------------------------	----------------------------	-------------

Accredited by the Swiss Accreditation Service (SAS)

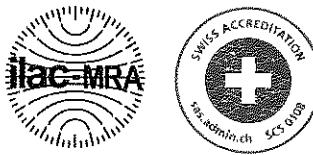
Accreditation No.: **SCS 0108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: **EX3-7532_Apr19**

CALIBRATION CERTIFICATE


Object	EX3DV4 - SN:7532	4/12/19 ✓ ATM
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	
Calibration date:	April 12, 2019	
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>		

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Name Katica Pokovic	Function Technical Manager	Signature

Issued: April 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 0108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM x,y,z : Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7532

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.46	0.41	0.48	$\pm 10.1 \%$
DCP (mV) ^B	95.9	99.2	101.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB/ μV	C	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	130.6	$\pm 3.8 \%$	$\pm 4.7 \%$
		Y	0.00	0.00	1.00		143.6		
		Z	0.00	0.00	1.00		134.6		
10352- AAA	Pulse Waveform (200Hz, 10%)	X	8.28	78.46	15.24	10.00	60.0	$\pm 3.0 \%$	$\pm 9.6 \%$
		Y	2.33	65.30	10.44		60.0		
		Z	6.14	75.22	14.10		60.0		
10353- AAA	Pulse Waveform (200Hz, 20%)	X	15.00	85.55	16.34	6.99	80.0	$\pm 2.1 \%$	$\pm 9.6 \%$
		Y	1.95	66.76	9.83		80.0		
		Z	15.00	84.94	16.01		80.0		
10354- AAA	Pulse Waveform (200Hz, 40%)	X	15.00	89.33	16.76	3.98	95.0	$\pm 1.2 \%$	$\pm 9.6 \%$
		Y	0.55	61.56	6.38		95.0		
		Z	15.00	88.27	16.22		95.0		
10355- AAA	Pulse Waveform (200Hz, 60%)	X	15.00	96.18	18.66	2.22	120.0	$\pm 1.0 \%$	$\pm 9.6 \%$
		Y	0.26	60.00	4.30		120.0		
		Z	15.00	93.58	17.48		120.0		
10387- AAA	QPSK Waveform, 1 MHz	X	0.48	60.00	6.53	0.00	150.0	$\pm 3.1 \%$	$\pm 9.6 \%$
		Y	0.47	60.00	5.61		150.0		
		Z	0.47	60.00	6.40		150.0		
10388- AAA	QPSK Waveform, 10 MHz	X	2.25	69.41	16.61	0.00	150.0	$\pm 1.3 \%$	$\pm 9.6 \%$
		Y	1.84	65.93	14.51		150.0		
		Z	2.21	69.11	16.38		150.0		
10396- AAA	64-QAM Waveform, 100 kHz	X	2.77	71.23	19.25	3.01	150.0	$\pm 1.2 \%$	$\pm 9.6 \%$
		Y	2.12	65.82	16.55		150.0		
		Z	2.88	72.11	19.54		150.0		
10399- AAA	64-QAM Waveform, 40 MHz	X	3.52	67.74	16.20	0.00	150.0	$\pm 2.4 \%$	$\pm 9.6 \%$
		Y	3.24	66.16	15.20		150.0		
		Z	3.48	67.65	16.08		150.0		
10414- AAA	WLAN CCDF, 64-QAM, 40MHz	X	4.78	66.13	15.86	0.00	150.0	$\pm 4.3 \%$	$\pm 9.6 \%$
		Y	4.55	65.17	15.25		150.0		
		Z	4.59	65.54	15.49		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.