

SAR EVALUATION REPORT

Applicant Name:

Apple, Inc.
1 Infinite Loop
Cupertino, CA 95014

Date of Testing:

06/28/17 – 07/13/17

Test Site/Location:

PCTEST Lab, San Jose, CA, USA

Document Serial No.:

1C1706160002-92-01-R3.BCG

FCC ID:
BCG-A1892
APPLICANT:
APPLE, INC.

DUT Type:	Watch
Application Type:	Certification
FCC Rule Part(s):	CFR §2.1093
Model:	A1892
Additional Model:	A1973

Equipment Class	Band & Mode	Tx Frequency	SAR	
			1 gm Head (W/kg)	10 gm Extremity (W/kg)
TNT	LTE Band 41	2498.5 - 2687.5 MHz	0.25	0.14
DTS	2.4 GHz WLAN	2412 - 2472 MHz	0.14	< 0.1
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.14	< 0.1
Simultaneous SAR per KDB 690783 D01v01r03:			0.39	0.21

Note: This revised Test Report (S/N: 1C1706160002-92-01-R3.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This watch has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez
President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: BCG-A1892		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 1 of 32

T A B L E O F C O N T E N T S

1	DEVICE UNDER TEST	3
2	LTE INFORMATION	6
3	INTRODUCTION	7
4	DOSIMETRIC ASSESSMENT	8
5	TEST CONFIGURATION POSITIONS	9
6	RF EXPOSURE LIMITS	10
7	FCC MEASUREMENT PROCEDURES	11
8	RF CONDUCTED POWERS	13
9	SYSTEM VERIFICATION	17
10	SAR DATA SUMMARY	19
11	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	25
12	SAR MEASUREMENT VARIABILITY	27
13	EQUIPMENT LIST	27
14	MEASUREMENT UNCERTAINTIES	29
15	CONCLUSION	30
16	REFERENCES	31
APPENDIX A: SAR TEST PLOTS		
APPENDIX B: SAR DIPOLE VERIFICATION PLOTS		
APPENDIX C: PROBE AND DIPOLE CALIBRATION CERTIFICATES		
APPENDIX D: SAR TISSUE SPECIFICATIONS		
APPENDIX E: SAR SYSTEM VALIDATION		
APPENDIX F: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS		

FCC ID: BCG-A1892	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch

1 DEVICE UNDER TEST

1.1 Device Overview

Table 1-1
Summary EUT Bands/Modes

Band & Mode	Operating Modes	Tx Frequency
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Table 1-2
Summary Max Conducted Powers - LTE Mode

Mode / Band		Modulated Average (dBm)
LTE Band 41	Maximum	24.0
	Nominal	23.0

Table 1-3
Summary Max Conducted Powers - WIFI Mode

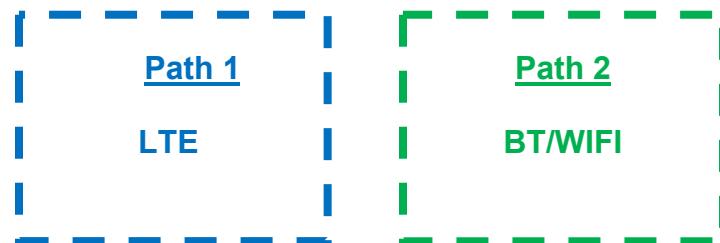
Mode / Band		Modulated Average (dBm)			
		Ch. 1-10	Ch. 11	Ch. 12	Ch. 13
IEEE 802.11b (2.4 GHz)	Maximum	19.5	19.5	19.5	18.0
IEEE 802.11g (2.4 GHz)	Maximum	19.5	17.5	15.5	8.0
IEEE 802.11n (2.4 GHz)	Maximum	19.5	17.5	15.5	8.0

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch			Page 3 of 32

Table 1-4
Summary Max Conducted Powers - Bluetooth Mode

Mode / Band		Modulated Average (dBm)
Bluetooth BDR/LE (ePA)	Maximum	19.0
Bluetooth BDR/LE (iPA)	Maximum	13.0
Bluetooth EDR (ePA)	Maximum	13.5
Bluetooth EDR (iPA)	Maximum	9.0

1.4 DUT Antenna Locations


A diagram showing the location of the device antennas can be found in Appendix F.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 4 of 32

Table 1-5
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Extremity
1	LTE + 2.4 GHz WI-FI	Yes	Yes
2	LTE + 2.4 GHz Bluetooth	Yes	Yes

1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
2. This device supports VoLTE and VoWIFI.

1.7 Miscellaneous SAR Test Considerations

(A) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

1.8 Guidance Applied

- FCC KDB Publication 941225 D05v02r05 (4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance, Wrist-Worn Device Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10.

1.10 Device Housing Types and Wrist Band Types

This device has three housing types that were all evaluated for SAR. The device can also be used with different wrist band accessories. All metallic wrist bands were tested, and the sport band non-metallic wrist band was tested fully for all required exposure conditions. Other non-metallic wrist-bands were checked to be similar or lower in SAR.

FCC ID: BCG-A1892	 SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 5 of 32

2 LTE INFORMATION

LTE Information					
FCC ID	BCG-A1892				
Form Factor	Watch				
Frequency Range of each LTE transmission band	LTE Band 41 (2498.5 - 2687.5 MHz)				
Channel Bandwidths	LTE Band 41: 5 MHz, 10 MHz, 15 MHz, 20 MHz				
LTE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
LTE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
LTE Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
LTE Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
UE Category	1				
Modulations Supported in UL	QPSK, 16QAM				
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3-6.2.5? (manufacturer attestation to be provided)	YES				
A-MPR (Additional MPR) disabled for SAR Testing?	YES				
LTE Release 10 Additional Information	This device does not support full CA features on 3GPP Release 10. All uplink communications are identical to the Release 8 Specifications. The following LTE Release 10 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, eICIC, WIFI Offloading, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.				

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 6 of 32

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

**Equation 3-1
SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

σ = conductivity of the tissue-simulating material (S/m)

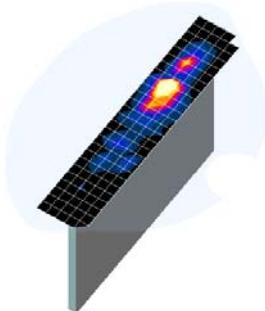
ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 7 of 32

4 DOSIMETRIC ASSESSMENT


4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1).
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) (x,y,z)
			Uniform Grid		Graded Grid	
			$\Delta z_{zoom}(n)$	$\Delta z_{zoom}(1)*$	$\Delta z_{zoom}(n>1)*$	
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≤ 4	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≤ 3	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≤ 2.5	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤ 2	≤ 1.5* $\Delta z_{zoom}(n-1)$	≥ 22

Figure 4-1
Sample SAR Area Scan

FCC ID: BCG-A1892	PCTEST® ENGINEERING LABORATORY, INC.			SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch			

5 TEST CONFIGURATION POSITIONS FOR WRIST-WORN DEVICES

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$. Additionally, a manufacturer provided low-loss foam was used to position the device for head SAR evaluations.

5.2 Positioning for Head

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions.

5.3 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. When extremity SAR evaluation is required, the device is evaluated with the back of the device touching the flat phantom, which is filled with body tissue-equivalent medium. The device was evaluated with Sport wrist band unstrapped and touching the phantom. For Metal Loop and Metal Links wrist bands, the device was evaluated with wrist bands strapped and the distance between wrist bands and the phantom was minimized to represent the spacing created by actual use conditions.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 9 of 32

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT <i>General Population (W/kg) or (mW/g)</i>	CONTROLLED ENVIRONMENT <i>Occupational (W/kg) or (mW/g)</i>
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Approved by: Quality Manager Page 10 of 32

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.2.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

7.2.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.2.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

7.2.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - The required channel and offset combination with the highest maximum output power is required for SAR.
 - When the reported SAR is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - When the reported SAR for a required test channel is > 1.45 W/kg for 1g SAR and > 3.625 W/kg for 10g SAR, SAR is required for all RB offset configurations for that channel.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 11 of 32

- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to $\frac{1}{2}$ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg for 1g SAR and <3.625 W/kg for 10g SAR.

7.2.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

7.3 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.3.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.3.2 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 12 of 32

8 RF CONDUCTED POWERS

8.1 LTE Conducted Powers

8.1.1 LTE Band 41

Table 8-1
LTE Band 41 Conducted Powers - 20 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 41 20 MHz Bandwidth					MPR Allowed per 3GPP [dB]	MPR [dB]
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)		
Conducted Power [dBm]									
QPSK	1	0	22.78	22.91	23.08	22.87	23.02	0	0
	1	50	22.66	22.83	22.83	22.89	22.78		0
	1	99	23.22	23.00	23.00	23.11	23.02		0
	50	0	21.63	21.61	21.70	21.57	21.69	0-1	1
	50	25	21.62	21.68	21.70	21.72	21.71		1
	50	50	21.86	21.83	21.72	21.85	21.75		1
	100	0	21.77	21.65	21.69	21.67	21.72		1
16QAM	1	0	21.46	21.58	21.66	21.53	21.92	0-1	1
	1	50	21.33	21.34	21.55	21.27	21.76		1
	1	99	21.81	21.76	21.63	21.76	22.00		1
	50	0	20.56	20.53	20.67	20.53	20.65	0-2	2
	50	25	20.66	20.64	20.68	20.65	20.55		2
	50	50	20.77	20.80	20.69	20.90	20.60		2
	100	0	20.69	20.59	20.70	20.69	20.64		2

Table 8-2
LTE Band 41 Conducted Powers - 15 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 41 15 MHz Bandwidth					MPR Allowed per 3GPP [dB]	MPR [dB]
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)		
Conducted Power [dBm]									
QPSK	1	0	22.74	22.67	22.73	22.84	22.97	0	0
	1	36	22.87	22.74	22.75	22.86	22.75		0
	1	74	23.09	22.84	22.72	23.08	23.00		0
	36	0	21.64	21.67	21.71	21.68	21.66	0-1	1
	36	18	21.66	21.66	21.70	21.69	21.68		1
	36	37	21.71	21.67	21.72	21.82	21.72		1
	75	0	21.76	21.62	21.65	21.66	21.69		1
16QAM	1	0	21.80	21.65	21.84	21.79	21.89	0-1	1
	1	36	21.84	21.70	21.87	21.85	21.73		1
	1	74	21.74	21.79	21.76	21.86	21.97		1
	36	0	20.52	20.70	20.64	20.50	20.62	0-2	2
	36	18	20.63	20.62	20.60	20.62	20.61		2
	36	37	20.67	20.69	20.62	20.87	20.57		2
	75	0	20.69	20.64	20.57	20.66	20.67		2

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 13 of 32

Table 8-3
LTE Band 41 Conducted Powers - 10 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 41 10 MHz Bandwidth					MPR Allowed per 3GPP [dB]	MPR [dB]
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)		
			Conducted Power [dBm]						
QPSK	1	0	22.66	22.60	22.71	22.79	22.94	0	0
	1	25	22.75	22.71	22.73	22.81	22.72		0
	1	49	22.93	22.81	22.70	23.00	22.97		0
	25	0	21.66	21.64	21.69	21.68	21.63	0-1	1
	25	12	21.69	21.63	21.68	21.64	21.65		1
	25	25	21.72	21.64	21.70	21.77	21.69		1
	50	0	21.70	21.59	21.63	21.61	21.66		1
16QAM	1	0	21.76	21.62	21.87	21.69	21.86	0-1	1
	1	25	21.84	21.67	21.80	21.78	21.70		1
	1	49	21.88	21.76	21.74	21.75	21.94		1
	25	0	20.54	20.67	20.62	20.51	20.59	0-2	2
	25	12	20.57	20.48	20.58	20.61	20.58		2
	25	25	20.55	20.66	20.60	20.82	20.54		2
	50	0	20.68	20.61	20.55	20.63	20.64		2

Table 8-4
LTE Band 41 Conducted Powers - 5 MHz Bandwidth

Modulation	RB Size	RB Offset	LTE Band 41 5 MHz Bandwidth					MPR Allowed per 3GPP [dB]	MPR [dB]
			39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)		
			Conducted Power [dBm]						
QPSK	1	0	22.65	22.67	22.61	22.59	22.71	0	0
	1	12	22.62	22.61	22.57	22.56	22.63		0
	1	24	22.63	22.67	22.64	22.61	22.91		0
	12	0	21.74	21.68	21.53	21.61	21.67	0-1	1
	12	6	21.80	21.63	21.56	21.61	21.73		1
	12	13	21.71	21.64	21.55	21.66	21.80		1
	25	0	21.66	21.62	21.58	21.68	21.95		1
16QAM	1	0	21.84	21.82	21.67	21.67	21.77	0-1	1
	1	12	21.81	21.80	21.80	21.58	21.89		1
	1	24	21.76	21.73	21.74	21.61	21.90		1
	12	0	20.73	20.51	20.56	20.65	20.78	0-2	2
	12	6	20.66	20.56	20.63	20.62	20.86		2
	12	13	20.72	20.57	20.59	20.66	20.87		2
	25	0	20.67	20.66	20.65	20.69	20.67		2

FCC ID: BCG-A1892	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch

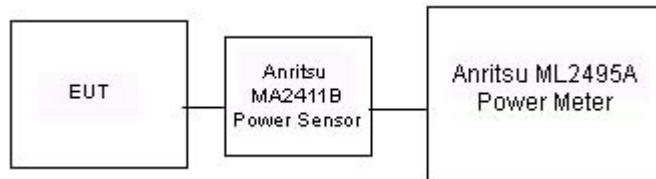

8.2 WLAN Conducted Powers

Table 8-5
2.4GHz WLAN Average RF Power

2.4GHz Conducted Power [dBm]					
Freq [MHz]	Channel	IEEE Transmission Mode			
		802.11b	802.11g	802.11n	
2412	1	19.14	18.97	19.49	
2437	6	19.49	19.50	19.31	
2457	10	19.49	18.50	18.70	
2462	11	19.37	17.45	17.43	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

Figure 8-1
Power Measurement Setup

FCC ID: BCG-A1892	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 15 of 32	

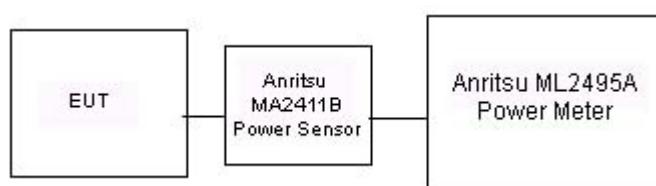

8.3 Bluetooth Conducted Powers

Table 8-6
Bluetooth Average RF Power

Frequency [MHz]	Modulation	Power Scheme	Channel No.	Avg Conducted Power	
				[dBm]	[mW]
2402	GFSK	ePA	0	17.20	52.481
2441	GFSK	ePA	39	18.87	77.090
2480	GFSK	ePA	78	17.40	54.954
2402	GFSK	iPA	0	12.26	16.834
2441	GFSK	iPA	39	12.84	19.231
2480	GFSK	iPA	78	12.11	16.255
2402	8PSK	ePA	0	12.90	19.498
2441	8PSK	ePA	39	13.48	22.284
2480	8PSK	ePA	78	13.45	22.131
2402	8PSK	iPA	0	8.85	7.674
2441	8PSK	iPA	39	8.91	7.780
2480	8PSK	iPA	78	8.82	7.621

Notes:

1. The bolded data rate and channel above were tested for SAR.
2. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

Figure 8-2
Power Measurement Setup

FCC ID: BCG-A1892	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 16 of 32	

9 SYSTEM VERIFICATION

9.1 Tissue Verification

Table 9-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ϵ	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ϵ	% dev σ	% dev ϵ
6/28/2017	2450H	23.4	2400	1.783	39.617	1.756	39.289	1.54%	0.83%
			2450	1.838	39.444	1.800	39.200	2.11%	0.62%
			2500	1.900	39.292	1.855	39.136	2.43%	0.40%
7/3/2017	2450H	23.5	2400	1.821	39.751	1.756	39.289	3.70%	1.18%
			2450	1.877	39.507	1.800	39.200	4.28%	0.78%
			2500	1.938	39.329	1.855	39.136	4.47%	0.49%
7/12/2017	2450H	22.6	2400	1.825	39.770	1.756	39.289	3.93%	1.22%
			2450	1.875	39.584	1.800	39.200	4.17%	0.98%
			2500	1.935	39.377	1.855	39.136	4.31%	0.62%
7/12/2017	2600H	22.6	2500	1.935	39.377	1.855	39.136	4.31%	0.62%
			2550	1.990	39.228	1.909	39.073	4.24%	0.40%
			2600	2.046	39.018	1.964	39.009	4.18%	0.02%
			2650	2.107	38.850	2.018	38.945	4.41%	-0.24%
			2700	2.159	38.644	2.073	38.882	4.15%	-0.61%
7/3/2017	2450B	23.4	2400	1.907	51.597	1.902	52.767	0.26%	-2.22%
			2450	1.976	51.355	1.950	52.700	1.33%	-2.55%
			2500	2.048	51.193	2.021	52.636	1.34%	-2.74%
7/6/2017	2450B	20.8	2400	1.971	50.978	1.902	52.767	3.63%	-3.39%
			2450	2.039	50.749	1.950	52.700	4.56%	-3.70%
			2500	2.101	50.611	2.021	52.636	3.96%	-3.85%
7/13/2017	2450B	22.7	2400	1.905	51.596	1.902	52.767	0.16%	-2.22%
			2450	1.967	51.397	1.950	52.700	0.87%	-2.47%
			2500	2.034	51.210	2.021	52.636	0.64%	-2.71%
7/13/2017	2600B	22.7	2500	2.034	51.210	2.021	52.636	0.64%	-2.71%
			2550	2.094	51.042	2.092	52.573	0.10%	-2.91%
			2600	2.160	50.808	2.163	52.509	-0.14%	-3.24%
			2650	2.223	50.675	2.234	52.445	-0.49%	-3.37%
			2700	2.297	50.449	2.305	52.382	-0.35%	-3.69%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch			Page 17 of 32

9.2 Test System Verification

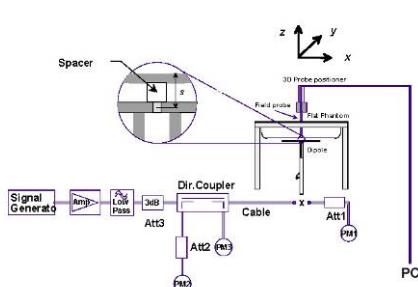

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 9-2
System Verification Results - 1g

System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
CAL3	2450	HEAD	06/28/2017	21.5	22.5	0.100	921	3118	5.180	52.100	51.800	-0.58%
CAL3	2450	HEAD	07/03/2017	21.7	23.5	0.100	921	3118	5.270	52.100	52.700	1.15%
CAL4	2450	HEAD	07/12/2017	21.5	22.0	0.100	921	3329	5.220	52.100	52.200	0.19%
CAL4	2600	HEAD	07/12/2017	21.5	22.0	0.100	1069	3329	5.930	56.300	59.300	5.33%

Table 9-3
System Verification Results - 10g

System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe	Measured SAR _{10g} (W/kg)	1 W Target SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g} (%)
CAL2	2450	BODY	07/03/2017	19.9	21.8	0.100	921	3347	2.350	24.000	23.500	-2.08%
CAL2	2450	BODY	07/06/2017	20.8	20.8	0.100	921	3347	2.390	24.000	23.900	-0.42%
CAL3	2450	BODY	07/13/2017	21.7	22.7	0.100	921	3118	2.450	24.000	24.500	2.08%
CAL3	2600	BODY	07/13/2017	21.7	22.7	0.100	1069	3118	2.440	25.000	24.400	-2.40%

Figure 9-1
System Verification Setup Diagram

Figure 9-2
System Verification Setup Photo

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch			Page 18 of 32

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

Table 10-1
LTE Band 41 Head SAR

MEASUREMENT RESULTS																					
FREQUENCY		Mode	Bandwidth [MHz]	Housing Type	Wrist Band Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Pilot #	
MHz	Ch.																(W/kg)	(W/kg)	(W/kg)		
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Loop	24.0	23.22	0.13	0	FH7TR008J790	QPSK	1	99	10 mm	front	1:1.58	0.153	1.197	0.183	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Loop	23.0	21.86	-0.11	1	FH7TR008J790	QPSK	50	50	10 mm	front	1:1.58	0.114	1.300	0.148	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Links	24.0	23.22	-0.04	0	FH7TR008J790	QPSK	1	99	10 mm	front	1:1.58	0.132	1.197	0.158	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Links	23.0	21.86	-0.11	1	FH7TR008J790	QPSK	50	50	10 mm	front	1:1.58	0.106	1.300	0.138	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Sport	24.0	23.22	0.13	0	FH7TR008J790	QPSK	1	99	10 mm	front	1:1.58	0.168	1.197	0.201	
2549.50	40185	Low-Mid	LTE Band 41	20	Aluminum	Sport	24.0	23.00	0.02	0	FH7TR008J790	QPSK	1	99	10 mm	front	1:1.58	0.156	1.259	0.196	
2593.00	40620	Mid	LTE Band 41	20	Aluminum	Sport	24.0	23.08	0.13	0	FH7TR008J790	QPSK	1	0	10 mm	front	1:1.58	0.172	1.236	0.213	
2636.50	41055	Mid-High	LTE Band 41	20	Aluminum	Sport	24.0	23.11	-0.04	0	FH7TR008J790	QPSK	1	99	10 mm	front	1:1.58	0.189	1.227	0.232	
2680.00	41490	High	LTE Band 41	20	Aluminum	Sport	24.0	23.02	0.04	0	FH7TR008J790	QPSK	1	99	10 mm	front	1:1.58	0.199	1.253	0.249	A1
2506.00	39750	Low	LTE Band 41	20	Aluminum	Sport	23.0	21.86	0.05	1	FH7TR008J790	QPSK	50	50	10 mm	front	1:1.58	0.122	1.300	0.159	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Loop	24.0	23.22	0.04	0	FH7TQ00MJ798	QPSK	1	99	10 mm	front	1:1.58	0.120	1.197	0.144	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Loop	23.0	21.86	0.05	1	FH7TQ00MJ798	QPSK	50	50	10 mm	front	1:1.58	0.095	1.300	0.124	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Links	24.0	23.22	0.09	0	FH7TQ00MJ798	QPSK	1	99	10 mm	front	1:1.58	0.126	1.197	0.151	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Links	23.0	21.86	0.14	1	FH7TQ00MJ798	QPSK	50	50	10 mm	front	1:1.58	0.114	1.300	0.148	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Sport	24.0	23.22	0.05	0	FH7TQ00MJ798	QPSK	1	99	10 mm	front	1:1.58	0.131	1.197	0.157	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Sport	23.0	21.86	0.08	1	FH7TQ00MJ798	QPSK	50	50	10 mm	front	1:1.58	0.101	1.300	0.131	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Loop	24.0	23.22	-0.08	0	FH7TR00AJ7C4	QPSK	1	99	10 mm	front	1:1.58	0.148	1.197	0.177	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Loop	23.0	21.86	0.05	1	FH7TR00AJ7C4	QPSK	50	50	10 mm	front	1:1.58	0.116	1.300	0.151	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Links	24.0	23.22	0.02	0	FH7TR00AJ7C4	QPSK	1	99	10 mm	front	1:1.58	0.151	1.197	0.181	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Links	23.0	21.86	0.01	1	FH7TR00AJ7C4	QPSK	50	50	10 mm	front	1:1.58	0.120	1.300	0.156	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Sport	24.0	23.22	0.03	0	FH7TR00AJ7C4	QPSK	1	99	10 mm	front	1:1.58	0.163	1.197	0.195	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Sport	23.0	21.86	0.02	1	FH7TR00AJ7C4	QPSK	50	50	10 mm	front	1:1.58	0.128	1.300	0.166	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												Head 1.6 W/kg (mW/g) averaged over 1 gram									

Table 10-2
2.4 GHz WLAN Head SAR

MEASUREMENT RESULTS																			
FREQUENCY		Mode	Service	Bandwidth [MHz]	Housing Type	Wrist Band Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Pilot #
MHz	Ch.														(W/kg)	(W/kg)	(W/kg)		
2437	6	802.11b	DSSS	22	Aluminum	Metal Loop	19.5	19.49	-0.05	10 mm	FH7TR0023790	1	front	98.2	0.098	1.002	1.018	0.100	
2437	6	802.11b	DSSS	22	Aluminum	Metal Links	19.5	19.49	-0.03	10 mm	FH7TR0023790	1	front	98.2	0.102	1.002	1.018	0.104	
2437	6	802.11b	DSSS	22	Aluminum	Sport	19.5	19.49	-0.04	10 mm	FH7TR0023790	1	front	98.2	0.137	1.002	1.018	0.140	A2
2437	6	802.11b	DSSS	22	Stainless Steel	Metal Loop	19.5	19.49	-0.04	10 mm	FH7TQ00FJ798	1	front	98.2	0.083	1.002	1.018	0.085	
2437	6	802.11b	DSSS	22	Stainless Steel	Metal Links	19.5	19.49	-0.01	10 mm	FH7TQ00FJ798	1	front	98.2	0.093	1.002	1.018	0.095	
2437	6	802.11b	DSSS	22	Stainless Steel	Sport	19.5	19.49	-0.15	10 mm	FH7TQ00FJ798	1	front	98.2	0.124	1.002	1.018	0.126	
2437	6	802.11b	DSSS	22	Ceramic	Metal Loop	19.5	19.49	0.13	10 mm	FH7TR003J79V	1	front	98.2	0.070	1.002	1.018	0.071	
2437	6	802.11b	DSSS	22	Ceramic	Metal Links	19.5	19.49	-0.03	10 mm	FH7TR003J79V	1	front	98.2	0.075	1.002	1.018	0.077	
2437	6	802.11b	DSSS	22	Ceramic	Sport	19.5	19.49	-0.09	10 mm	FH7TR003J79V	1	front	98.2	0.095	1.002	1.018	0.097	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												Head 1.6 W/kg (mW/g) averaged over 1 gram							

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT										Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch										Page 19 of 32

Table 10-3
Bluetooth (ePA) Head SAR

MEASUREMENT RESULTS																	
FREQUENCY		Mode	Service	Housing Type	Wrist Band Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
MHz	Ch.																
2441	39	Bluetooth	FHSS	Aluminum	Metal Loop	19.0	18.87	-0.03	10 mm	FH7TR001J790	1	front	1:1	0.104	1.030	0.107	
2441	39	Bluetooth	FHSS	Aluminum	Metal Links	19.0	18.87	-0.04	10 mm	FH7TR001J790	1	front	1:1	0.104	1.030	0.107	
2441	39	Bluetooth	FHSS	Aluminum	Sport	19.0	18.87	-0.04	10 mm	FH7TR001J790	1	front	1:1	0.136	1.030	0.140	A3
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Loop	19.0	18.87	-0.13	10 mm	FH7TQ00FJ798	1	front	1:1	0.070	1.030	0.072	
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Links	19.0	18.87	-0.05	10 mm	FH7TQ00FJ798	1	front	1:1	0.071	1.030	0.073	
2441	39	Bluetooth	FHSS	Stainless Steel	Sport	19.0	18.87	-0.02	10 mm	FH7TQ00FJ798	1	front	1:1	0.106	1.030	0.109	
2441	39	Bluetooth	FHSS	Ceramic	Metal Loop	19.0	18.87	-0.15	10 mm	FH7TR003J79V	1	front	1:1	0.057	1.030	0.059	
2441	39	Bluetooth	FHSS	Ceramic	Metal Links	19.0	18.87	-0.08	10 mm	FH7TR003J79V	1	front	1:1	0.065	1.030	0.067	
2441	39	Bluetooth	FHSS	Ceramic	Sport	19.0	18.87	0.04	10 mm	FH7TR003J79V	1	front	1:1	0.084	1.030	0.087	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head 1.6 W/kg (mW/g) averaged over 1 gram							

Table 10-4
Bluetooth (iPA) Head SAR

MEASUREMENT RESULTS																	
FREQUENCY		Mode	Service	Housing Type	Wrist Band Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
MHz	Ch.																
2441	39	Bluetooth	FHSS	Aluminum	Metal Loop	13.0	12.84	-0.01	10 mm	FH7TR003J790	1	front	1:1	0.020	1.038	0.021	
2441	39	Bluetooth	FHSS	Aluminum	Metal Links	13.0	12.84	-0.05	10 mm	FH7TR003J790	1	front	1:1	0.020	1.038	0.021	
2441	39	Bluetooth	FHSS	Aluminum	Sport	13.0	12.84	0.08	10 mm	FH7TR003J790	1	front	1:1	0.029	1.038	0.030	A4
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Loop	13.0	12.84	-0.15	10 mm	FH7TQ00MU798	1	front	1:1	0.017	1.038	0.018	
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Links	13.0	12.84	0.03	10 mm	FH7TQ00MU798	1	front	1:1	0.015	1.038	0.016	
2441	39	Bluetooth	FHSS	Stainless Steel	Sport	13.0	12.84	-0.09	10 mm	FH7TQ00MU798	1	front	1:1	0.021	1.038	0.022	
2441	39	Bluetooth	FHSS	Ceramic	Metal Loop	13.0	12.84	0.17	10 mm	FH7TR00EJ7C4	1	front	1:1	0.016	1.038	0.017	
2441	39	Bluetooth	FHSS	Ceramic	Metal Links	13.0	12.84	0.03	10 mm	FH7TR00EJ7C4	1	front	1:1	0.018	1.038	0.019	
2441	39	Bluetooth	FHSS	Ceramic	Sport	13.0	12.84	-0.04	10 mm	FH7TR00EJ7C4	1	front	1:1	0.021	1.038	0.022	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head 1.6 W/kg (mW/g) averaged over 1 gram							

FCC ID: BCG-A1892	PCTEST [®] ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT								Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch								Page 20 of 32

10.2 Standalone Extremity SAR Data

Table 10-5
LTE Band 41 Extremity SAR

MEASUREMENT RESULTS																					
FREQUENCY		Mode	Bandwidth [MHz]	Housing Type	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)		Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.																(W/kg)	(W/kg)			
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Loop	24.0	23.22	0.07	0	FH7TR003J790	QPSK	1	99	0 mm	back	1:1.58	0.027	1.197	0.032	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Loop	23.0	21.86	0.06	1	FH7TR003J790	QPSK	50	50	0 mm	back	1:1.58	0.016	1.300	0.021	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Links	24.0	23.22	0.11	0	FH7TR003J790	QPSK	1	99	0 mm	back	1:1.58	0.046	1.197	0.055	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Metal Links	23.0	21.86	0.08	1	FH7TR003J790	QPSK	50	50	0 mm	back	1:1.58	0.019	1.300	0.025	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Sport	24.0	23.22	0.08	0	FH7TR003J790	QPSK	1	99	0 mm	back	1:1.58	0.062	1.197	0.074	
2506.00	39750	Low	LTE Band 41	20	Aluminum	Sport	23.0	21.86	0.07	1	FH7TR003J790	QPSK	50	50	0 mm	back	1:1.58	0.050	1.300	0.065	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Loop	24.0	23.22	0.00	0	FH7TQ00FJ798	QPSK	1	99	0 mm	back	1:1.58	0.029	1.197	0.035	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Loop	23.0	21.86	0.01	1	FH7TQ00FJ798	QPSK	50	50	0 mm	back	1:1.58	0.019	1.300	0.025	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Links	24.0	23.22	0.05	0	FH7TQ00FJ798	QPSK	1	99	0 mm	back	1:1.58	0.019	1.197	0.023	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Metal Links	23.0	21.86	0.03	1	FH7TQ00FJ798	QPSK	50	50	0 mm	back	1:1.58	0.011	1.300	0.014	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Sport	24.0	23.22	0.01	0	FH7TQ00FJ798	QPSK	1	99	0 mm	back	1:1.58	0.057	1.197	0.068	
2506.00	39750	Low	LTE Band 41	20	Stainless Steel	Sport	23.0	21.86	0.03	1	FH7TQ00FJ798	QPSK	50	50	0 mm	back	1:1.58	0.039	1.300	0.051	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Loop	24.0	23.22	-0.01	0	FH7TR00EJ7C4	QPSK	1	99	0 mm	back	1:1.58	0.067	1.197	0.080	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Loop	23.0	21.86	0.20	1	FH7TR00EJ7C4	QPSK	50	50	0 mm	back	1:1.58	0.040	1.300	0.052	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Links	24.0	23.22	0.03	0	FH7TR00EJ7C4	QPSK	1	99	0 mm	back	1:1.58	0.054	1.197	0.065	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Metal Links	23.0	21.86	0.02	1	FH7TR00EJ7C4	QPSK	50	50	0 mm	back	1:1.58	0.036	1.300	0.047	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Sport	24.0	23.22	0.18	0	FH7TR00EJ7C4	QPSK	1	99	0 mm	back	1:1.58	0.092	1.197	0.110	
2549.50	40185	Low-Md	LTE Band 41	20	Ceramic	Sport	24.0	23.00	0.00	0	FH7TR00EJ7C4	QPSK	1	99	0 mm	back	1:1.58	0.112	1.259	0.141	
2593.00	40620	Md	LTE Band 41	20	Ceramic	Sport	24.0	23.08	0.05	0	FH7TR00EJ7C4	QPSK	1	0	0 mm	back	1:1.58	0.106	1.236	0.131	
2636.50	41055	Mid-High	LTE Band 41	20	Ceramic	Sport	24.0	23.11	0.09	0	FH7TR00EJ7C4	QPSK	1	99	0 mm	back	1:1.58	0.092	1.227	0.113	
2680.00	41490	High	LTE Band 41	20	Ceramic	Sport	24.0	23.02	-0.15	0	FH7TR00EJ7C4	QPSK	1	99	0 mm	back	1:1.58	0.080	1.253	0.100	
2506.00	39750	Low	LTE Band 41	20	Ceramic	Sport	23.0	21.86	0.03	1	FH7TR00EJ7C4	QPSK	50	50	0 mm	back	1:1.58	0.043	1.300	0.056	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Extremity 4.0 W/kg (mW/g) averaged over 10 grams											

Table 10-6
2.4 GHz WLAN Extremity SAR

MEASUREMENT RESULTS																				
FREQUENCY		Mode	Service	Bandwidth [MHz]	Housing Type	Wristband Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	SAR (10g)		Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (10g)	Plot #
MHz	Ch.														(W/kg)	(W/kg)				
2437	6	802.11b	DSSS	22	Aluminum	Metal Loop	19.5	19.49	-0.15	0 mm	FH7TR001J790	1	back	98.2	0.033	1.002	1.018	0.034		
2437	6	802.11b	DSSS	22	Aluminum	Metal Links	19.5	19.49	0.03	0 mm	FH7TR001J790	1	back	98.2	0.025	1.002	1.018	0.026		
2437	6	802.11b	DSSS	22	Aluminum	Sport	19.5	19.49	0.00	0 mm	FH7TR001J790	1	back	98.2	0.056	1.002	1.018	0.057		
2437	6	802.11b	DSSS	22	Stainless Steel	Metal Loop	19.5	19.49	0.03	0 mm	FH7TQ00MJ798	1	back	98.2	0.043	1.002	1.018	0.044		
2437	6	802.11b	DSSS	22	Stainless Steel	Metal Links	19.5	19.49	-0.03	0 mm	FH7TQ00MJ798	1	back	98.2	0.024	1.002	1.018	0.024		
2437	6	802.11b	DSSS	22	Stainless Steel	Sport	19.5	19.49	-0.06	0 mm	FH7TQ00MJ798	1	back	98.2	0.047	1.002	1.018	0.048		
2437	6	802.11b	DSSS	22	Ceramic	Metal Loop	19.5	19.49	0.13	0 mm	FH7TR003J79V	1	back	98.2	0.032	1.002	1.018	0.033		
2437	6	802.11b	DSSS	22	Ceramic	Metal Links	19.5	19.49	-0.03	0 mm	FH7TR00DJ79V	1	back	98.2	0.021	1.002	1.018	0.021		
2437	6	802.11b	DSSS	22	Ceramic	Sport	19.5	19.49	-0.09	0 mm	FH7TR003J79V	1	back	98.2	0.047	1.002	1.018	0.048		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Extremity 4.0 W/kg (mW/g) averaged over 10 grams										

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT								Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch								Page 21 of 32

Table 10-7
Bluetooth (ePA) Extremity SAR

MEASUREMENT RESULTS																	
FREQUENCY		Mode	Service	Housing Type	Wrist Band Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.																
2441	39	Bluetooth	FHSS	Aluminum	Metal Loop	19.0	18.87	0.03	0 mm	FH7TR008J790	1	back	1:1	0.040	1.030	0.041	
2441	39	Bluetooth	FHSS	Aluminum	Metal Links	19.0	18.87	0.11	0 mm	FH7TR008J790	1	back	1:1	0.035	1.030	0.036	
2441	39	Bluetooth	FHSS	Aluminum	Sport	19.0	18.87	-0.04	0 mm	FH7TR008J790	1	back	1:1	0.070	1.030	0.072	A7
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Loop	19.0	18.87	0.11	0 mm	FH7TQ00FJ798	1	back	1:1	0.037	1.030	0.038	
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Links	19.0	18.87	0.12	0 mm	FH7TQ00FJ798	1	back	1:1	0.023	1.030	0.024	
2441	39	Bluetooth	FHSS	Stainless Steel	Sport	19.0	18.87	-0.10	0 mm	FH7TQ00FJ798	1	back	1:1	0.044	1.030	0.045	
2441	39	Bluetooth	FHSS	Ceramic	Metal Loop	19.0	18.87	0.02	0 mm	FH7TR00EJ7C4	1	back	1:1	0.037	1.030	0.038	
2441	39	Bluetooth	FHSS	Ceramic	Metal Links	19.0	18.87	0.15	0 mm	FH7TR00EJ7C4	1	back	1:1	0.026	1.030	0.027	
2441	39	Bluetooth	FHSS	Ceramic	Sport	19.0	18.87	0.13	0 mm	FH7TR00EJ7C4	1	back	1:1	0.045	1.030	0.046	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Extremity 4.0 W/kg (mW/g) averaged over 10 grams								

Table 10-8
Bluetooth (iPA) Extremity SAR

MEASUREMENT RESULTS																	
FREQUENCY		Mode	Service	Housing Type	Wrist Band Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.																
2441	39	Bluetooth	FHSS	Aluminum	Metal Loop	13.0	12.84	0.03	0 mm	FH7TR003J790	1	back	1:1	0.012	1.038	0.012	
2441	39	Bluetooth	FHSS	Aluminum	Metal Links	13.0	12.84	-0.02	0 mm	FH7TR003J790	1	back	1:1	0.008	1.038	0.008	
2441	39	Bluetooth	FHSS	Aluminum	Sport	13.0	12.84	0.03	0 mm	FH7TR003J790	1	back	1:1	0.015	1.038	0.016	
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Loop	13.0	12.84	0.11	0 mm	FH7TQ008J798	1	back	1:1	0.008	1.038	0.008	
2441	39	Bluetooth	FHSS	Stainless Steel	Metal Links	13.0	12.84	0.02	0 mm	FH7TQ008J798	1	back	1:1	0.005	1.038	0.005	
2441	39	Bluetooth	FHSS	Stainless Steel	Sport	13.0	12.84	0.16	0 mm	FH7TQ008J798	1	back	1:1	0.010	1.038	0.010	
2441	39	Bluetooth	FHSS	Ceramic	Metal Loop	13.0	12.84	0.01	0 mm	FH7TR00AJ7C4	1	back	1:1	0.012	1.038	0.012	
2441	39	Bluetooth	FHSS	Ceramic	Metal Links	13.0	12.84	-0.08	0 mm	FH7TR00AJ7C4	1	back	1:1	0.007	1.038	0.007	
2441	39	Bluetooth	FHSS	Ceramic	Sport	13.0	12.84	-0.02	0 mm	FH7TR00AJ7C4	1	back	1:1	0.016	1.038	0.017	A8
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Extremity 4.0 W/kg (mW/g) averaged over 10 grams								

FCC ID: BCG-A1892	PCTEST [®] ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT						Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch						Page 22 of 32

10.3 SAR Test Notes

General Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
2. Batteries are fully charged at the beginning of the SAR measurements.
3. Liquid tissue depth was at least 15.0 cm for all frequencies.
4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg for 1g SAR and 2.0 W/kg for 10g SAR.
7. This device has three housing types: Aluminum, Stainless Steel and Ceramic. The non-metallic wrist accessory, sport band, was evaluated for all exposure conditions. The available metallic wrist accessories, metal links band and metal loop band, were additionally evaluated.
8. This device is a portable wrist-worn device and does not support any other use conditions. Therefore the procedures in FCC KDB Publication 447498 D01v06 Section 6.2 have been applied for extremity and next to mouth (head) conditions.

LTE Notes:

1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.2.4.
2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
4. Per FCC KDB Publication 447498 D01v06, when the reported (scaled) for LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g SAR and > 1.5 W/kg for 10g SAR, testing at the other channels was required for such test configurations.
5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 23 of 32

WLAN/Bluetooth Notes:

1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.3.2 for more information. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
2. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
4. To determine compliance, Bluetooth SAR was measured with internal power amplifier and external power amplifier. Bluetooth was evaluated with a test mode with 100% transmission duty factor.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 24 of 32

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR or 10-g SAR for all the simultaneous transmitting antennas in a specific physical test configuration is ≤ 1.6 W/kg or ≤ 4.0 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

11.3 Head SAR Simultaneous Transmission Analysis

For SAR summation, the highest reported SAR across all housing and wrist band types was used as a conservative evaluation for the simultaneous transmission analysis

Table 11-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Head at 1.0 cm)

Exposure Condition	Mode	4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Head SAR	LTE Band 41	0.249	0.140	0.389

Table 11-2
Simultaneous Transmission Scenario with Bluetooth (ePA) (Head at 1.0 cm)

Exposure Condition	Mode	4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Head SAR	LTE Band 41	0.249	0.140	0.389

Table 11-3
Simultaneous Transmission Scenario with Bluetooth (iPA) (Head at 1.0 cm)

Configuration	Mode	4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Head SAR	LTE Band 41	0.249	0.030	0.279

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch			Page 25 of 32

11.4 Extremity SAR Simultaneous Transmission Analysis

Table 11-4
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Extremity at 0.0 cm)

Exposure Condition	Mode	4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Extremity SAR	LTE Band 41	0.141	0.057	0.198

Table 11-5
Simultaneous Transmission Scenario with Bluetooth (ePA) (Extremity at 0.0 cm)

Exposure Condition	Mode	4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Extremity SAR	LTE Band 41	0.141	0.072	0.213

Table 11-6
Simultaneous Transmission Scenario with Bluetooth (iPA) (Extremity at 0.0 cm)

Configuration	Mode	4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Extremity SAR	LTE Band 41	0.141	0.017	0.158

11.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06.

FCC ID: BCG-A1892	SAR EVALUATION REPORT			Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 26 of 32	

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since all measured SAR values are < 0.80 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g SAR and <3.75 W/kg for 10g SAR for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis was not required.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 27 of 32

13 EQUIPMENT LIST

Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
E8257D	(250kHz-20GHz) Signal Generator	3/22/2017	Annual	3/22/2018	MY45470194
8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
D2450V2	2450 MHz SAR Dipole	9/13/2016	Annual	9/13/2017	921
D2600V2	2600 MHz SAR Dipole	9/13/2016	Annual	9/13/2017	1069
ES3DV3	SAR Probe	11/11/2016	Annual	11/11/2017	3347
ES3DV3	SAR Probe	3/16/2017	Annual	3/16/2018	3118
ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3329
DAE4	Dasy Data Acquisition Electronics	11/15/2016	Annual	11/15/2017	1450
DAE4	Dasy Data Acquisition Electronics	3/8/2017	Annual	3/8/2018	1213
DAE4	Dasy Data Acquisition Electronics	3/10/2017	Annual	3/10/2018	1403
CMU200	Base Station Simulator	4/11/2017	Annual	4/11/2018	836371/0079
CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264162
E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
E4438C	ESG Vector Signal Generator	3/23/2017	Annual	3/23/2018	MY47270002
N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
N5182A	MXG Vector Signal Generator	10/27/2016	Annual	10/27/2017	MY47420603
DAKS-3.5	Portable Dielectric Assessment Kit	8/25/2016	Annual	8/25/2017	1041
ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1039008
MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
MA2411B	Pulse Power Sensor	8/18/2016	Annual	8/18/2017	1126066
CMW500	Radio Communication Tester	5/4/2017	Annual	5/4/2018	112347
CMW500	Radio Communication Tester	5/4/2017	Annual	5/4/2018	101699
CMW500	Radio Communication Tester	10/13/2016	Annual	10/13/2017	102060
8753ES	S-Parameter Vector Network Analyzer	8/19/2016	Annual	8/19/2017	MY40003841
NC-100	Torque Wrench (8" lb)	9/1/2016	Biennial	9/1/2018	21053
4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
4352	Ultra Long Stem Thermometer	3/3/2017	Biennial	3/3/2019	170155534
MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1231538
MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1231535
CMW500	Wideband Radio Communication Tester	2/10/2017	Annual	2/10/2018	162125
15S1G6	Amplifier	CBT	N/A	CBT	433971
15S1G6	Amplifier	CBT	N/A	CBT	433972
AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: BCG-A1892	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch

14 MEASUREMENT UNCERTAINTIES

a	c	d	e = f(d,k)	f	g	h = c x f/e	i = c x g/e	k
Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	c _i 1gm	c _i 10 gms	1gm u _i (± %)	10gms u _i (± %)	v _i
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Uncertainty	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)						RSS	11.5	11.3
Expanded Uncertainty (95% CONFIDENCE LEVEL)						k=2	23.0	22.6

FCC ID: BCG-A1892	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Approved by: Quality Manager Page 30 of 32

SAR EVALUATION REPORT

Approved by:

Quality Manager

Page 30 of 32

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 31 of 32

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Setembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCG-A1892	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N: 1C1706160002-92-01-R3.BCG	Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch	Page 32 of 32

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR008J790

Communication System: UID 0, LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1.58

Medium: 2600 Head Medium parameters used (interpolated):

$f = 2680$ MHz; $\sigma = 2.138$ S/m; $\epsilon_r = 38.726$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-12-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3329; ConvF(4.54, 4.54, 4.54); Calibrated: 3/14/2017

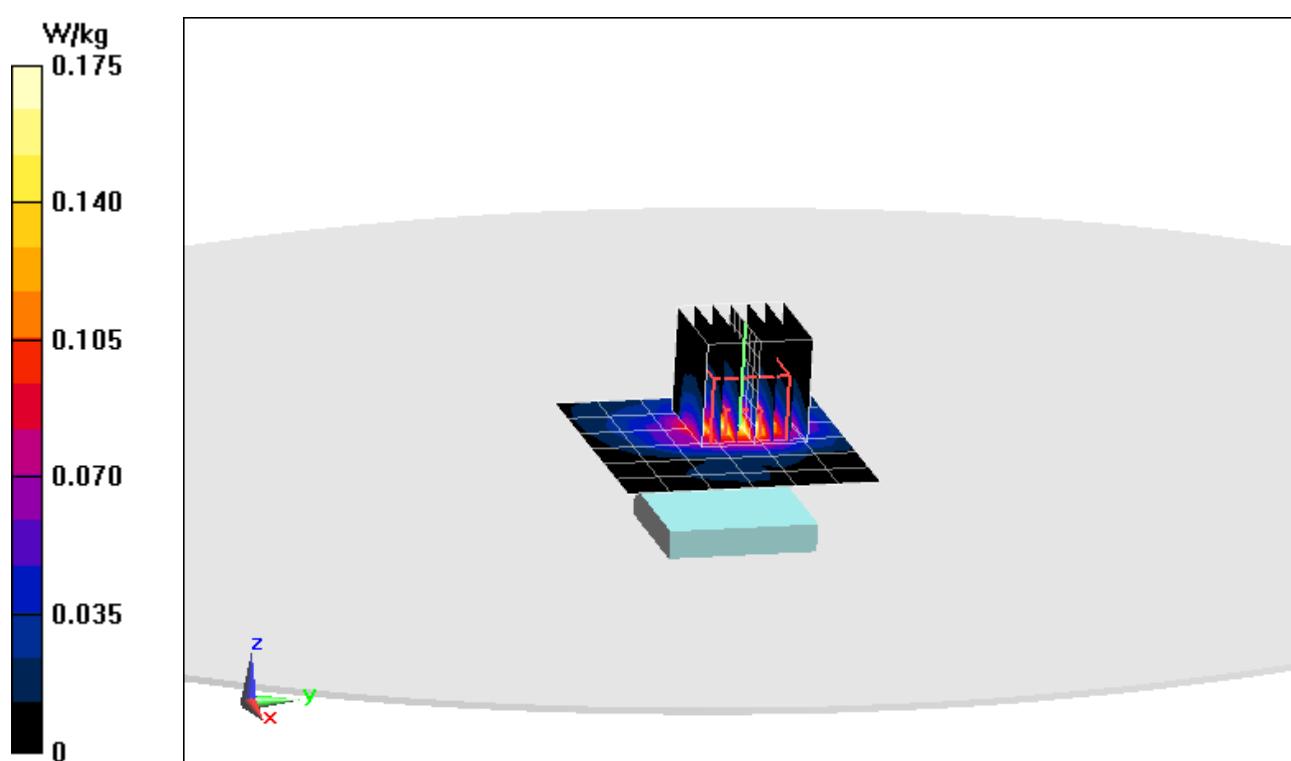
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 3/10/2017

Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2003

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Head SAR, Front side, High ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset, Aluminum, Sport wrist band


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.26 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.439 W/kg

SAR(1 g) = 0.199 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR0023790

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2437$ MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 39.489$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06-28-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3118; ConvF(4.37, 4.37, 4.37); Calibrated: 3/16/2017;

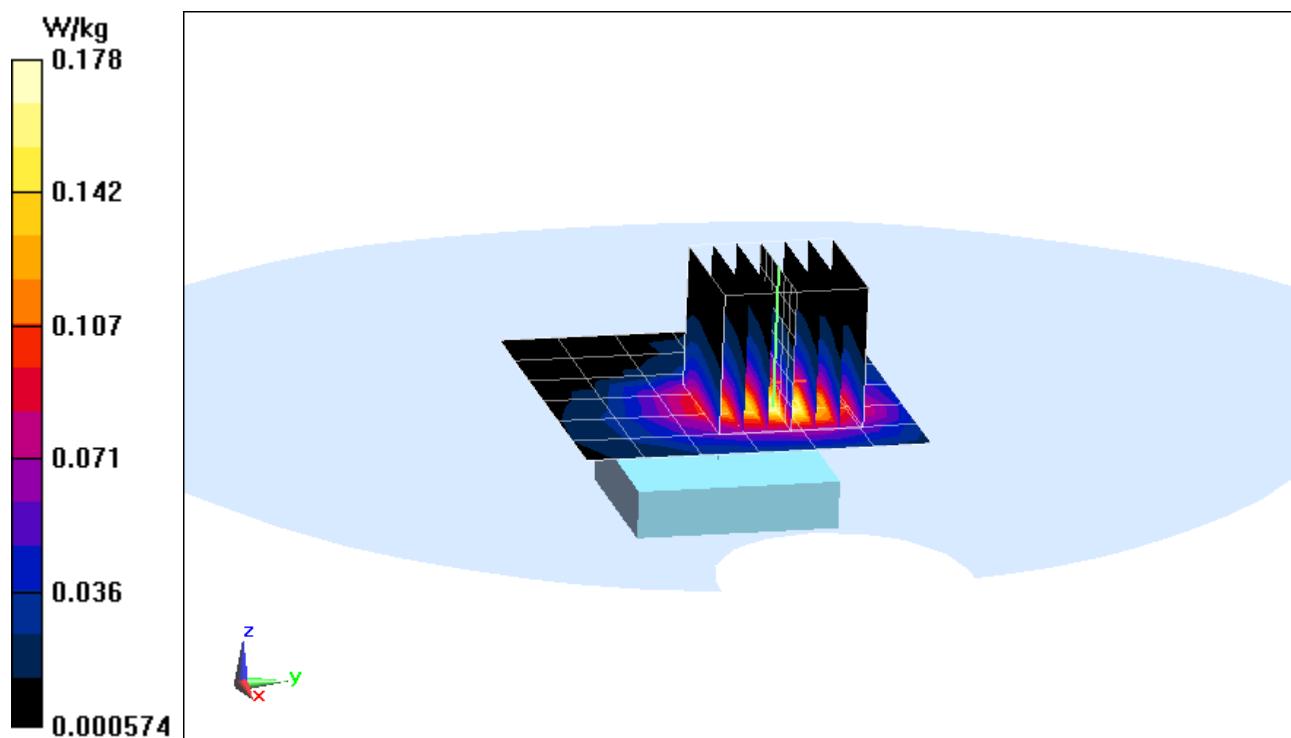
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 3/8/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

**Mode: IEEE 802.11b, 22 MHz Bandwidth, Head SAR, Ch 6,
1 Mbps, Front Side, Aluminum, Sport wrist band**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.500 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.137 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR001J790

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2441$ MHz; $\sigma = 1.867$ S/m; $\epsilon_r = 39.551$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-03-2017; Ambient Temp: 21.7°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3118; ConvF(4.37, 4.37, 4.37); Calibrated: 3/16/2017;

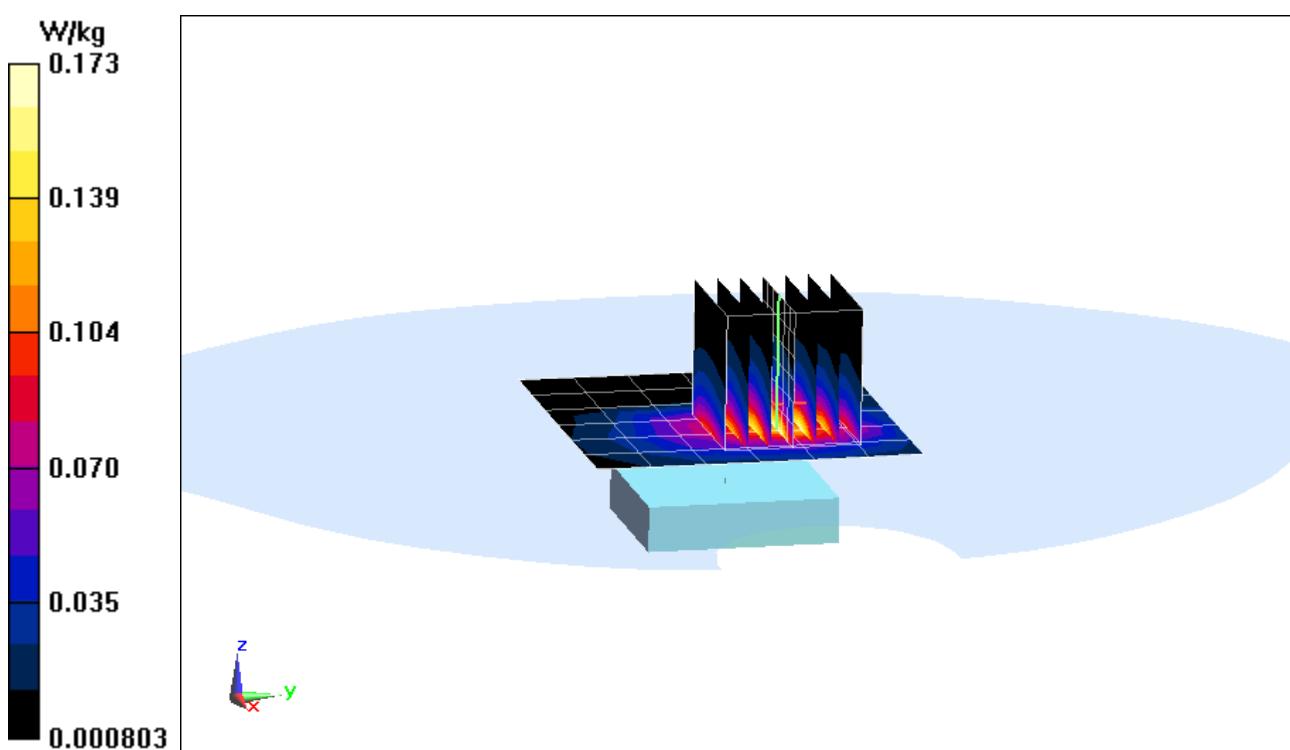
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 3/8/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

**Mode: Bluetooth ePA, Head SAR, Ch 39, 1 Mbps,
Front Side, Aluminum, Sport wrist band**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.192 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.136 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR003J790

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2441$ MHz; $\sigma = 1.866$ S/m; $\epsilon_r = 39.617$; $\rho = 1000$ kg/m³

Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 07-12-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3329; ConvF(4.71, 4.71, 4.71); Calibrated: 3/14/2017;

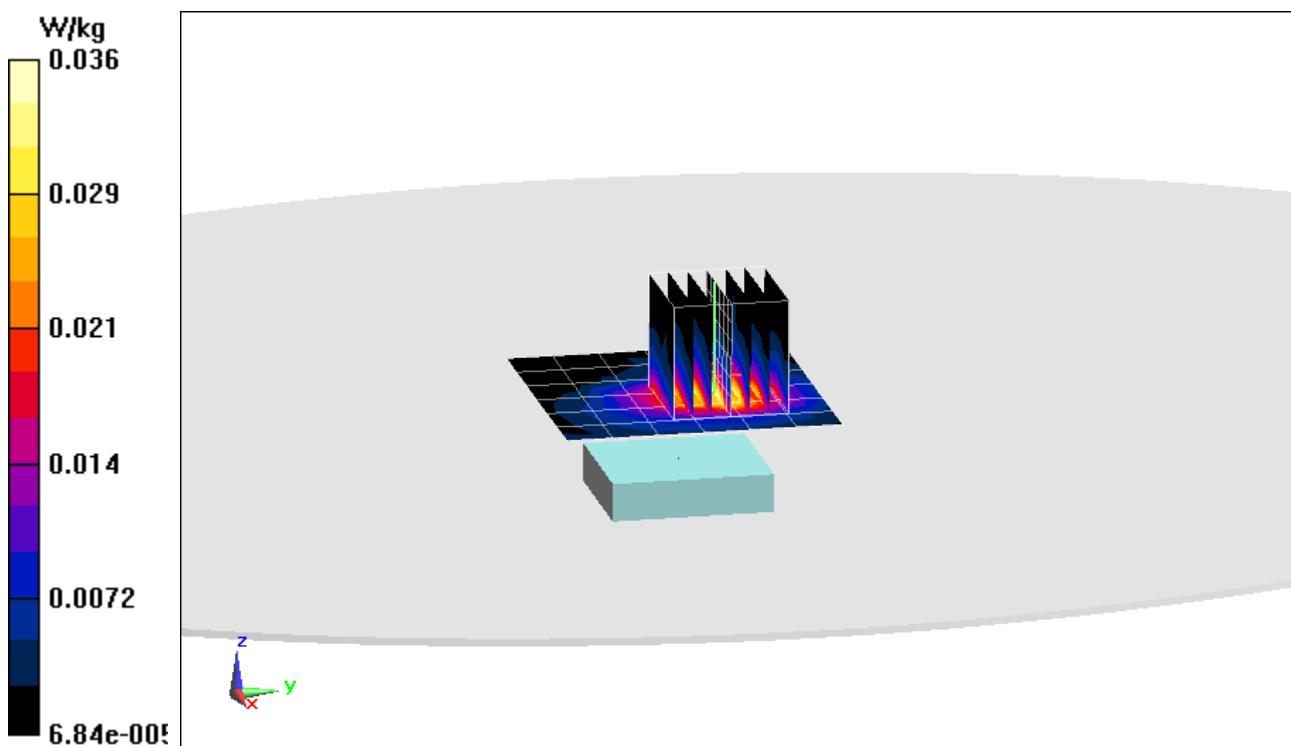
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 3/10/2017

Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2003

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

**Mode: Bluetooth iPA, Head SAR, Ch 39, 1 Mbps,
Front Side, Aluminum, Sport wrist band**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.088 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.0580 W/kg

SAR(1 g) = 0.029 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR00EJ7C4

Communication System: UID 0, LTE Band 41; Frequency: 2549.5 MHz; Duty Cycle: 1:1.58

Medium: 2600 Body Medium parameters used:

$f = 2550$ MHz; $\sigma = 2.094$ S/m; $\epsilon_r = 51.042$; $\rho = 1000$ kg/m³

Phantom section: Flat Section ; Space: 0.0 cm

Test Date: 07-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3118; ConvF(4.1, 4.1, 4.1); Calibrated: 3/16/2017;

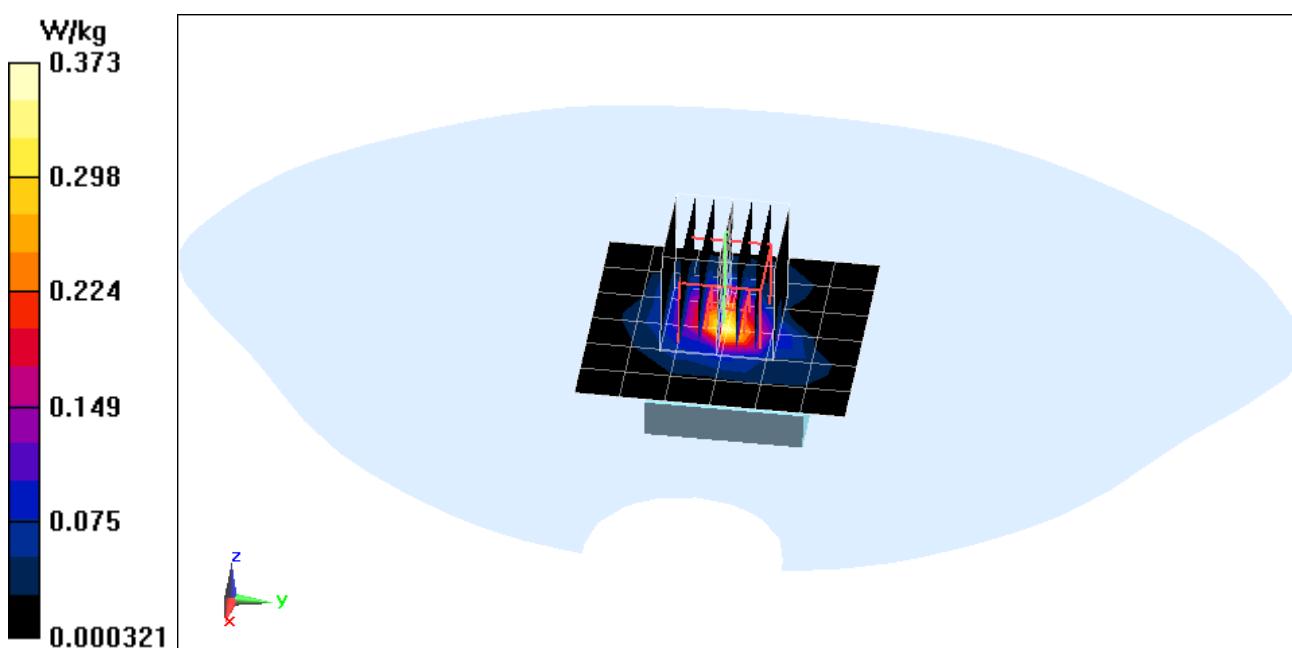
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 3/8/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Extremity SAR, Back side, Low-Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset, Ceramic, Sport Wrist Band


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.69 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.640 W/kg

SAR(10 g) = 0.112 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR001J790

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2437$ MHz; $\sigma = 1.958$ S/m; $\epsilon_r = 51.418$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-03-2017; Ambient Temp: 19.9°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3347; ConvF(4.53, 4.53, 4.53); Calibrated: 11/11/2016;

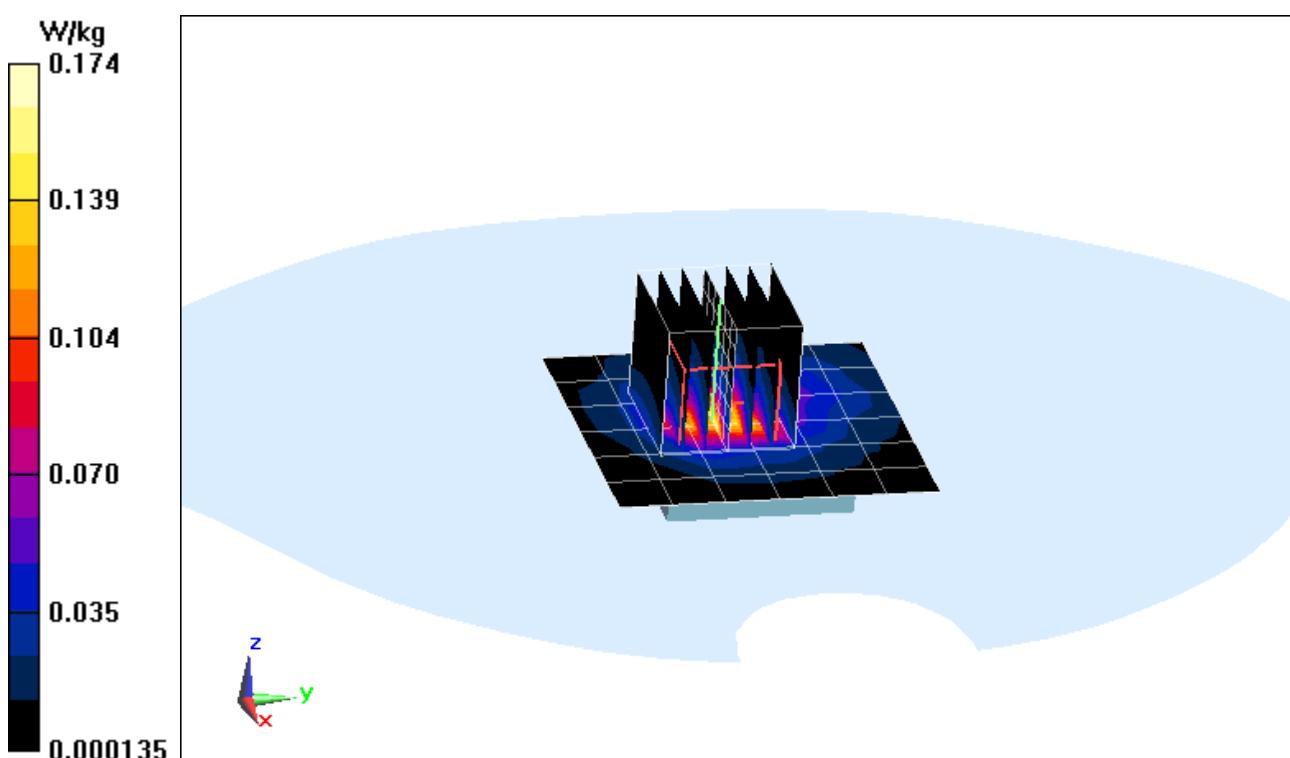
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1450; Calibrated: 11/15/2016

Phantom: SAM with CRP; Type: SAM; Serial: TP:1792

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

**Mode: IEEE 802.11b, 22 MHz Bandwidth, Extremity SAR,
Ch 6, 1 Mbps, Back Side, Aluminum, Sport Wrist Band**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.012 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(10 g) = 0.056 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR008J790

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2441$ MHz; $\sigma = 2.027$ S/m; $\epsilon_r = 50.79$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-06-2017; Ambient Temp: 20.8°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3347; ConvF(4.53, 4.53, 4.53); Calibrated: 11/11/2016;

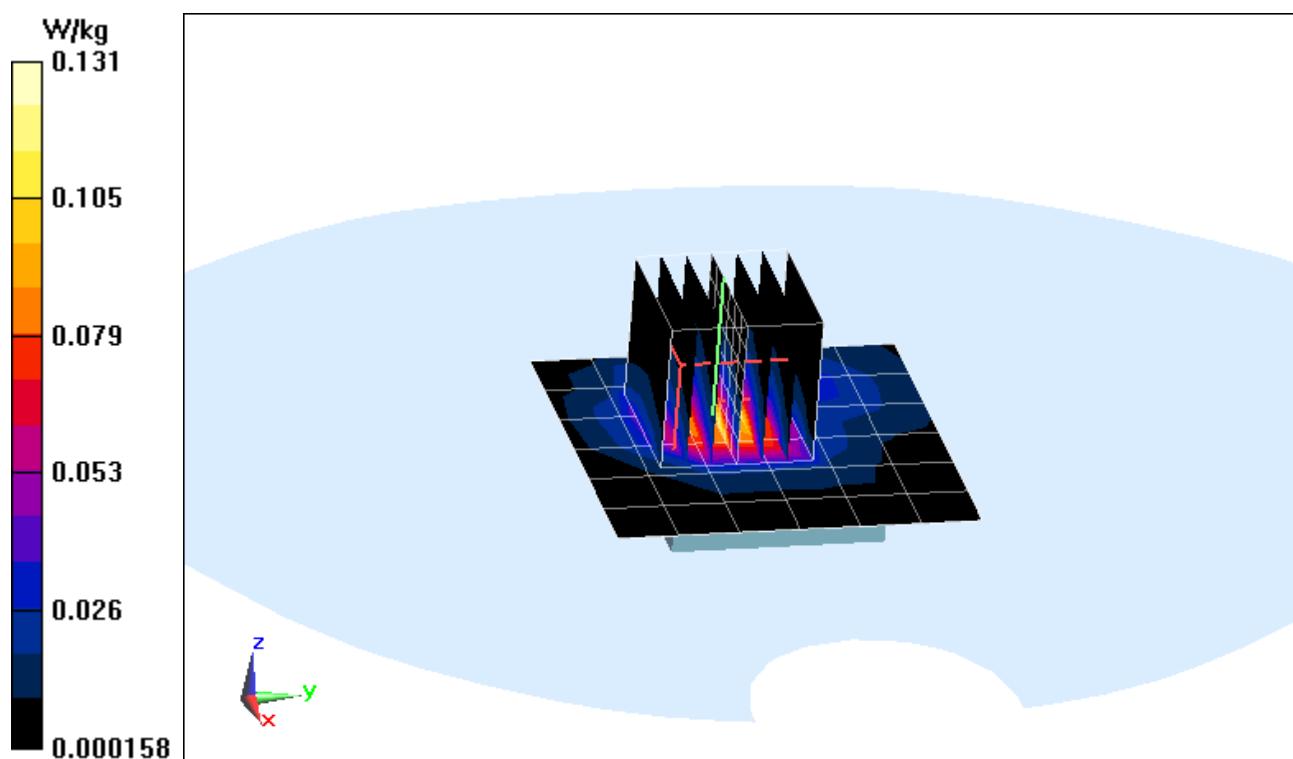
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1450; Calibrated: 11/15/2016

Phantom: SAM with CRP; Type: SAM; Serial: TP:1792

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

**Mode: Bluetooth ePA, Extremity SAR, Ch 39, 1 Mbps,
Back Side, Aluminum, Sport wrist band**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.25 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.334 W/kg

SAR(10 g) = 0.070 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: BCG-A1892; Type: Watch; Serial: FH7TR00AJ7C4

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2441$ MHz; $\sigma = 1.956$ S/m; $\epsilon_r = 51.433$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3118; ConvF(4.29, 4.29, 4.29); Calibrated: 3/16/2017;

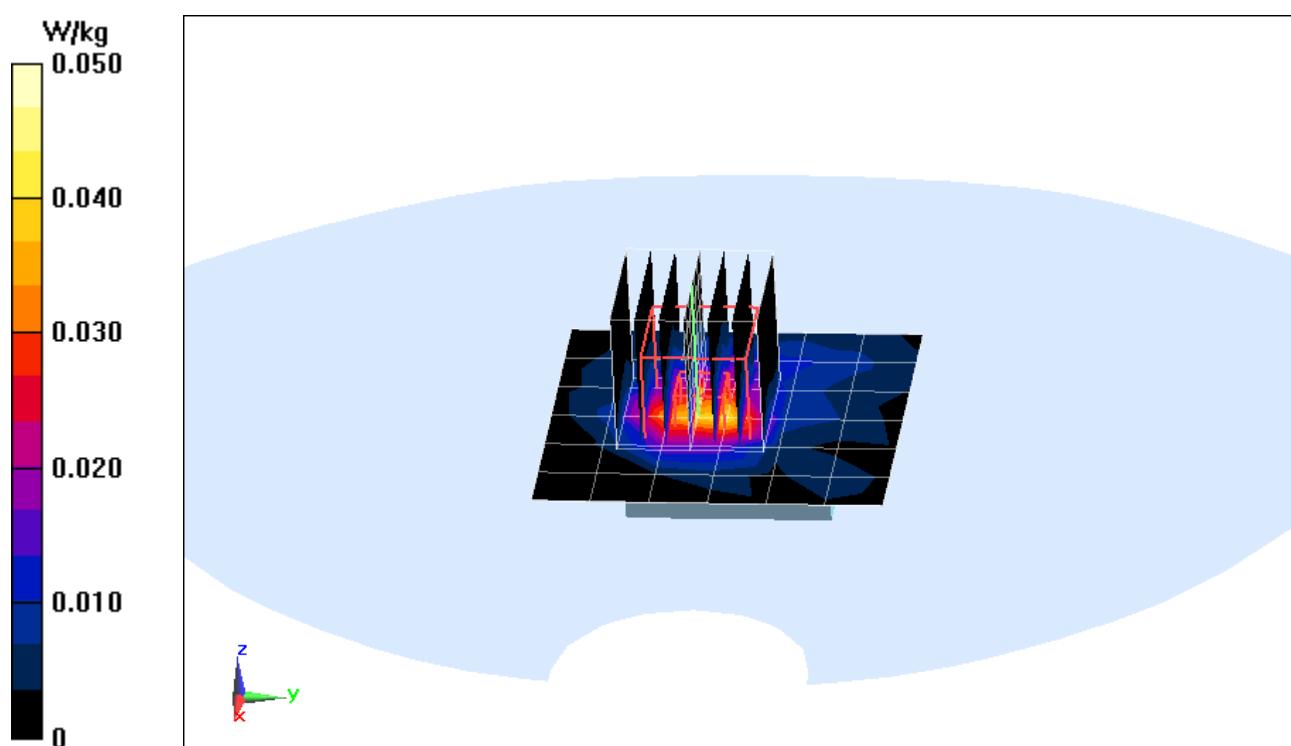
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 3/8/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

**Mode: Bluetooth iPA, Extremity SAR, Ch 39, 1 Mbps,
Back Side, Ceramic, Sport wrist Band**


Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.863 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.0730 W/kg

SAR(10 g) = 0.016 W/kg

APPENDIX B: SYSTEM VERIFICATION

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.877$ S/m; $\epsilon_r = 39.507$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-03-2017; Ambient Temp: 21.7°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3118; ConvF(4.37, 4.37, 4.37); Calibrated: 03/16/2017;

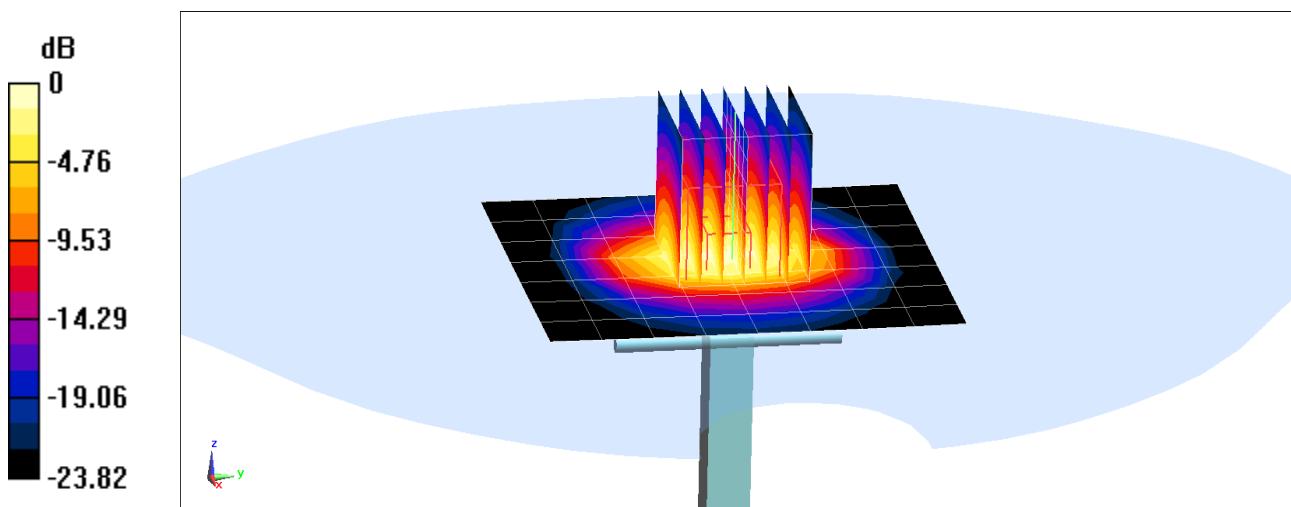
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 03/08/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.4 W/kg

SAR(1 g) = 5.27 W/kg

Deviation(1 g) = 1.15%

0 dB = 6.99 W/kg = 8.44 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.875$ S/m; $\epsilon_r = 39.584$; $\rho = 1000$ kg/m³

Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 07-12-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3329; ConvF(4.71, 4.71, 4.71); Calibrated: 3/14/2017;

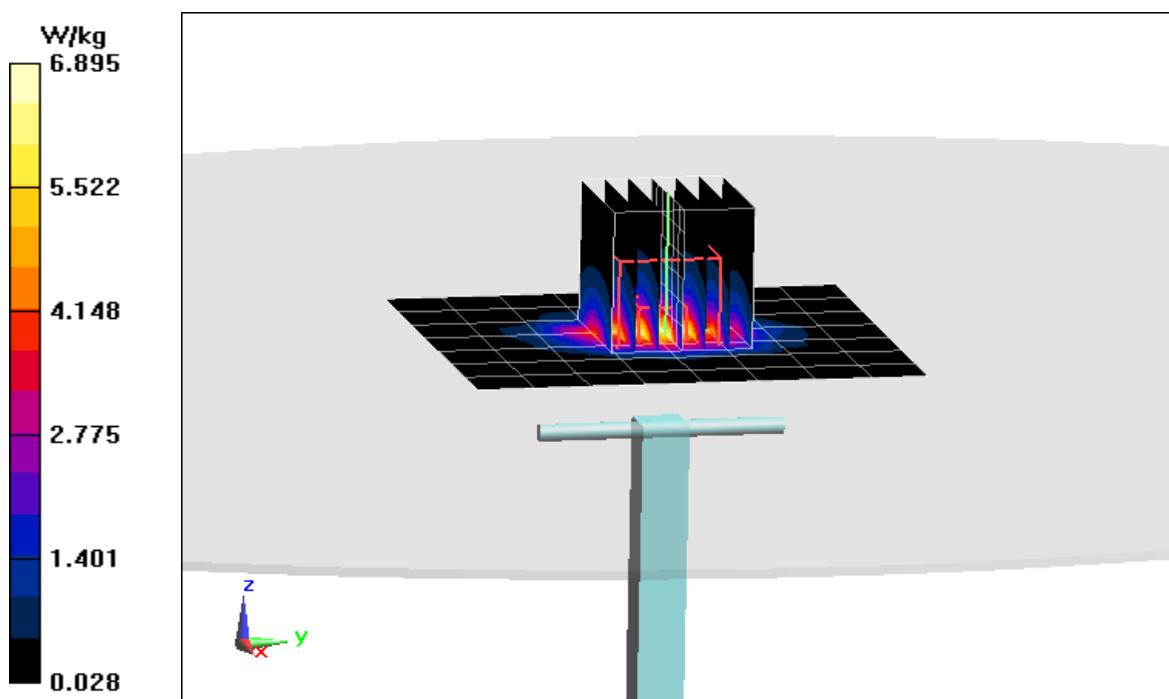
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 3/10/2017

Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2003

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.5 W/kg

SAR(1 g) = 5.22 W/kg

Deviation(1 g) = 0.19%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2600 Head Medium parameters used:

$f = 2600$ MHz; $\sigma = 2.046$ S/m; $\epsilon_r = 39.018$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-12-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3329; ConvF(4.54, 4.54, 4.54); Calibrated: 03/14/2017;

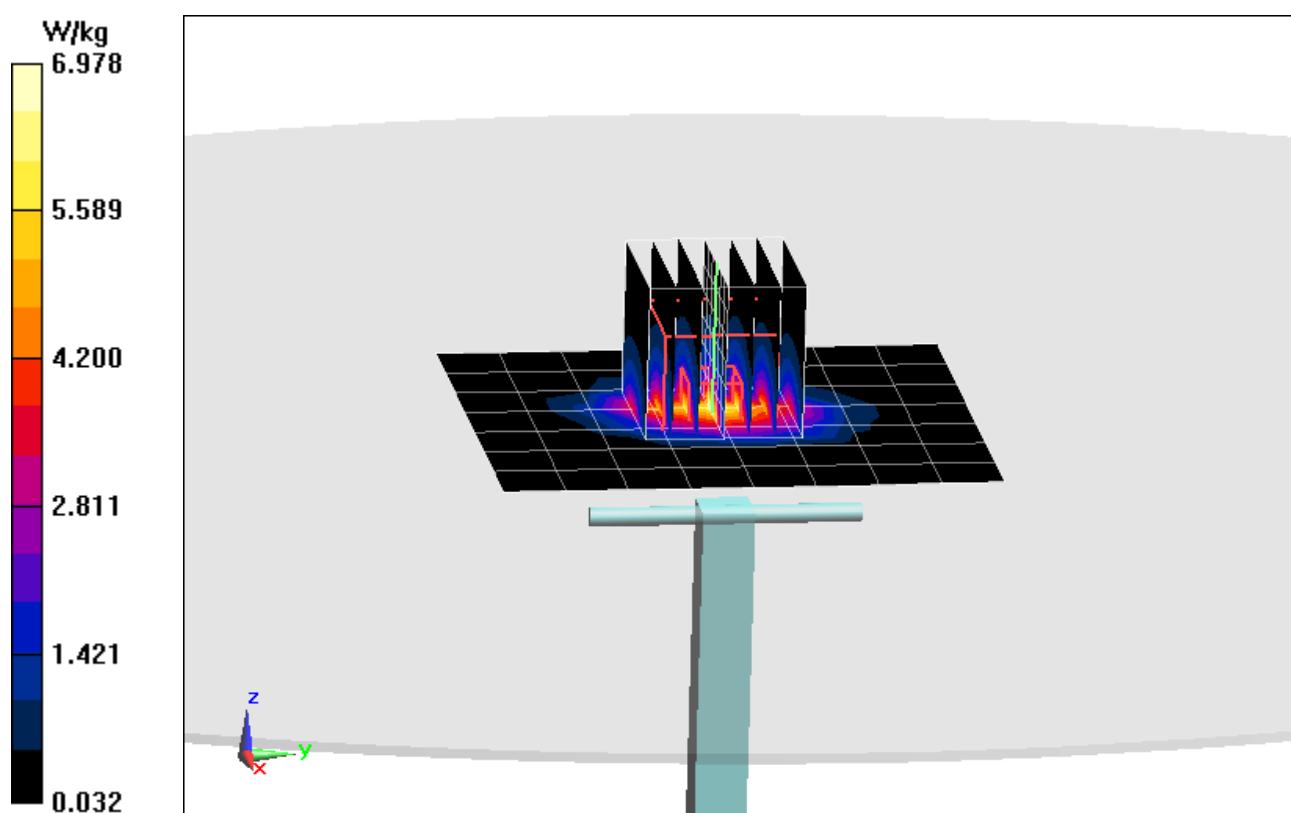
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1403; Calibrated: 3/10/2017

Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2003

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 13.1 W/kg

SAR(1 g) = 5.93 W/kg

Deviation(1 g) = 5.33%

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.976$ S/m; $\epsilon_r = 51.355$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-03-2017; Ambient Temp: 19.9°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3347; ConvF(4.53, 4.53, 4.53); Calibrated: 11/11/2016;

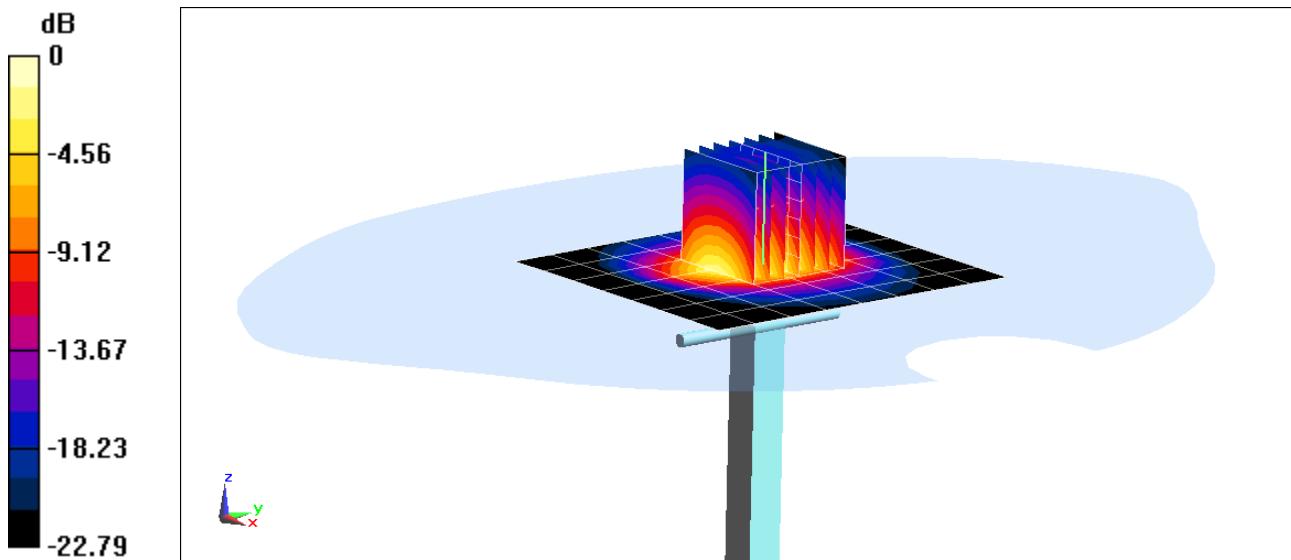
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1450; Calibrated: 11/15/2016

Phantom: SAM with CRP; Type: SAM; Serial: TP:1792

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.2 W/kg

SAR(10 g) = 2.35 W/kg

Deviation(10 g) = -2.08%

0 dB = 6.81 W/kg = 8.33 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 921

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

$f = 2450$ MHz; $\sigma = 1.967$ S/m; $\epsilon_r = 51.397$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3118; ConvF(4.29, 4.29, 4.29); Calibrated: 03/16/2017;

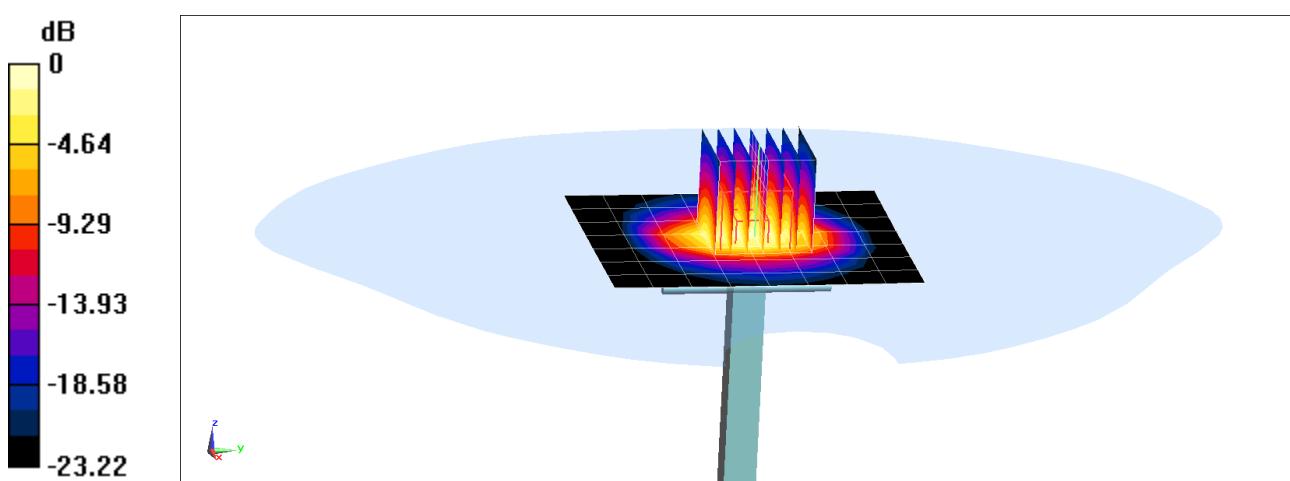
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 03/08/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.8 W/kg

SAR(10 g) = 2.45 W/kg

Deviation(10 g) = 2.08%

0 dB = 7.12 W/kg = 8.52 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2600 Body Medium parameters used:

$f = 2600 \text{ MHz}$; $\sigma = 2.16 \text{ S/m}$; $\epsilon_r = 50.808$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3118; ConvF(4.1, 4.1, 4.1); Calibrated: 03/16/2017;

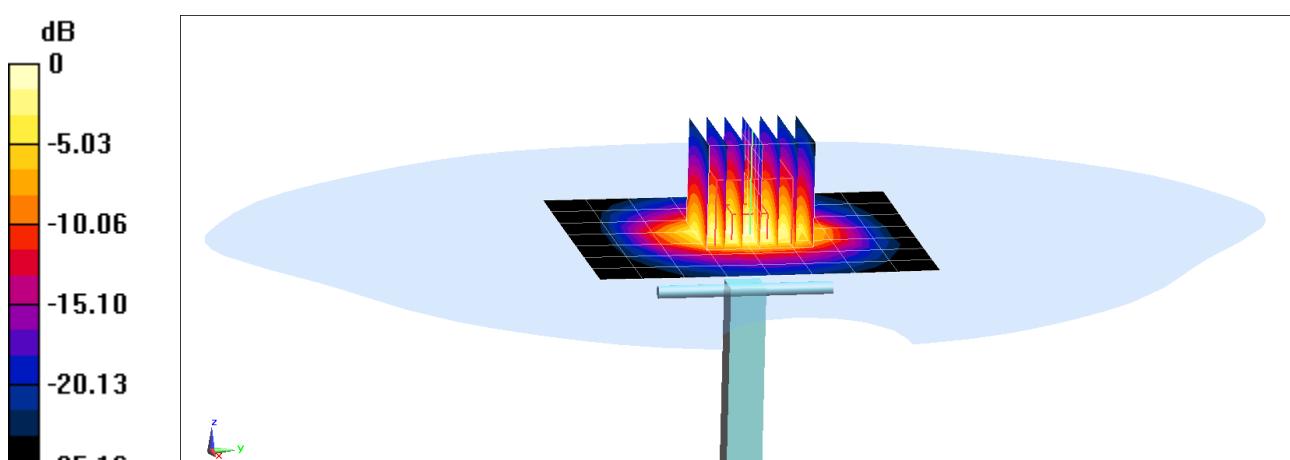
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1213; Calibrated: 03/08/2017

Phantom: SAM with CRP v5.0; Type: QD000P40CD; Serial: TP:1868

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: $dx=12\text{mm}$, $dy=12\text{mm}$

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Peak SAR (extrapolated) = 13.2 W/kg

SAR(10 g) = 2.44 W/kg

Deviation(10 g) = -2.40%

0 dB = 7.49 W/kg = 8.74 dBW/kg

APPENDIX C: PROBE CALIBRATION

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D2450V2-921_Sep16**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN:921**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

*BN ✓
 09-28-2016*

Calibration date: **September 13, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 15, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	37.9 \pm 6 %	1.88 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	51.6 \pm 6 %	2.04 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.3 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.8 \Omega + 3.0 j\Omega$
Return Loss	- 27.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.6 \Omega + 5.4 j\Omega$
Return Loss	- 25.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

DASY5 Validation Report for Head TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.88$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

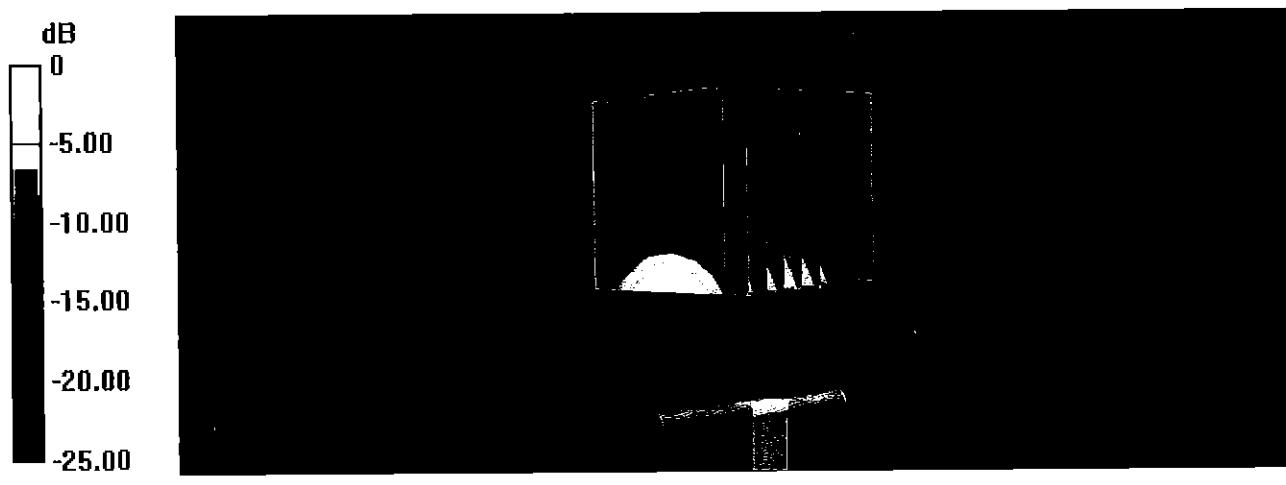
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

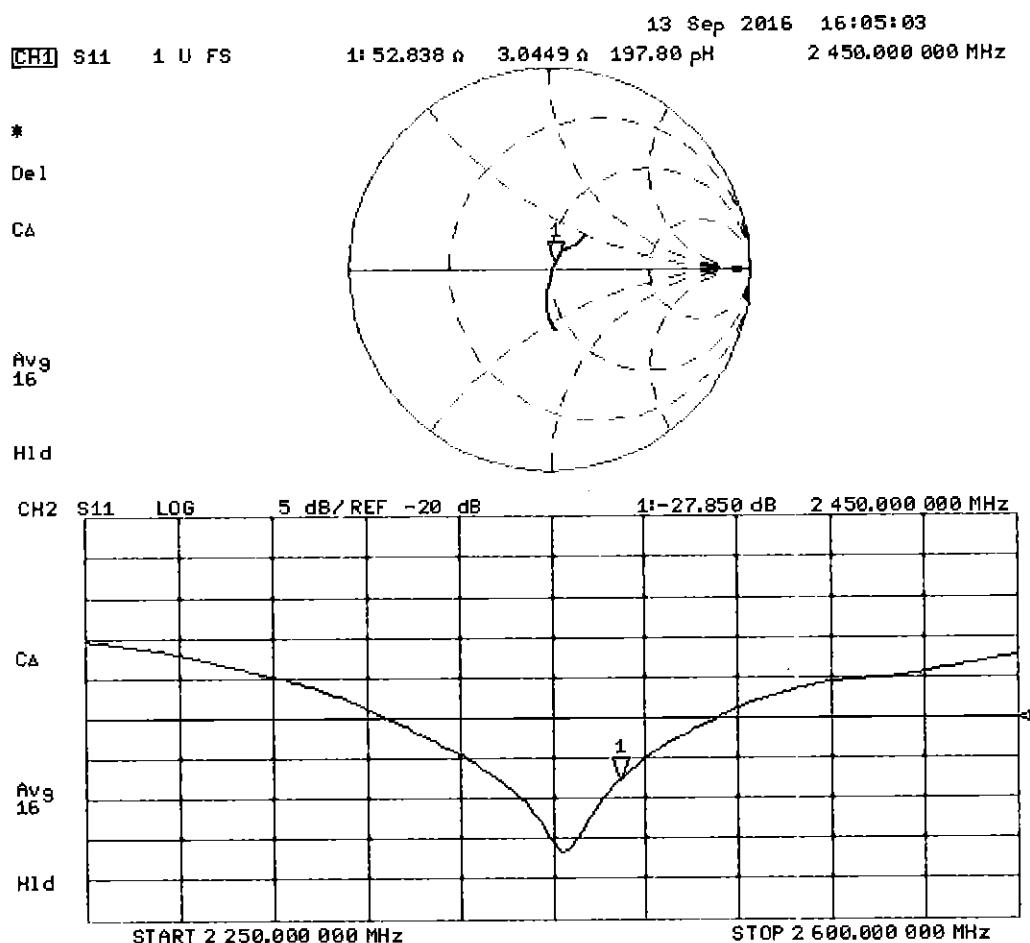
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x8x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.8 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.23 W/kg

Maximum value of SAR (measured) = 22.2 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

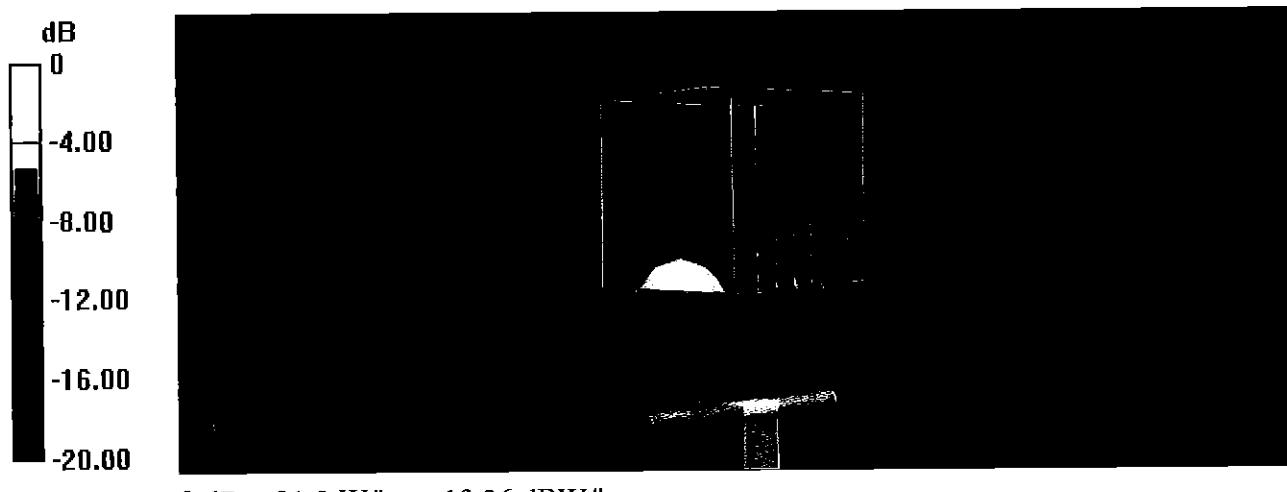
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

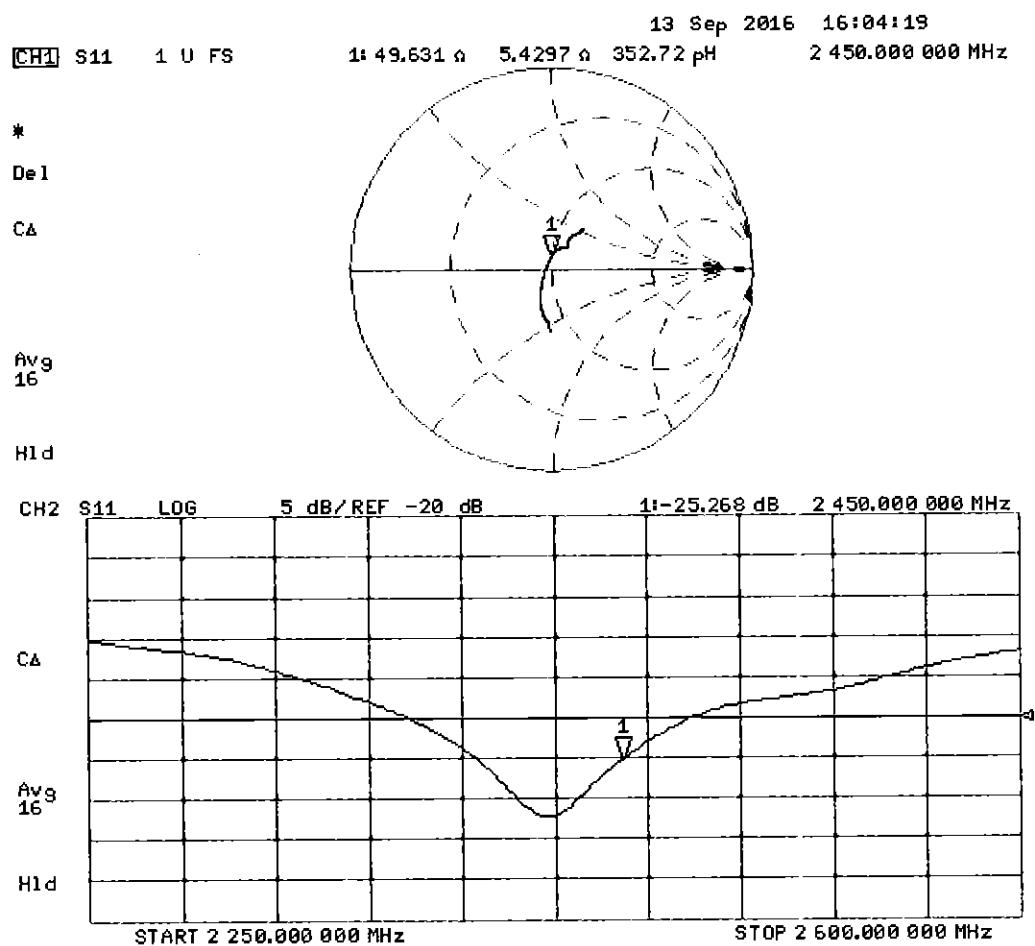
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.6 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

Impedance Measurement Plot for Body TSL

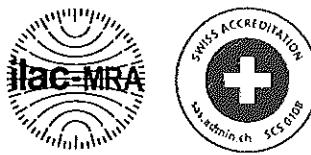
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **ES3-3329 Mar17**


CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3329
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	March 14, 2017
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.	
Calibration Equipment used (M&TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
Approved by:	Kalja Pokovic	Technical Manager	
Issued: March 16, 2017			

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}:** Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z:** DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR:** PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}:** A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle:** The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3329

Manufactured: January 24, 2012
Calibrated: March 14, 2017

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3329

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.08	1.14	1.10	$\pm 10.1\%$
DCP (mV) ^B	101.9	103.7	103.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	193.5	$\pm 3.5\%$
		Y	0.0	0.0	1.0		175.0	
		Z	0.0	0.0	1.0		199.2	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V^{-1}	T1 ms.V^{-2}	T2 ms.V^{-1}	T3 ms	T4 V^{-2}	T5 V^{-1}	T6
X	75.91	547.4	35.84	29.84	4.331	5.1	0	0.766	1.011
Y	71.6	503.4	34.37	29.93	3.875	5.1	1.406	0.482	1.013
Z	66.29	473.3	35.1	29.65	3.256	5.1	1.284	0.464	1.01

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3329

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.76	6.76	6.76	0.44	1.70	± 12.0 %
835	41.5	0.90	6.43	6.43	6.43	0.37	1.75	± 12.0 %
1750	40.1	1.37	5.46	5.46	5.46	0.68	1.22	± 12.0 %
1900	40.0	1.40	5.30	5.30	5.30	0.69	1.24	± 12.0 %
2300	39.5	1.67	4.90	4.90	4.90	0.46	1.61	± 12.0 %
2450	39.2	1.80	4.71	4.71	4.71	0.67	1.35	± 12.0 %
2600	39.0	1.96	4.54	4.54	4.54	0.78	1.24	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

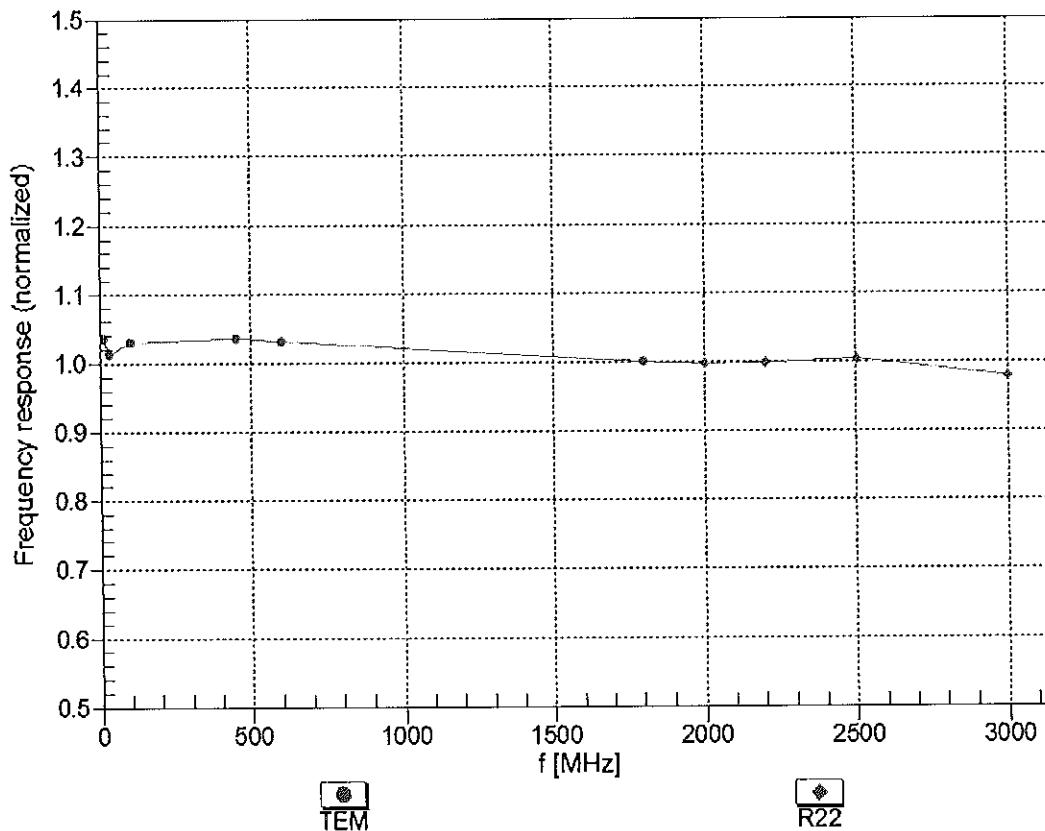
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3329

Calibration Parameter Determined in Body Tissue Simulating Media

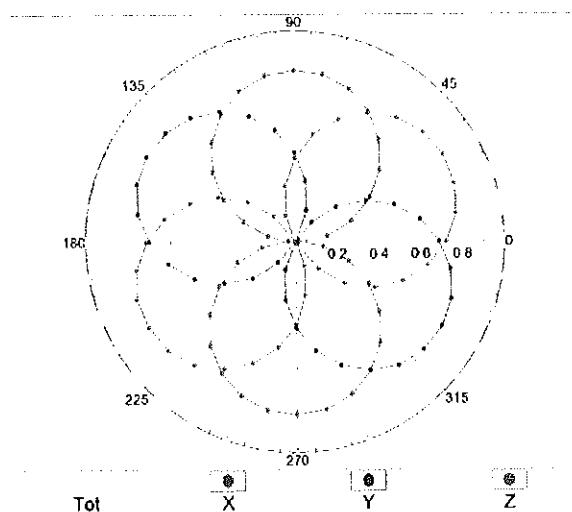
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.47	6.47	6.47	0.59	1.39	± 12.0 %
835	55.2	0.97	6.32	6.32	6.32	0.63	1.35	± 12.0 %
1750	53.4	1.49	5.14	5.14	5.14	0.46	1.64	± 12.0 %
1900	53.3	1.52	4.93	4.93	4.93	0.76	1.29	± 12.0 %
2300	52.9	1.81	4.70	4.70	4.70	0.80	1.23	± 12.0 %
2450	52.7	1.95	4.57	4.57	4.57	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.34	4.34	4.34	0.80	1.24	± 12.0 %

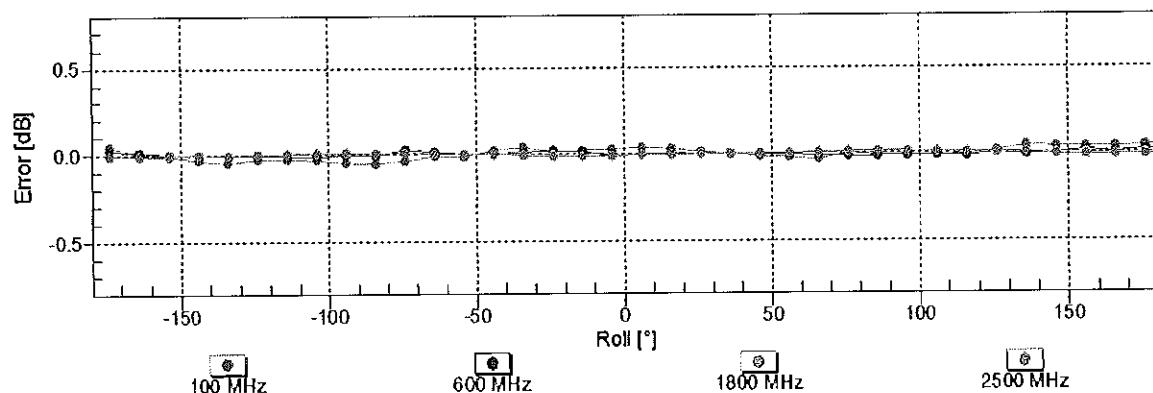
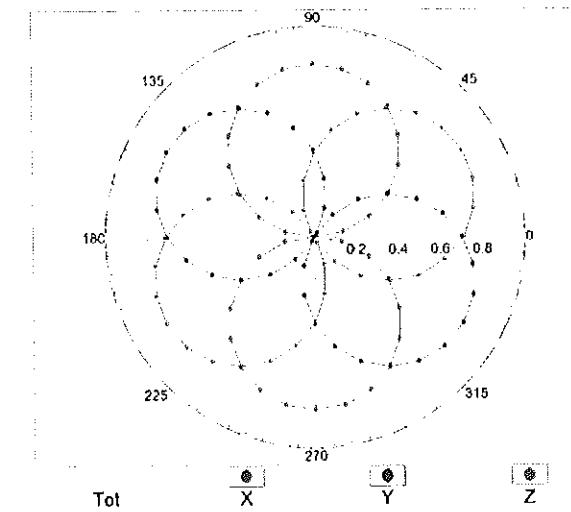

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

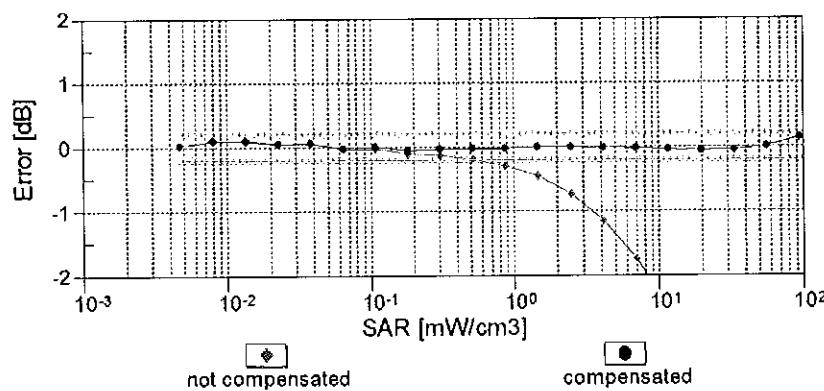
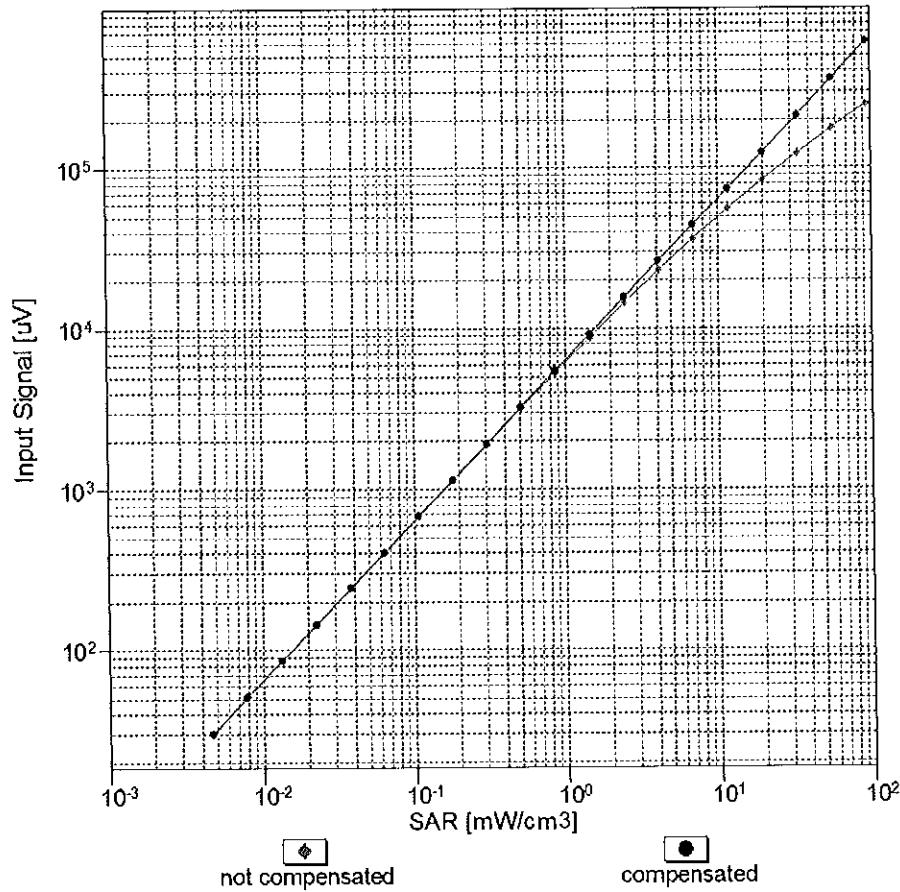
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

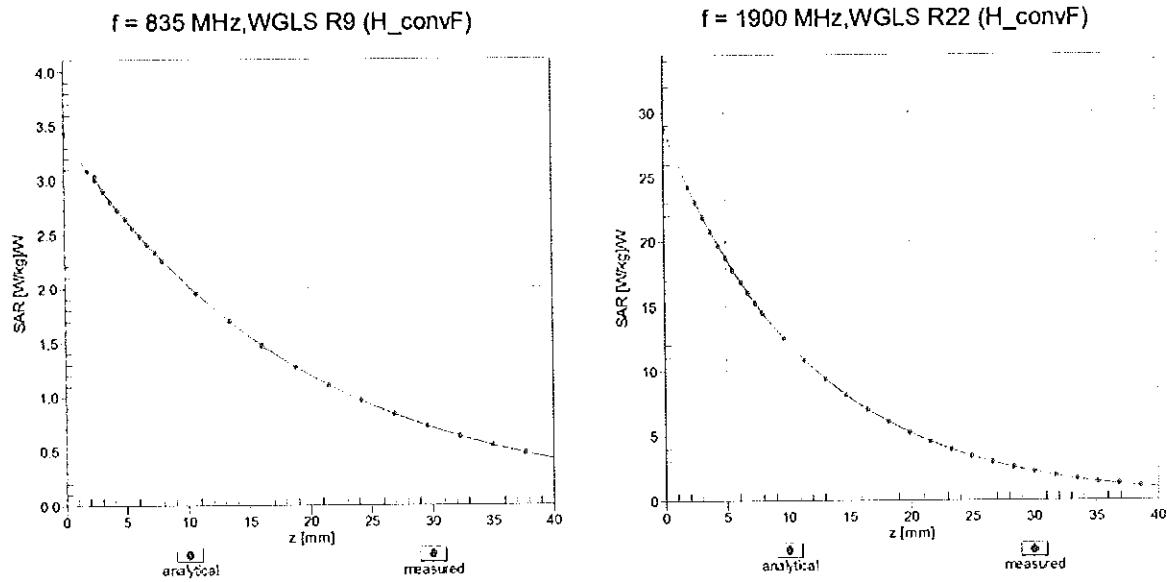


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Receiving Pattern (ϕ), $\theta = 0^\circ$

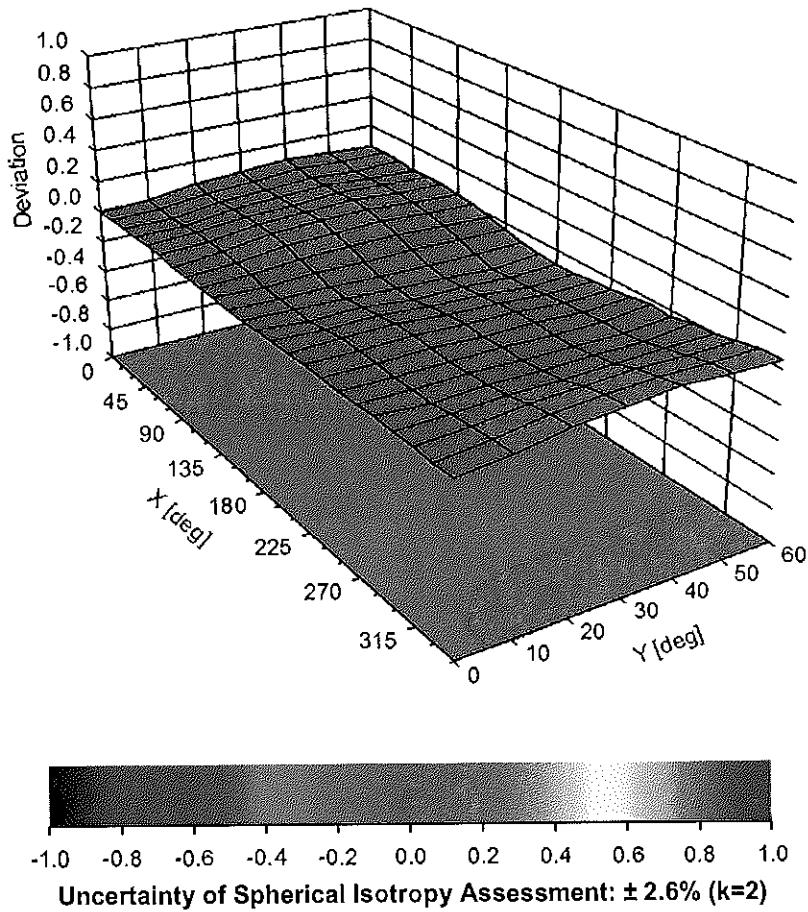
f=600 MHz, TEM

f=1800 MHz, R22


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900$ MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3329

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-43.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	193.5	$\pm 3.5\%$
		Y	0.00	0.00	1.00		175.0	
		Z	0.00	0.00	1.00		199.2	
10010-CAA	SAR Validation (Square, 100ms, 10ms)	X	9.57	81.17	21.01	10.00	25.0	$\pm 9.6\%$
		Y	9.73	81.38	20.78		25.0	
		Z	10.01	82.29	20.74		25.0	
10011-CAB	UMTS-FDD (WCDMA)	X	1.24	69.79	16.86	0.00	150.0	$\pm 9.6\%$
		Y	1.43	73.15	18.64		150.0	
		Z	1.08	67.38	15.31		150.0	
10012-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.39	65.83	16.52	0.41	150.0	$\pm 9.6\%$
		Y	1.42	66.83	17.20		150.0	
		Z	1.33	65.00	15.76		150.0	
10013-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	X	5.34	67.32	17.59	1.46	150.0	$\pm 9.6\%$
		Y	5.30	67.50	17.66		150.0	
		Z	5.23	67.20	17.40		150.0	
10021-DAC	GSM-FDD (TDMA, GMSK)	X	13.99	89.04	25.49	9.39	50.0	$\pm 9.6\%$
		Y	14.39	89.35	25.25		50.0	
		Z	20.19	95.86	27.09		50.0	
10023-DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	13.37	88.04	25.19	9.57	50.0	$\pm 9.6\%$
		Y	13.73	88.36	24.96		50.0	
		Z	18.31	94.02	26.55		50.0	
10024-DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	38.66	107.16	29.41	6.56	60.0	$\pm 9.6\%$
		Y	49.96	110.53	29.94		60.0	
		Z	100.00	120.78	32.05		60.0	
10025-DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	12.99	90.42	33.56	12.57	50.0	$\pm 9.6\%$
		Y	17.99	101.44	38.33		50.0	
		Z	13.23	93.14	34.92		50.0	
10026-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	14.84	93.53	31.95	9.56	60.0	$\pm 9.6\%$
		Y	18.00	98.98	34.02		60.0	
		Z	16.09	96.84	33.18		60.0	
10027-DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	121.51	31.78	4.80	80.0	$\pm 9.6\%$
		Y	100.00	120.54	31.19		80.0	
		Z	100.00	119.54	30.47		80.0	
10028-DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	121.74	30.95	3.55	100.0	$\pm 9.6\%$
		Y	100.00	121.00	30.50		100.0	
		Z	100.00	119.62	29.64		100.0	
10029-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	11.64	89.13	29.36	7.80	80.0	$\pm 9.6\%$
		Y	13.80	93.70	31.13		80.0	
		Z	11.88	90.68	29.93		80.0	
10030-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	121.28	32.07	5.30	70.0	$\pm 9.6\%$
		Y	100.00	120.26	31.45		70.0	
		Z	100.00	119.24	30.70		70.0	
10031-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	124.30	30.34	1.88	100.0	$\pm 9.6\%$
		Y	100.00	124.46	30.32		100.0	
		Z	100.00	120.94	28.59		100.0	

10032-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	130.23	31.63	1.17	100.0	± 9.6 %
		Y	100.00	132.12	32.32		100.0	
		Z	100.00	125.32	29.31		100.0	
10033-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	12.66	91.00	25.84	5.30	70.0	± 9.6 %
		Y	15.52	94.58	26.82		70.0	
		Z	14.71	93.78	26.30		70.0	
10034-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	7.41	87.83	23.50	1.88	100.0	± 9.6 %
		Y	11.30	94.71	25.59		100.0	
		Z	6.47	85.35	22.11		100.0	
10035-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	4.61	82.46	21.44	1.17	100.0	± 9.6 %
		Y	6.82	88.94	23.60		100.0	
		Z	3.83	79.32	19.73		100.0	
10036-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	14.18	93.16	26.61	5.30	70.0	± 9.6 %
		Y	17.73	97.05	27.65		70.0	
		Z	17.19	96.62	27.25		70.0	
10037-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	7.25	87.53	23.36	1.88	100.0	± 9.6 %
		Y	11.12	94.48	25.47		100.0	
		Z	6.27	84.91	21.92		100.0	
10038-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	4.79	83.27	21.80	1.17	100.0	± 9.6 %
		Y	7.20	90.06	24.04		100.0	
		Z	3.94	79.96	20.04		100.0	
10039-CAB	CDMA2000 (1xRTT, RC1)	X	2.40	74.53	18.21	0.00	150.0	± 9.6 %
		Y	2.95	78.56	19.86		150.0	
		Z	1.98	71.80	16.51		150.0	
10042-CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	X	22.52	97.07	26.56	7.78	50.0	± 9.6 %
		Y	25.03	98.26	26.55		50.0	
		Z	46.78	107.97	28.87		50.0	
10044-CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	102.61	1.53	0.00	150.0	± 9.6 %
		Y	0.00	124.91	0.32		150.0	
		Z	0.01	93.45	0.03		150.0	
10048-CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	10.67	80.55	24.20	13.80	25.0	± 9.6 %
		Y	10.65	80.77	23.98		25.0	
		Z	11.79	83.79	24.84		25.0	
10049-CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	11.61	84.48	24.33	10.79	40.0	± 9.6 %
		Y	11.72	84.63	24.05		40.0	
		Z	13.71	88.24	25.04		40.0	
10056-CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	11.25	84.02	24.27	9.03	50.0	± 9.6 %
		Y	11.90	85.24	24.52		50.0	
		Z	12.44	86.66	24.82		50.0	
10058-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	9.42	85.71	27.43	6.55	100.0	± 9.6 %
		Y	10.88	89.51	28.95		100.0	
		Z	9.23	86.16	27.58		100.0	
10059-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.60	68.21	17.66	0.61	110.0	± 9.6 %
		Y	1.67	69.63	18.49		110.0	
		Z	1.51	67.10	16.79		110.0	
10060-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	133.05	34.90	1.30	110.0	± 9.6 %
		Y	100.00	134.03	35.25		110.0	
		Z	76.41	127.23	33.01		110.0	

10061-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	9.46	94.27	26.74	2.04	110.0	± 9.6 %
		Y	16.93	104.75	29.90		110.0	
		Z	8.07	91.66	25.62		110.0	
10062-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	5.05	67.08	16.89	0.49	100.0	± 9.6 %
		Y	5.01	67.28	16.97		100.0	
		Z	4.95	66.97	16.70		100.0	
10063-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	5.10	67.27	17.05	0.72	100.0	± 9.6 %
		Y	5.06	67.46	17.12		100.0	
		Z	4.99	67.14	16.85		100.0	
10064-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.48	67.65	17.32	0.86	100.0	± 9.6 %
		Y	5.43	67.83	17.38		100.0	
		Z	5.35	67.50	17.12		100.0	
10065-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.38	67.71	17.50	1.21	100.0	± 9.6 %
		Y	5.33	67.89	17.56		100.0	
		Z	5.25	67.55	17.29		100.0	
10066-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.45	67.86	17.73	1.46	100.0	± 9.6 %
		Y	5.40	68.05	17.80		100.0	
		Z	5.31	67.69	17.52		100.0	
10067-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.79	67.99	18.18	2.04	100.0	± 9.6 %
		Y	5.73	68.17	18.25		100.0	
		Z	5.64	67.82	17.97		100.0	
10068-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.97	68.46	18.58	2.55	100.0	± 9.6 %
		Y	5.91	68.64	18.66		100.0	
		Z	5.79	68.23	18.36		100.0	
10069-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	6.03	68.29	18.72	2.67	100.0	± 9.6 %
		Y	5.97	68.50	18.81		100.0	
		Z	5.87	68.12	18.52		100.0	
10071-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.50	67.58	17.98	1.99	100.0	± 9.6 %
		Y	5.46	67.78	18.06		100.0	
		Z	5.39	67.45	17.79		100.0	
10072-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.60	68.21	18.32	2.30	100.0	± 9.6 %
		Y	5.56	68.43	18.41		100.0	
		Z	5.46	68.04	18.13		100.0	
10073-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.76	68.59	18.76	2.83	100.0	± 9.6 %
		Y	5.72	68.83	18.86		100.0	
		Z	5.61	68.40	18.55		100.0	
10074-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.81	68.74	19.06	3.30	100.0	± 9.6 %
		Y	5.77	68.97	19.16		100.0	
		Z	5.65	68.50	18.83		100.0	
10075-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	6.04	69.39	19.62	3.82	90.0	± 9.6 %
		Y	5.99	69.64	19.75		90.0	
		Z	5.83	69.05	19.35		90.0	
10076-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	6.03	69.15	19.72	4.15	90.0	± 9.6 %
		Y	5.99	69.42	19.85		90.0	
		Z	5.83	68.82	19.45		90.0	
10077-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	6.07	69.24	19.82	4.30	90.0	± 9.6 %
		Y	6.03	69.51	19.95		90.0	
		Z	5.87	68.91	19.56		90.0	

10081-CAB	CDMA2000 (1xRTT, RC3)	X	1.19	69.36	15.68	0.00	150.0	± 9.6 %
		Y	1.44	73.27	17.55		150.0	
		Z	0.99	66.68	13.79		150.0	
10082-CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	X	2.85	66.23	11.00	4.77	80.0	± 9.6 %
		Y	2.83	66.26	10.82		80.0	
		Z	2.47	65.11	9.92		80.0	
10090-DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	37.37	106.65	29.31	6.56	60.0	± 9.6 %
		Y	47.86	109.90	29.82		60.0	
		Z	100.00	120.87	32.11		60.0	
10097-CAB	UMTS-FDD (HSDPA)	X	1.98	68.31	16.50	0.00	150.0	± 9.6 %
		Y	2.06	69.55	17.18		150.0	
		Z	1.87	67.33	15.70		150.0	
10098-CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.94	68.28	16.47	0.00	150.0	± 9.6 %
		Y	2.02	69.58	17.18		150.0	
		Z	1.83	67.28	15.66		150.0	
10099-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	14.80	93.43	31.92	9.56	60.0	± 9.6 %
		Y	17.91	98.82	33.96		60.0	
		Z	16.04	96.73	33.14		60.0	
10100-CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.57	71.83	17.40	0.00	150.0	± 9.6 %
		Y	3.75	73.09	18.01		150.0	
		Z	3.31	70.64	16.71		150.0	
10101-CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.55	68.41	16.45	0.00	150.0	± 9.6 %
		Y	3.58	68.95	16.74		150.0	
		Z	3.41	67.85	16.02		150.0	
10102-CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.65	68.29	16.51	0.00	150.0	± 9.6 %
		Y	3.66	68.75	16.75		150.0	
		Z	3.52	67.78	16.11		150.0	
10103-CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.67	77.16	20.96	3.98	65.0	± 9.6 %
		Y	8.90	77.91	21.20		65.0	
		Z	8.54	77.45	20.97		65.0	
10104-CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.81	76.26	21.41	3.98	65.0	± 9.6 %
		Y	8.99	76.99	21.69		65.0	
		Z	8.65	76.47	21.39		65.0	
10105-CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.83	73.87	20.63	3.98	65.0	± 9.6 %
		Y	8.20	75.15	21.15		65.0	
		Z	7.44	73.51	20.37		65.0	
10108-CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.17	70.97	17.22	0.00	150.0	± 9.6 %
		Y	3.30	72.15	17.82		150.0	
		Z	2.93	69.83	16.53		150.0	
10109-CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.23	68.22	16.43	0.00	150.0	± 9.6 %
		Y	3.25	68.78	16.73		150.0	
		Z	3.09	67.62	15.96		150.0	
10110-CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.62	69.96	16.94	0.00	150.0	± 9.6 %
		Y	2.72	71.20	17.60		150.0	
		Z	2.41	68.81	16.19		150.0	
10111-CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.93	68.72	16.79	0.00	150.0	± 9.6 %
		Y	2.95	69.38	17.13		150.0	
		Z	2.77	68.08	16.23		150.0	

10112-CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.35	68.07	16.43	0.00	150.0	± 9.6 %
		Y	3.36	68.58	16.70		150.0	
		Z	3.21	67.56	16.00		150.0	
10113-CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.08	68.71	16.85	0.00	150.0	± 9.6 %
		Y	3.10	69.31	17.15		150.0	
		Z	2.93	68.16	16.34		150.0	
10114-CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.39	67.51	16.66	0.00	150.0	± 9.6 %
		Y	5.35	67.67	16.71		150.0	
		Z	5.29	67.32	16.44		150.0	
10115-CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.85	68.02	16.91	0.00	150.0	± 9.6 %
		Y	5.76	68.05	16.90		150.0	
		Z	5.67	67.66	16.62		150.0	
10116-CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.53	67.76	16.70	0.00	150.0	± 9.6 %
		Y	5.48	67.92	16.75		150.0	
		Z	5.42	67.59	16.50		150.0	
10117-CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.39	67.52	16.68	0.00	150.0	± 9.6 %
		Y	5.35	67.68	16.74		150.0	
		Z	5.30	67.35	16.48		150.0	
10118-CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	X	5.85	67.91	16.85	0.00	150.0	± 9.6 %
		Y	5.78	68.01	16.88		150.0	
		Z	5.72	67.74	16.66		150.0	
10119-CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	X	5.49	67.71	16.69	0.00	150.0	± 9.6 %
		Y	5.45	67.86	16.74		150.0	
		Z	5.39	67.55	16.49		150.0	
10140-CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.70	68.28	16.43	0.00	150.0	± 9.6 %
		Y	3.72	68.75	16.68		150.0	
		Z	3.57	67.79	16.04		150.0	
10141-CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.82	68.27	16.55	0.00	150.0	± 9.6 %
		Y	3.82	68.70	16.77		150.0	
		Z	3.69	67.83	16.18		150.0	
10142-CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.40	69.91	16.87	0.00	150.0	± 9.6 %
		Y	2.51	71.31	17.59		150.0	
		Z	2.19	68.69	16.01		150.0	
10143-CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.83	69.45	16.85	0.00	150.0	± 9.6 %
		Y	2.88	70.30	17.25		150.0	
		Z	2.65	68.69	16.15		150.0	
10144-CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.65	67.59	15.53	0.00	150.0	± 9.6 %
		Y	2.69	68.38	15.92		150.0	
		Z	2.49	66.92	14.85		150.0	
10145-CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.86	69.38	15.74	0.00	150.0	± 9.6 %
		Y	2.00	71.27	16.58		150.0	
		Z	1.58	67.29	14.12		150.0	
10146-CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	4.10	75.82	18.33	0.00	150.0	± 9.6 %
		Y	6.53	82.79	20.68		150.0	
		Z	3.68	73.78	16.52		150.0	
10147-CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	5.20	79.63	20.03	0.00	150.0	± 9.6 %
		Y	9.40	88.47	22.81		150.0	
		Z	4.76	77.56	18.22		150.0	

10149-CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.24	68.28	16.47	0.00	150.0	± 9.6 %
		Y	3.26	68.84	16.77		150.0	
		Z	3.09	67.68	16.00		150.0	
10150-CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.35	68.12	16.47	0.00	150.0	± 9.6 %
		Y	3.36	68.63	16.73		150.0	
		Z	3.21	67.60	16.03		150.0	
10151-CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	8.95	78.80	21.75	3.98	65.0	± 9.6 %
		Y	9.31	79.82	22.08		65.0	
		Z	9.01	79.52	21.90		65.0	
10152-CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.44	76.39	21.32	3.98	65.0	± 9.6 %
		Y	8.66	77.25	21.64		65.0	
		Z	8.27	76.61	21.27		65.0	
10153-CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.74	76.96	21.88	3.98	65.0	± 9.6 %
		Y	8.94	77.76	22.17		65.0	
		Z	8.61	77.29	21.88		65.0	
10154-CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.70	70.54	17.29	0.00	150.0	± 9.6 %
		Y	2.80	71.75	17.92		150.0	
		Z	2.47	69.29	16.49		150.0	
10155-CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.92	68.70	16.79	0.00	150.0	± 9.6 %
		Y	2.95	69.37	17.13		150.0	
		Z	2.77	68.07	16.23		150.0	
10156-CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.29	70.34	17.02	0.00	150.0	± 9.6 %
		Y	2.42	71.94	17.82		150.0	
		Z	2.05	68.90	16.00		150.0	
10157-CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.51	68.35	15.82	0.00	150.0	± 9.6 %
		Y	2.57	69.35	16.30		150.0	
		Z	2.32	67.50	15.01		150.0	
10158-CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.09	68.75	16.89	0.00	150.0	± 9.6 %
		Y	3.10	69.35	17.19		150.0	
		Z	2.94	68.20	16.38		150.0	
10159-CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.63	68.78	16.12	0.00	150.0	± 9.6 %
		Y	2.69	69.75	16.56		150.0	
		Z	2.44	67.94	15.31		150.0	
10160-CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.08	69.52	16.87	0.00	150.0	± 9.6 %
		Y	3.13	70.31	17.29		150.0	
		Z	2.91	68.71	16.30		150.0	
10161-CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.24	67.98	16.43	0.00	150.0	± 9.6 %
		Y	3.25	68.50	16.70		150.0	
		Z	3.11	67.48	15.98		150.0	
10162-CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.34	67.94	16.45	0.00	150.0	± 9.6 %
		Y	3.35	68.46	16.71		150.0	
		Z	3.21	67.52	16.04		150.0	
10166-CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.15	70.24	19.68	3.01	150.0	± 9.6 %
		Y	4.39	72.02	20.58		150.0	
		Z	4.10	70.59	19.61		150.0	
10167-CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.30	73.19	20.21	3.01	150.0	± 9.6 %
		Y	6.07	76.46	21.62		150.0	
		Z	5.42	74.34	20.42		150.0	

10168-CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.73	74.89	21.25	3.01	150.0	± 9.6 %
		Y	6.67	78.47	22.73		150.0	
		Z	5.99	76.48	21.64		150.0	
10169-CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.01	72.59	20.63	3.01	150.0	± 9.6 %
		Y	4.62	76.32	22.37		150.0	
		Z	3.92	72.92	20.56		150.0	
10170-CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	5.91	78.98	22.91	3.01	150.0	± 9.6 %
		Y	8.71	87.18	25.98		150.0	
		Z	6.50	81.60	23.64		150.0	
10171-AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.84	74.60	20.25	3.01	150.0	± 9.6 %
		Y	6.49	80.73	22.69		150.0	
		Z	4.98	75.89	20.46		150.0	
10172-CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	17.65	96.89	29.78	6.02	65.0	± 9.6 %
		Y	39.25	113.48	34.79		65.0	
		Z	22.58	103.05	31.56		65.0	
10173-CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	19.14	94.96	27.86	6.02	65.0	± 9.6 %
		Y	39.04	108.34	31.70		65.0	
		Z	33.85	106.05	30.84		65.0	
10174-CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	16.64	91.45	26.33	6.02	65.0	± 9.6 %
		Y	30.17	102.39	29.54		65.0	
		Z	25.24	99.63	28.51		65.0	
10175-CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.94	72.18	20.35	3.01	150.0	± 9.6 %
		Y	4.53	75.83	22.06		150.0	
		Z	3.85	72.49	20.27		150.0	
10176-CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5.92	79.00	22.92	3.01	150.0	± 9.6 %
		Y	8.73	87.21	25.99		150.0	
		Z	6.51	81.63	23.66		150.0	
10177-CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.98	72.40	20.48	3.01	150.0	± 9.6 %
		Y	4.59	76.06	22.19		150.0	
		Z	3.90	72.71	20.39		150.0	
10178-CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	5.81	78.63	22.74	3.01	150.0	± 9.6 %
		Y	8.51	86.70	25.78		150.0	
		Z	6.37	81.19	23.46		150.0	
10179-CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	5.31	76.57	21.41	3.01	150.0	± 9.6 %
		Y	7.45	83.63	24.13		150.0	
		Z	5.63	78.44	21.85		150.0	
10180-CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	4.81	74.47	20.17	3.01	150.0	± 9.6 %
		Y	6.44	80.55	22.60		150.0	
		Z	4.94	75.74	20.38		150.0	
10181-CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.98	72.37	20.46	3.01	150.0	± 9.6 %
		Y	4.58	76.04	22.18		150.0	
		Z	3.89	72.69	20.38		150.0	
10182-CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.81	78.61	22.73	3.01	150.0	± 9.6 %
		Y	8.49	86.67	25.76		150.0	
		Z	6.36	81.16	23.45		150.0	
10183-AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	4.80	74.45	20.16	3.01	150.0	± 9.6 %
		Y	6.42	80.52	22.59		150.0	
		Z	4.93	75.72	20.37		150.0	

10184-CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.99	72.42	20.49	3.01	150.0	± 9.6 %
		Y	4.60	76.10	22.20		150.0	
		Z	3.90	72.74	20.41		150.0	
10185-CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	5.83	78.68	22.77	3.01	150.0	± 9.6 %
		Y	8.54	86.77	25.80		150.0	
		Z	6.40	81.25	23.49		150.0	
10186-AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	4.83	74.51	20.19	3.01	150.0	± 9.6 %
		Y	6.46	80.62	22.63		150.0	
		Z	4.96	75.80	20.40		150.0	
10187-CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	4.00	72.44	20.52	3.01	150.0	± 9.6 %
		Y	4.61	76.13	22.25		150.0	
		Z	3.91	72.77	20.45		150.0	
10188-CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	6.06	79.49	23.19	3.01	150.0	± 9.6 %
		Y	9.04	87.94	26.32		150.0	
		Z	6.73	82.29	23.98		150.0	
10189-AAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	4.95	75.02	20.49	3.01	150.0	± 9.6 %
		Y	6.70	81.32	22.98		150.0	
		Z	5.12	76.40	20.74		150.0	
10193-CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.81	66.83	16.44	0.00	150.0	± 9.6 %
		Y	4.78	67.05	16.52		150.0	
		Z	4.72	66.71	16.22		150.0	
10194-CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	5.03	67.24	16.54	0.00	150.0	± 9.6 %
		Y	4.99	67.45	16.62		150.0	
		Z	4.92	67.09	16.34		150.0	
10195-CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	5.07	67.23	16.54	0.00	150.0	± 9.6 %
		Y	5.03	67.44	16.62		150.0	
		Z	4.96	67.10	16.34		150.0	
10196-CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.85	66.96	16.48	0.00	150.0	± 9.6 %
		Y	4.81	67.17	16.56		150.0	
		Z	4.74	66.82	16.26		150.0	
10197-CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	X	5.05	67.25	16.55	0.00	150.0	± 9.6 %
		Y	5.01	67.46	16.63		150.0	
		Z	4.94	67.11	16.35		150.0	
10198-CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	X	5.08	67.24	16.54	0.00	150.0	± 9.6 %
		Y	5.04	67.45	16.63		150.0	
		Z	4.97	67.11	16.35		150.0	
10219-CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.80	66.98	16.45	0.00	150.0	± 9.6 %
		Y	4.76	67.19	16.54		150.0	
		Z	4.69	66.83	16.23		150.0	
10220-CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	X	5.05	67.26	16.55	0.00	150.0	± 9.6 %
		Y	5.01	67.47	16.63		150.0	
		Z	4.94	67.11	16.35		150.0	
10221-CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	X	5.08	67.18	16.54	0.00	150.0	± 9.6 %
		Y	5.04	67.39	16.62		150.0	
		Z	4.97	67.05	16.34		150.0	
10222-CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.38	67.56	16.69	0.00	150.0	± 9.6 %
		Y	5.34	67.72	16.74		150.0	
		Z	5.28	67.38	16.48		150.0	

10223-CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	X	5.76	67.80	16.82	0.00	150.0	± 9.6 %
		Y	5.72	67.99	16.89		150.0	
		Z	5.67	67.74	16.68		150.0	
10224-CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	X	5.45	67.71	16.68	0.00	150.0	± 9.6 %
		Y	5.40	67.86	16.74		150.0	
		Z	5.33	67.49	16.46		150.0	
10225-CAB	UMTS-FDD (HSPA+)	X	3.07	66.47	15.97	0.00	150.0	± 9.6 %
		Y	3.06	66.88	16.18		150.0	
		Z	2.97	66.16	15.56		150.0	
10226-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	19.74	95.62	28.15	6.02	65.0	± 9.6 %
		Y	40.90	109.32	32.05		65.0	
		Z	35.99	107.30	31.27		65.0	
10227-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	17.37	92.34	26.71	6.02	65.0	± 9.6 %
		Y	30.81	102.93	29.79		65.0	
		Z	28.19	101.67	29.20		65.0	
10228-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	19.23	99.08	30.60	6.02	65.0	± 9.6 %
		Y	39.24	114.06	35.09		65.0	
		Z	28.81	108.20	33.19		65.0	
10229-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	19.16	94.97	27.87	6.02	65.0	± 9.6 %
		Y	38.99	108.30	31.70		65.0	
		Z	33.91	106.07	30.85		65.0	
10230-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	16.90	91.78	26.47	6.02	65.0	± 9.6 %
		Y	29.65	102.16	29.50		65.0	
		Z	26.84	100.71	28.85		65.0	
10231-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	18.65	98.40	30.32	6.02	65.0	± 9.6 %
		Y	37.56	113.08	34.75		65.0	
		Z	27.38	107.10	32.80		65.0	
10232-CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	19.15	94.96	27.87	6.02	65.0	± 9.6 %
		Y	38.99	108.31	31.70		65.0	
		Z	33.89	106.07	30.85		65.0	
10233-CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	16.90	91.79	26.47	6.02	65.0	± 9.6 %
		Y	29.69	102.19	29.51		65.0	
		Z	26.85	100.73	28.85		65.0	
10234-CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	18.06	97.64	30.00	6.02	65.0	± 9.6 %
		Y	35.73	111.90	34.33		65.0	
		Z	25.98	105.90	32.35		65.0	
10235-CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	19.17	94.99	27.88	6.02	65.0	± 9.6 %
		Y	39.11	108.38	31.72		65.0	
		Z	33.98	106.13	30.87		65.0	
10236-CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	16.99	91.87	26.49	6.02	65.0	± 9.6 %
		Y	29.92	102.31	29.54		65.0	
		Z	27.06	100.84	28.88		65.0	
10237-CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	18.75	98.52	30.36	6.02	65.0	± 9.6 %
		Y	37.99	113.32	34.82		65.0	
		Z	27.59	107.26	32.85		65.0	
10238-CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	19.15	94.97	27.87	6.02	65.0	± 9.6 %
		Y	39.04	108.35	31.71		65.0	
		Z	33.90	106.09	30.85		65.0	

10239-CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	16.90	91.80	26.47	6.02	65.0	± 9.6 %
		Y	29.73	102.23	29.52		65.0	
		Z	26.86	100.75	28.86		65.0	
10240-CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	18.70	98.48	30.34	6.02	65.0	± 9.6 %
		Y	37.87	113.27	34.80		65.0	
		Z	27.50	107.21	32.83		65.0	
10241-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	12.08	84.19	26.68	6.98	65.0	± 9.6 %
		Y	14.32	88.75	28.47		65.0	
		Z	12.85	86.65	27.45		65.0	
10242-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	11.04	82.09	25.74	6.98	65.0	± 9.6 %
		Y	13.35	87.11	27.76		65.0	
		Z	10.93	83.04	25.94		65.0	
10243-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.26	80.04	25.68	6.98	65.0	± 9.6 %
		Y	10.99	84.90	27.81		65.0	
		Z	8.83	80.10	25.57		65.0	
10244-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	9.86	80.60	22.07	3.98	65.0	± 9.6 %
		Y	11.08	82.83	22.72		65.0	
		Z	10.15	81.39	21.80		65.0	
10245-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	9.80	80.27	21.90	3.98	65.0	± 9.6 %
		Y	10.95	82.40	22.52		65.0	
		Z	10.04	80.96	21.60		65.0	
10246-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	9.04	81.78	22.29	3.98	65.0	± 9.6 %
		Y	9.75	83.30	22.70		65.0	
		Z	9.10	82.31	22.07		65.0	
10247-CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	8.03	77.52	21.09	3.98	65.0	± 9.6 %
		Y	8.28	78.34	21.29		65.0	
		Z	7.84	77.60	20.77		65.0	
10248-CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	8.08	77.14	20.92	3.98	65.0	± 9.6 %
		Y	8.32	77.95	21.13		65.0	
		Z	7.85	77.16	20.58		65.0	
10249-CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	9.38	82.23	22.83	3.98	65.0	± 9.6 %
		Y	10.15	83.91	23.34		65.0	
		Z	9.64	83.26	22.91		65.0	
10250-CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.57	78.37	22.29	3.98	65.0	± 9.6 %
		Y	8.85	79.31	22.60		65.0	
		Z	8.50	78.84	22.29		65.0	
10251-CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	8.25	76.59	21.32	3.98	65.0	± 9.6 %
		Y	8.50	77.52	21.64		65.0	
		Z	8.12	76.90	21.24		65.0	
10252-CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.23	81.03	22.73	3.98	65.0	± 9.6 %
		Y	9.83	82.49	23.21		65.0	
		Z	9.46	82.11	22.97		65.0	
10253-CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	8.23	75.85	21.18	3.98	65.0	± 9.6 %
		Y	8.44	76.68	21.48		65.0	
		Z	8.06	76.04	21.09		65.0	
10254-CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.56	76.45	21.70	3.98	65.0	± 9.6 %
		Y	8.75	77.24	21.99		65.0	
		Z	8.42	76.74	21.67		65.0	

10255-CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.70	78.47	21.85	3.98	65.0	± 9.6 %
		Y	9.05	79.52	22.21		65.0	
		Z	8.72	79.14	21.98		65.0	
10256-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	9.51	79.97	21.27	3.98	65.0	± 9.6 %
		Y	10.57	81.85	21.75		65.0	
		Z	9.42	79.92	20.57		65.0	
10257-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	9.47	79.53	21.04	3.98	65.0	± 9.6 %
		Y	10.42	81.25	21.45		65.0	
		Z	9.26	79.30	20.26		65.0	
10258-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	8.67	81.03	21.64	3.98	65.0	± 9.6 %
		Y	9.19	82.17	21.88		65.0	
		Z	8.35	80.69	21.00		65.0	
10259-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.23	77.72	21.47	3.98	65.0	± 9.6 %
		Y	8.50	78.61	21.72		65.0	
		Z	8.09	77.97	21.27		65.0	
10260-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.29	77.56	21.42	3.98	65.0	± 9.6 %
		Y	8.54	78.41	21.66		65.0	
		Z	8.13	77.77	21.21		65.0	
10261-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.07	81.31	22.67	3.98	65.0	± 9.6 %
		Y	9.73	82.87	23.17		65.0	
		Z	9.25	82.24	22.77		65.0	
10262-CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.57	78.34	22.27	3.98	65.0	± 9.6 %
		Y	8.85	79.29	22.57		65.0	
		Z	8.50	78.81	22.26		65.0	
10263-CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.25	76.60	21.33	3.98	65.0	± 9.6 %
		Y	8.50	77.52	21.65		65.0	
		Z	8.11	76.90	21.24		65.0	
10264-CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	9.19	80.94	22.68	3.98	65.0	± 9.6 %
		Y	9.79	82.39	23.16		65.0	
		Z	9.41	81.99	22.90		65.0	
10265-CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.43	76.39	21.33	3.98	65.0	± 9.6 %
		Y	8.66	77.26	21.65		65.0	
		Z	8.27	76.61	21.27		65.0	
10266-CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.74	76.96	21.88	3.98	65.0	± 9.6 %
		Y	8.95	77.76	22.17		65.0	
		Z	8.61	77.29	21.88		65.0	
10267-CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.94	78.77	21.73	3.98	65.0	± 9.6 %
		Y	9.30	79.79	22.07		65.0	
		Z	8.99	79.49	21.89		65.0	
10268-CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.90	75.97	21.43	3.98	65.0	± 9.6 %
		Y	9.05	76.65	21.68		65.0	
		Z	8.74	76.20	21.42		65.0	
10269-CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.83	75.61	21.36	3.98	65.0	± 9.6 %
		Y	8.97	76.27	21.61		65.0	
		Z	8.67	75.81	21.33		65.0	
10270-CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.76	76.84	21.06	3.98	65.0	± 9.6 %
		Y	8.96	77.55	21.29		65.0	
		Z	8.70	77.27	21.13		65.0	

10274-CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.75	66.63	15.78	0.00	150.0	± 9.6 %
		Y	2.78	67.23	16.09		150.0	
		Z	2.68	66.29	15.34		150.0	
10275-CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.86	69.35	16.62	0.00	150.0	± 9.6 %
		Y	1.99	71.19	17.61		150.0	
		Z	1.70	67.87	15.61		150.0	
10277-CAA	PHS (QPSK)	X	7.15	72.89	17.07	9.03	50.0	± 9.6 %
		Y	6.97	72.51	16.59		50.0	
		Z	6.37	71.44	15.61		50.0	
10278-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	10.13	81.11	22.51	9.03	50.0	± 9.6 %
		Y	10.17	81.23	22.27		50.0	
		Z	9.98	81.34	21.97		50.0	
10279-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	10.32	81.32	22.59	9.03	50.0	± 9.6 %
		Y	10.36	81.46	22.36		50.0	
		Z	10.16	81.53	22.05		50.0	
10290-AAB	CDMA2000, RC1, SO55, Full Rate	X	1.98	71.50	16.67	0.00	150.0	± 9.6 %
		Y	2.32	74.71	18.08		150.0	
		Z	1.68	69.28	15.13		150.0	
10291-AAB	CDMA2000, RC3, SO55, Full Rate	X	1.16	69.01	15.51	0.00	150.0	± 9.6 %
		Y	1.39	72.80	17.34		150.0	
		Z	0.96	66.44	13.66		150.0	
10292-AAB	CDMA2000, RC3, SO32, Full Rate	X	1.47	73.79	18.11	0.00	150.0	± 9.6 %
		Y	2.07	80.27	20.86		150.0	
		Z	1.14	69.76	15.68		150.0	
10293-AAB	CDMA2000, RC3, SO3, Full Rate	X	2.06	79.39	20.86	0.00	150.0	± 9.6 %
		Y	3.31	88.34	24.26		150.0	
		Z	1.50	73.95	18.00		150.0	
10295-AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	9.90	81.24	23.95	9.03	50.0	± 9.6 %
		Y	10.26	82.29	24.22		50.0	
		Z	10.18	82.66	24.15		50.0	
10297-AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.19	71.08	17.29	0.00	150.0	± 9.6 %
		Y	3.31	72.26	17.88		150.0	
		Z	2.94	69.92	16.59		150.0	
10298-AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	2.09	70.20	16.53	0.00	150.0	± 9.6 %
		Y	2.25	72.08	17.41		150.0	
		Z	1.84	68.48	15.24		150.0	
10299-AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	4.14	75.23	18.58	0.00	150.0	± 9.6 %
		Y	6.00	81.19	20.70		150.0	
		Z	4.03	74.57	17.51		150.0	
10300-AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.20	70.20	15.69	0.00	150.0	± 9.6 %
		Y	4.02	73.86	17.11		150.0	
		Z	2.98	69.23	14.49		150.0	
10301-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	6.01	68.05	18.84	4.17	80.0	± 9.6 %
		Y	6.22	69.34	19.54		80.0	
		Z	5.87	68.21	18.83		80.0	
10302-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.63	69.21	19.89	4.96	80.0	± 9.6 %
		Y	6.79	70.37	20.53		80.0	
		Z	6.32	68.61	19.43		80.0	

10303-AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	6.54	69.47	20.04	4.96	80.0	$\pm 9.6\%$
		Y	6.73	70.79	20.77		80.0	
		Z	6.19	68.73	19.52		80.0	
10304-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	6.09	68.56	19.13	4.17	80.0	$\pm 9.6\%$
		Y	6.22	69.62	19.71		80.0	
		Z	5.80	67.97	18.68		80.0	
10305-AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	11.27	86.25	28.42	6.02	50.0	$\pm 9.6\%$
		Y	9.88	82.37	26.51		50.0	
		Z	9.00	81.41	26.17		50.0	
10306-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	7.18	72.75	22.32	6.02	50.0	$\pm 9.6\%$
		Y	7.83	75.61	23.82		50.0	
		Z	6.59	71.33	21.44		50.0	
10307-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	7.34	73.58	22.50	6.02	50.0	$\pm 9.6\%$
		Y	8.18	76.89	24.17		50.0	
		Z	6.68	72.01	21.58		50.0	
10308-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	7.41	74.04	22.72	6.02	50.0	$\pm 9.6\%$
		Y	8.35	77.61	24.49		50.0	
		Z	6.72	72.38	21.76		50.0	
10309-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	7.29	72.99	22.44	6.02	50.0	$\pm 9.6\%$
		Y	7.99	75.96	23.99		50.0	
		Z	6.71	71.63	21.60		50.0	
10310-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	7.21	72.99	22.33	6.02	50.0	$\pm 9.6\%$
		Y	7.92	76.03	23.90		50.0	
		Z	6.60	71.54	21.45		50.0	
10311-AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.55	70.38	16.92	0.00	150.0	$\pm 9.6\%$
		Y	3.69	71.44	17.45		150.0	
		Z	3.30	69.27	16.27		150.0	
10313-AAA	iDEN 1:3	X	7.64	78.25	19.37	6.99	70.0	$\pm 9.6\%$
		Y	8.15	79.20	19.54		70.0	
		Z	7.60	78.52	19.11		70.0	
10314-AAA	iDEN 1:6	X	8.76	81.38	22.80	10.00	30.0	$\pm 9.6\%$
		Y	9.42	82.73	23.09		30.0	
		Z	9.32	83.36	23.24		30.0	
10315-AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.23	65.31	16.28	0.17	150.0	$\pm 9.6\%$
		Y	1.25	66.29	16.97		150.0	
		Z	1.18	64.46	15.47		150.0	
10316-AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	X	4.93	67.03	16.63	0.17	150.0	$\pm 9.6\%$
		Y	4.89	67.25	16.71		150.0	
		Z	4.83	66.91	16.43		150.0	
10317-AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.93	67.03	16.63	0.17	150.0	$\pm 9.6\%$
		Y	4.89	67.25	16.71		150.0	
		Z	4.83	66.91	16.43		150.0	
10400-AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	5.06	67.29	16.53	0.00	150.0	$\pm 9.6\%$
		Y	5.02	67.51	16.62		150.0	
		Z	4.94	67.15	16.32		150.0	
10401-AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.63	67.29	16.55	0.00	150.0	$\pm 9.6\%$
		Y	5.58	67.45	16.61		150.0	
		Z	5.54	67.20	16.40		150.0	

10402-AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.96	67.96	16.72	0.00	150.0	± 9.6 %
		Y	5.91	68.10	16.76		150.0	
		Z	5.86	67.80	16.54		150.0	
10403-AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	1.98	71.50	16.67	0.00	115.0	± 9.6 %
		Y	2.32	74.71	18.08		115.0	
		Z	1.68	69.28	15.13		115.0	
10404-AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.98	71.50	16.67	0.00	115.0	± 9.6 %
		Y	2.32	74.71	18.08		115.0	
		Z	1.68	69.28	15.13		115.0	
10406-AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	27.89	107.60	29.27	0.00	100.0	± 9.6 %
		Y	100.00	123.86	32.26		100.0	
		Z	100.00	121.64	31.01		100.0	
10410-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.84	32.14	3.23	80.0	± 9.6 %
		Y	100.00	120.82	31.48		80.0	
		Z	100.00	119.72	30.68		80.0	
10415-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.06	63.61	15.33	0.00	150.0	± 9.6 %
		Y	1.07	64.41	15.96		150.0	
		Z	1.03	62.95	14.59		150.0	
10416-AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	X	4.81	66.85	16.45	0.00	150.0	± 9.6 %
		Y	4.78	67.07	16.54		150.0	
		Z	4.72	66.74	16.26		150.0	
10417-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.81	66.85	16.45	0.00	150.0	± 9.6 %
		Y	4.78	67.07	16.54		150.0	
		Z	4.72	66.74	16.26		150.0	
10418-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preamble)	X	4.79	66.98	16.45	0.00	150.0	± 9.6 %
		Y	4.76	67.21	16.55		150.0	
		Z	4.70	66.87	16.25		150.0	
10419-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preamble)	X	4.82	66.94	16.46	0.00	150.0	± 9.6 %
		Y	4.79	67.17	16.56		150.0	
		Z	4.73	66.83	16.27		150.0	
10422-AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.96	66.95	16.48	0.00	150.0	± 9.6 %
		Y	4.92	67.17	16.56		150.0	
		Z	4.86	66.85	16.29		150.0	
10423-AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.19	67.39	16.64	0.00	150.0	± 9.6 %
		Y	5.15	67.59	16.71		150.0	
		Z	5.07	67.25	16.44		150.0	
10424-AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	5.09	67.31	16.59	0.00	150.0	± 9.6 %
		Y	5.05	67.52	16.68		150.0	
		Z	4.98	67.17	16.39		150.0	
10425-AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.67	67.74	16.77	0.00	150.0	± 9.6 %
		Y	5.60	67.84	16.80		150.0	
		Z	5.55	67.54	16.56		150.0	
10426-AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.68	67.76	16.77	0.00	150.0	± 9.6 %
		Y	5.62	67.88	16.81		150.0	
		Z	5.56	67.58	16.58		150.0	

10427-AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.71	67.80	16.79	0.00	150.0	± 9.6 %
		Y	5.65	67.92	16.82		150.0	
		Z	5.58	67.60	16.58		150.0	
10430-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.55	70.23	18.40	0.00	150.0	± 9.6 %
		Y	4.50	70.39	18.40		150.0	
		Z	4.41	70.12	18.11		150.0	
10431-AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.60	67.43	16.58	0.00	150.0	± 9.6 %
		Y	4.56	67.70	16.69		150.0	
		Z	4.46	67.26	16.33		150.0	
10432-AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.88	67.36	16.58	0.00	150.0	± 9.6 %
		Y	4.84	67.59	16.68		150.0	
		Z	4.75	67.20	16.36		150.0	
10433-AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	5.11	67.38	16.63	0.00	150.0	± 9.6 %
		Y	5.07	67.59	16.71		150.0	
		Z	4.99	67.23	16.42		150.0	
10434-AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.64	70.85	18.42	0.00	150.0	± 9.6 %
		Y	4.59	71.07	18.43		150.0	
		Z	4.49	70.79	18.10		150.0	
10435-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.70	32.08	3.23	80.0	± 9.6 %
		Y	100.00	120.68	31.41		80.0	
		Z	100.00	119.57	30.61		80.0	
10447-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.93	67.51	16.26	0.00	150.0	± 9.6 %
		Y	3.91	67.88	16.41		150.0	
		Z	3.78	67.26	15.87		150.0	
10448-AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.39	67.19	16.44	0.00	150.0	± 9.6 %
		Y	4.37	67.48	16.56		150.0	
		Z	4.28	67.03	16.18		150.0	
10449-AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.64	67.17	16.48	0.00	150.0	± 9.6 %
		Y	4.61	67.41	16.59		150.0	
		Z	4.53	67.01	16.25		150.0	
10450-AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.80	67.11	16.49	0.00	150.0	± 9.6 %
		Y	4.77	67.34	16.58		150.0	
		Z	4.71	66.96	16.27		150.0	
10451-AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.89	67.84	16.10	0.00	150.0	± 9.6 %
		Y	3.87	68.27	16.27		150.0	
		Z	3.71	67.54	15.65		150.0	
10456-AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.52	68.39	16.95	0.00	150.0	± 9.6 %
		Y	6.45	68.49	16.97		150.0	
		Z	6.40	68.20	16.75		150.0	
10457-AAA	UMTS-FDD (DC-HSDPA)	X	3.94	65.51	16.22	0.00	150.0	± 9.6 %
		Y	3.92	65.73	16.32		150.0	
		Z	3.89	65.38	15.99		150.0	
10458-AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.65	66.81	15.57	0.00	150.0	± 9.6 %
		Y	3.65	67.32	15.77		150.0	
		Z	3.52	66.73	15.16		150.0	
10459-AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.75	64.87	16.03	0.00	150.0	± 9.6 %
		Y	4.80	65.52	16.32		150.0	
		Z	4.56	64.67	15.67		150.0	

10460-AAA	UMTS-FDD (WCDMA, AMR)	X	1.07	70.70	17.84	0.00	150.0	± 9.6 %
		Y	1.28	74.95	20.07		150.0	
		Z	0.92	67.75	15.94		150.0	
10461-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.14	32.83	3.29	80.0	± 9.6 %
		Y	100.00	123.96	33.00		80.0	
		Z	100.00	122.39	31.99		80.0	
10462-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.53	27.73	3.23	80.0	± 9.6 %
		Y	100.00	111.73	27.09		80.0	
		Z	100.00	109.57	25.81		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.41	26.69	3.23	80.0	± 9.6 %
		Y	100.00	109.40	25.96		80.0	
		Z	100.00	107.06	24.60		80.0	
10464-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.75	32.04	3.23	80.0	± 9.6 %
		Y	100.00	122.50	32.18		80.0	
		Z	100.00	120.71	31.07		80.0	
10465-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.17	27.53	3.23	80.0	± 9.6 %
		Y	100.00	111.35	26.89		80.0	
		Z	100.00	109.13	25.59		80.0	
10466-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.04	26.51	3.23	80.0	± 9.6 %
		Y	100.00	109.01	25.77		80.0	
		Z	65.31	101.99	23.34		80.0	
10467-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.91	32.11	3.23	80.0	± 9.6 %
		Y	100.00	122.67	32.25		80.0	
		Z	100.00	120.89	31.15		80.0	
10468-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.28	27.59	3.23	80.0	± 9.6 %
		Y	100.00	111.47	26.95		80.0	
		Z	100.00	109.26	25.65		80.0	
10469-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.05	26.51	3.23	80.0	± 9.6 %
		Y	100.00	109.02	25.77		80.0	
		Z	68.25	102.48	23.45		80.0	
10470-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.94	32.12	3.23	80.0	± 9.6 %
		Y	100.00	122.70	32.26		80.0	
		Z	100.00	120.91	31.15		80.0	
10471-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.25	27.57	3.23	80.0	± 9.6 %
		Y	100.00	111.44	26.93		80.0	
		Z	100.00	109.22	25.63		80.0	
10472-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.02	26.49	3.23	80.0	± 9.6 %
		Y	100.00	108.99	25.75		80.0	
		Z	68.61	102.50	23.44		80.0	
10473-AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.91	32.11	3.23	80.0	± 9.6 %
		Y	100.00	122.68	32.25		80.0	
		Z	100.00	120.89	31.14		80.0	
10474-AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.26	27.57	3.23	80.0	± 9.6 %
		Y	100.00	111.45	26.93		80.0	
		Z	100.00	109.23	25.63		80.0	
10475-AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.03	26.49	3.23	80.0	± 9.6 %
		Y	100.00	109.00	25.75		80.0	
		Z	67.01	102.25	23.38		80.0	

10477-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.14	27.51	3.23	80.0	± 9.6 %
		Y	100.00	111.32	26.87		80.0	
		Z	100.00	109.09	25.56		80.0	
10478-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.00	26.48	3.23	80.0	± 9.6 %
		Y	100.00	108.97	25.74		80.0	
		Z	65.08	101.90	23.29		80.0	
10479-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	11.05	89.01	25.25	3.23	80.0	± 9.6 %
		Y	18.35	98.04	28.00		80.0	
		Z	11.85	90.31	25.12		80.0	
10480-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	12.80	87.06	23.37	3.23	80.0	± 9.6 %
		Y	23.37	96.42	26.00		80.0	
		Z	14.95	89.17	23.30		80.0	
10481-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	12.22	85.77	22.69	3.23	80.0	± 9.6 %
		Y	21.03	94.04	25.01		80.0	
		Z	13.40	86.90	22.30		80.0	
10482-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.47	79.78	20.89	2.23	80.0	± 9.6 %
		Y	7.84	83.11	21.99		80.0	
		Z	5.69	78.11	19.87		80.0	
10483-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	9.36	82.60	22.04	2.23	80.0	± 9.6 %
		Y	12.27	87.09	23.42		80.0	
		Z	9.01	81.93	21.17		80.0	
10484-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	8.93	81.63	21.71	2.23	80.0	± 9.6 %
		Y	11.36	85.67	22.96		80.0	
		Z	8.47	80.80	20.78		80.0	
10485-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.52	79.79	21.32	2.23	80.0	± 9.6 %
		Y	7.69	82.88	22.38		80.0	
		Z	5.80	78.37	20.50		80.0	
10486-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.32	73.89	18.96	2.23	80.0	± 9.6 %
		Y	5.67	75.29	19.43		80.0	
		Z	4.92	73.10	18.28		80.0	
10487-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.30	73.49	18.80	2.23	80.0	± 9.6 %
		Y	5.61	74.76	19.23		80.0	
		Z	4.90	72.70	18.12		80.0	
10488-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.37	77.90	20.86	2.23	80.0	± 9.6 %
		Y	7.11	80.15	21.69		80.0	
		Z	5.77	76.78	20.26		80.0	
10489-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.27	72.60	19.05	2.23	80.0	± 9.6 %
		Y	5.48	73.66	19.46		80.0	
		Z	4.94	72.01	18.60		80.0	
10490-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.31	72.18	18.91	2.23	80.0	± 9.6 %
		Y	5.50	73.16	19.29		80.0	
		Z	5.00	71.68	18.49		80.0	
10491-AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.06	75.28	19.92	2.23	80.0	± 9.6 %
		Y	6.48	76.79	20.50		80.0	
		Z	5.61	74.48	19.45		80.0	
10492-AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.45	71.39	18.71	2.23	80.0	± 9.6 %
		Y	5.58	72.20	19.04		80.0	
		Z	5.17	70.94	18.36		80.0	

10493-AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.50	71.14	18.64	2.23	80.0	± 9.6 %
		Y	5.62	71.91	18.94		80.0	
		Z	5.22	70.73	18.29		80.0	
10494-AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.84	77.38	20.52	2.23	80.0	± 9.6 %
		Y	7.47	79.20	21.20		80.0	
		Z	6.25	76.34	19.98		80.0	
10495-AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.58	72.07	18.96	2.23	80.0	± 9.6 %
		Y	5.74	72.93	19.30		80.0	
		Z	5.27	71.52	18.58		80.0	
10496-AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.60	71.58	18.80	2.23	80.0	± 9.6 %
		Y	5.73	72.36	19.11		80.0	
		Z	5.30	71.10	18.45		80.0	
10497-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.79	78.36	19.96	2.23	80.0	± 9.6 %
		Y	6.92	81.32	20.89		80.0	
		Z	4.84	75.88	18.49		80.0	
10498-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.76	72.74	17.13	2.23	80.0	± 9.6 %
		Y	5.12	74.06	17.47		80.0	
		Z	3.93	70.29	15.50		80.0	
10499-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.74	72.34	16.86	2.23	80.0	± 9.6 %
		Y	5.06	73.53	17.15		80.0	
		Z	3.87	69.80	15.19		80.0	
10500-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.19	78.28	20.89	2.23	80.0	± 9.6 %
		Y	7.07	80.86	21.82		80.0	
		Z	5.59	77.12	20.20		80.0	
10501-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.26	73.16	18.90	2.23	80.0	± 9.6 %
		Y	5.54	74.39	19.34		80.0	
		Z	4.91	72.51	18.34		80.0	
10502-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.28	72.85	18.76	2.23	80.0	± 9.6 %
		Y	5.54	74.02	19.17		80.0	
		Z	4.95	72.27	18.21		80.0	
10503-AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.29	77.70	20.77	2.23	80.0	± 9.6 %
		Y	7.02	79.94	21.60		80.0	
		Z	5.70	76.58	20.17		80.0	
10504-AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.25	72.52	19.01	2.23	80.0	± 9.6 %
		Y	5.46	73.59	19.42		80.0	
		Z	4.92	71.93	18.55		80.0	
10505-AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.29	72.09	18.86	2.23	80.0	± 9.6 %
		Y	5.47	73.08	19.24		80.0	
		Z	4.98	71.59	18.44		80.0	
10506-AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.79	77.23	20.45	2.23	80.0	± 9.6 %
		Y	7.41	79.05	21.13		80.0	
		Z	6.20	76.19	19.92		80.0	
10507-AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.56	72.01	18.92	2.23	80.0	± 9.6 %
		Y	5.72	72.87	19.27		80.0	
		Z	5.25	71.46	18.54		80.0	

10508-AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.58	71.51	18.76	2.23	80.0	± 9.6 %
		Y	5.71	72.30	19.08		80.0	
		Z	5.29	71.04	18.41		80.0	
10509-AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.60	74.91	19.57	2.23	80.0	± 9.6 %
		Y	6.97	76.14	20.04		80.0	
		Z	6.17	74.18	19.16		80.0	
10510-AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.96	71.39	18.70	2.23	80.0	± 9.6 %
		Y	6.08	72.08	18.97		80.0	
		Z	5.68	70.94	18.38		80.0	
10511-AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.95	70.99	18.59	2.23	80.0	± 9.6 %
		Y	6.05	71.63	18.84		80.0	
		Z	5.68	70.58	18.29		80.0	
10512-AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.28	77.18	20.28	2.23	80.0	± 9.6 %
		Y	7.89	78.82	20.89		80.0	
		Z	6.71	76.19	19.78		80.0	
10513-AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.94	72.01	18.92	2.23	80.0	± 9.6 %
		Y	6.08	72.77	19.23		80.0	
		Z	5.62	71.45	18.56		80.0	
10514-AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.85	71.37	18.73	2.23	80.0	± 9.6 %
		Y	5.97	72.05	19.01		80.0	
		Z	5.57	70.88	18.40		80.0	
10515-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.02	63.86	15.44	0.00	150.0	± 9.6 %
		Y	1.03	64.74	16.13		150.0	
		Z	0.99	63.13	14.64		150.0	
10516-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.83	75.93	20.38	0.00	150.0	± 9.6 %
		Y	1.71	91.40	26.95		150.0	
		Z	0.59	69.26	16.67		150.0	
10517-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.91	66.58	16.51	0.00	150.0	± 9.6 %
		Y	0.96	68.53	17.81		150.0	
		Z	0.85	64.97	15.20		150.0	
10518-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.81	66.94	16.45	0.00	150.0	± 9.6 %
		Y	4.78	67.16	16.54		150.0	
		Z	4.72	66.82	16.24		150.0	
10519-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	5.07	67.28	16.60	0.00	150.0	± 9.6 %
		Y	5.02	67.48	16.68		150.0	
		Z	4.95	67.13	16.39		150.0	
10520-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.91	67.27	16.53	0.00	150.0	± 9.6 %
		Y	4.87	67.49	16.62		150.0	
		Z	4.79	67.11	16.31		150.0	
10521-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.84	67.28	16.52	0.00	150.0	± 9.6 %
		Y	4.80	67.51	16.62		150.0	
		Z	4.72	67.11	16.30		150.0	
10522-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.87	67.15	16.50	0.00	150.0	± 9.6 %
		Y	4.83	67.39	16.60		150.0	
		Z	4.76	67.05	16.31		150.0	

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.74	67.12	16.40	0.00	150.0	± 9.6 %
		Y	4.71	67.35	16.49		150.0	
		Z	4.63	66.97	16.18		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.83	67.14	16.51	0.00	150.0	± 9.6 %
		Y	4.79	67.38	16.61		150.0	
		Z	4.72	67.03	16.31		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.76	66.18	16.10	0.00	150.0	± 9.6 %
		Y	4.73	66.41	16.19		150.0	
		Z	4.67	66.05	15.89		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.99	66.61	16.24	0.00	150.0	± 9.6 %
		Y	4.96	66.84	16.34		150.0	
		Z	4.87	66.46	16.04		150.0	
10527- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.91	66.61	16.22	0.00	150.0	± 9.6 %
		Y	4.87	66.84	16.31		150.0	
		Z	4.79	66.44	16.00		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.93	66.63	16.25	0.00	150.0	± 9.6 %
		Y	4.89	66.86	16.35		150.0	
		Z	4.81	66.46	16.03		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.93	66.63	16.25	0.00	150.0	± 9.6 %
		Y	4.89	66.86	16.35		150.0	
		Z	4.81	66.46	16.03		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.95	66.80	16.28	0.00	150.0	± 9.6 %
		Y	4.92	67.04	16.38		150.0	
		Z	4.82	66.61	16.06		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.80	66.71	16.25	0.00	150.0	± 9.6 %
		Y	4.77	66.94	16.35		150.0	
		Z	4.67	66.48	16.01		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.94	66.63	16.22	0.00	150.0	± 9.6 %
		Y	4.91	66.87	16.32		150.0	
		Z	4.82	66.48	16.01		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.43	66.84	16.31	0.00	150.0	± 9.6 %
		Y	5.39	67.01	16.37		150.0	
		Z	5.32	66.66	16.10		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.51	66.98	16.35	0.00	150.0	± 9.6 %
		Y	5.47	67.15	16.42		150.0	
		Z	5.40	66.80	16.15		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.37	66.96	16.34	0.00	150.0	± 9.6 %
		Y	5.33	67.15	16.41		150.0	
		Z	5.26	66.78	16.13		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.43	66.92	16.31	0.00	150.0	± 9.6 %
		Y	5.40	67.11	16.39		150.0	
		Z	5.33	66.76	16.12		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.57	67.04	16.41	0.00	150.0	± 9.6 %
		Y	5.52	67.20	16.47		150.0	
		Z	5.45	66.84	16.20		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.45	66.95	16.38	0.00	150.0	± 9.6 %
		Y	5.41	67.13	16.45		150.0	
		Z	5.34	66.77	16.18		150.0	

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.46	66.94	16.38	0.00	150.0	$\pm 9.6\%$
		Y	5.41	67.11	16.44		150.0	
		Z	5.33	66.71	16.15		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.58	66.89	16.37	0.00	150.0	$\pm 9.6\%$
		Y	5.54	67.06	16.43		150.0	
		Z	5.47	66.73	16.18		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.70	66.95	16.41	0.00	150.0	$\pm 9.6\%$
		Y	5.65	67.10	16.46		150.0	
		Z	5.57	66.75	16.20		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.68	66.93	16.28	0.00	150.0	$\pm 9.6\%$
		Y	5.65	67.10	16.34		150.0	
		Z	5.59	66.77	16.09		150.0	
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.91	67.31	16.40	0.00	150.0	$\pm 9.6\%$
		Y	5.86	67.47	16.45		150.0	
		Z	5.81	67.17	16.23		150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.81	67.26	16.39	0.00	150.0	$\pm 9.6\%$
		Y	5.76	67.42	16.45		150.0	
		Z	5.70	67.07	16.20		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.92	67.37	16.44	0.00	150.0	$\pm 9.6\%$
		Y	5.86	67.51	16.48		150.0	
		Z	5.79	67.13	16.22		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.26	68.53	16.98	0.00	150.0	$\pm 9.6\%$
		Y	6.15	68.51	16.95		150.0	
		Z	6.11	68.24	16.74		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.82	67.18	16.36	0.00	150.0	$\pm 9.6\%$
		Y	5.78	67.35	16.42		150.0	
		Z	5.72	67.01	16.17		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.85	67.32	16.39	0.00	150.0	$\pm 9.6\%$
		Y	5.80	67.47	16.44		150.0	
		Z	5.74	67.13	16.19		150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.74	67.06	16.29	0.00	150.0	$\pm 9.6\%$
		Y	5.70	67.23	16.34		150.0	
		Z	5.64	66.88	16.09		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.83	67.08	16.32	0.00	150.0	$\pm 9.6\%$
		Y	5.79	67.26	16.38		150.0	
		Z	5.73	66.92	16.13		150.0	
10554- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	6.08	67.32	16.38	0.00	150.0	$\pm 9.6\%$
		Y	6.04	67.48	16.42		150.0	
		Z	5.99	67.16	16.19		150.0	
10555- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.28	67.76	16.56	0.00	150.0	$\pm 9.6\%$
		Y	6.22	67.88	16.59		150.0	
		Z	6.16	67.52	16.34		150.0	
10556- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.26	67.67	16.51	0.00	150.0	$\pm 9.6\%$
		Y	6.21	67.83	16.56		150.0	
		Z	6.16	67.51	16.33		150.0	
10557- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.26	67.69	16.54	0.00	150.0	$\pm 9.6\%$
		Y	6.21	67.83	16.59		150.0	
		Z	6.15	67.50	16.35		150.0	

10558-AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.33	67.90	16.66	0.00	150.0	± 9.6 %
		Y	6.28	68.03	16.70		150.0	
		Z	6.22	67.69	16.46		150.0	
10560-AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.33	67.74	16.62	0.00	150.0	± 9.6 %
		Y	6.28	67.88	16.66		150.0	
		Z	6.21	67.52	16.41		150.0	
10561-AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.23	67.66	16.62	0.00	150.0	± 9.6 %
		Y	6.18	67.81	16.67		150.0	
		Z	6.12	67.46	16.42		150.0	
10562-AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.42	68.23	16.91	0.00	150.0	± 9.6 %
		Y	6.35	68.32	16.93		150.0	
		Z	6.29	67.98	16.68		150.0	
10563-AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.64	68.42	16.95	0.00	150.0	± 9.6 %
		Y	6.59	68.55	16.98		150.0	
		Z	6.57	68.34	16.81		150.0	
10564-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	X	5.16	67.09	16.64	0.46	150.0	± 9.6 %
		Y	5.12	67.30	16.72		150.0	
		Z	5.06	66.97	16.44		150.0	
10565-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	X	5.45	67.61	16.97	0.46	150.0	± 9.6 %
		Y	5.41	67.79	17.03		150.0	
		Z	5.33	67.47	16.77		150.0	
10566-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	X	5.28	67.49	16.80	0.46	150.0	± 9.6 %
		Y	5.24	67.69	16.88		150.0	
		Z	5.16	67.34	16.60		150.0	
10567-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	X	5.30	67.87	17.13	0.46	150.0	± 9.6 %
		Y	5.26	68.05	17.20		150.0	
		Z	5.19	67.71	16.93		150.0	
10568-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	X	5.18	67.15	16.53	0.46	150.0	± 9.6 %
		Y	5.14	67.39	16.63		150.0	
		Z	5.07	67.04	16.34		150.0	
10569-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	X	5.23	67.86	17.14	0.46	150.0	± 9.6 %
		Y	5.19	68.04	17.20		150.0	
		Z	5.12	67.72	16.95		150.0	
10570-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	X	5.28	67.66	17.06	0.46	150.0	± 9.6 %
		Y	5.24	67.86	17.13		150.0	
		Z	5.17	67.56	16.88		150.0	
10571-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.44	66.82	16.99	0.46	130.0	± 9.6 %
		Y	1.49	68.03	17.75		130.0	
		Z	1.37	65.86	16.16		130.0	
10572-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.48	67.56	17.39	0.46	130.0	± 9.6 %
		Y	1.53	68.87	18.20		130.0	
		Z	1.40	66.48	16.52		130.0	
10573-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	9.99	108.30	30.21	0.46	130.0	± 9.6 %
		Y	100.00	148.95	40.25		130.0	
		Z	3.19	88.67	23.80		130.0	
10574-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.89	75.61	21.09	0.46	130.0	± 9.6 %
		Y	2.18	79.09	22.75		130.0	
		Z	1.63	72.74	19.45		130.0	

10575-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	X	4.98	66.96	16.74	0.46	130.0	$\pm 9.6\%$
		Y	4.95	67.17	16.82		130.0	
		Z	4.88	66.84	16.54		130.0	
10576-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	X	5.01	67.12	16.81	0.46	130.0	$\pm 9.6\%$
		Y	4.97	67.32	16.88		130.0	
		Z	4.91	67.00	16.60		130.0	
10577-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	X	5.27	67.49	16.99	0.46	130.0	$\pm 9.6\%$
		Y	5.23	67.67	17.06		130.0	
		Z	5.15	67.34	16.79		130.0	
10578-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	X	5.17	67.67	17.09	0.46	130.0	$\pm 9.6\%$
		Y	5.12	67.85	17.16		130.0	
		Z	5.05	67.51	16.88		130.0	
10579-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	X	4.95	67.09	16.49	0.46	130.0	$\pm 9.6\%$
		Y	4.91	67.32	16.60		130.0	
		Z	4.82	66.90	16.26		130.0	
10580-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	X	4.99	67.00	16.46	0.46	130.0	$\pm 9.6\%$
		Y	4.95	67.24	16.57		130.0	
		Z	4.86	66.84	16.24		130.0	
10581-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	X	5.09	67.81	17.08	0.46	130.0	$\pm 9.6\%$
		Y	5.04	67.99	17.14		130.0	
		Z	4.95	67.60	16.84		130.0	
10582-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	X	4.91	66.82	16.28	0.46	130.0	$\pm 9.6\%$
		Y	4.87	67.07	16.40		130.0	
		Z	4.78	66.64	16.05		130.0	
10583-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.98	66.96	16.74	0.46	130.0	$\pm 9.6\%$
		Y	4.95	67.17	16.82		130.0	
		Z	4.88	66.84	16.54		130.0	
10584-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	5.01	67.12	16.81	0.46	130.0	$\pm 9.6\%$
		Y	4.97	67.32	16.88		130.0	
		Z	4.91	67.00	16.60		130.0	
10585-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.27	67.49	16.99	0.46	130.0	$\pm 9.6\%$
		Y	5.23	67.67	17.06		130.0	
		Z	5.15	67.34	16.79		130.0	
10586-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	5.17	67.67	17.09	0.46	130.0	$\pm 9.6\%$
		Y	5.12	67.85	17.16		130.0	
		Z	5.05	67.51	16.88		130.0	
10587-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.95	67.09	16.49	0.46	130.0	$\pm 9.6\%$
		Y	4.91	67.32	16.60		130.0	
		Z	4.82	66.90	16.26		130.0	
10588-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.99	67.00	16.46	0.46	130.0	$\pm 9.6\%$
		Y	4.95	67.24	16.57		130.0	
		Z	4.86	66.84	16.24		130.0	
10589-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	5.09	67.81	17.08	0.46	130.0	$\pm 9.6\%$
		Y	5.04	67.99	17.14		130.0	
		Z	4.95	67.60	16.84		130.0	
10590-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.91	66.82	16.28	0.46	130.0	$\pm 9.6\%$
		Y	4.87	67.07	16.40		130.0	
		Z	4.78	66.64	16.05		130.0	

10591-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	5.13	67.02	16.83	0.46	130.0	± 9.6 %
		Y	5.09	67.20	16.90		130.0	
		Z	5.03	66.90	16.64		130.0	
10592-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.33	67.37	16.94	0.46	130.0	± 9.6 %
		Y	5.28	67.55	17.01		130.0	
		Z	5.21	67.25	16.76		130.0	
10593-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.27	67.36	16.87	0.46	130.0	± 9.6 %
		Y	5.22	67.55	16.95		130.0	
		Z	5.15	67.21	16.67		130.0	
10594-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.31	67.48	17.00	0.46	130.0	± 9.6 %
		Y	5.27	67.67	17.07		130.0	
		Z	5.19	67.35	16.81		130.0	
10595-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.30	67.49	16.93	0.46	130.0	± 9.6 %
		Y	5.26	67.68	16.99		130.0	
		Z	5.18	67.33	16.72		130.0	
10596-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.23	67.46	16.91	0.46	130.0	± 9.6 %
		Y	5.19	67.67	16.99		130.0	
		Z	5.11	67.32	16.71		130.0	
10597-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	5.19	67.44	16.84	0.46	130.0	± 9.6 %
		Y	5.14	67.64	16.92		130.0	
		Z	5.06	67.27	16.63		130.0	
10598-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	5.17	67.72	17.12	0.46	130.0	± 9.6 %
		Y	5.12	67.90	17.18		130.0	
		Z	5.04	67.52	16.89		130.0	
10599-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.81	67.70	17.03	0.46	130.0	± 9.6 %
		Y	5.75	67.82	17.06		130.0	
		Z	5.70	67.52	16.83		130.0	
10600-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	6.10	68.52	17.41	0.46	130.0	± 9.6 %
		Y	6.00	68.53	17.40		130.0	
		Z	5.94	68.23	17.16		130.0	
10601-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.90	68.00	17.17	0.46	130.0	± 9.6 %
		Y	5.83	68.09	17.19		130.0	
		Z	5.77	67.80	16.96		130.0	
10602-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	6.03	68.14	17.15	0.46	130.0	± 9.6 %
		Y	5.94	68.18	17.16		130.0	
		Z	5.87	67.83	16.90		130.0	
10603-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	6.14	68.48	17.45	0.46	130.0	± 9.6 %
		Y	6.07	68.57	17.47		130.0	
		Z	5.98	68.22	17.21		130.0	
10604-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.83	67.70	17.05	0.46	130.0	± 9.6 %
		Y	5.77	67.82	17.08		130.0	
		Z	5.71	67.52	16.85		130.0	
10605-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.94	67.99	17.20	0.46	130.0	± 9.6 %
		Y	5.88	68.10	17.23		130.0	
		Z	5.82	67.80	16.99		130.0	
10606-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.69	67.41	16.78	0.46	130.0	± 9.6 %
		Y	5.64	67.57	16.85		130.0	
		Z	5.59	67.29	16.61		130.0	

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.96	66.30	16.43	0.46	130.0	$\pm 9.6\%$
		Y	4.92	66.50	16.51		130.0	
		Z	4.85	66.17	16.23		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.19	66.73	16.59	0.46	130.0	$\pm 9.6\%$
		Y	5.15	66.94	16.67		130.0	
		Z	5.08	66.60	16.39		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	5.08	66.65	16.47	0.46	130.0	$\pm 9.6\%$
		Y	5.05	66.87	16.56		130.0	
		Z	4.96	66.49	16.26		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	5.14	66.80	16.62	0.46	130.0	$\pm 9.6\%$
		Y	5.10	67.01	16.70		130.0	
		Z	5.02	66.65	16.42		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	5.08	66.68	16.51	0.46	130.0	$\pm 9.6\%$
		Y	5.03	66.88	16.59		130.0	
		Z	4.95	66.50	16.29		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	5.09	66.79	16.52	0.46	130.0	$\pm 9.6\%$
		Y	5.05	67.02	16.62		130.0	
		Z	4.96	66.63	16.31		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	5.11	66.74	16.44	0.46	130.0	$\pm 9.6\%$
		Y	5.07	66.97	16.54		130.0	
		Z	4.98	66.56	16.23		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	5.04	66.97	16.69	0.46	130.0	$\pm 9.6\%$
		Y	5.00	67.16	16.77		130.0	
		Z	4.90	66.75	16.46		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	5.07	66.45	16.27	0.46	130.0	$\pm 9.6\%$
		Y	5.03	66.69	16.37		130.0	
		Z	4.95	66.30	16.06		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.62	66.95	16.64	0.46	130.0	$\pm 9.6\%$
		Y	5.57	67.10	16.68		130.0	
		Z	5.51	66.78	16.44		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.70	67.08	16.67	0.46	130.0	$\pm 9.6\%$
		Y	5.64	67.21	16.70		130.0	
		Z	5.58	66.89	16.46		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.58	67.13	16.71	0.46	130.0	$\pm 9.6\%$
		Y	5.53	67.29	16.76		130.0	
		Z	5.47	66.95	16.51		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.60	66.93	16.55	0.46	130.0	$\pm 9.6\%$
		Y	5.55	67.09	16.61		130.0	
		Z	5.49	66.76	16.36		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.76	67.14	16.70	0.46	130.0	$\pm 9.6\%$
		Y	5.69	67.25	16.73		130.0	
		Z	5.62	66.90	16.48		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.71	67.15	16.81	0.46	130.0	$\pm 9.6\%$
		Y	5.65	67.28	16.85		130.0	
		Z	5.58	66.96	16.61		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.70	67.23	16.85	0.46	130.0	$\pm 9.6\%$
		Y	5.64	67.36	16.89		130.0	
		Z	5.58	67.05	16.65		130.0	

10623-AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.62	66.96	16.61	0.46	130.0	± 9.6 %
		Y	5.57	67.09	16.65		130.0	
		Z	5.48	66.69	16.36		130.0	
10624-AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.77	66.96	16.67	0.46	130.0	± 9.6 %
		Y	5.72	67.11	16.71		130.0	
		Z	5.66	66.81	16.48		130.0	
10625-AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.11	67.75	17.10	0.46	130.0	± 9.6 %
		Y	6.05	67.90	17.15		130.0	
		Z	6.05	67.79	17.02		130.0	
10626-AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.85	66.96	16.56	0.46	130.0	± 9.6 %
		Y	5.81	67.11	16.60		130.0	
		Z	5.76	66.81	16.38		130.0	
10627-AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	6.11	67.46	16.74	0.46	130.0	± 9.6 %
		Y	6.06	67.59	16.78		130.0	
		Z	6.02	67.35	16.59		130.0	
10628-AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.94	67.18	16.56	0.46	130.0	± 9.6 %
		Y	5.89	67.33	16.61		130.0	
		Z	5.84	67.01	16.37		130.0	
10629-AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	6.06	67.32	16.61	0.46	130.0	± 9.6 %
		Y	6.01	67.47	16.66		130.0	
		Z	5.93	67.10	16.40		130.0	
10630-AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.71	69.35	17.62	0.46	130.0	± 9.6 %
		Y	6.55	69.21	17.53		130.0	
		Z	6.51	68.96	17.33		130.0	
10631-AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.56	69.02	17.64	0.46	130.0	± 9.6 %
		Y	6.44	68.96	17.58		130.0	
		Z	6.37	68.63	17.35		130.0	
10632-AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	6.13	67.65	16.98	0.46	130.0	± 9.6 %
		Y	6.07	67.75	16.99		130.0	
		Z	6.00	67.45	16.78		130.0	
10633-AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	6.09	67.58	16.78	0.46	130.0	± 9.6 %
		Y	6.03	67.67	16.80		130.0	
		Z	5.96	67.32	16.55		130.0	
10634-AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	6.06	67.52	16.81	0.46	130.0	± 9.6 %
		Y	6.00	67.63	16.84		130.0	
		Z	5.92	67.28	16.59		130.0	
10635-AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.93	66.81	16.20	0.46	130.0	± 9.6 %
		Y	5.88	66.99	16.28		130.0	
		Z	5.80	66.61	16.00		130.0	
10636-AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.26	67.36	16.66	0.46	130.0	± 9.6 %
		Y	6.21	67.50	16.69		130.0	
		Z	6.17	67.21	16.48		130.0	
10637-AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.48	67.88	16.89	0.46	130.0	± 9.6 %
		Y	6.41	67.97	16.90		130.0	
		Z	6.35	67.64	16.67		130.0	
10638-AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.43	67.72	16.78	0.46	130.0	± 9.6 %
		Y	6.38	67.85	16.82		130.0	
		Z	6.34	67.57	16.61		130.0	

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.46	67.80	16.87	0.46	130.0	$\pm 9.6\%$
		Y	6.40	67.92	16.90		130.0	
		Z	6.35	67.62	16.69		130.0	
10640- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.50	67.93	16.88	0.46	130.0	$\pm 9.6\%$
		Y	6.44	68.04	16.91		130.0	
		Z	6.39	67.72	16.68		130.0	
10641- AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.48	67.60	16.73	0.46	130.0	$\pm 9.6\%$
		Y	6.42	67.73	16.77		130.0	
		Z	6.37	67.42	16.54		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.57	67.99	17.09	0.46	130.0	$\pm 9.6\%$
		Y	6.51	68.09	17.10		130.0	
		Z	6.44	67.76	16.88		130.0	
10643- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.38	67.65	16.83	0.46	130.0	$\pm 9.6\%$
		Y	6.33	67.77	16.86		130.0	
		Z	6.27	67.44	16.63		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.67	68.50	17.28	0.46	130.0	$\pm 9.6\%$
		Y	6.58	68.53	17.27		130.0	
		Z	6.52	68.19	17.02		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.88	68.64	17.29	0.46	130.0	$\pm 9.6\%$
		Y	6.82	68.74	17.31		130.0	
		Z	6.80	68.55	17.14		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	18.37	97.85	32.40	9.30	60.0	$\pm 9.6\%$
		Y	26.30	107.09	35.55		60.0	
		Z	24.51	106.17	35.12		60.0	
10647- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	18.73	98.97	32.87	9.30	60.0	$\pm 9.6\%$
		Y	27.64	108.99	36.26		60.0	
		Z	24.97	107.34	35.60		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.96	66.35	13.68	0.00	150.0	$\pm 9.6\%$
		Y	1.08	68.94	15.04		150.0	
		Z	0.83	64.46	12.13		150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **ES3-3347_Nov16**

CALIBRATION CERTIFICATE

Object **ES3DV3 - SN:3347**

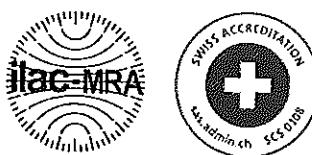
Calibration procedure(s) **QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6**
Calibration procedure for dosimetric E-field probes

*BNW
11/11/2016*

Calibration date: **November 11, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.


Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:	Name	Function	Signature
	Leif Klynsner	Laboratory Technician	<i>Leif Klynsner</i>
Approved by:	Katja Pokovic	Technical Manager	<i>Katja Pokovic</i>

Issued: November 12, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORMx$ (no uncertainty required).

Probe ES3DV3

SN:3347

Manufactured: March 15, 2012
Calibrated: November 11, 2016

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.16	1.35	1.20	$\pm 10.1\%$
DCP (mV) ^B	103.7	103.6	104.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	205.0	$\pm 3.3\%$
		Y	0.0	0.0	1.0		197.7	
		Z	0.0	0.0	1.0		210.6	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V^{-1}	T1 ms. V^{-2}	T2 ms. V^{-1}	T3 ms	T4 V^{-2}	T5 V^{-1}	T6
X	59.07	421.8	35.19	29.05	2.361	5.1	0.759	0.431	1.01
Y	48.27	346.3	35.34	28.8	2.375	5.1	1.148	0.374	1.011
Z	53.68	381.8	34.93	27.97	1.998	5.1	1.125	0.339	1.009

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.75	6.75	6.75	0.61	1.37	± 12.0 %
835	41.5	0.90	6.47	6.47	6.47	0.45	1.53	± 12.0 %
1750	40.1	1.37	5.43	5.43	5.43	0.80	1.18	± 12.0 %
1900	40.0	1.40	5.31	5.31	5.31	0.56	1.42	± 12.0 %
2300	39.5	1.67	4.89	4.89	4.89	0.64	1.39	± 12.0 %
2450	39.2	1.80	4.67	4.67	4.67	0.80	1.25	± 12.0 %
2600	39.0	1.96	4.52	4.52	4.52	0.79	1.30	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

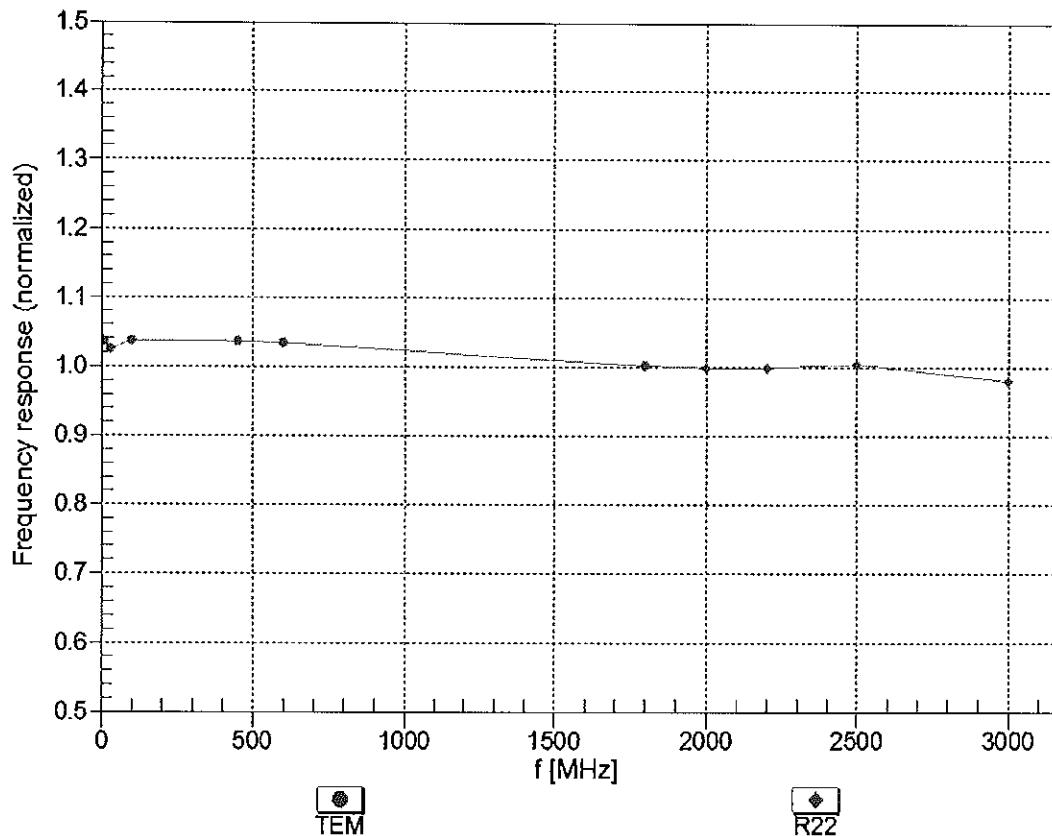
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Calibration Parameter Determined in Body Tissue Simulating Media

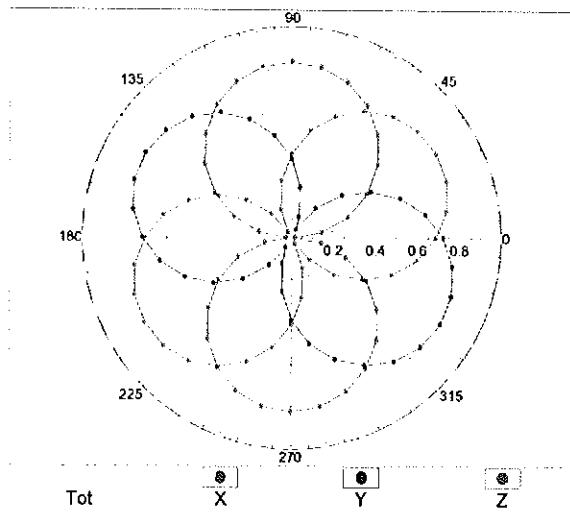
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.47	6.47	6.47	0.42	1.62	± 12.0 %
835	55.2	0.97	6.32	6.32	6.32	0.80	1.14	± 12.0 %
1750	53.4	1.49	5.12	5.12	5.12	0.49	1.55	± 12.0 %
1900	53.3	1.52	4.91	4.91	4.91	0.46	1.67	± 12.0 %
2300	52.9	1.81	4.69	4.69	4.69	0.80	1.18	± 12.0 %
2450	52.7	1.95	4.53	4.53	4.53	0.80	1.11	± 12.0 %
2600	52.5	2.16	4.32	4.32	4.32	0.80	1.20	± 12.0 %

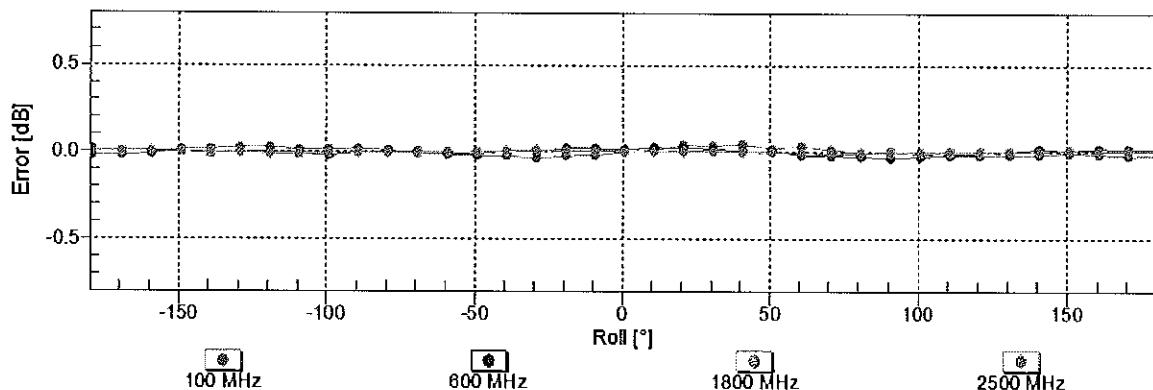
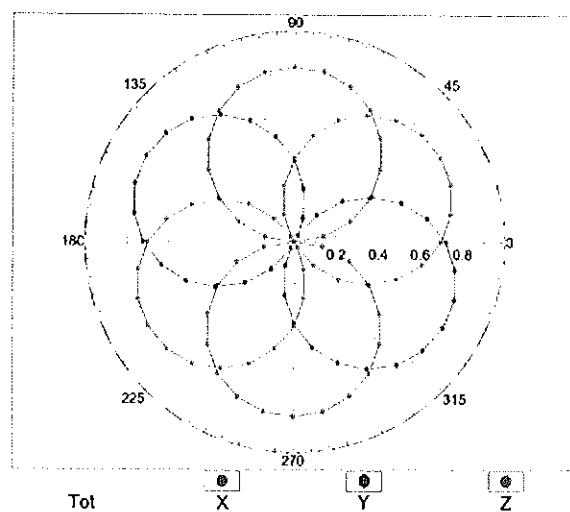

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

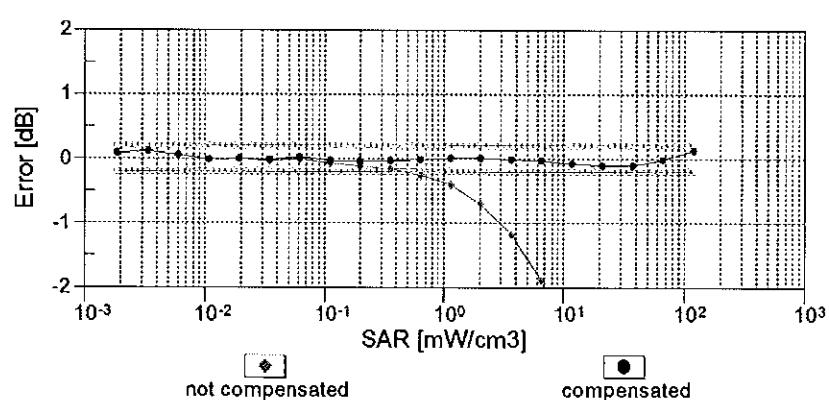
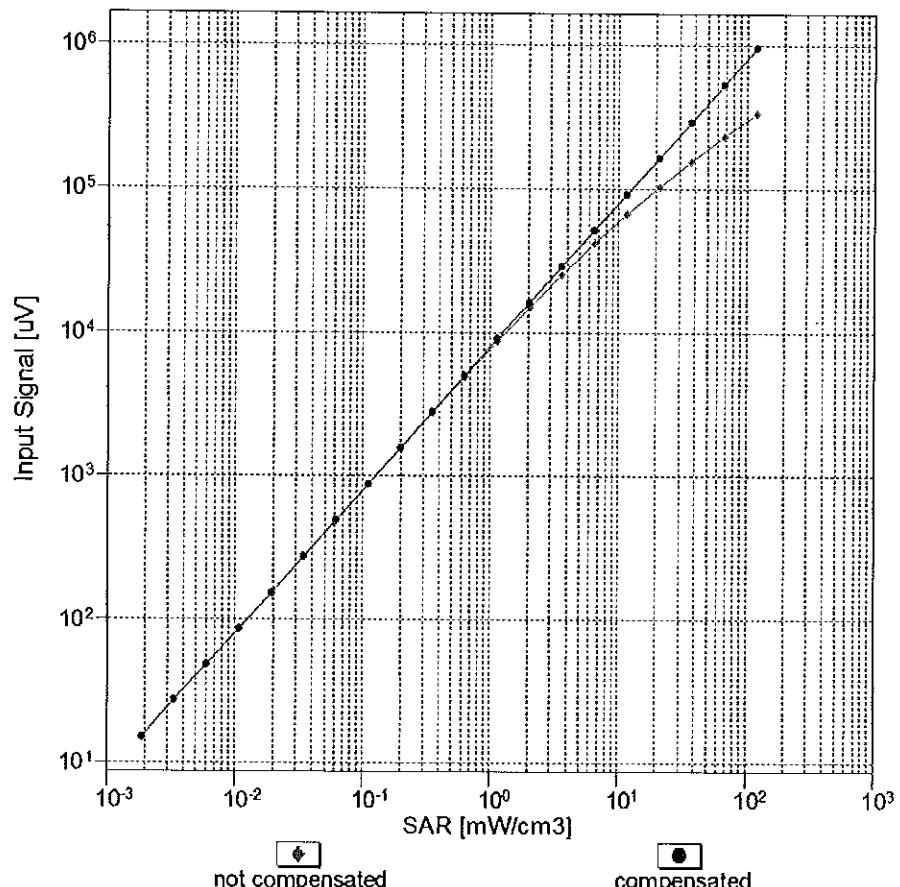
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

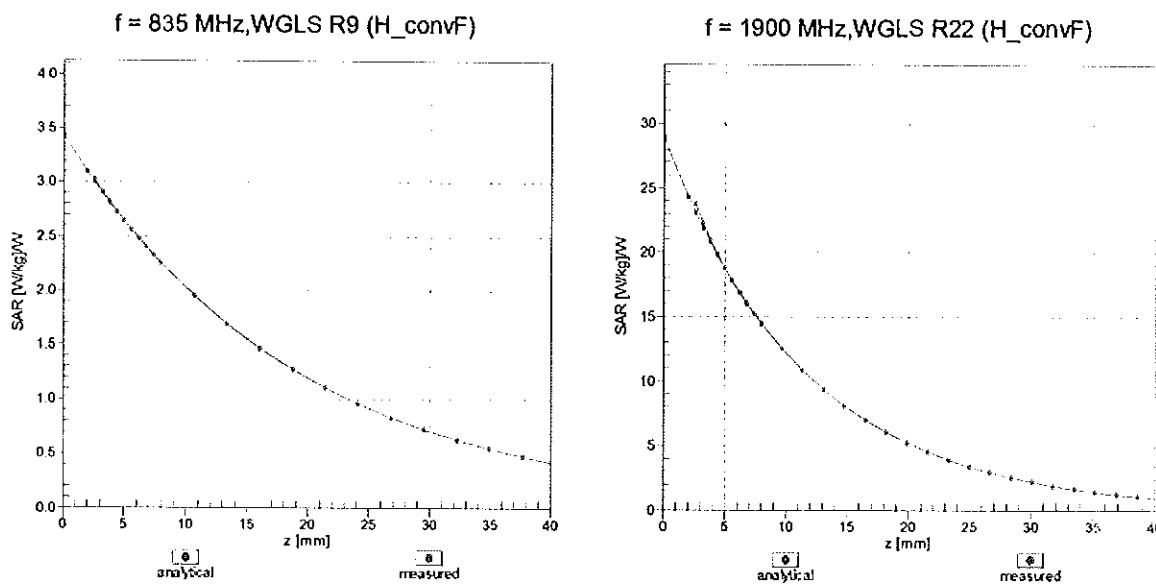


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ), $\theta = 0^\circ$

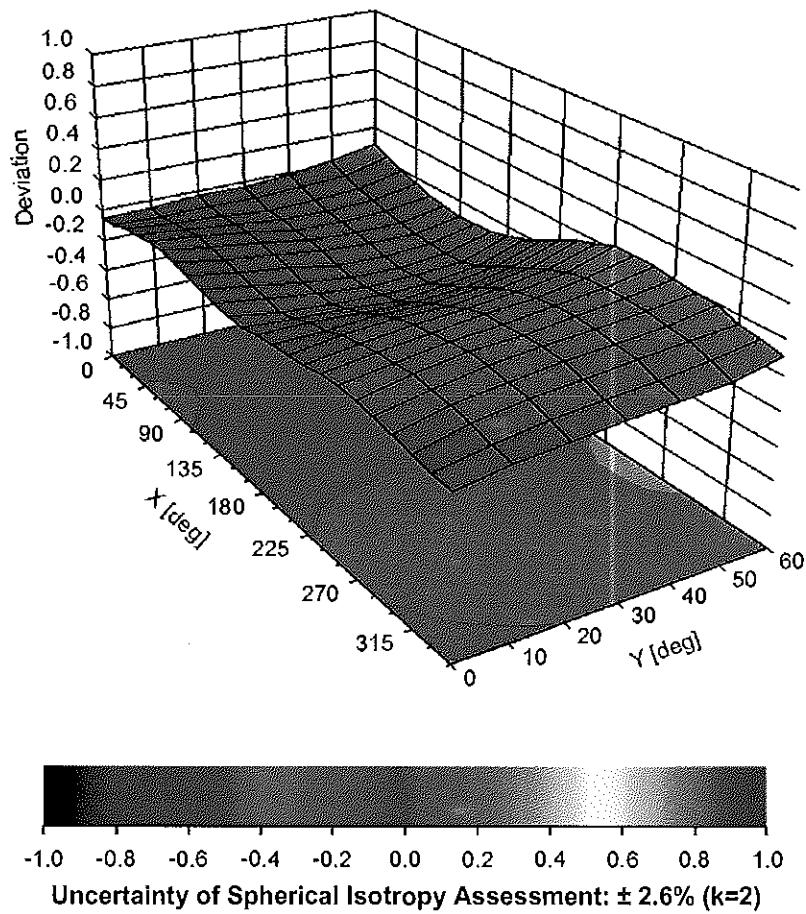
f=600 MHz, TEM

f=1800 MHz, R22


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range $f(\text{SAR}_{\text{head}})$ (TEM cell , $f_{\text{eval}} = 1900 \text{ MHz}$)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900$ MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-29.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	205.0	$\pm 3.3\%$
		Y	0.00	0.00	1.00		197.7	
		Z	0.00	0.00	1.00		210.6	
10010-CAA	SAR Validation (Square, 100ms, 10ms)	X	10.78	83.58	20.41	10.00	25.0	$\pm 9.6\%$
		Y	11.50	84.88	21.01		25.0	
		Z	11.64	84.82	20.49		25.0	
10011-CAB	UMTS-FDD (WCDMA)	X	1.19	69.66	16.66	0.00	150.0	$\pm 9.6\%$
		Y	1.01	66.47	14.65		150.0	
		Z	1.16	69.30	16.42		150.0	
10012-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.34	65.72	16.38	0.41	150.0	$\pm 9.6\%$
		Y	1.30	64.66	15.44		150.0	
		Z	1.33	65.60	16.26		150.0	
10013-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	X	5.16	67.34	17.54	1.46	150.0	$\pm 9.6\%$
		Y	5.08	67.30	17.40		150.0	
		Z	5.11	67.36	17.52		150.0	
10021-DAB	GSM-FDD (TDMA, GMSK)	X	40.64	107.23	29.59	9.39	50.0	$\pm 9.6\%$
		Y	49.99	111.34	30.91		50.0	
		Z	99.80	121.49	32.89		50.0	
10023-DAB	GPRS-FDD (TDMA, GMSK, TN 0)	X	32.99	103.71	28.65	9.57	50.0	$\pm 9.6\%$
		Y	37.82	106.57	29.65		50.0	
		Z	66.99	115.04	31.33		50.0	
10024-DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	118.99	30.73	6.56	60.0	$\pm 9.6\%$
		Y	100.00	119.63	31.05		60.0	
		Z	100.00	118.49	30.27		60.0	
10025-DAB	EDGE-FDD (TDMA, 8PSK, TN 0)	X	27.80	119.47	45.52	12.57	50.0	$\pm 9.6\%$
		Y	16.74	103.54	39.74		50.0	
		Z	28.90	122.26	46.70		50.0	
10026-DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	25.67	110.96	38.47	9.56	60.0	$\pm 9.6\%$
		Y	19.10	103.65	36.03		60.0	
		Z	28.23	114.46	39.73		60.0	
10027-DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.14	29.42	4.80	80.0	$\pm 9.6\%$
		Y	100.00	118.62	29.66		80.0	
		Z	100.00	117.81	29.08		80.0	
10028-DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.64	28.85	3.55	100.0	$\pm 9.6\%$
		Y	100.00	118.90	28.98		100.0	
		Z	100.00	118.47	28.59		100.0	
10029-DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	15.65	99.19	33.43	7.80	80.0	$\pm 9.6\%$
		Y	12.21	93.35	31.30		80.0	
		Z	15.62	100.02	33.84		80.0	
10030-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	117.58	29.50	5.30	70.0	$\pm 9.6\%$
		Y	100.00	117.96	29.68		70.0	
		Z	100.00	117.08	29.07		70.0	
10031-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	120.70	28.19	1.88	100.0	$\pm 9.6\%$
		Y	100.00	119.60	27.74		100.0	
		Z	100.00	120.44	27.93		100.0	

10032-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	126.74	29.61	1.17	100.0	± 9.6 %
		Y	100.00	123.75	28.43		100.0	
		Z	100.00	126.59	29.41		100.0	
10033-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	26.20	104.04	29.08	5.30	70.0	± 9.6 %
		Y	17.29	96.17	26.35		70.0	
		Z	33.39	107.97	29.92		70.0	
10034-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	10.22	92.67	24.23	1.88	100.0	± 9.6 %
		Y	6.43	84.38	20.80		100.0	
		Z	11.20	93.73	24.22		100.0	
10035-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	5.35	84.84	21.49	1.17	100.0	± 9.6 %
		Y	3.64	78.05	18.27		100.0	
		Z	5.53	85.14	21.27		100.0	
10036-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	34.22	108.70	30.44	5.30	70.0	± 9.6 %
		Y	21.19	99.67	27.45		70.0	
		Z	46.95	113.79	31.53		70.0	
10037-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	9.80	92.08	24.01	1.88	100.0	± 9.6 %
		Y	6.03	83.52	20.49		100.0	
		Z	10.49	92.83	23.92		100.0	
10038-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	5.57	85.70	21.88	1.17	100.0	± 9.6 %
		Y	3.71	78.55	18.55		100.0	
		Z	5.74	85.97	21.65		100.0	
10039-CAB	CDMA2000 (1xRTT, RC1)	X	2.29	74.82	17.63	0.00	150.0	± 9.6 %
		Y	1.61	70.00	14.72		150.0	
		Z	2.21	74.61	17.23		150.0	
10042-CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	X	100.00	117.77	30.41	7.78	50.0	± 9.6 %
		Y	100.00	118.42	30.74		50.0	
		Z	100.00	117.12	29.87		50.0	
10044-CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	122.91	6.72	0.00	150.0	± 9.6 %
		Y	0.01	91.67	0.67		150.0	
		Z	0.01	121.67	2.01		150.0	
10048-CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	14.24	88.27	25.67	13.80	25.0	± 9.6 %
		Y	15.30	90.00	26.42		25.0	
		Z	18.01	92.94	26.87		25.0	
10049-CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	18.19	93.44	25.98	10.79	40.0	± 9.6 %
		Y	19.98	95.50	26.80		40.0	
		Z	25.01	98.92	27.33		40.0	
10056-CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	16.23	92.35	26.41	9.03	50.0	± 9.6 %
		Y	15.19	90.99	25.80		50.0	
		Z	19.23	95.68	27.26		50.0	
10058-DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	10.83	91.51	29.99	6.55	100.0	± 9.6 %
		Y	8.83	86.86	28.17		100.0	
		Z	10.43	91.37	30.04		100.0	
10059-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.53	68.08	17.53	0.61	110.0	± 9.6 %
		Y	1.46	66.60	16.41		110.0	
		Z	1.50	67.89	17.39		110.0	
10060-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	133.10	34.54	1.30	110.0	± 9.6 %
		Y	53.06	121.94	31.66		110.0	
		Z	100.00	133.43	34.60		110.0	

10061-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	15.03	103.64	29.46	2.04	110.0	± 9.6 %
		Y	7.53	91.17	25.40		110.0	
		Z	15.25	104.35	29.67		110.0	
10062-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.89	67.12	16.84	0.49	100.0	± 9.6 %
		Y	4.79	67.00	16.65		100.0	
		Z	4.84	67.14	16.81		100.0	
10063-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.93	67.28	16.98	0.72	100.0	± 9.6 %
		Y	4.83	67.16	16.79		100.0	
		Z	4.88	67.30	16.95		100.0	
10064-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.27	67.62	17.25	0.86	100.0	± 9.6 %
		Y	5.13	67.46	17.04		100.0	
		Z	5.19	67.61	17.20		100.0	
10065-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.16	67.64	17.41	1.21	100.0	± 9.6 %
		Y	5.04	67.50	17.22		100.0	
		Z	5.09	67.63	17.37		100.0	
10066-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.22	67.78	17.65	1.46	100.0	± 9.6 %
		Y	5.10	67.64	17.46		100.0	
		Z	5.14	67.76	17.60		100.0	
10067-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.54	67.94	18.11	2.04	100.0	± 9.6 %
		Y	5.43	67.92	17.97		100.0	
		Z	5.46	67.95	18.08		100.0	
10068-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.68	68.30	18.49	2.55	100.0	± 9.6 %
		Y	5.55	68.16	18.30		100.0	
		Z	5.58	68.25	18.43		100.0	
10069-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.75	68.25	18.68	2.67	100.0	± 9.6 %
		Y	5.64	68.19	18.51		100.0	
		Z	5.67	68.24	18.63		100.0	
10071-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.31	67.57	17.93	1.99	100.0	± 9.6 %
		Y	5.23	67.55	17.79		100.0	
		Z	5.25	67.59	17.91		100.0	
10072-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.37	68.14	18.27	2.30	100.0	± 9.6 %
		Y	5.28	68.07	18.11		100.0	
		Z	5.30	68.13	18.23		100.0	
10073-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.50	68.49	18.70	2.83	100.0	± 9.6 %
		Y	5.42	68.45	18.55		100.0	
		Z	5.42	68.48	18.66		100.0	
10074-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.53	68.57	18.96	3.30	100.0	± 9.6 %
		Y	5.47	68.55	18.81		100.0	
		Z	5.46	68.53	18.91		100.0	
10075-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.69	69.07	19.48	3.82	90.0	± 9.6 %
		Y	5.61	68.95	19.28		90.0	
		Z	5.59	68.97	19.39		90.0	
10076-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.69	68.86	19.60	4.15	90.0	± 9.6 %
		Y	5.66	68.85	19.45		90.0	
		Z	5.61	68.80	19.54		90.0	
10077-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.73	68.95	19.70	4.30	90.0	± 9.6 %
		Y	5.70	68.96	19.57		90.0	
		Z	5.65	68.89	19.64		90.0	

10081-CAB	CDMA2000 (1xRTT, RC3)	X	1.08	68.89	14.77	0.00	150.0	± 9.6 %
		Y	0.81	65.08	12.00		150.0	
		Z	1.01	68.34	14.19		150.0	
10082-CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	X	2.14	64.21	8.96	4.77	80.0	± 9.6 %
		Y	2.13	64.22	9.04		80.0	
		Z	1.96	63.69	8.48		80.0	
10090-DAB	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	119.07	30.79	6.56	60.0	± 9.6 %
		Y	100.00	119.70	31.10		60.0	
		Z	100.00	118.57	30.33		60.0	
10097-CAB	UMTS-FDD (HSDPA)	X	1.94	68.40	16.31	0.00	150.0	± 9.6 %
		Y	1.80	67.14	15.28		150.0	
		Z	1.92	68.41	16.21		150.0	
10098-CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.90	68.39	16.30	0.00	150.0	± 9.6 %
		Y	1.77	67.09	15.25		150.0	
		Z	1.88	68.40	16.19		150.0	
10099-DAB	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	25.51	110.75	38.40	9.56	60.0	± 9.6 %
		Y	19.04	103.52	35.98		60.0	
		Z	28.07	114.27	39.67		60.0	
10100-CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.39	71.45	17.23	0.00	150.0	± 9.6 %
		Y	3.07	69.82	16.39		150.0	
		Z	3.31	71.23	17.14		150.0	
10101-CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.41	68.20	16.31	0.00	150.0	± 9.6 %
		Y	3.25	67.41	15.80		150.0	
		Z	3.36	68.09	16.24		150.0	
10102-CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.51	68.08	16.36	0.00	150.0	± 9.6 %
		Y	3.35	67.38	15.89		150.0	
		Z	3.45	67.99	16.30		150.0	
10103-CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.95	79.11	21.70	3.98	65.0	± 9.6 %
		Y	8.42	78.22	21.35		65.0	
		Z	8.93	79.51	21.88		65.0	
10104-CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.75	77.56	21.97	3.98	65.0	± 9.6 %
		Y	8.39	76.88	21.61		65.0	
		Z	8.63	77.71	22.04		65.0	
10105-CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.79	75.23	21.25	3.98	65.0	± 9.6 %
		Y	7.82	75.44	21.27		65.0	
		Z	7.56	75.08	21.19		65.0	
10108-CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.99	70.64	17.07	0.00	150.0	± 9.6 %
		Y	2.69	69.08	16.21		150.0	
		Z	2.91	70.46	16.98		150.0	
10109-CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.08	68.03	16.25	0.00	150.0	± 9.6 %
		Y	2.90	67.21	15.66		150.0	
		Z	3.02	67.94	16.17		150.0	
10110-CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.46	69.79	16.80	0.00	150.0	± 9.6 %
		Y	2.19	68.18	15.79		150.0	
		Z	2.38	69.63	16.68		150.0	
10111-CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.77	68.63	16.54	0.00	150.0	± 9.6 %
		Y	2.58	67.81	15.82		150.0	
		Z	2.72	68.64	16.45		150.0	

10112-CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.19	67.93	16.27	0.00	150.0	± 9.6 %
		Y	3.02	67.22	15.73		150.0	
		Z	3.14	67.86	16.19		150.0	
10113-CAC	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.92	68.67	16.62	0.00	150.0	± 9.6 %
		Y	2.74	67.96	15.96		150.0	
		Z	2.87	68.71	16.54		150.0	
10114-CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.25	67.46	16.59	0.00	150.0	± 9.6 %
		Y	5.18	67.35	16.46		150.0	
		Z	5.22	67.50	16.60		150.0	
10115-CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.63	67.79	16.77	0.00	150.0	± 9.6 %
		Y	5.47	67.51	16.55		150.0	
		Z	5.56	67.78	16.74		150.0	
10116-CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.39	67.74	16.66	0.00	150.0	± 9.6 %
		Y	5.27	67.55	16.49		150.0	
		Z	5.34	67.76	16.65		150.0	
10117-CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.26	67.46	16.61	0.00	150.0	± 9.6 %
		Y	5.14	67.19	16.40		150.0	
		Z	5.20	67.42	16.57		150.0	
10118-CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	X	5.71	67.99	16.87	0.00	150.0	± 9.6 %
		Y	5.56	67.75	16.69		150.0	
		Z	5.65	68.00	16.86		150.0	
10119-CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	X	5.36	67.69	16.65	0.00	150.0	± 9.6 %
		Y	5.25	67.50	16.48		150.0	
		Z	5.31	67.69	16.63		150.0	
10140-CAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.55	68.09	16.29	0.00	150.0	± 9.6 %
		Y	3.39	67.39	15.82		150.0	
		Z	3.50	68.00	16.22		150.0	
10141-CAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.67	68.11	16.42	0.00	150.0	± 9.6 %
		Y	3.51	67.49	15.98		150.0	
		Z	3.61	68.04	16.36		150.0	
10142-CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.24	69.83	16.63	0.00	150.0	± 9.6 %
		Y	1.95	68.04	15.38		150.0	
		Z	2.17	69.71	16.47		150.0	
10143-CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.66	69.43	16.46	0.00	150.0	± 9.6 %
		Y	2.41	68.32	15.41		150.0	
		Z	2.60	69.46	16.30		150.0	
10144-CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.48	67.53	15.09	0.00	150.0	± 9.6 %
		Y	2.23	66.38	13.98		150.0	
		Z	2.40	67.43	14.85		150.0	
10145-CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.58	68.05	14.20	0.00	150.0	± 9.6 %
		Y	1.20	64.66	11.47		150.0	
		Z	1.46	67.23	13.39		150.0	
10146-CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	3.27	72.90	15.84	0.00	150.0	± 9.6 %
		Y	2.39	68.53	12.88		150.0	
		Z	2.90	71.21	14.54		150.0	
10147-CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	4.20	76.45	17.44	0.00	150.0	± 9.6 %
		Y	2.95	71.23	14.21		150.0	
		Z	3.76	74.66	16.12		150.0	

10149-CAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.08	68.08	16.29	0.00	150.0	± 9.6 %
		Y	2.90	67.26	15.71		150.0	
		Z	3.03	67.99	16.21		150.0	
10150-CAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.20	67.97	16.30	0.00	150.0	± 9.6 %
		Y	3.03	67.27	15.77		150.0	
		Z	3.14	67.91	16.23		150.0	
10151-CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.58	81.57	22.76	3.98	65.0	± 9.6 %
		Y	9.20	81.07	22.53		65.0	
		Z	9.73	82.35	23.07		65.0	
10152-CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.43	77.91	21.90	3.98	65.0	± 9.6 %
		Y	8.00	77.06	21.39		65.0	
		Z	8.30	78.07	21.93		65.0	
10153-CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.77	78.58	22.50	3.98	65.0	± 9.6 %
		Y	8.42	77.93	22.08		65.0	
		Z	8.68	78.83	22.57		65.0	
10154-CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.51	70.20	17.05	0.00	150.0	± 9.6 %
		Y	2.23	68.52	16.01		150.0	
		Z	2.43	70.03	16.93		150.0	
10155-CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.77	68.64	16.55	0.00	150.0	± 9.6 %
		Y	2.59	67.82	15.83		150.0	
		Z	2.72	68.65	16.47		150.0	
10156-CAC	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.11	70.16	16.63	0.00	150.0	± 9.6 %
		Y	1.79	67.99	15.10		150.0	
		Z	2.03	69.97	16.39		150.0	
10157-CAC	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.33	68.28	15.29	0.00	150.0	± 9.6 %
		Y	2.05	66.78	13.93		150.0	
		Z	2.26	68.15	15.00		150.0	
10158-CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.93	68.72	16.66	0.00	150.0	± 9.6 %
		Y	2.74	68.02	16.00		150.0	
		Z	2.87	68.76	16.58		150.0	
10159-CAC	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.44	68.68	15.55	0.00	150.0	± 9.6 %
		Y	2.14	67.16	14.17		150.0	
		Z	2.36	68.56	15.26		150.0	
10160-CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.95	69.45	16.78	0.00	150.0	± 9.6 %
		Y	2.74	68.43	16.10		150.0	
		Z	2.89	69.38	16.72		150.0	
10161-CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.09	67.88	16.25	0.00	150.0	± 9.6 %
		Y	2.92	67.19	15.68		150.0	
		Z	3.04	67.84	16.17		150.0	
10162-CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.20	67.94	16.32	0.00	150.0	± 9.6 %
		Y	3.03	67.35	15.80		150.0	
		Z	3.14	67.94	16.26		150.0	
10166-CAC	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.91	70.55	19.76	3.01	150.0	± 9.6 %
		Y	3.80	70.57	19.69		150.0	
		Z	3.86	70.81	19.84		150.0	
10167-CAC	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.01	74.06	20.48	3.01	150.0	± 9.6 %
		Y	4.90	74.31	20.47		150.0	
		Z	5.02	74.67	20.67		150.0	

10168-CAC	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.48	76.00	21.61	3.01	150.0	± 9.6 %
		Y	5.47	76.73	21.83		150.0	
		Z	5.56	76.88	21.91		150.0	
10169-CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.47	71.67	20.32	3.01	150.0	± 9.6 %
		Y	3.29	70.69	19.78		150.0	
		Z	3.39	71.60	20.26		150.0	
10170-CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	5.22	79.08	23.04	3.01	150.0	± 9.6 %
		Y	4.93	78.19	22.62		150.0	
		Z	5.27	79.79	23.29		150.0	
10171-AAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.25	74.61	20.30	3.01	150.0	± 9.6 %
		Y	3.97	73.54	19.74		150.0	
		Z	4.20	74.91	20.37		150.0	
10172-CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	45.89	119.84	36.81	6.02	65.0	± 9.6 %
		Y	24.00	107.83	33.57		65.0	
		Z	55.08	124.75	38.21		65.0	
10173-CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	54.81	117.01	34.09	6.02	65.0	± 9.6 %
		Y	51.44	116.71	34.09		65.0	
		Z	98.79	128.40	36.90		65.0	
10174-CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	37.87	108.76	31.32	6.02	65.0	± 9.6 %
		Y	32.93	107.27	31.00		65.0	
		Z	57.35	116.77	33.40		65.0	
10175-CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.43	71.34	20.07	3.01	150.0	± 9.6 %
		Y	3.25	70.38	19.54		150.0	
		Z	3.34	71.27	20.01		150.0	
10176-CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5.23	79.10	23.05	3.01	150.0	± 9.6 %
		Y	4.94	78.22	22.64		150.0	
		Z	5.28	79.82	23.30		150.0	
10177-CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.46	71.50	20.17	3.01	150.0	± 9.6 %
		Y	3.28	70.53	19.63		150.0	
		Z	3.37	71.43	20.10		150.0	
10178-CAC	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	5.16	78.81	22.91	3.01	150.0	± 9.6 %
		Y	4.88	77.98	22.52		150.0	
		Z	5.20	79.53	23.17		150.0	
10179-CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	4.70	76.72	21.54	3.01	150.0	± 9.6 %
		Y	4.41	75.75	21.06		150.0	
		Z	4.69	77.23	21.69		150.0	
10180-CAC	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	4.23	74.52	20.25	3.01	150.0	± 9.6 %
		Y	3.96	73.47	19.70		150.0	
		Z	4.18	74.82	20.31		150.0	
10181-CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.45	71.49	20.16	3.01	150.0	± 9.6 %
		Y	3.27	70.51	19.62		150.0	
		Z	3.37	71.41	20.10		150.0	
10182-CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.15	78.78	22.90	3.01	150.0	± 9.6 %
		Y	4.87	77.95	22.50		150.0	
		Z	5.19	79.51	23.15		150.0	
10183-AAA	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	4.22	74.50	20.24	3.01	150.0	± 9.6 %
		Y	3.95	73.44	19.69		150.0	
		Z	4.18	74.80	20.30		150.0	

10184-CAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.47	71.53	20.18	3.01	150.0	± 9.6 %
		Y	3.29	70.56	19.64		150.0	
		Z	3.38	71.46	20.12		150.0	
10185-CAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	5.17	78.86	22.94	3.01	150.0	± 9.6 %
		Y	4.90	78.03	22.54		150.0	
		Z	5.22	79.59	23.19		150.0	
10186-AAC	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	4.25	74.57	20.27	3.01	150.0	± 9.6 %
		Y	3.97	73.52	19.72		150.0	
		Z	4.20	74.88	20.34		150.0	
10187-CAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.47	71.58	20.24	3.01	150.0	± 9.6 %
		Y	3.29	70.62	19.71		150.0	
		Z	3.39	71.51	20.18		150.0	
10188-CAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	5.36	79.61	23.33	3.01	150.0	± 9.6 %
		Y	5.07	78.77	22.93		150.0	
		Z	5.43	80.39	23.60		150.0	
10189-AAC	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	4.35	75.06	20.56	3.01	150.0	± 9.6 %
		Y	4.07	73.99	20.01		150.0	
		Z	4.31	75.39	20.64		150.0	
10193-CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.67	66.88	16.36	0.00	150.0	± 9.6 %
		Y	4.55	66.71	16.12		150.0	
		Z	4.62	66.90	16.33		150.0	
10194-CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.87	67.24	16.48	0.00	150.0	± 9.6 %
		Y	4.72	67.02	16.25		150.0	
		Z	4.80	67.24	16.45		150.0	
10195-CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.91	67.26	16.49	0.00	150.0	± 9.6 %
		Y	4.77	67.06	16.27		150.0	
		Z	4.85	67.27	16.46		150.0	
10196-CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.69	66.98	16.40	0.00	150.0	± 9.6 %
		Y	4.56	66.77	16.14		150.0	
		Z	4.63	66.99	16.35		150.0	
10197-CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	X	4.88	67.27	16.49	0.00	150.0	± 9.6 %
		Y	4.74	67.05	16.27		150.0	
		Z	4.82	67.27	16.46		150.0	
10198-CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	X	4.91	67.28	16.50	0.00	150.0	± 9.6 %
		Y	4.77	67.07	16.28		150.0	
		Z	4.85	67.29	16.47		150.0	
10219-CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.64	66.99	16.36	0.00	150.0	± 9.6 %
		Y	4.51	66.78	16.10		150.0	
		Z	4.58	67.00	16.32		150.0	
10220-CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	X	4.88	67.25	16.49	0.00	150.0	± 9.6 %
		Y	4.73	67.02	16.26		150.0	
		Z	4.82	67.25	16.45		150.0	
10221-CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	X	4.92	67.21	16.49	0.00	150.0	± 9.6 %
		Y	4.78	67.01	16.27		150.0	
		Z	4.86	67.21	16.46		150.0	
10222-CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.23	67.48	16.61	0.00	150.0	± 9.6 %
		Y	5.11	67.20	16.39		150.0	
		Z	5.18	67.43	16.57		150.0	

10223-CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	X	5.59	67.79	16.79	0.00	150.0	± 9.6 %
		Y	5.42	67.45	16.54		150.0	
		Z	5.49	67.63	16.69		150.0	
10224-CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	X	5.28	67.57	16.58	0.00	150.0	± 9.6 %
		Y	5.16	67.31	16.38		150.0	
		Z	5.22	67.53	16.55		150.0	
10225-CAB	UMTS-FDD (HSPA+)	X	2.95	66.51	15.76	0.00	150.0	± 9.6 %
		Y	2.81	66.05	15.17		150.0	
		Z	2.90	66.52	15.65		150.0	
10226-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	59.29	118.62	34.60	6.02	65.0	± 9.6 %
		Y	56.35	118.55	34.66		65.0	
		Z	100.00	128.82	37.09		65.0	
10227-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	41.54	110.49	31.87	6.02	65.0	± 9.6 %
		Y	45.03	112.76	32.55		65.0	
		Z	70.08	120.36	34.37		65.0	
10228-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	50.22	122.05	37.49	6.02	65.0	± 9.6 %
		Y	34.91	115.59	35.84		65.0	
		Z	68.75	129.54	39.51		65.0	
10229-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	54.76	116.98	34.09	6.02	65.0	± 9.6 %
		Y	51.52	116.73	34.10		65.0	
		Z	98.58	128.35	36.90		65.0	
10230-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	39.08	109.30	31.48	6.02	65.0	± 9.6 %
		Y	41.70	111.29	32.09		65.0	
		Z	64.08	118.64	33.87		65.0	
10231-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	46.91	120.54	37.02	6.02	65.0	± 9.6 %
		Y	32.59	114.08	35.35		65.0	
		Z	62.85	127.57	38.93		65.0	
10232-CAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	54.80	117.00	34.09	6.02	65.0	± 9.6 %
		Y	51.53	116.74	34.10		65.0	
		Z	98.79	128.40	36.91		65.0	
10233-CAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	39.14	109.34	31.49	6.02	65.0	± 9.6 %
		Y	41.70	111.30	32.09		65.0	
		Z	64.21	118.69	33.88		65.0	
10234-CAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	43.69	118.89	36.47	6.02	65.0	± 9.6 %
		Y	30.58	112.60	34.83		65.0	
		Z	57.46	125.49	38.29		65.0	
10235-CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	55.11	117.12	34.13	6.02	65.0	± 9.6 %
		Y	51.80	116.85	34.13		65.0	
		Z	99.66	128.57	36.95		65.0	
10236-CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	39.62	109.52	31.53	6.02	65.0	± 9.6 %
		Y	42.21	111.49	32.13		65.0	
		Z	65.26	118.94	33.94		65.0	
10237-CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	47.63	120.87	37.10	6.02	65.0	± 9.6 %
		Y	32.91	114.31	35.41		65.0	
		Z	64.04	127.98	39.04		65.0	
10238-CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	54.88	117.04	34.10	6.02	65.0	± 9.6 %
		Y	51.56	116.76	34.11		65.0	
		Z	99.04	128.45	36.92		65.0	

10239-CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	39.18	109.37	31.50	6.02	65.0	± 9.6 %
		Y	41.69	111.32	32.09		65.0	
		Z	64.30	118.73	33.89		65.0	
10240-CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	47.41	120.79	37.08	6.02	65.0	± 9.6 %
		Y	32.80	114.25	35.40		65.0	
		Z	63.72	127.88	39.01		65.0	
10241-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	12.95	88.49	28.36	6.98	65.0	± 9.6 %
		Y	13.20	89.40	28.53		65.0	
		Z	13.44	90.05	28.89		65.0	
10242-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	12.05	86.85	27.66	6.98	65.0	± 9.6 %
		Y	11.35	86.12	27.21		65.0	
		Z	12.03	87.58	27.88		65.0	
10243-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.79	84.18	27.57	6.98	65.0	± 9.6 %
		Y	8.92	82.42	26.68		65.0	
		Z	9.53	84.28	27.59		65.0	
10244-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	9.93	81.69	21.61	3.98	65.0	± 9.6 %
		Y	9.28	80.27	20.47		65.0	
		Z	9.87	81.72	21.26		65.0	
10245-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	9.75	81.13	21.35	3.98	65.0	± 9.6 %
		Y	9.01	79.56	20.15		65.0	
		Z	9.61	81.03	20.96		65.0	
10246-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	10.23	84.99	22.79	3.98	65.0	± 9.6 %
		Y	8.67	81.96	21.17		65.0	
		Z	10.37	85.45	22.70		65.0	
10247-CAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	7.99	78.72	21.03	3.98	65.0	± 9.6 %
		Y	7.31	77.07	19.86		65.0	
		Z	7.84	78.72	20.81		65.0	
10248-CAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.95	78.19	20.81	3.98	65.0	± 9.6 %
		Y	7.24	76.50	19.62		65.0	
		Z	7.76	78.11	20.56		65.0	
10249-CAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	11.20	86.75	24.05	3.98	65.0	± 9.6 %
		Y	10.05	84.80	22.99		65.0	
		Z	11.73	87.93	24.30		65.0	
10250-CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.81	80.45	22.94	3.98	65.0	± 9.6 %
		Y	8.36	79.56	22.32		65.0	
		Z	8.77	80.84	23.01		65.0	
10251-CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	8.33	78.34	21.83	3.98	65.0	± 9.6 %
		Y	7.88	77.43	21.17		65.0	
		Z	8.23	78.56	21.83		65.0	
10252-CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	10.62	85.24	24.16	3.98	65.0	± 9.6 %
		Y	10.00	84.32	23.67		65.0	
		Z	11.03	86.44	24.55		65.0	
10253-CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	8.19	77.28	21.68	3.98	65.0	± 9.6 %
		Y	7.83	76.55	21.17		65.0	
		Z	8.07	77.44	21.69		65.0	
10254-CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.55	77.97	22.24	3.98	65.0	± 9.6 %
		Y	8.22	77.37	21.79		65.0	
		Z	8.45	78.20	22.29		65.0	

10255-CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.25	81.19	22.86	3.98	65.0	± 9.6 %
		Y	8.90	80.69	22.57		65.0	
		Z	9.36	81.93	23.13		65.0	
10256-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	8.78	79.32	19.92	3.98	65.0	± 9.6 %
		Y	7.64	76.71	18.18		65.0	
		Z	8.32	78.49	19.16		65.0	
10257-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.54	78.52	19.52	3.98	65.0	± 9.6 %
		Y	7.34	75.78	17.71		65.0	
		Z	8.00	77.55	18.70		65.0	
10258-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	8.70	81.89	21.08	3.98	65.0	± 9.6 %
		Y	6.88	77.76	18.85		65.0	
		Z	8.30	81.29	20.52		65.0	
10259-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.31	79.31	21.69	3.98	65.0	± 9.6 %
		Y	7.72	77.99	20.74		65.0	
		Z	8.21	79.47	21.59		65.0	
10260-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.30	79.00	21.59	3.98	65.0	± 9.6 %
		Y	7.71	77.67	20.62		65.0	
		Z	8.17	79.11	21.45		65.0	
10261-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	10.48	85.42	23.88	3.98	65.0	± 9.6 %
		Y	9.59	83.86	23.02		65.0	
		Z	10.84	86.46	24.14		65.0	
10262-CAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.80	80.42	22.90	3.98	65.0	± 9.6 %
		Y	8.34	79.51	22.28		65.0	
		Z	8.76	80.79	22.97		65.0	
10263-CAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.32	78.33	21.83	3.98	65.0	± 9.6 %
		Y	7.87	77.41	21.16		65.0	
		Z	8.22	78.55	21.82		65.0	
10264-CAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	10.55	85.09	24.09	3.98	65.0	± 9.6 %
		Y	9.92	84.15	23.59		65.0	
		Z	10.94	86.26	24.47		65.0	
10265-CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.42	77.91	21.90	3.98	65.0	± 9.6 %
		Y	8.00	77.07	21.40		65.0	
		Z	8.30	78.08	21.94		65.0	
10266-CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.77	78.57	22.49	3.98	65.0	± 9.6 %
		Y	8.41	77.92	22.08		65.0	
		Z	8.68	78.82	22.57		65.0	
10267-CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.57	81.54	22.75	3.98	65.0	± 9.6 %
		Y	9.18	81.04	22.51		65.0	
		Z	9.71	82.31	23.05		65.0	
10268-CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.81	77.20	21.95	3.98	65.0	± 9.6 %
		Y	8.49	76.65	21.63		65.0	
		Z	8.69	77.36	22.02		65.0	
10269-CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.72	76.77	21.85	3.98	65.0	± 9.6 %
		Y	8.43	76.26	21.53		65.0	
		Z	8.60	76.91	21.90		65.0	
10270-CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.91	78.54	21.73	3.98	65.0	± 9.6 %
		Y	8.64	78.21	21.57		65.0	
		Z	8.90	78.98	21.92		65.0	

10274-CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.70	66.84	15.66	0.00	150.0	± 9.6 %
		Y	2.59	66.36	15.06		150.0	
		Z	2.67	66.91	15.58		150.0	
10275-CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.78	69.28	16.44	0.00	150.0	± 9.6 %
		Y	1.58	67.27	15.11		150.0	
		Z	1.74	69.12	16.29		150.0	
10277-CAA	PHS (QPSK)	X	5.49	69.70	13.98	9.03	50.0	± 9.6 %
		Y	5.25	69.05	13.45		50.0	
		Z	4.98	68.62	13.04		50.0	
10278-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.94	81.70	21.46	9.03	50.0	± 9.6 %
		Y	8.45	78.46	19.79		50.0	
		Z	9.51	81.06	20.82		50.0	
10279-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	10.13	81.92	21.56	9.03	50.0	± 9.6 %
		Y	8.56	78.60	19.87		50.0	
		Z	9.68	81.27	20.92		50.0	
10290-AAB	CDMA2000, RC1, SO55, Full Rate	X	1.84	71.48	15.96	0.00	150.0	± 9.6 %
		Y	1.35	67.51	13.29		150.0	
		Z	1.74	71.05	15.45		150.0	
10291-AAB	CDMA2000, RC3, SO55, Full Rate	X	1.05	68.58	14.60	0.00	150.0	± 9.6 %
		Y	0.80	64.91	11.89		150.0	
		Z	0.99	68.04	14.03		150.0	
10292-AAB	CDMA2000, RC3, SO32, Full Rate	X	1.41	73.84	17.39	0.00	150.0	± 9.6 %
		Y	0.95	67.97	13.82		150.0	
		Z	1.36	73.52	16.93		150.0	
10293-AAB	CDMA2000, RC3, SO3, Full Rate	X	2.11	80.22	20.41	0.00	150.0	± 9.6 %
		Y	1.29	72.30	16.23		150.0	
		Z	2.16	80.67	20.23		150.0	
10295-AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.81	86.61	25.39	9.03	50.0	± 9.6 %
		Y	12.29	86.68	24.93		50.0	
		Z	12.59	88.13	25.68		50.0	
10297-AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.00	70.74	17.13	0.00	150.0	± 9.6 %
		Y	2.70	69.17	16.27		150.0	
		Z	2.92	70.55	17.04		150.0	
10298-AAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.88	69.74	15.72	0.00	150.0	± 9.6 %
		Y	1.50	66.83	13.56		150.0	
		Z	1.78	69.33	15.25		150.0	
10299-AAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	3.76	74.46	17.29	0.00	150.0	± 9.6 %
		Y	3.22	72.15	15.48		150.0	
		Z	3.64	74.03	16.65		150.0	
10300-AAB	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.71	68.82	14.10	0.00	150.0	± 9.6 %
		Y	2.26	66.62	12.23		150.0	
		Z	2.51	68.00	13.27		150.0	
10301-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.74	68.33	18.97	4.17	80.0	± 9.6 %
		Y	5.76	68.93	19.03		80.0	
		Z	5.62	68.22	18.83		80.0	
10302-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.28	69.27	19.92	4.96	80.0	± 9.6 %
		Y	6.11	68.95	19.44		80.0	
		Z	6.14	69.09	19.74		80.0	

10303-AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	6.13	69.40	20.01	4.96	80.0	± 9.6 %
		Y	5.95	68.97	19.45		80.0	
		Z	5.97	69.13	19.78		80.0	
10304-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.75	68.56	19.10	4.17	80.0	± 9.6 %
		Y	5.59	68.26	18.63		80.0	
		Z	5.62	68.39	18.93		80.0	
10305-AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	7.43	76.93	24.02	6.02	50.0	± 9.6 %
		Y	9.25	82.66	26.08		50.0	
		Z	8.34	81.22	26.11		50.0	
10306-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	6.62	72.61	22.27	6.02	50.0	± 9.6 %
		Y	6.41	71.84	21.34		50.0	
		Z	6.37	72.04	21.84		50.0	
10307-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	6.75	73.45	22.48	6.02	50.0	± 9.6 %
		Y	7.33	76.35	23.60		50.0	
		Z	6.44	72.74	22.00		50.0	
10308-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.83	73.95	22.73	6.02	50.0	± 9.6 %
		Y	7.54	77.23	24.00		50.0	
		Z	6.52	73.24	22.25		50.0	
10309-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	6.76	73.00	22.48	6.02	50.0	± 9.6 %
		Y	6.50	72.12	21.51		50.0	
		Z	6.48	72.40	22.05		50.0	
10310-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	6.65	72.90	22.32	6.02	50.0	± 9.6 %
		Y	6.43	72.08	21.36		50.0	
		Z	6.38	72.30	21.88		50.0	
10311-AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.36	69.95	16.72	0.00	150.0	± 9.6 %
		Y	3.05	68.49	15.94		150.0	
		Z	3.28	69.76	16.64		150.0	
10313-AAA	IDEN 1:3	X	8.62	80.97	19.76	6.99	70.0	± 9.6 %
		Y	8.09	80.21	19.57		70.0	
		Z	9.00	81.96	20.01		70.0	
10314-AAA	IDEN 1:6	X	11.52	88.11	24.71	10.00	30.0	± 9.6 %
		Y	10.47	86.76	24.39		30.0	
		Z	12.84	90.59	25.49		30.0	
10315-AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.19	65.18	16.10	0.17	150.0	± 9.6 %
		Y	1.16	64.14	15.13		150.0	
		Z	1.18	65.09	15.99		150.0	
10316-AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	X	4.78	67.08	16.58	0.17	150.0	± 9.6 %
		Y	4.66	66.92	16.36		150.0	
		Z	4.72	67.10	16.55		150.0	
10317-AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.78	67.08	16.58	0.17	150.0	± 9.6 %
		Y	4.66	66.92	16.36		150.0	
		Z	4.72	67.10	16.55		150.0	
10400-AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.88	67.33	16.49	0.00	150.0	± 9.6 %
		Y	4.72	67.09	16.26		150.0	
		Z	4.81	67.33	16.46		150.0	
10401-AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.53	67.45	16.61	0.00	150.0	± 9.6 %
		Y	5.46	67.42	16.51		150.0	
		Z	5.49	67.50	16.61		150.0	

10402-AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.82	67.90	16.67	0.00	150.0	± 9.6 %
		Y	5.68	67.60	16.45		150.0	
		Z	5.75	67.84	16.62		150.0	
10403-AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	1.84	71.48	15.96	0.00	115.0	± 9.6 %
		Y	1.35	67.51	13.29		115.0	
		Z	1.74	71.05	15.45		115.0	
10404-AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.84	71.48	15.96	0.00	115.0	± 9.6 %
		Y	1.35	67.51	13.29		115.0	
		Z	1.74	71.05	15.45		115.0	
10406-AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	124.73	32.10	0.00	100.0	± 9.6 %
		Y	100.00	120.91	30.18		100.0	
		Z	100.00	122.18	30.73		100.0	
10410-AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.38	31.10	3.23	80.0	± 9.6 %
		Y	100.00	122.04	31.26		80.0	
		Z	100.00	121.27	30.81		80.0	
10415-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.04	63.62	15.19	0.00	150.0	± 9.6 %
		Y	1.03	62.77	14.30		150.0	
		Z	1.04	63.58	15.10		150.0	
10416-AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	X	4.68	66.92	16.42	0.00	150.0	± 9.6 %
		Y	4.56	66.75	16.19		150.0	
		Z	4.63	66.95	16.39		150.0	
10417-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.68	66.92	16.42	0.00	150.0	± 9.6 %
		Y	4.56	66.75	16.19		150.0	
		Z	4.63	66.95	16.39		150.0	
10418-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preamble)	X	4.66	67.07	16.42	0.00	150.0	± 9.6 %
		Y	4.55	66.90	16.21		150.0	
		Z	4.61	67.10	16.40		150.0	
10419-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preamble)	X	4.69	67.02	16.43	0.00	150.0	± 9.6 %
		Y	4.57	66.86	16.21		150.0	
		Z	4.64	67.05	16.40		150.0	
10422-AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.81	67.03	16.44	0.00	150.0	± 9.6 %
		Y	4.69	66.86	16.24		150.0	
		Z	4.76	67.06	16.42		150.0	
10423-AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.01	67.40	16.58	0.00	150.0	± 9.6 %
		Y	4.85	67.18	16.35		150.0	
		Z	4.94	67.40	16.54		150.0	
10424-AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.92	67.34	16.55	0.00	150.0	± 9.6 %
		Y	4.77	67.13	16.32		150.0	
		Z	4.85	67.35	16.52		150.0	
10425-AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.51	67.68	16.71	0.00	150.0	± 9.6 %
		Y	5.39	67.51	16.55		150.0	
		Z	5.46	67.71	16.71		150.0	
10426-AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.52	67.71	16.72	0.00	150.0	± 9.6 %
		Y	5.41	67.57	16.58		150.0	
		Z	5.46	67.71	16.70		150.0	

10427-AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.53	67.70	16.71	0.00	150.0	± 9.6 %
		Y	5.41	67.51	16.55		150.0	
		Z	5.47	67.68	16.69		150.0	
10430-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.32	70.28	18.11	0.00	150.0	± 9.6 %
		Y	4.16	70.36	17.82		150.0	
		Z	4.27	70.50	18.09		150.0	
10431-AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.40	67.51	16.48	0.00	150.0	± 9.6 %
		Y	4.22	67.25	16.15		150.0	
		Z	4.33	67.53	16.43		150.0	
10432-AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.69	67.39	16.51	0.00	150.0	± 9.6 %
		Y	4.53	67.16	16.25		150.0	
		Z	4.62	67.40	16.47		150.0	
10433-AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.93	67.38	16.57	0.00	150.0	± 9.6 %
		Y	4.78	67.16	16.34		150.0	
		Z	4.87	67.38	16.54		150.0	
10434-AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.40	71.01	18.09	0.00	150.0	± 9.6 %
		Y	4.23	71.08	17.71		150.0	
		Z	4.35	71.28	18.06		150.0	
10435-AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.21	31.02	3.23	80.0	± 9.6 %
		Y	100.00	121.85	31.17		80.0	
		Z	100.00	121.09	30.72		80.0	
10447-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.72	67.59	15.99	0.00	150.0	± 9.6 %
		Y	3.49	67.15	15.37		150.0	
		Z	3.63	67.60	15.85		150.0	
10448-AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.23	67.28	16.34	0.00	150.0	± 9.6 %
		Y	4.06	67.03	16.00		150.0	
		Z	4.16	67.31	16.29		150.0	
10449-AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.48	67.21	16.41	0.00	150.0	± 9.6 %
		Y	4.34	66.97	16.14		150.0	
		Z	4.43	67.22	16.37		150.0	
10450-AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.67	67.13	16.42	0.00	150.0	± 9.6 %
		Y	4.55	66.91	16.18		150.0	
		Z	4.62	67.14	16.39		150.0	
10451-AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.65	67.88	15.73	0.00	150.0	± 9.6 %
		Y	3.37	67.26	14.95		150.0	
		Z	3.55	67.85	15.54		150.0	
10456-AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.37	68.28	16.87	0.00	150.0	± 9.6 %
		Y	6.27	68.07	16.72		150.0	
		Z	6.32	68.24	16.84		150.0	
10457-AAA	UMTS-FDD (DC-HSDPA)	X	3.87	65.55	16.14	0.00	150.0	± 9.6 %
		Y	3.82	65.40	15.89		150.0	
		Z	3.85	65.58	16.10		150.0	
10458-AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.47	67.23	15.26	0.00	150.0	± 9.6 %
		Y	3.20	66.63	14.36		150.0	
		Z	3.38	67.25	15.04		150.0	
10459-AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.62	65.57	16.09	0.00	150.0	± 9.6 %
		Y	4.24	64.86	15.31		150.0	
		Z	4.49	65.53	15.92		150.0	

10460-AAA	UMTS-FDD (WCDMA, AMR)	X	1.04	70.60	17.61	0.00	150.0	± 9.6 %
		Y	0.87	66.79	15.21		150.0	
		Z	1.01	70.23	17.35		150.0	
10461-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.27	32.96	3.29	80.0	± 9.6 %
		Y	100.00	126.05	33.17		80.0	
		Z	100.00	125.97	33.03		80.0	
10462-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.41	25.82	3.23	80.0	± 9.6 %
		Y	100.00	110.14	25.54		80.0	
		Z	100.00	109.36	25.09		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.38	24.37	3.23	80.0	± 9.6 %
		Y	99.99	106.95	24.01		80.0	
		Z	100.00	106.01	23.49		80.0	
10464-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.43	31.95	3.23	80.0	± 9.6 %
		Y	100.00	124.13	32.12		80.0	
		Z	100.00	123.96	31.94		80.0	
10465-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.92	25.58	3.23	80.0	± 9.6 %
		Y	100.00	109.63	25.30		80.0	
		Z	100.00	108.83	24.83		80.0	
10466-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.92	24.15	3.23	80.0	± 9.6 %
		Y	35.11	95.59	21.29		80.0	
		Z	64.85	101.13	22.29		80.0	
10467-AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.63	32.04	3.23	80.0	± 9.6 %
		Y	100.00	124.36	32.22		80.0	
		Z	100.00	124.19	32.04		80.0	
10468-AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.08	25.65	3.23	80.0	± 9.6 %
		Y	100.00	109.80	25.38		80.0	
		Z	100.00	109.00	24.90		80.0	
10469-AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.93	24.15	3.23	80.0	± 9.6 %
		Y	36.98	96.15	21.42		80.0	
		Z	69.17	101.80	22.43		80.0	
10470-AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.66	32.05	3.23	80.0	± 9.6 %
		Y	100.00	124.39	32.23		80.0	
		Z	100.00	124.22	32.04		80.0	
10471-AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.03	25.63	3.23	80.0	± 9.6 %
		Y	100.00	109.76	25.35		80.0	
		Z	100.00	108.95	24.87		80.0	
10472-AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.88	24.13	3.23	80.0	± 9.6 %
		Y	37.07	96.14	21.40		80.0	
		Z	69.17	101.75	22.40		80.0	
10473-AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.64	32.03	3.23	80.0	± 9.6 %
		Y	100.00	124.36	32.22		80.0	
		Z	100.00	124.19	32.03		80.0	
10474-AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.04	25.63	3.23	80.0	± 9.6 %
		Y	100.00	109.76	25.35		80.0	
		Z	100.00	108.95	24.88		80.0	
10475-AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.89	24.13	3.23	80.0	± 9.6 %
		Y	36.12	95.88	21.34		80.0	
		Z	67.03	101.44	22.34		80.0	

10477-AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.88	25.55	3.23	80.0	± 9.6 %
		Y	100.00	109.59	25.27		80.0	
		Z	100.00	108.78	24.79		80.0	
10478-AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.84	24.11	3.23	80.0	± 9.6 %
		Y	35.07	95.53	21.24		80.0	
		Z	64.37	100.98	22.22		80.0	
10479-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	15.85	96.14	26.84	3.23	80.0	± 9.6 %
		Y	23.55	102.05	28.06		80.0	
		Z	21.95	101.46	28.10		80.0	
10480-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	17.85	92.46	24.06	3.23	80.0	± 9.6 %
		Y	25.39	96.65	24.61		80.0	
		Z	24.25	96.51	24.79		80.0	
10481-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	14.94	89.10	22.71	3.23	80.0	± 9.6 %
		Y	18.59	91.42	22.74		80.0	
		Z	18.33	91.67	23.03		80.0	
10482-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.72	81.38	20.87	2.23	80.0	± 9.6 %
		Y	4.91	76.52	18.47		80.0	
		Z	6.67	81.51	20.66		80.0	
10483-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	9.22	82.81	21.18	2.23	80.0	± 9.6 %
		Y	8.67	81.32	19.93		80.0	
		Z	9.37	82.95	20.82		80.0	
10484-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	8.45	81.31	20.68	2.23	80.0	± 9.6 %
		Y	7.69	79.47	19.29		80.0	
		Z	8.37	81.16	20.22		80.0	
10485-AAA	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.69	81.58	21.65	2.23	80.0	± 9.6 %
		Y	5.32	77.96	19.91		80.0	
		Z	6.66	81.91	21.64		80.0	
10486-AAA	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.08	74.35	18.65	2.23	80.0	± 9.6 %
		Y	4.44	72.35	17.28		80.0	
		Z	4.98	74.39	18.45		80.0	
10487-AAA	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.00	73.78	18.42	2.23	80.0	± 9.6 %
		Y	4.39	71.84	17.06		80.0	
		Z	4.88	73.76	18.20		80.0	
10488-AAA	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.22	78.97	21.20	2.23	80.0	± 9.6 %
		Y	5.25	76.41	20.04		80.0	
		Z	6.06	79.06	21.22		80.0	
10489-AAA	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.98	72.94	19.03	2.23	80.0	± 9.6 %
		Y	4.60	71.81	18.27		80.0	
		Z	4.86	72.97	18.97		80.0	
10490-AAA	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.02	72.55	18.89	2.23	80.0	± 9.6 %
		Y	4.67	71.55	18.18		80.0	
		Z	4.91	72.59	18.83		80.0	
10491-AAA	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.80	75.85	20.13	2.23	80.0	± 9.6 %
		Y	5.16	74.14	19.33		80.0	
		Z	5.65	75.86	20.14		80.0	
10492-AAA	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.14	71.59	18.72	2.23	80.0	± 9.6 %
		Y	4.84	70.75	18.16		80.0	
		Z	5.02	71.57	18.67		80.0	

10493-AAA	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.19	71.35	18.64	2.23	80.0	± 9.6 %
		Y	4.89	70.57	18.10		80.0	
		Z	5.06	71.33	18.59		80.0	
10494-AAA	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.56	77.96	20.74	2.23	80.0	± 9.6 %
		Y	5.66	75.70	19.79		80.0	
		Z	6.38	77.93	20.74		80.0	
10495-AAA	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.25	72.19	18.95	2.23	80.0	± 9.6 %
		Y	4.90	71.18	18.37		80.0	
		Z	5.11	72.12	18.90		80.0	
10496-AAA	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.27	71.70	18.80	2.23	80.0	± 9.6 %
		Y	4.95	70.82	18.26		80.0	
		Z	5.14	71.64	18.75		80.0	
10497-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.36	77.85	18.89	2.23	80.0	± 9.6 %
		Y	3.58	71.88	15.77		80.0	
		Z	5.04	77.09	18.24		80.0	
10498-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.67	69.91	14.90	2.23	80.0	± 9.6 %
		Y	2.47	64.93	11.79		80.0	
		Z	3.17	68.25	13.77		80.0	
10499-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.55	69.17	14.46	2.23	80.0	± 9.6 %
		Y	2.37	64.23	11.32		80.0	
		Z	3.03	67.38	13.26		80.0	
10500-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.22	79.81	21.25	2.23	80.0	± 9.6 %
		Y	5.17	76.95	19.84		80.0	
		Z	6.15	80.08	21.26		80.0	
10501-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.01	73.64	18.73	2.23	80.0	± 9.6 %
		Y	4.52	72.16	17.66		80.0	
		Z	4.91	73.72	18.61		80.0	
10502-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.03	73.33	18.57	2.23	80.0	± 9.6 %
		Y	4.56	71.91	17.51		80.0	
		Z	4.93	73.40	18.43		80.0	
10503-AAA	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.13	78.76	21.11	2.23	80.0	± 9.6 %
		Y	5.19	76.21	19.95		80.0	
		Z	5.98	78.84	21.12		80.0	
10504-AAA	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.96	72.86	18.98	2.23	80.0	± 9.6 %
		Y	4.58	71.72	18.22		80.0	
		Z	4.84	72.88	18.92		80.0	
10505-AAA	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.00	72.47	18.85	2.23	80.0	± 9.6 %
		Y	4.64	71.45	18.13		80.0	
		Z	4.88	72.50	18.78		80.0	
10506-AAA	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.51	77.81	20.67	2.23	80.0	± 9.6 %
		Y	5.61	75.56	19.72		80.0	
		Z	6.32	77.77	20.67		80.0	
10507-AAA	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.23	72.13	18.92	2.23	80.0	± 9.6 %
		Y	4.88	71.12	18.33		80.0	
		Z	5.10	72.06	18.87		80.0	

10508-AAA	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.25	71.64	18.76	2.23	80.0	± 9.6 %
		Y	4.93	70.75	18.22		80.0	
		Z	5.12	71.58	18.71		80.0	
10509-AAA	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.28	75.15	19.67	2.23	80.0	± 9.6 %
		Y	5.68	73.63	19.00		80.0	
		Z	6.13	75.10	19.66		80.0	
10510-AAA	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.62	71.40	18.69	2.23	80.0	± 9.6 %
		Y	5.31	70.55	18.22		80.0	
		Z	5.48	71.30	18.64		80.0	
10511-AAA	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.62	71.01	18.58	2.23	80.0	± 9.6 %
		Y	5.34	70.25	18.14		80.0	
		Z	5.49	70.92	18.53		80.0	
10512-AAA	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.97	77.51	20.40	2.23	80.0	± 9.6 %
		Y	6.07	75.36	19.52		80.0	
		Z	6.78	77.41	20.39		80.0	
10513-AAA	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.58	71.95	18.89	2.23	80.0	± 9.6 %
		Y	5.23	70.90	18.35		80.0	
		Z	5.43	71.80	18.83		80.0	
10514-AAA	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.51	71.32	18.70	2.23	80.0	± 9.6 %
		Y	5.21	70.43	18.21		80.0	
		Z	5.38	71.20	18.65		80.0	
10515-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.01	63.86	15.29	0.00	150.0	± 9.6 %
		Y	0.99	62.91	14.33		150.0	
		Z	1.00	63.81	15.19		150.0	
10516-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.83	76.23	20.32	0.00	150.0	± 9.6 %
		Y	0.56	67.60	15.60		150.0	
		Z	0.78	75.06	19.74		150.0	
10517-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.89	66.46	16.31	0.00	150.0	± 9.6 %
		Y	0.83	64.41	14.70		150.0	
		Z	0.88	66.26	16.14		150.0	
10518-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.67	67.00	16.40	0.00	150.0	± 9.6 %
		Y	4.55	66.82	16.17		150.0	
		Z	4.62	67.03	16.37		150.0	
10519-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.89	67.28	16.53	0.00	150.0	± 9.6 %
		Y	4.73	67.06	16.29		150.0	
		Z	4.82	67.28	16.50		150.0	
10520-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.73	67.26	16.46	0.00	150.0	± 9.6 %
		Y	4.58	67.01	16.21		150.0	
		Z	4.67	67.25	16.42		150.0	
10521-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.67	67.27	16.45	0.00	150.0	± 9.6 %
		Y	4.51	66.99	16.19		150.0	
		Z	4.60	67.25	16.41		150.0	
10522-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.72	67.27	16.50	0.00	150.0	± 9.6 %
		Y	4.58	67.10	16.28		150.0	
		Z	4.66	67.31	16.48		150.0	

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.59	67.15	16.35	0.00	150.0	± 9.6 %
		Y	4.46	66.96	16.12		150.0	
		Z	4.53	67.18	16.32		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.67	67.22	16.48	0.00	150.0	± 9.6 %
		Y	4.52	67.01	16.25		150.0	
		Z	4.60	67.24	16.45		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.63	66.24	16.06	0.00	150.0	± 9.6 %
		Y	4.51	66.06	15.84		150.0	
		Z	4.58	66.27	16.03		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.82	66.65	16.21	0.00	150.0	± 9.6 %
		Y	4.67	66.42	15.98		150.0	
		Z	4.76	66.66	16.18		150.0	
10527- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.74	66.62	16.16	0.00	150.0	± 9.6 %
		Y	4.59	66.37	15.91		150.0	
		Z	4.68	66.62	16.13		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.76	66.64	16.19	0.00	150.0	± 9.6 %
		Y	4.61	66.39	15.95		150.0	
		Z	4.70	66.64	16.16		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.76	66.64	16.19	0.00	150.0	± 9.6 %
		Y	4.61	66.39	15.95		150.0	
		Z	4.70	66.64	16.16		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.77	66.78	16.22	0.00	150.0	± 9.6 %
		Y	4.59	66.48	15.95		150.0	
		Z	4.70	66.77	16.18		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.62	66.64	16.16	0.00	150.0	± 9.6 %
		Y	4.46	66.33	15.88		150.0	
		Z	4.55	66.62	16.12		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.77	66.66	16.17	0.00	150.0	± 9.6 %
		Y	4.62	66.44	15.94		150.0	
		Z	4.71	66.68	16.14		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.28	66.77	16.23	0.00	150.0	± 9.6 %
		Y	5.15	66.52	16.04		150.0	
		Z	5.22	66.75	16.21		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.35	66.92	16.29	0.00	150.0	± 9.6 %
		Y	5.23	66.72	16.13		150.0	
		Z	5.29	66.92	16.28		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.22	66.90	16.27	0.00	150.0	± 9.6 %
		Y	5.09	66.65	16.07		150.0	
		Z	5.16	66.88	16.24		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.28	66.88	16.26	0.00	150.0	± 9.6 %
		Y	5.15	66.62	16.06		150.0	
		Z	5.22	66.85	16.23		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.39	66.94	16.34	0.00	150.0	± 9.6 %
		Y	5.24	66.64	16.11		150.0	
		Z	5.32	66.89	16.29		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.30	66.90	16.33	0.00	150.0	± 9.6 %
		Y	5.18	66.68	16.15		150.0	
		Z	5.24	66.89	16.30		150.0	

10541-AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.27	66.78	16.27	0.00	150.0	± 9.6 %
		Y	5.14	66.52	16.06		150.0	
		Z	5.21	66.75	16.23		150.0	
10542-AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.43	66.84	16.31	0.00	150.0	± 9.6 %
		Y	5.30	66.61	16.12		150.0	
		Z	5.37	66.82	16.28		150.0	
10543-AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.51	66.86	16.33	0.00	150.0	± 9.6 %
		Y	5.38	66.65	16.16		150.0	
		Z	5.45	66.86	16.32		150.0	
10544-AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.57	66.87	16.21	0.00	150.0	± 9.6 %
		Y	5.47	66.64	16.04		150.0	
		Z	5.52	66.85	16.19		150.0	
10545-AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.78	67.31	16.38	0.00	150.0	± 9.6 %
		Y	5.67	67.10	16.22		150.0	
		Z	5.73	67.29	16.36		150.0	
10546-AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.66	67.15	16.32	0.00	150.0	± 9.6 %
		Y	5.53	66.85	16.11		150.0	
		Z	5.60	67.10	16.28		150.0	
10547-AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.75	67.23	16.35	0.00	150.0	± 9.6 %
		Y	5.61	66.89	16.12		150.0	
		Z	5.68	67.16	16.30		150.0	
10548-AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.09	68.43	16.92	0.00	150.0	± 9.6 %
		Y	5.88	67.92	16.61		150.0	
		Z	5.99	68.27	16.83		150.0	
10550-AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.68	67.11	16.30	0.00	150.0	± 9.6 %
		Y	5.57	66.90	16.14		150.0	
		Z	5.62	67.09	16.28		150.0	
10551-AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.69	67.18	16.30	0.00	150.0	± 9.6 %
		Y	5.57	66.91	16.11		150.0	
		Z	5.63	67.13	16.26		150.0	
10552-AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.59	66.94	16.20	0.00	150.0	± 9.6 %
		Y	5.48	66.70	16.01		150.0	
		Z	5.54	66.92	16.17		150.0	
10553-AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.68	67.00	16.25	0.00	150.0	± 9.6 %
		Y	5.56	66.74	16.06		150.0	
		Z	5.63	66.96	16.22		150.0	
10554-AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.97	67.25	16.31	0.00	150.0	± 9.6 %
		Y	5.89	67.02	16.14		150.0	
		Z	5.93	67.22	16.28		150.0	
10555-AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.12	67.58	16.45	0.00	150.0	± 9.6 %
		Y	6.02	67.34	16.28		150.0	
		Z	6.07	67.54	16.42		150.0	
10556-AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.61	16.46	0.00	150.0	± 9.6 %
		Y	6.04	67.38	16.29		150.0	
		Z	6.09	67.58	16.43		150.0	
10557-AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.11	67.56	16.45	0.00	150.0	± 9.6 %
		Y	6.00	67.27	16.25		150.0	
		Z	6.06	67.50	16.41		150.0	

10558-AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.17	67.75	16.57	0.00	150.0	± 9.6 %
		Y	6.05	67.43	16.35		150.0	
		Z	6.11	67.68	16.51		150.0	
10560-AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.16	67.57	16.51	0.00	150.0	± 9.6 %
		Y	6.04	67.27	16.31		150.0	
		Z	6.10	67.51	16.47		150.0	
10561-AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.08	67.53	16.53	0.00	150.0	± 9.6 %
		Y	5.97	67.26	16.34		150.0	
		Z	6.02	67.48	16.49		150.0	
10562-AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.24	68.04	16.79	0.00	150.0	± 9.6 %
		Y	6.08	67.63	16.53		150.0	
		Z	6.17	67.94	16.72		150.0	
10563-AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.60	68.66	17.05	0.00	150.0	± 9.6 %
		Y	6.27	67.81	16.58		150.0	
		Z	6.51	68.54	16.98		150.0	
10564-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	X	5.02	67.14	16.59	0.46	150.0	± 9.6 %
		Y	4.89	66.96	16.38		150.0	
		Z	4.96	67.15	16.56		150.0	
10565-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	X	5.27	67.60	16.90	0.46	150.0	± 9.6 %
		Y	5.11	67.39	16.68		150.0	
		Z	5.20	67.59	16.86		150.0	
10566-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	X	5.10	67.48	16.74	0.46	150.0	± 9.6 %
		Y	4.95	67.24	16.51		150.0	
		Z	5.03	67.46	16.70		150.0	
10567-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	X	5.12	67.82	17.05	0.46	150.0	± 9.6 %
		Y	4.97	67.59	16.83		150.0	
		Z	5.05	67.80	17.01		150.0	
10568-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	X	5.02	67.27	16.53	0.46	150.0	± 9.6 %
		Y	4.88	67.07	16.31		150.0	
		Z	4.96	67.28	16.51		150.0	
10569-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	X	5.06	67.84	17.07	0.46	150.0	± 9.6 %
		Y	4.94	67.69	16.90		150.0	
		Z	5.00	67.86	17.05		150.0	
10570-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	X	5.11	67.72	17.03	0.46	150.0	± 9.6 %
		Y	4.97	67.55	16.84		150.0	
		Z	5.04	67.73	17.00		150.0	
10571-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.39	66.70	16.84	0.46	130.0	± 9.6 %
		Y	1.33	65.45	15.80		130.0	
		Z	1.37	66.55	16.71		130.0	
10572-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.41	67.41	17.24	0.46	130.0	± 9.6 %
		Y	1.35	66.01	16.13		130.0	
		Z	1.39	67.24	17.10		130.0	
10573-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	17.86	118.22	32.58	0.46	130.0	± 9.6 %
		Y	2.34	83.74	21.98		130.0	
		Z	13.50	113.87	31.46		130.0	
10574-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.77	75.13	20.80	0.46	130.0	± 9.6 %
		Y	1.51	71.37	18.69		130.0	
		Z	1.72	74.72	20.59		130.0	

10575-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	X	4.83	67.01	16.69	0.46	130.0	± 9.6 %
		Y	4.72	66.86	16.48		130.0	
		Z	4.77	67.03	16.66		130.0	
10576-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	X	4.85	67.15	16.75	0.46	130.0	± 9.6 %
		Y	4.74	67.02	16.54		130.0	
		Z	4.80	67.18	16.72		130.0	
10577-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	X	5.08	67.47	16.92	0.46	130.0	± 9.6 %
		Y	4.93	67.29	16.70		130.0	
		Z	5.01	67.47	16.88		130.0	
10578-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	X	4.97	67.63	17.01	0.46	130.0	± 9.6 %
		Y	4.83	67.43	16.79		130.0	
		Z	4.90	67.62	16.97		130.0	
10579-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	X	4.76	67.06	16.43	0.46	130.0	± 9.6 %
		Y	4.61	66.79	16.15		130.0	
		Z	4.69	67.03	16.37		130.0	
10580-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.05	16.43	0.46	130.0	± 9.6 %
		Y	4.66	66.84	16.18		130.0	
		Z	4.74	67.05	16.39		130.0	
10581-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	X	4.88	67.70	16.97	0.46	130.0	± 9.6 %
		Y	4.74	67.49	16.74		130.0	
		Z	4.81	67.69	16.93		130.0	
10582-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	X	4.72	66.85	16.24	0.46	130.0	± 9.6 %
		Y	4.56	66.57	15.96		130.0	
		Z	4.64	66.82	16.19		130.0	
10583-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.83	67.01	16.69	0.46	130.0	± 9.6 %
		Y	4.72	66.86	16.48		130.0	
		Z	4.77	67.03	16.66		130.0	
10584-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.85	67.15	16.75	0.46	130.0	± 9.6 %
		Y	4.74	67.02	16.54		130.0	
		Z	4.80	67.18	16.72		130.0	
10585-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.08	67.47	16.92	0.46	130.0	± 9.6 %
		Y	4.93	67.29	16.70		130.0	
		Z	5.01	67.47	16.88		130.0	
10586-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.97	67.63	17.01	0.46	130.0	± 9.6 %
		Y	4.83	67.43	16.79		130.0	
		Z	4.90	67.62	16.97		130.0	
10587-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.76	67.06	16.43	0.46	130.0	± 9.6 %
		Y	4.61	66.79	16.15		130.0	
		Z	4.69	67.03	16.37		130.0	
10588-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.05	16.43	0.46	130.0	± 9.6 %
		Y	4.66	66.84	16.18		130.0	
		Z	4.74	67.05	16.39		130.0	
10589-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.88	67.70	16.97	0.46	130.0	± 9.6 %
		Y	4.74	67.49	16.74		130.0	
		Z	4.81	67.69	16.93		130.0	
10590-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.72	66.85	16.24	0.46	130.0	± 9.6 %
		Y	4.56	66.57	15.96		130.0	
		Z	4.64	66.82	16.19		130.0	

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.98	67.04	16.77	0.46	130.0	± 9.6 %
		Y	4.86	66.91	16.58		130.0	
		Z	4.92	67.06	16.74		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.15	67.39	16.90	0.46	130.0	± 9.6 %
		Y	5.01	67.24	16.71		130.0	
		Z	5.08	67.40	16.87		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.08	67.35	16.81	0.46	130.0	± 9.6 %
		Y	4.93	67.15	16.59		130.0	
		Z	5.01	67.34	16.77		130.0	
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.13	67.48	16.94	0.46	130.0	± 9.6 %
		Y	4.99	67.31	16.74		130.0	
		Z	5.06	67.48	16.91		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.10	67.46	16.85	0.46	130.0	± 9.6 %
		Y	4.96	67.27	16.64		130.0	
		Z	5.03	67.45	16.82		130.0	
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.04	67.47	16.86	0.46	130.0	± 9.6 %
		Y	4.90	67.28	16.65		130.0	
		Z	4.97	67.47	16.83		130.0	
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.99	67.40	16.77	0.46	130.0	± 9.6 %
		Y	4.85	67.18	16.53		130.0	
		Z	4.92	67.39	16.72		130.0	
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.97	67.62	17.01	0.46	130.0	± 9.6 %
		Y	4.82	67.38	16.77		130.0	
		Z	4.90	67.59	16.96		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.65	67.64	16.98	0.46	130.0	± 9.6 %
		Y	5.54	67.48	16.82		130.0	
		Z	5.58	67.60	16.93		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.85	68.26	17.26	0.46	130.0	± 9.6 %
		Y	5.70	67.97	17.04		130.0	
		Z	5.76	68.15	17.19		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.70	67.89	17.09	0.46	130.0	± 9.6 %
		Y	5.57	67.66	16.90		130.0	
		Z	5.63	67.83	17.04		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.79	67.89	17.01	0.46	130.0	± 9.6 %
		Y	5.68	67.74	16.86		130.0	
		Z	5.72	67.84	16.97		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.87	68.15	17.26	0.46	130.0	± 9.6 %
		Y	5.74	67.98	17.11		130.0	
		Z	5.80	68.14	17.24		130.0	
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.65	67.60	16.98	0.46	130.0	± 9.6 %
		Y	5.56	67.48	16.84		130.0	
		Z	5.59	67.56	16.94		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.77	67.94	17.16	0.46	130.0	± 9.6 %
		Y	5.67	67.84	17.03		130.0	
		Z	5.71	67.95	17.14		130.0	
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.53	67.39	16.75	0.46	130.0	± 9.6 %
		Y	5.40	67.10	16.52		130.0	
		Z	5.48	67.37	16.72		130.0	

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.81	66.34	16.38	0.46	130.0	± 9.6 %
		Y	4.69	66.20	16.18		130.0	
		Z	4.75	66.36	16.35		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.02	66.77	16.55	0.46	130.0	± 9.6 %
		Y	4.87	66.59	16.35		130.0	
		Z	4.95	66.78	16.52		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.91	66.65	16.41	0.46	130.0	± 9.6 %
		Y	4.77	66.44	16.19		130.0	
		Z	4.84	66.66	16.38		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.96	66.80	16.56	0.46	130.0	± 9.6 %
		Y	4.81	66.59	16.34		130.0	
		Z	4.89	66.80	16.53		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.88	66.63	16.43	0.46	130.0	± 9.6 %
		Y	4.73	66.41	16.20		130.0	
		Z	4.81	66.62	16.39		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.90	66.81	16.48	0.46	130.0	± 9.6 %
		Y	4.74	66.57	16.25		130.0	
		Z	4.83	66.80	16.45		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.91	66.73	16.39	0.46	130.0	± 9.6 %
		Y	4.75	66.46	16.13		130.0	
		Z	4.84	66.71	16.35		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.84	66.87	16.58	0.46	130.0	± 9.6 %
		Y	4.69	66.61	16.34		130.0	
		Z	4.77	66.85	16.54		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.89	66.48	16.23	0.46	130.0	± 9.6 %
		Y	4.74	66.27	16.00		130.0	
		Z	4.82	66.49	16.20		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.46	66.88	16.57	0.46	130.0	± 9.6 %
		Y	5.34	66.66	16.39		130.0	
		Z	5.40	66.85	16.54		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.52	66.98	16.59	0.46	130.0	± 9.6 %
		Y	5.42	66.88	16.47		130.0	
		Z	5.47	67.02	16.59		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.41	67.06	16.64	0.46	130.0	± 9.6 %
		Y	5.30	66.85	16.47		130.0	
		Z	5.36	67.04	16.62		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.44	66.90	16.51	0.46	130.0	± 9.6 %
		Y	5.32	66.68	16.33		130.0	
		Z	5.39	66.89	16.49		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.55	67.00	16.60	0.46	130.0	± 9.6 %
		Y	5.40	66.71	16.39		130.0	
		Z	5.48	66.93	16.56		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.52	67.01	16.72	0.46	130.0	± 9.6 %
		Y	5.40	66.82	16.56		130.0	
		Z	5.46	66.98	16.68		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.53	67.15	16.78	0.46	130.0	± 9.6 %
		Y	5.42	67.00	16.64		130.0	
		Z	5.48	67.17	16.77		130.0	

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.41	66.75	16.47	0.46	130.0	± 9.6 %
		Y	5.30	66.54	16.29		130.0	
		Z	5.35	66.72	16.44		130.0	
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.61	66.93	16.62	0.46	130.0	± 9.6 %
		Y	5.49	66.73	16.44		130.0	
		Z	5.55	66.91	16.59		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.05	68.10	17.25	0.46	130.0	± 9.6 %
		Y	5.85	67.71	16.99		130.0	
		Z	5.97	68.05	17.21		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.72	66.89	16.50	0.46	130.0	± 9.6 %
		Y	5.64	66.72	16.35		130.0	
		Z	5.68	66.89	16.48		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.99	67.50	16.75	0.46	130.0	± 9.6 %
		Y	5.90	67.35	16.63		130.0	
		Z	5.94	67.50	16.74		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.79	67.09	16.50	0.46	130.0	± 9.6 %
		Y	5.68	66.83	16.30		130.0	
		Z	5.74	67.05	16.46		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.87	67.15	16.51	0.46	130.0	± 9.6 %
		Y	5.75	66.88	16.33		130.0	
		Z	5.83	67.14	16.50		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.49	69.16	17.52	0.46	130.0	± 9.6 %
		Y	6.25	68.55	17.16		130.0	
		Z	6.37	68.94	17.40		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.29	68.65	17.44	0.46	130.0	± 9.6 %
		Y	6.08	68.13	17.13		130.0	
		Z	6.18	68.47	17.34		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.95	67.50	16.88	0.46	130.0	± 9.6 %
		Y	5.86	67.37	16.77		130.0	
		Z	5.90	67.49	16.86		130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.87	67.29	16.61	0.46	130.0	± 9.6 %
		Y	5.73	66.94	16.39		130.0	
		Z	5.79	67.18	16.55		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.84	67.25	16.65	0.46	130.0	± 9.6 %
		Y	5.71	66.97	16.46		130.0	
		Z	5.78	67.19	16.61		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.75	66.69	16.14	0.46	130.0	± 9.6 %
		Y	5.60	66.37	15.91		130.0	
		Z	5.68	66.62	16.09		130.0	
10636- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.14	67.29	16.60	0.46	130.0	± 9.6 %
		Y	6.06	67.09	16.44		130.0	
		Z	6.10	67.27	16.57		130.0	
10637- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.31	67.70	16.78	0.46	130.0	± 9.6 %
		Y	6.22	67.50	16.63		130.0	
		Z	6.26	67.67	16.75		130.0	
10638- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.31	67.67	16.74	0.46	130.0	± 9.6 %
		Y	6.22	67.47	16.59		130.0	
		Z	6.26	67.64	16.72		130.0	

10639-AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.30	67.66	16.78	0.46	130.0	± 9.6 %
		Y	6.19	67.39	16.60		130.0	
		Z	6.24	67.60	16.74		130.0	
10640-AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.34	67.77	16.79	0.46	130.0	± 9.6 %
		Y	6.20	67.42	16.56		130.0	
		Z	6.26	67.67	16.72		130.0	
10641-AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.33	67.50	16.67	0.46	130.0	± 9.6 %
		Y	6.25	67.35	16.55		130.0	
		Z	6.28	67.49	16.65		130.0	
10642-AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.38	67.78	16.96	0.46	130.0	± 9.6 %
		Y	6.27	67.54	16.79		130.0	
		Z	6.33	67.73	16.92		130.0	
10643-AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.22	67.51	16.74	0.46	130.0	± 9.6 %
		Y	6.13	67.28	16.57		130.0	
		Z	6.17	67.47	16.71		130.0	
10644-AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.46	68.22	17.12	0.46	130.0	± 9.6 %
		Y	6.27	67.74	16.82		130.0	
		Z	6.37	68.08	17.03		130.0	
10645-AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.88	69.00	17.46	0.46	130.0	± 9.6 %
		Y	6.56	68.23	17.03		130.0	
		Z	6.86	69.09	17.50		130.0	
10646-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	55.84	128.26	42.12	9.30	60.0	± 9.6 %
		Y	48.28	126.15	41.74		60.0	
		Z	91.89	141.52	45.79		60.0	
10647-AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	59.48	130.69	42.94	9.30	60.0	± 9.6 %
		Y	48.76	127.37	42.25		60.0	
		Z	96.39	143.74	46.54		60.0	
10648-AAA	CDMA2000 (1x Advanced)	X	0.85	65.67	12.63	0.00	150.0	± 9.6 %
		Y	0.68	63.11	10.41		150.0	
		Z	0.79	65.13	12.03		150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **ES3-3118 Mar17**

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3118
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	March 16, 2017
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.	
Calibration Equipment used (M&TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:	Name	Function	Signature
Calibrated by:	Leif Klysn	Laboratory Technician	
Approved by:	Kaija Pokovic	Technical Manager	
Issued: March 16, 2017			

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z$: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from Isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3118

Manufactured: March 6, 2006
Calibrated: March 16, 2017

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3118

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.14	1.06	1.20	$\pm 10.1\%$
DCP (mV) ^B	103.8	103.0	102.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	205.1	$\pm 3.3\%$
		Y	0.0	0.0	1.0		211.6	
		Z	0.0	0.0	1.0		212.5	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V^{-1}	T1 $\text{ms} \cdot \text{V}^{-2}$	T2 $\text{ms} \cdot \text{V}^{-1}$	T3 ms	T4 V^{-2}	T5 V^{-1}	T6
X	67.21	478.9	35.18	29.88	3.56	5.1	1.185	0.52	1.012
Y	63.79	445.1	33.78	66.39	3.793	5.1	0.897	0.551	1.006
Z	68.63	494.3	35.57	66.5	4.839	5.1	0.454	0.78	1.012

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3118

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.44	6.44	6.44	0.47	1.69	± 12.0 %
835	41.5	0.90	6.32	6.32	6.32	0.80	1.15	± 12.0 %
1750	40.1	1.37	5.21	5.21	5.21	0.80	1.16	± 12.0 %
1900	40.0	1.40	5.05	5.05	5.05	0.74	1.18	± 12.0 %
2300	39.5	1.67	4.73	4.73	4.73	0.80	1.15	± 12.0 %
2450	39.2	1.80	4.37	4.37	4.37	0.54	1.53	± 12.0 %
2600	39.0	1.96	4.35	4.35	4.35	0.80	1.28	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

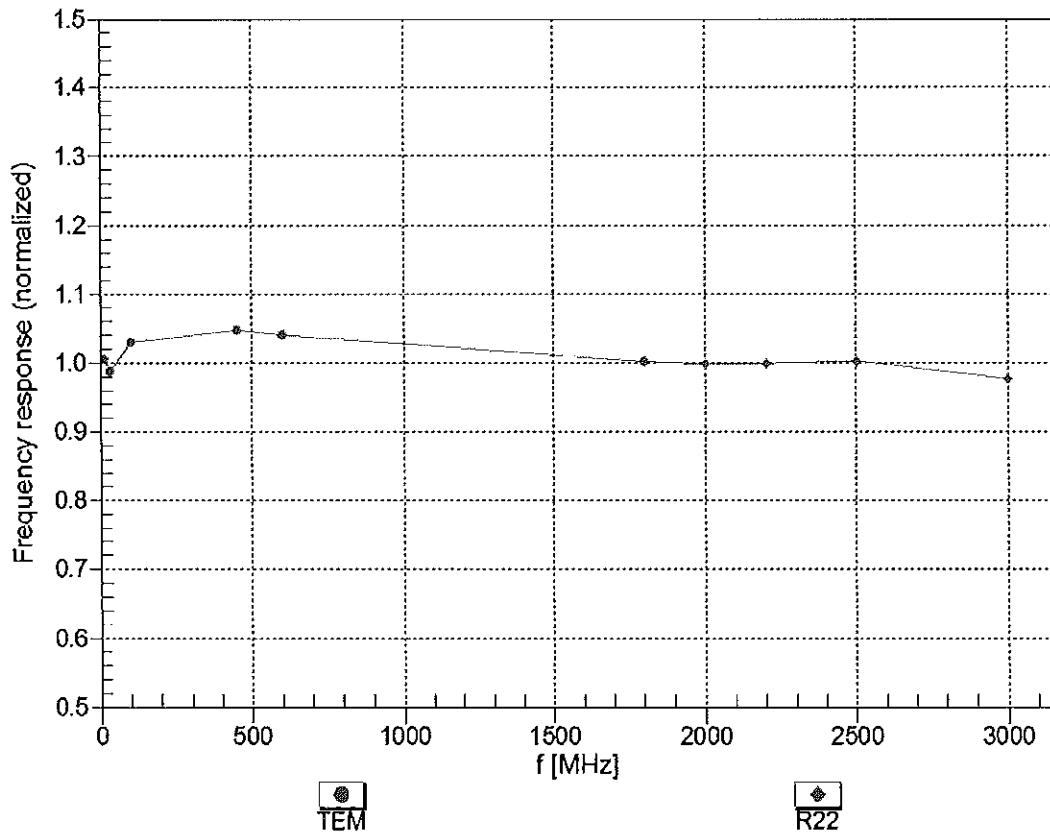
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3118

Calibration Parameter Determined in Body Tissue Simulating Media

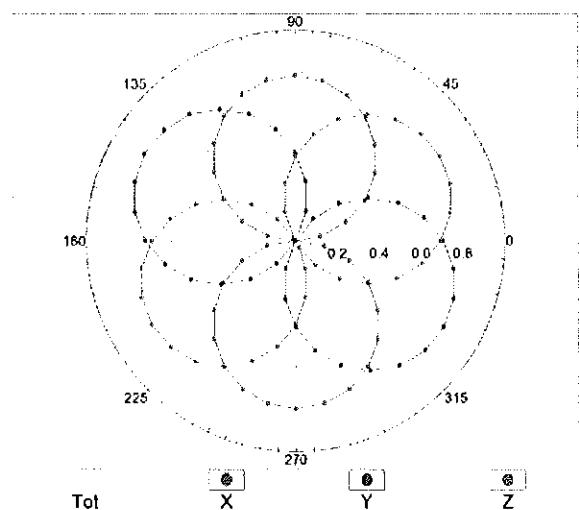
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.18	6.18	6.18	0.62	1.32	± 12.0 %
835	55.2	0.97	6.15	6.15	6.15	0.80	1.15	± 12.0 %
1750	53.4	1.49	4.82	4.82	4.82	0.51	1.52	± 12.0 %
1900	53.3	1.52	4.64	4.64	4.64	0.80	1.22	± 12.0 %
2300	52.9	1.81	4.43	4.43	4.43	0.79	1.23	± 12.0 %
2450	52.7	1.95	4.29	4.29	4.29	0.79	1.13	± 12.0 %
2600	52.5	2.16	4.10	4.10	4.10	0.80	1.06	± 12.0 %

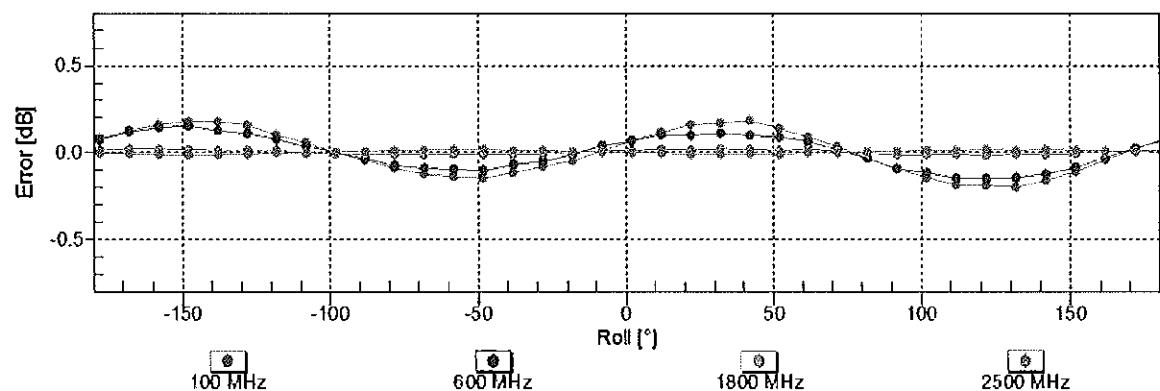
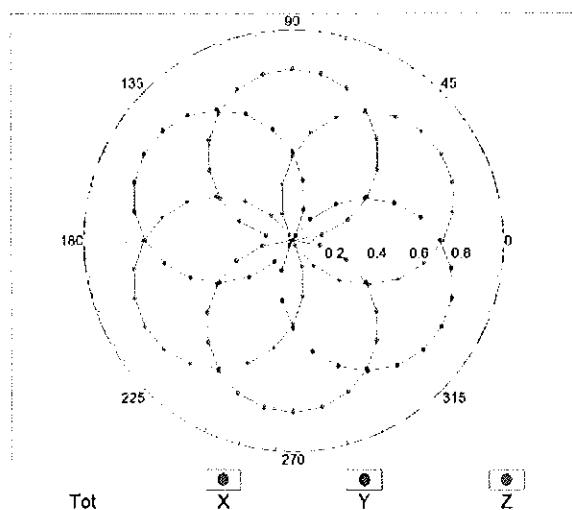

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

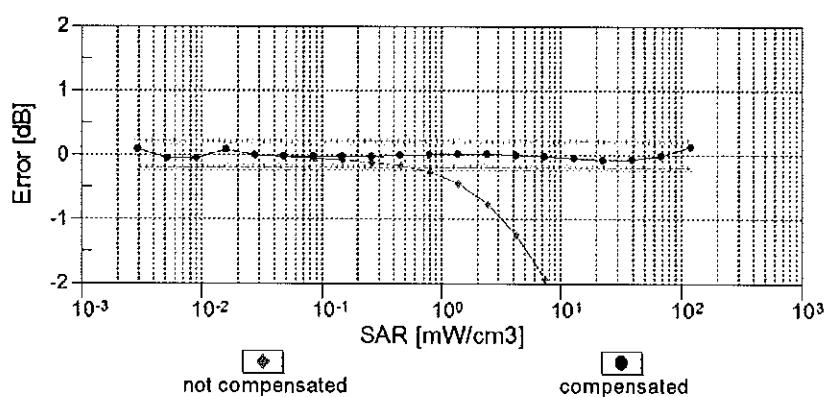
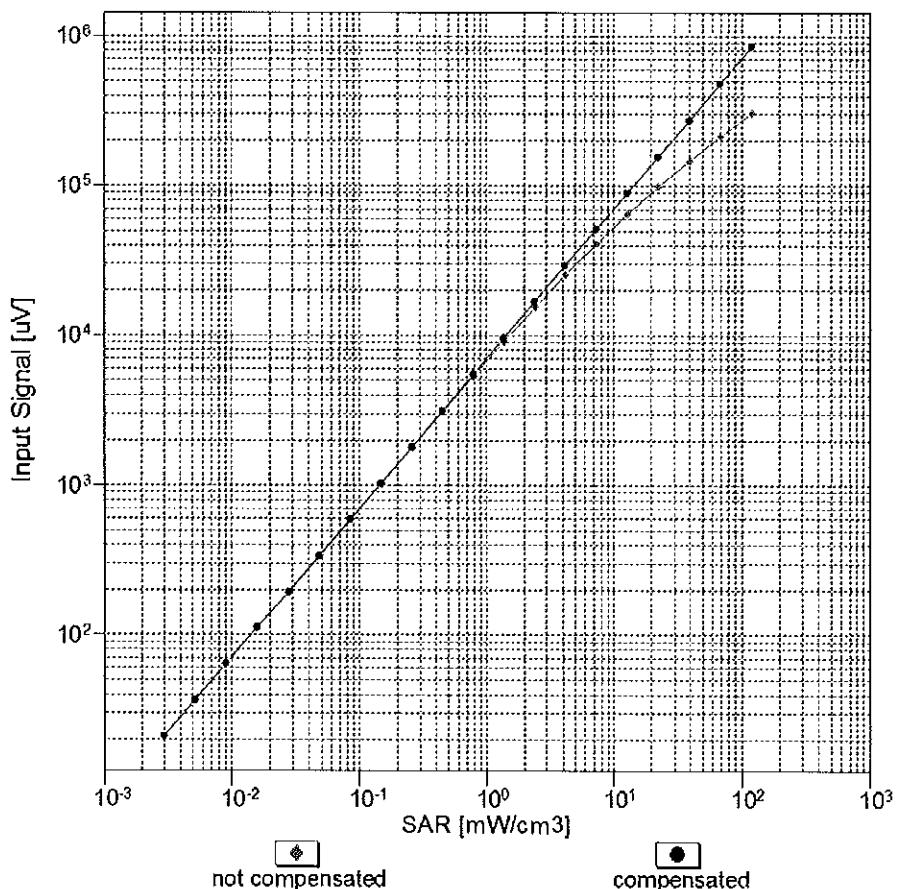
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3.6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

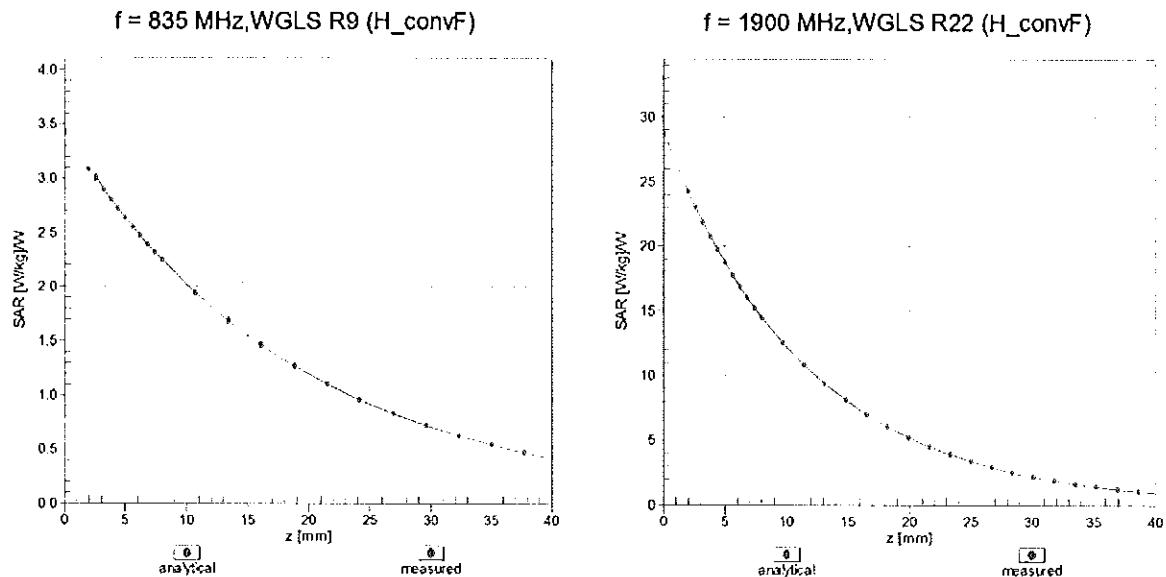

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

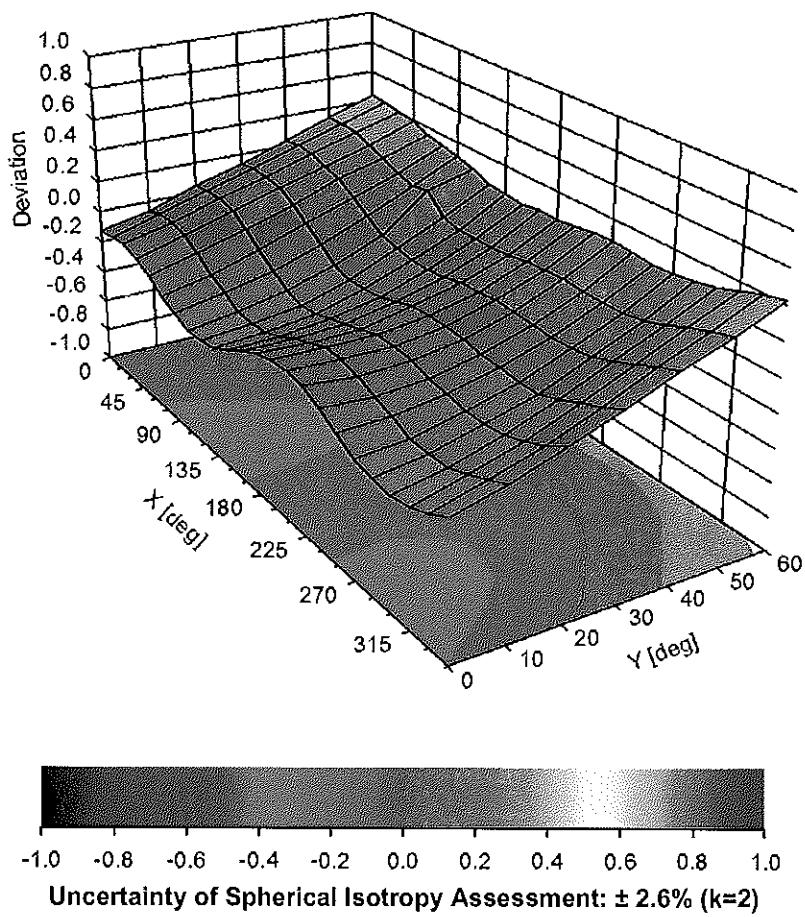
Receiving Pattern (ϕ), $\theta = 0^\circ$



f=600 MHz, TEM

f=1800 MHz, R22


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range $f(\text{SAR}_{\text{head}})$ (TEM cell, $f_{\text{eval}} = 1900 \text{ MHz}$)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900$ MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3118

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	61.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	205.1	$\pm 3.3\%$
		Y	0.00	0.00	1.00		211.6	
		Z	0.00	0.00	1.00		212.5	
10010-CAA	SAR Validation (Square, 100ms, 10ms)	X	10.75	83.41	21.41	10.00	25.0	$\pm 9.6\%$
		Y	12.46	83.59	22.04		25.0	
		Z	9.64	78.02	19.68		25.0	
10011-CAB	UMTS-FDD (WCDMA)	X	1.37	72.13	18.20	0.00	150.0	$\pm 9.6\%$
		Y	1.28	68.27	16.41		150.0	
		Z	1.04	66.35	14.62		150.0	
10012-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.41	66.61	17.11	0.41	150.0	$\pm 9.6\%$
		Y	1.64	66.45	16.62		150.0	
		Z	1.46	65.57	15.75		150.0	
10013-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	X	5.28	67.47	17.68	1.46	150.0	$\pm 9.6\%$
		Y	5.49	67.81	17.76		150.0	
		Z	5.40	67.51	17.52		150.0	
10021-DAC	GSM-FDD (TDMA, GMSK)	X	19.51	95.39	27.23	9.39	50.0	$\pm 9.6\%$
		Y	14.27	86.87	24.55		50.0	
		Z	11.42	81.67	22.49		50.0	
10023-DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	17.80	93.62	26.70	9.57	50.0	$\pm 9.6\%$
		Y	13.99	86.40	24.44		50.0	
		Z	11.34	81.41	22.45		50.0	
10024-DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	121.80	32.70	6.56	60.0	$\pm 9.6\%$
		Y	18.65	92.25	24.92		60.0	
		Z	11.57	83.36	21.64		60.0	
10025-DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	15.37	97.18	36.62	12.57	50.0	$\pm 9.6\%$
		Y	24.51	107.35	40.10		50.0	
		Z	16.37	93.02	33.77		50.0	
10026-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	16.90	97.93	33.68	9.56	60.0	$\pm 9.6\%$
		Y	21.75	100.71	34.30		60.0	
		Z	16.91	92.92	30.91		60.0	
10027-DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	120.93	31.26	4.80	80.0	$\pm 9.6\%$
		Y	38.85	104.31	27.52		80.0	
		Z	14.01	87.57	22.11		80.0	
10028-DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	121.57	30.67	3.55	100.0	$\pm 9.6\%$
		Y	100.00	118.64	30.39		100.0	
		Z	22.07	95.10	23.62		100.0	
10029-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	12.75	92.29	30.67	7.80	80.0	$\pm 9.6\%$
		Y	17.17	95.60	31.43		80.0	
		Z	14.13	89.76	28.74		80.0	
10030-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	120.48	31.43	5.30	70.0	$\pm 9.6\%$
		Y	23.11	95.85	25.35		70.0	
		Z	11.76	84.26	21.26		70.0	
10031-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	125.13	30.54	1.88	100.0	$\pm 9.6\%$
		Y	100.00	121.48	30.18		100.0	
		Z	39.33	104.49	24.75		100.0	

10032-CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	133.10	32.69	1.17	100.0	± 9.6 %
		Y	100.00	127.62	31.86		100.0	
		Z	68.88	113.84	26.34		100.0	
10033-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	18.36	97.92	27.86	5.30	70.0	± 9.6 %
		Y	14.14	89.60	24.91		70.0	
		Z	10.57	83.48	22.38		70.0	
10034-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	12.87	96.87	26.18	1.88	100.0	± 9.6 %
		Y	8.90	87.11	22.76		100.0	
		Z	6.46	81.24	20.12		100.0	
10035-CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	7.14	89.71	23.77	1.17	100.0	± 9.6 %
		Y	6.03	83.32	21.31		100.0	
		Z	4.51	78.18	18.76		100.0	
10036-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	21.94	101.20	28.91	5.30	70.0	± 9.6 %
		Y	15.24	91.00	25.42		70.0	
		Z	11.16	84.51	22.80		70.0	
10037-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	12.38	96.29	25.96	1.88	100.0	± 9.6 %
		Y	8.73	86.83	22.64		100.0	
		Z	6.32	80.95	19.98		100.0	
10038-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	7.56	90.88	24.24	1.17	100.0	± 9.6 %
		Y	6.19	83.89	21.58		100.0	
		Z	4.65	78.77	19.03		100.0	
10039-CAB	CDMA2000 (1xRTT, RC1)	X	3.02	79.03	19.94	0.00	150.0	± 9.6 %
		Y	2.21	72.80	17.58		150.0	
		Z	1.81	69.99	15.63		150.0	
10042-CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	X	53.56	110.76	29.97	7.78	50.0	± 9.6 %
		Y	17.52	90.32	24.39		50.0	
		Z	11.47	82.15	21.29		50.0	
10044-CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	115.97	3.26	0.00	150.0	± 9.6 %
		Y	0.13	60.00	16.34		150.0	
		Z	0.01	90.84	0.16		150.0	
10048-CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	11.58	83.11	24.80	13.80	25.0	± 9.6 %
		Y	13.18	83.79	25.42		25.0	
		Z	11.24	79.05	23.49		25.0	
10049-CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	13.46	87.81	25.15	10.79	40.0	± 9.6 %
		Y	13.23	84.85	24.32		40.0	
		Z	11.34	80.73	22.66		40.0	
10056-CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	12.72	86.99	25.13	9.03	50.0	± 9.6 %
		Y	13.56	85.64	24.68		50.0	
		Z	11.45	81.24	22.75		50.0	
10058-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	10.00	88.01	28.45	6.55	100.0	± 9.6 %
		Y	13.96	91.79	29.37		100.0	
		Z	12.06	87.43	27.22		100.0	
10059-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.65	69.30	18.38	0.61	110.0	± 9.6 %
		Y	1.96	69.16	17.83		110.0	
		Z	1.77	68.18	16.87		110.0	
10060-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	134.77	35.56	1.30	110.0	± 9.6 %
		Y	37.14	113.96	30.37		110.0	
		Z	13.16	95.63	24.23		110.0	

10061-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	16.58	104.92	30.08	2.04	110.0	± 9.6 %
		Y	11.53	93.53	26.02		110.0	
		Z	8.68	87.56	23.36		110.0	
10062-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	5.00	67.26	17.00	0.49	100.0	± 9.6 %
		Y	5.14	67.39	16.95		100.0	
		Z	5.03	67.03	16.70		100.0	
10063-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	5.05	67.44	17.15	0.72	100.0	± 9.6 %
		Y	5.20	67.61	17.13		100.0	
		Z	5.09	67.26	16.87		100.0	
10064-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.40	67.78	17.40	0.86	100.0	± 9.6 %
		Y	5.55	67.95	17.39		100.0	
		Z	5.46	67.63	17.16		100.0	
10065-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.31	67.84	17.58	1.21	100.0	± 9.6 %
		Y	5.49	68.10	17.62		100.0	
		Z	5.40	67.79	17.38		100.0	
10066-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.37	67.98	17.81	1.46	100.0	± 9.6 %
		Y	5.58	68.31	17.89		100.0	
		Z	5.50	68.04	17.66		100.0	
10067-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.69	68.09	18.24	2.04	100.0	± 9.6 %
		Y	5.93	68.53	18.39		100.0	
		Z	5.86	68.26	18.16		100.0	
10068-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.86	68.52	18.63	2.55	100.0	± 9.6 %
		Y	6.14	69.09	18.86		100.0	
		Z	6.09	68.86	18.63		100.0	
10069-CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.93	68.39	18.78	2.67	100.0	± 9.6 %
		Y	6.21	69.01	19.04		100.0	
		Z	6.16	68.75	18.80		100.0	
10071-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.44	67.72	18.06	1.99	100.0	± 9.6 %
		Y	5.68	68.18	18.21		100.0	
		Z	5.60	67.91	17.98		100.0	
10072-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.53	68.34	18.41	2.30	100.0	± 9.6 %
		Y	5.82	68.92	18.62		100.0	
		Z	5.76	68.66	18.38		100.0	
10073-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.68	68.72	18.84	2.83	100.0	± 9.6 %
		Y	6.04	69.49	19.16		100.0	
		Z	5.99	69.24	18.90		100.0	
10074-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.72	68.82	19.12	3.30	100.0	± 9.6 %
		Y	6.15	69.79	19.53		100.0	
		Z	6.12	69.57	19.28		100.0	
10075-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.92	69.41	19.66	3.82	90.0	± 9.6 %
		Y	6.43	70.59	20.19		90.0	
		Z	6.42	70.40	19.92		90.0	
10076-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.92	69.17	19.75	4.15	90.0	± 9.6 %
		Y	6.47	70.50	20.37		90.0	
		Z	6.46	70.31	20.09		90.0	
10077-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.96	69.26	19.85	4.30	90.0	± 9.6 %
		Y	6.53	70.65	20.50		90.0	
		Z	6.53	70.46	20.22		90.0	

10081-CAB	CDMA2000 (1xRTT, RC3)	X	1.37	72.47	17.09	0.00	150.0	± 9.6 %
		Y	1.22	68.34	15.47		150.0	
		Z	0.94	65.54	13.12		150.0	
10082-CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	X	2.70	65.98	10.56	4.77	80.0	± 9.6 %
		Y	4.37	68.93	12.79		80.0	
		Z	3.83	66.65	11.45		80.0	
10090-DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	121.89	32.76	6.56	60.0	± 9.6 %
		Y	18.35	91.99	24.87		60.0	
		Z	11.52	83.28	21.64		60.0	
10097-CAB	UMTS-FDD (HSDPA)	X	2.06	69.44	17.14	0.00	150.0	± 9.6 %
		Y	2.05	67.86	16.27		150.0	
		Z	1.83	66.67	15.28		150.0	
10098-CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.02	69.45	17.13	0.00	150.0	± 9.6 %
		Y	2.02	67.84	16.26		150.0	
		Z	1.79	66.62	15.23		150.0	
10099-DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	16.84	97.79	33.63	9.56	60.0	± 9.6 %
		Y	21.58	100.49	34.22		60.0	
		Z	16.84	92.79	30.86		60.0	
10100-CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.67	72.72	17.92	0.00	150.0	± 9.6 %
		Y	3.51	71.20	17.27		150.0	
		Z	3.24	70.03	16.35		150.0	
10101-CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.55	68.77	16.70	0.00	150.0	± 9.6 %
		Y	3.58	68.24	16.39		150.0	
		Z	3.40	67.57	15.83		150.0	
10102-CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.64	68.62	16.74	0.00	150.0	± 9.6 %
		Y	3.68	68.13	16.43		150.0	
		Z	3.50	67.51	15.92		150.0	
10103-CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.96	78.35	21.47	3.98	65.0	± 9.6 %
		Y	10.06	78.03	21.05		65.0	
		Z	9.25	76.26	20.14		65.0	
10104-CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.88	77.00	21.74	3.98	65.0	± 9.6 %
		Y	10.21	77.45	21.62		65.0	
		Z	9.77	76.36	21.01		65.0	
10105-CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.08	75.07	21.18	3.98	65.0	± 9.6 %
		Y	9.46	75.92	21.20		65.0	
		Z	8.87	74.47	20.43		65.0	
10108-CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.24	71.85	17.75	0.00	150.0	± 9.6 %
		Y	3.11	70.31	17.06		150.0	
		Z	2.88	69.23	16.17		150.0	
10109-CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.22	68.65	16.71	0.00	150.0	± 9.6 %
		Y	3.25	67.99	16.32		150.0	
		Z	3.07	67.30	15.74		150.0	
10110-CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.67	70.93	17.52	0.00	150.0	± 9.6 %
		Y	2.59	69.32	16.75		150.0	
		Z	2.37	68.22	15.82		150.0	
10111-CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.95	69.43	17.18	0.00	150.0	± 9.6 %
		Y	2.93	68.36	16.55		150.0	
		Z	2.74	67.58	15.92		150.0	

10112-CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.34	68.49	16.70	0.00	150.0	± 9.6 %
		Y	3.36	67.90	16.33		150.0	
		Z	3.19	67.25	15.79		150.0	
10113-CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.10	69.39	17.22	0.00	150.0	± 9.6 %
		Y	3.08	68.40	16.62		150.0	
		Z	2.90	67.68	16.04		150.0	
10114-CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.34	67.61	16.73	0.00	150.0	± 9.6 %
		Y	5.43	67.60	16.63		150.0	
		Z	5.30	67.22	16.37		150.0	
10115-CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.73	67.94	16.89	0.00	150.0	± 9.6 %
		Y	5.80	67.90	16.78		150.0	
		Z	5.70	67.60	16.57		150.0	
10116-CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.48	67.88	16.79	0.00	150.0	± 9.6 %
		Y	5.56	67.85	16.69		150.0	
		Z	5.43	67.48	16.42		150.0	
10117-CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.35	67.64	16.77	0.00	150.0	± 9.6 %
		Y	5.43	67.62	16.66		150.0	
		Z	5.31	67.25	16.41		150.0	
10118-CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	X	5.77	67.99	16.92	0.00	150.0	± 9.6 %
		Y	5.86	68.03	16.86		150.0	
		Z	5.73	67.62	16.59		150.0	
10119-CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	X	5.45	67.85	16.78	0.00	150.0	± 9.6 %
		Y	5.53	67.80	16.67		150.0	
		Z	5.40	67.44	16.42		150.0	
10140-CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.69	68.61	16.66	0.00	150.0	± 9.6 %
		Y	3.73	68.15	16.37		150.0	
		Z	3.55	67.52	15.86		150.0	
10141-CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.81	68.60	16.77	0.00	150.0	± 9.6 %
		Y	3.84	68.16	16.48		150.0	
		Z	3.67	67.56	16.00		150.0	
10142-CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.47	71.12	17.52	0.00	150.0	± 9.6 %
		Y	2.37	69.24	16.62		150.0	
		Z	2.14	67.99	15.59		150.0	
10143-CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.88	70.49	17.32	0.00	150.0	± 9.6 %
		Y	2.80	69.01	16.54		150.0	
		Z	2.60	68.02	15.77		150.0	
10144-CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.66	68.28	15.82	0.00	150.0	± 9.6 %
		Y	2.67	67.55	15.42		150.0	
		Z	2.47	66.51	14.62		150.0	
10145-CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.96	71.01	16.29	0.00	150.0	± 9.6 %
		Y	1.82	68.54	15.27		150.0	
		Z	1.54	66.43	13.67		150.0	
10146-CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	6.66	83.06	20.58	0.00	150.0	± 9.6 %
		Y	3.32	71.89	15.93		150.0	
		Z	3.53	72.87	16.47		150.0	
10147-CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	11.12	90.94	23.41	0.00	150.0	± 9.6 %
		Y	3.84	74.07	17.02		150.0	
		Z	4.27	75.74	17.84		150.0	

10149-CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.23	68.71	16.75	0.00	150.0	± 9.6 %
		Y	3.25	68.04	16.35		150.0	
		Z	3.08	67.35	15.78		150.0	
10150-CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.34	68.54	16.74	0.00	150.0	± 9.6 %
		Y	3.37	67.94	16.36		150.0	
		Z	3.20	67.29	15.82		150.0	
10151-CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.43	80.42	22.41	3.98	65.0	± 9.6 %
		Y	10.27	79.32	21.65		65.0	
		Z	9.57	77.74	20.81		65.0	
10152-CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.54	77.24	21.67	3.98	65.0	± 9.6 %
		Y	9.90	77.66	21.52		65.0	
		Z	9.41	76.44	20.85		65.0	
10153-CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.87	77.88	22.26	3.98	65.0	± 9.6 %
		Y	10.21	78.18	22.01		65.0	
		Z	9.74	77.02	21.39		65.0	
10154-CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.75	71.54	17.87	0.00	150.0	± 9.6 %
		Y	2.64	69.67	16.98		150.0	
		Z	2.42	68.63	16.08		150.0	
10155-CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.94	69.42	17.18	0.00	150.0	± 9.6 %
		Y	2.93	68.36	16.56		150.0	
		Z	2.74	67.58	15.92		150.0	
10156-CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.37	71.78	17.73	0.00	150.0	± 9.6 %
		Y	2.23	69.46	16.65		150.0	
		Z	2.00	68.10	15.54		150.0	
10157-CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.55	69.32	16.22	0.00	150.0	± 9.6 %
		Y	2.52	68.18	15.65		150.0	
		Z	2.29	66.94	14.71		150.0	
10158-CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.10	69.45	17.26	0.00	150.0	± 9.6 %
		Y	3.08	68.44	16.66		150.0	
		Z	2.91	67.72	16.08		150.0	
10159-CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.68	69.82	16.53	0.00	150.0	± 9.6 %
		Y	2.62	68.53	15.88		150.0	
		Z	2.40	67.33	14.98		150.0	
10160-CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.12	70.22	17.30	0.00	150.0	± 9.6 %
		Y	3.07	69.07	16.71		150.0	
		Z	2.88	68.26	16.01		150.0	
10161-CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.24	68.44	16.70	0.00	150.0	± 9.6 %
		Y	3.26	67.82	16.31		150.0	
		Z	3.09	67.15	15.76		150.0	
10162-CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.33	68.43	16.73	0.00	150.0	± 9.6 %
		Y	3.37	67.86	16.36		150.0	
		Z	3.19	67.19	15.83		150.0	
10166-CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.31	71.76	20.48	3.01	150.0	± 9.6 %
		Y	4.15	70.22	19.46		150.0	
		Z	4.18	70.34	19.52		150.0	
10167-CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.84	75.95	21.42	3.01	150.0	± 9.6 %
		Y	5.35	73.62	20.20		150.0	
		Z	5.43	73.52	20.11		150.0	

10168-CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	6.50	78.27	22.70	3.01	150.0	± 9.6 %
		Y	5.75	75.15	21.12		150.0	
		Z	5.87	75.23	21.14		150.0	
10169-CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.29	74.93	21.83	3.01	150.0	± 9.6 %
		Y	3.89	71.88	20.15		150.0	
		Z	4.04	72.39	20.30		150.0	
10170-CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	7.70	85.17	25.38	3.01	150.0	± 9.6 %
		Y	5.66	78.13	22.37		150.0	
		Z	5.97	78.56	22.45		150.0	
10171-AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	5.73	78.66	21.96	3.01	150.0	± 9.6 %
		Y	4.78	74.54	20.10		150.0	
		Z	4.93	74.44	19.94		150.0	
10172-CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	36.64	112.91	34.76	6.02	65.0	± 9.6 %
		Y	28.42	103.62	31.32		65.0	
		Z	21.49	97.28	29.14		65.0	
10173-CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	43.45	111.13	32.63	6.02	65.0	± 9.6 %
		Y	24.08	97.01	27.98		65.0	
		Z	19.08	92.00	26.28		65.0	
10174-CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	32.82	104.64	30.32	6.02	65.0	± 9.6 %
		Y	21.82	94.38	26.79		65.0	
		Z	17.47	89.65	25.17		65.0	
10175-CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.21	74.44	21.51	3.01	150.0	± 9.6 %
		Y	3.85	71.59	19.93		150.0	
		Z	3.98	72.02	20.05		150.0	
10176-CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	7.72	85.20	25.39	3.01	150.0	± 9.6 %
		Y	5.67	78.15	22.38		150.0	
		Z	5.98	78.58	22.46		150.0	
10177-CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.26	74.69	21.65	3.01	150.0	± 9.6 %
		Y	3.88	71.73	20.02		150.0	
		Z	4.02	72.20	20.15		150.0	
10178-CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	7.53	84.68	25.17	3.01	150.0	± 9.6 %
		Y	5.60	77.91	22.26		150.0	
		Z	5.89	78.28	22.31		150.0	
10179-CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	6.58	81.61	23.48	3.01	150.0	± 9.6 %
		Y	5.19	76.21	21.11		150.0	
		Z	5.39	76.31	21.04		150.0	
10180-CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	5.68	78.49	21.87	3.01	150.0	± 9.6 %
		Y	4.77	74.46	20.05		150.0	
		Z	4.91	74.34	19.87		150.0	
10181-CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.25	74.66	21.64	3.01	150.0	± 9.6 %
		Y	3.87	71.72	20.01		150.0	
		Z	4.01	72.19	20.15		150.0	
10182-CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	7.51	84.65	25.16	3.01	150.0	± 9.6 %
		Y	5.59	77.89	22.25		150.0	
		Z	5.88	78.25	22.30		150.0	
10183-AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	5.67	78.46	21.86	3.01	150.0	± 9.6 %
		Y	4.76	74.44	20.04		150.0	
		Z	4.90	74.31	19.86		150.0	

10184-CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	4.27	74.72	21.66	3.01	150.0	± 9.6 %
		Y	3.89	71.76	20.03		150.0	
		Z	4.02	72.23	20.17		150.0	
10185-CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	7.56	84.75	25.20	3.01	150.0	± 9.6 %
		Y	5.62	77.95	22.28		150.0	
		Z	5.91	78.32	22.34		150.0	
10186-AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	5.71	78.55	21.90	3.01	150.0	± 9.6 %
		Y	4.78	74.50	20.07		150.0	
		Z	4.92	74.38	19.89		150.0	
10187-CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	4.28	74.75	21.71	3.01	150.0	± 9.6 %
		Y	3.90	71.79	20.07		150.0	
		Z	4.03	72.26	20.21		150.0	
10188-CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	8.00	85.95	25.74	3.01	150.0	± 9.6 %
		Y	5.78	78.56	22.61		150.0	
		Z	6.12	79.04	22.71		150.0	
10189-AAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	5.91	79.25	22.27	3.01	150.0	± 9.6 %
		Y	4.88	74.90	20.32		150.0	
		Z	5.04	74.83	20.16		150.0	
10193-CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.77	67.02	16.54	0.00	150.0	± 9.6 %
		Y	4.86	67.01	16.43		150.0	
		Z	4.73	66.58	16.14		150.0	
10194-CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.98	67.41	16.65	0.00	150.0	± 9.6 %
		Y	5.06	67.39	16.54		150.0	
		Z	4.93	66.97	16.25		150.0	
10195-CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	5.02	67.41	16.65	0.00	150.0	± 9.6 %
		Y	5.10	67.39	16.54		150.0	
		Z	4.97	66.97	16.26		150.0	
10196-CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.79	67.14	16.58	0.00	150.0	± 9.6 %
		Y	4.88	67.11	16.46		150.0	
		Z	4.75	66.69	16.18		150.0	
10197-CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	X	4.99	67.43	16.66	0.00	150.0	± 9.6 %
		Y	5.08	67.41	16.55		150.0	
		Z	4.95	66.99	16.26		150.0	
10198-CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	X	5.02	67.42	16.66	0.00	150.0	± 9.6 %
		Y	5.11	67.41	16.55		150.0	
		Z	4.98	66.99	16.27		150.0	
10219-CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.75	67.16	16.55	0.00	150.0	± 9.6 %
		Y	4.83	67.13	16.43		150.0	
		Z	4.70	66.70	16.15		150.0	
10220-CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	X	4.99	67.43	16.66	0.00	150.0	± 9.6 %
		Y	5.08	67.40	16.55		150.0	
		Z	4.95	66.99	16.27		150.0	
10221-CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	X	5.03	67.36	16.65	0.00	150.0	± 9.6 %
		Y	5.12	67.35	16.54		150.0	
		Z	4.99	66.93	16.26		150.0	
10222-CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.33	67.67	16.77	0.00	150.0	± 9.6 %
		Y	5.42	67.64	16.67		150.0	
		Z	5.29	67.27	16.41		150.0	

10223-CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	X	5.72	68.01	16.96	0.00	150.0	± 9.6 %
		Y	5.79	67.97	16.85		150.0	
		Z	5.68	67.64	16.62		150.0	
10224-CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	X	5.39	67.79	16.76	0.00	150.0	± 9.6 %
		Y	5.47	67.76	16.65		150.0	
		Z	5.35	67.39	16.39		150.0	
10225-CAB	UMTS-FDD (HSPA+)	X	3.05	66.87	16.17	0.00	150.0	± 9.6 %
		Y	3.13	66.52	15.86		150.0	
		Z	2.96	65.90	15.39		150.0	
10226-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	46.23	112.42	33.06	6.02	65.0	± 9.6 %
		Y	24.70	97.54	28.20		65.0	
		Z	19.52	92.48	26.50		65.0	
10227-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	34.93	105.97	30.80	6.02	65.0	± 9.6 %
		Y	21.42	94.11	26.76		65.0	
		Z	17.54	89.81	25.29		65.0	
10228-CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	39.40	114.96	35.48	6.02	65.0	± 9.6 %
		Y	27.59	103.40	31.32		65.0	
		Z	21.87	98.05	29.48		65.0	
10229-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	43.44	111.11	32.63	6.02	65.0	± 9.6 %
		Y	24.06	96.98	27.98		65.0	
		Z	19.08	92.00	26.29		65.0	
10230-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	33.25	104.97	30.45	6.02	65.0	± 9.6 %
		Y	20.97	93.69	26.58		65.0	
		Z	17.20	89.41	25.10		65.0	
10231-CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	37.29	113.74	35.07	6.02	65.0	± 9.6 %
		Y	26.84	102.79	31.08		65.0	
		Z	21.30	97.48	29.25		65.0	
10232-CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	43.44	111.12	32.63	6.02	65.0	± 9.6 %
		Y	24.07	96.99	27.98		65.0	
		Z	19.08	92.00	26.29		65.0	
10233-CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	33.28	105.00	30.46	6.02	65.0	± 9.6 %
		Y	20.99	93.71	26.58		65.0	
		Z	17.20	89.43	25.11		65.0	
10234-CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	35.20	112.39	34.59	6.02	65.0	± 9.6 %
		Y	26.05	102.09	30.80		65.0	
		Z	20.72	96.84	28.97		65.0	
10235-CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	43.60	111.20	32.65	6.02	65.0	± 9.6 %
		Y	24.10	97.03	27.99		65.0	
		Z	19.10	92.03	26.30		65.0	
10236-CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	33.57	105.13	30.49	6.02	65.0	± 9.6 %
		Y	21.07	93.76	26.60		65.0	
		Z	17.26	89.47	25.12		65.0	
10237-CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	37.69	113.97	35.13	6.02	65.0	± 9.6 %
		Y	27.03	102.95	31.13		65.0	
		Z	21.41	97.59	29.28		65.0	
10238-CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	43.50	111.15	32.64	6.02	65.0	± 9.6 %
		Y	24.07	97.00	27.98		65.0	
		Z	19.08	92.01	26.29		65.0	

10239-CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	33.32	105.04	30.47	6.02	65.0	± 9.6 %
		Y	21.00	93.73	26.59		65.0	
		Z	17.20	89.44	25.11		65.0	
10240-CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	37.56	113.91	35.11	6.02	65.0	± 9.6 %
		Y	26.99	102.92	31.12		65.0	
		Z	21.38	97.57	29.27		65.0	
10241-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	13.62	87.92	28.13	6.98	65.0	± 9.6 %
		Y	16.21	89.46	28.27		65.0	
		Z	14.92	86.89	27.18		65.0	
10242-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	12.79	86.46	27.49	6.98	65.0	± 9.6 %
		Y	15.21	88.03	27.66		65.0	
		Z	13.65	84.88	26.31		65.0	
10243-CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	10.36	83.76	27.31	6.98	65.0	± 9.6 %
		Y	13.24	87.01	28.13		65.0	
		Z	11.84	83.73	26.64		65.0	
10244-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	11.25	83.40	22.86	3.98	65.0	± 9.6 %
		Y	10.68	79.41	20.74		65.0	
		Z	10.52	79.06	20.76		65.0	
10245-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	11.08	82.89	22.62	3.98	65.0	± 9.6 %
		Y	10.65	79.17	20.62		65.0	
		Z	10.50	78.84	20.64		65.0	
10246-CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	10.13	84.30	23.02	3.98	65.0	± 9.6 %
		Y	10.18	81.11	21.50		65.0	
		Z	9.09	78.85	20.43		65.0	
10247-CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	8.26	78.60	21.35	3.98	65.0	± 9.6 %
		Y	9.43	78.10	20.78		65.0	
		Z	8.84	76.70	20.08		65.0	
10248-CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	8.25	78.09	21.13	3.98	65.0	± 9.6 %
		Y	9.48	77.84	20.68		65.0	
		Z	8.92	76.49	20.00		65.0	
10249-CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	10.58	85.04	23.76	3.98	65.0	± 9.6 %
		Y	10.60	81.83	22.20		65.0	
		Z	9.51	79.59	21.13		65.0	
10250-CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.86	79.65	22.77	3.98	65.0	± 9.6 %
		Y	10.09	79.31	22.20		65.0	
		Z	9.52	77.97	21.50		65.0	
10251-CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	8.42	77.61	21.68	3.98	65.0	± 9.6 %
		Y	9.81	77.96	21.47		65.0	
		Z	9.28	76.64	20.78		65.0	
10252-CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	10.10	83.41	23.63	3.98	65.0	± 9.6 %
		Y	10.62	81.26	22.43		65.0	
		Z	9.71	79.31	21.45		65.0	
10253-CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	8.31	76.65	21.49	3.98	65.0	± 9.6 %
		Y	9.75	77.31	21.42		65.0	
		Z	9.28	76.11	20.77		65.0	
10254-CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.66	77.31	22.04	3.98	65.0	± 9.6 %
		Y	10.08	77.84	21.89		65.0	
		Z	9.62	76.70	21.28		65.0	

10255-CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.12	80.02	22.49	3.98	65.0	± 9.6 %
		Y	10.13	79.25	21.82		65.0	
		Z	9.46	77.70	21.01		65.0	
10256-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	10.65	82.20	21.75	3.98	65.0	± 9.6 %
		Y	10.00	78.07	19.63		65.0	
		Z	9.93	77.90	19.74		65.0	
10257-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	10.40	81.45	21.40	3.98	65.0	± 9.6 %
		Y	9.96	77.73	19.44		65.0	
		Z	9.92	77.60	19.56		65.0	
10258-CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	9.37	82.75	21.99	3.98	65.0	± 9.6 %
		Y	9.64	79.93	20.63		65.0	
		Z	8.66	77.83	19.63		65.0	
10259-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.48	78.89	21.81	3.98	65.0	± 9.6 %
		Y	9.71	78.53	21.28		65.0	
		Z	9.12	77.14	20.58		65.0	
10260-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.51	78.64	21.73	3.98	65.0	± 9.6 %
		Y	9.74	78.37	21.23		65.0	
		Z	9.19	77.04	20.56		65.0	
10261-CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	10.01	83.77	23.53	3.98	65.0	± 9.6 %
		Y	10.42	81.33	22.22		65.0	
		Z	9.46	79.26	21.21		65.0	
10262-CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.85	79.62	22.74	3.98	65.0	± 9.6 %
		Y	10.09	79.29	22.17		65.0	
		Z	9.51	77.94	21.48		65.0	
10263-CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.41	77.61	21.68	3.98	65.0	± 9.6 %
		Y	9.81	77.96	21.47		65.0	
		Z	9.28	76.65	20.78		65.0	
10264-CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	10.05	83.29	23.57	3.98	65.0	± 9.6 %
		Y	10.58	81.19	22.39		65.0	
		Z	9.67	79.24	21.41		65.0	
10265-CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.54	77.25	21.68	3.98	65.0	± 9.6 %
		Y	9.90	77.67	21.52		65.0	
		Z	9.41	76.44	20.85		65.0	
10266-CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.87	77.88	22.26	3.98	65.0	± 9.6 %
		Y	10.21	78.18	22.01		65.0	
		Z	9.74	77.02	21.39		65.0	
10267-CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.42	80.39	22.40	3.98	65.0	± 9.6 %
		Y	10.26	79.31	21.64		65.0	
		Z	9.56	77.72	20.81		65.0	
10268-CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.95	76.67	21.74	3.98	65.0	± 9.6 %
		Y	10.31	77.26	21.67		65.0	
		Z	9.90	76.22	21.10		65.0	
10269-CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.87	76.26	21.65	3.98	65.0	± 9.6 %
		Y	10.27	77.00	21.64		65.0	
		Z	9.86	75.99	21.08		65.0	
10270-CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.98	77.89	21.52	3.98	65.0	± 9.6 %
		Y	10.07	77.67	21.13		65.0	
		Z	9.55	76.44	20.45		65.0	

10274-CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.78	67.20	16.08	0.00	150.0	± 9.6 %
		Y	2.85	66.76	15.75		150.0	
		Z	2.66	65.96	15.13		150.0	
10275-CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.95	70.77	17.43	0.00	150.0	± 9.6 %
		Y	1.89	68.58	16.39		150.0	
		Z	1.65	67.11	15.12		150.0	
10277-CAA	PHS (QPSK)	X	6.73	72.19	16.20	9.03	50.0	± 9.6 %
		Y	8.62	74.14	17.53		50.0	
		Z	8.37	72.92	17.04		50.0	
10278-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	10.33	81.85	22.38	9.03	50.0	± 9.6 %
		Y	11.54	81.39	22.31		50.0	
		Z	10.44	78.59	21.08		50.0	
10279-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	10.51	82.04	22.45	9.03	50.0	± 9.6 %
		Y	11.71	81.60	22.39		50.0	
		Z	10.59	78.77	21.15		50.0	
10290-AAB	CDMA2000, RC1, SO55, Full Rate	X	2.29	74.60	17.92	0.00	150.0	± 9.6 %
		Y	1.94	70.69	16.42		150.0	
		Z	1.58	68.01	14.48		150.0	
10291-AAB	CDMA2000, RC3, SO55, Full Rate	X	1.33	72.01	16.88	0.00	150.0	± 9.6 %
		Y	1.20	68.11	15.35		150.0	
		Z	0.92	65.34	13.00		150.0	
10292-AAB	CDMA2000, RC3, SO32, Full Rate	X	2.06	80.11	20.68	0.00	150.0	± 9.6 %
		Y	1.37	70.96	17.12		150.0	
		Z	1.04	67.77	14.60		150.0	
10293-AAB	CDMA2000, RC3, SO3, Full Rate	X	3.73	90.20	24.78	0.00	150.0	± 9.6 %
		Y	1.62	73.77	18.75		150.0	
		Z	1.27	70.72	16.42		150.0	
10295-AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.55	83.20	24.50	9.03	50.0	± 9.6 %
		Y	12.90	85.01	25.17		50.0	
		Z	11.47	81.43	23.47		50.0	
10297-AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.26	71.97	17.83	0.00	150.0	± 9.6 %
		Y	3.12	70.38	17.11		150.0	
		Z	2.89	69.31	16.23		150.0	
10298-AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	2.22	71.97	17.27	0.00	150.0	± 9.6 %
		Y	2.04	69.34	16.12		150.0	
		Z	1.78	67.56	14.75		150.0	
10299-AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	6.07	81.50	20.71	0.00	150.0	± 9.6 %
		Y	3.63	72.53	16.78		150.0	
		Z	3.82	73.37	17.25		150.0	
10300-AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.75	72.96	16.58	0.00	150.0	± 9.6 %
		Y	2.97	68.83	14.48		150.0	
		Z	3.02	69.02	14.66		150.0	
10301-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	6.00	68.70	19.19	4.17	80.0	± 9.6 %
		Y	6.48	69.77	19.66		80.0	
		Z	6.37	69.12	19.12		80.0	
10302-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.49	69.29	19.91	4.96	80.0	± 9.6 %
		Y	7.25	71.51	21.06		80.0	
		Z	7.11	70.71	20.41		80.0	

10303-AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	6.38	69.51	20.04	4.96	80.0	± 9.6 %
		Y	7.26	72.10	21.37		80.0	
		Z	7.13	71.25	20.67		80.0	
10304-AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.97	68.66	19.17	4.17	80.0	± 9.6 %
		Y	6.66	70.67	20.17		80.0	
		Z	6.53	69.95	19.58		80.0	
10305-AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	10.67	85.52	28.02	6.02	50.0	± 9.6 %
		Y	12.70	87.17	28.24		50.0	
		Z	30.80	107.52	35.17		50.0	
10306-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	6.97	72.69	22.24	6.02	50.0	± 9.6 %
		Y	8.95	78.20	24.90		50.0	
		Z	8.59	76.41	23.65		50.0	
10307-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	7.13	73.55	22.45	6.02	50.0	± 9.6 %
		Y	9.56	79.88	25.39		50.0	
		Z	9.04	77.68	23.95		50.0	
10308-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	7.20	74.01	22.67	6.02	50.0	± 9.6 %
		Y	9.88	80.84	25.79		50.0	
		Z	9.27	78.42	24.25		50.0	
10309-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	7.10	73.01	22.41	6.02	50.0	± 9.6 %
		Y	9.13	78.60	25.09		50.0	
		Z	8.73	76.70	23.79		50.0	
10310-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	7.00	72.97	22.27	6.02	50.0	± 9.6 %
		Y	9.16	78.82	25.05		50.0	
		Z	8.73	76.86	23.72		50.0	
10311-AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.63	71.17	17.40	0.00	150.0	± 9.6 %
		Y	3.48	69.76	16.74		150.0	
		Z	3.23	68.68	15.92		150.0	
10313-AAA	iDEN 1:3	X	8.61	80.47	20.04	6.99	70.0	± 9.6 %
		Y	9.98	79.47	19.84		70.0	
		Z	8.11	75.23	17.79		70.0	
10314-AAA	iDEN 1:6	X	10.66	85.52	24.16	10.00	30.0	± 9.6 %
		Y	14.46	87.39	24.82		30.0	
		Z	9.98	79.45	21.46		30.0	
10315-AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.26	66.12	16.91	0.17	150.0	± 9.6 %
		Y	1.44	65.66	16.25		150.0	
		Z	1.26	64.74	15.34		150.0	
10316-AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	X	4.88	67.22	16.74	0.17	150.0	± 9.6 %
		Y	5.00	67.30	16.67		150.0	
		Z	4.88	66.91	16.40		150.0	
10317-AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.88	67.22	16.74	0.17	150.0	± 9.6 %
		Y	5.00	67.30	16.67		150.0	
		Z	4.88	66.91	16.40		150.0	
10400-AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.99	67.47	16.64	0.00	150.0	± 9.6 %
		Y	5.08	67.46	16.55		150.0	
		Z	4.95	67.03	16.25		150.0	
10401-AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.59	67.44	16.65	0.00	150.0	± 9.6 %
		Y	5.69	67.51	16.61		150.0	
		Z	5.55	67.09	16.33		150.0	

10402-AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.91	68.06	16.80	0.00	150.0	± 9.6 %
		Y	5.99	68.07	16.72		150.0	
		Z	5.87	67.70	16.47		150.0	
10403-AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.29	74.60	17.92	0.00	115.0	± 9.6 %
		Y	1.94	70.69	16.42		115.0	
		Z	1.58	68.01	14.48		115.0	
10404-AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.29	74.60	17.92	0.00	115.0	± 9.6 %
		Y	1.94	70.69	16.42		115.0	
		Z	1.58	68.01	14.48		115.0	
10406-AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	124.72	32.63	0.00	100.0	± 9.6 %
		Y	16.35	96.34	25.11		100.0	
		Z	16.85	96.86	25.47		100.0	
10410-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.73	31.81	3.23	80.0	± 9.6 %
		Y	45.05	105.99	27.48		80.0	
		Z	36.92	102.58	26.50		80.0	
10415-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.08	64.30	15.91	0.00	150.0	± 9.6 %
		Y	1.20	63.58	15.17		150.0	
		Z	1.02	62.55	14.20		150.0	
10416-AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	X	4.77	67.05	16.57	0.00	150.0	± 9.6 %
		Y	4.86	67.04	16.46		150.0	
		Z	4.73	66.61	16.17		150.0	
10417-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.77	67.05	16.57	0.00	150.0	± 9.6 %
		Y	4.86	67.04	16.46		150.0	
		Z	4.73	66.61	16.17		150.0	
10418-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preamble)	X	4.76	67.19	16.58	0.00	150.0	± 9.6 %
		Y	4.85	67.18	16.47		150.0	
		Z	4.71	66.73	16.16		150.0	
10419-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preamble)	X	4.78	67.15	16.59	0.00	150.0	± 9.6 %
		Y	4.87	67.14	16.48		150.0	
		Z	4.74	66.70	16.18		150.0	
10422-AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.91	67.15	16.59	0.00	150.0	± 9.6 %
		Y	5.00	67.15	16.49		150.0	
		Z	4.87	66.72	16.21		150.0	
10423-AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.13	67.56	16.74	0.00	150.0	± 9.6 %
		Y	5.21	67.54	16.64		150.0	
		Z	5.09	67.13	16.36		150.0	
10424-AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	5.03	67.49	16.70	0.00	150.0	± 9.6 %
		Y	5.12	67.47	16.60		150.0	
		Z	4.99	67.05	16.31		150.0	
10425-AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.60	67.82	16.84	0.00	150.0	± 9.6 %
		Y	5.67	67.77	16.73		150.0	
		Z	5.57	67.46	16.50		150.0	
10426-AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.62	67.86	16.85	0.00	150.0	± 9.6 %
		Y	5.69	67.82	16.74		150.0	
		Z	5.58	67.49	16.52		150.0	

10427-AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.64	67.88	16.86	0.00	150.0	± 9.6 %
		Y	5.71	67.85	16.75		150.0	
		Z	5.60	67.51	16.52		150.0	
10430-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.55	70.88	18.68	0.00	150.0	± 9.6 %
		Y	4.46	69.87	17.99		150.0	
		Z	4.36	69.57	17.79		150.0	
10431-AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.54	67.68	16.71	0.00	150.0	± 9.6 %
		Y	4.61	67.57	16.55		150.0	
		Z	4.48	67.10	16.22		150.0	
10432-AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.82	67.55	16.70	0.00	150.0	± 9.6 %
		Y	4.89	67.50	16.57		150.0	
		Z	4.77	67.06	16.27		150.0	
10433-AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	5.05	67.55	16.74	0.00	150.0	± 9.6 %
		Y	5.13	67.52	16.62		150.0	
		Z	5.01	67.11	16.34		150.0	
10434-AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.66	71.68	18.74	0.00	150.0	± 9.6 %
		Y	4.53	70.50	17.99		150.0	
		Z	4.42	70.13	17.75		150.0	
10435-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.58	31.74	3.23	80.0	± 9.6 %
		Y	42.66	105.10	27.22		80.0	
		Z	34.91	101.68	26.23		80.0	
10447-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.88	67.89	16.39	0.00	150.0	± 9.6 %
		Y	3.92	67.61	16.14		150.0	
		Z	3.78	67.02	15.74		150.0	
10448-AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.35	67.46	16.57	0.00	150.0	± 9.6 %
		Y	4.42	67.34	16.41		150.0	
		Z	4.28	66.86	16.07		150.0	
10449-AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.59	67.39	16.61	0.00	150.0	± 9.6 %
		Y	4.67	67.31	16.47		150.0	
		Z	4.54	66.86	16.15		150.0	
10450-AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.76	67.30	16.60	0.00	150.0	± 9.6 %
		Y	4.85	67.27	16.48		150.0	
		Z	4.72	66.83	16.18		150.0	
10451-AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.83	68.27	16.23	0.00	150.0	± 9.6 %
		Y	3.86	67.93	15.96		150.0	
		Z	3.71	67.27	15.51		150.0	
10456-AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.45	68.43	16.99	0.00	150.0	± 9.6 %
		Y	6.53	68.45	16.92		150.0	
		Z	6.42	68.13	16.71		150.0	
10457-AAA	UMTS-FDD (DC-HSDPA)	X	3.92	65.69	16.33	0.00	150.0	± 9.6 %
		Y	4.04	65.70	16.19		150.0	
		Z	3.89	65.26	15.90		150.0	
10458-AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.62	67.38	15.70	0.00	150.0	± 9.6 %
		Y	3.69	67.25	15.54		150.0	
		Z	3.52	66.47	15.04		150.0	
10459-AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.75	65.51	16.27	0.00	150.0	± 9.6 %
		Y	4.81	65.51	16.12		150.0	
		Z	4.59	64.57	15.64		150.0	

10460-AAA	UMTS-FDD (WCDMA, AMR)	X	1.23	73.86	19.59	0.00	150.0	± 9.6 %
		Y	1.11	68.37	16.92		150.0	
		Z	0.88	66.45	15.06		150.0	
10461-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.39	33.57	3.29	80.0	± 9.6 %
		Y	100.00	118.43	30.84		80.0	
		Z	100.00	117.36	30.39		80.0	
10462-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.59	27.40	3.23	80.0	± 9.6 %
		Y	38.99	97.65	23.48		80.0	
		Z	41.91	97.95	23.54		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.07	26.18	3.23	80.0	± 9.6 %
		Y	23.14	90.13	21.05		80.0	
		Z	23.17	89.61	20.90		80.0	
10464-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.87	32.71	3.23	80.0	± 9.6 %
		Y	100.00	117.14	30.11		80.0	
		Z	100.00	116.06	29.65		80.0	
10465-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.16	27.18	3.23	80.0	± 9.6 %
		Y	30.47	94.47	22.57		80.0	
		Z	31.26	94.20	22.48		80.0	
10466-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.64	25.97	3.23	80.0	± 9.6 %
		Y	18.83	87.54	20.26		80.0	
		Z	18.38	86.71	20.01		80.0	
10467-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	124.06	32.80	3.23	80.0	± 9.6 %
		Y	100.00	117.27	30.17		80.0	
		Z	100.00	116.19	29.71		80.0	
10468-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.30	27.24	3.23	80.0	± 9.6 %
		Y	32.30	95.25	22.80		80.0	
		Z	33.43	95.08	22.73		80.0	
10469-AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.65	25.97	3.23	80.0	± 9.6 %
		Y	19.15	87.74	20.31		80.0	
		Z	18.68	86.91	20.07		80.0	
10470-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	124.09	32.81	3.23	80.0	± 9.6 %
		Y	100.00	117.29	30.17		80.0	
		Z	100.00	116.20	29.71		80.0	
10471-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.26	27.22	3.23	80.0	± 9.6 %
		Y	32.41	95.27	22.79		80.0	
		Z	33.51	95.09	22.73		80.0	
10472-AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.62	25.95	3.23	80.0	± 9.6 %
		Y	19.21	87.77	20.31		80.0	
		Z	18.71	86.92	20.06		80.0	
10473-AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	124.07	32.80	3.23	80.0	± 9.6 %
		Y	100.00	117.27	30.16		80.0	
		Z	100.00	116.18	29.70		80.0	
10474-AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.27	27.22	3.23	80.0	± 9.6 %
		Y	32.18	95.19	22.77		80.0	
		Z	33.27	95.01	22.70		80.0	
10475-AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.63	25.95	3.23	80.0	± 9.6 %
		Y	19.08	87.70	20.29		80.0	
		Z	18.59	86.85	20.04		80.0	

10477-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	112.13	27.16	3.23	80.0	± 9.6 %
		Y	31.05	94.68	22.61		80.0	
		Z	31.81	94.39	22.51		80.0	
10478-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.59	25.93	3.23	80.0	± 9.6 %
		Y	18.93	87.59	20.25		80.0	
		Z	18.43	86.73	20.00		80.0	
10479-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	26.38	104.46	29.82	3.23	80.0	± 9.6 %
		Y	11.18	86.35	23.47		80.0	
		Z	12.66	88.16	24.09		80.0	
10480-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	36.32	103.29	27.83	3.23	80.0	± 9.6 %
		Y	11.92	83.74	21.44		80.0	
		Z	12.50	84.15	21.66		80.0	
10481-AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	31.44	100.18	26.66	3.23	80.0	± 9.6 %
		Y	11.09	82.19	20.68		80.0	
		Z	11.61	82.56	20.89		80.0	
10482-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.48	84.58	22.44	2.23	80.0	± 9.6 %
		Y	8.07	80.76	20.75		80.0	
		Z	6.52	77.15	19.09		80.0	
10483-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	15.64	91.01	24.57	2.23	80.0	± 9.6 %
		Y	8.57	78.78	19.76		80.0	
		Z	9.41	80.20	20.41		80.0	
10484-AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	13.89	88.96	23.94	2.23	80.0	± 9.6 %
		Y	8.26	78.07	19.51		80.0	
		Z	9.03	79.41	20.14		80.0	
10485-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.01	83.86	22.75	2.23	80.0	± 9.6 %
		Y	8.20	81.12	21.36		80.0	
		Z	6.90	78.04	19.89		80.0	
10486-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.80	75.91	19.65	2.23	80.0	± 9.6 %
		Y	6.52	75.32	19.05		80.0	
		Z	5.81	73.30	18.02		80.0	
10487-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.70	75.31	19.41	2.23	80.0	± 9.6 %
		Y	6.45	74.87	18.88		80.0	
		Z	5.79	72.98	17.91		80.0	
10488-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.14	80.54	21.92	2.23	80.0	± 9.6 %
		Y	7.84	79.34	21.08		80.0	
		Z	6.91	76.99	19.87		80.0	
10489-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.46	73.87	19.59	2.23	80.0	± 9.6 %
		Y	6.41	74.29	19.38		80.0	
		Z	5.93	72.85	18.58		80.0	
10490-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.48	73.36	19.41	2.23	80.0	± 9.6 %
		Y	6.43	73.90	19.26		80.0	
		Z	5.98	72.53	18.50		80.0	
10491-AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.44	76.98	20.67	2.23	80.0	± 9.6 %
		Y	7.31	76.73	20.21		80.0	
		Z	6.64	74.92	19.23		80.0	
10492-AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.53	72.25	19.12	2.23	80.0	± 9.6 %
		Y	6.50	73.05	19.11		80.0	
		Z	6.11	71.88	18.44		80.0	

10493-AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.57	71.96	19.02	2.23	80.0	± 9.6 %
		Y	6.53	72.80	19.03		80.0	
		Z	6.16	71.68	18.39		80.0	
10494-AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.46	79.45	21.39	2.23	80.0	± 9.6 %
		Y	8.07	78.38	20.66		80.0	
		Z	7.23	76.31	19.57		80.0	
10495-AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.68	72.97	19.39	2.23	80.0	± 9.6 %
		Y	6.64	73.61	19.31		80.0	
		Z	6.23	72.41	18.61		80.0	
10496-AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.67	72.39	19.20	2.23	80.0	± 9.6 %
		Y	6.62	73.14	19.17		80.0	
		Z	6.25	72.02	18.52		80.0	
10497-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.53	82.68	21.23	2.23	80.0	± 9.6 %
		Y	7.03	78.66	19.51		80.0	
		Z	5.53	74.87	17.76		80.0	
10498-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.13	74.17	17.33	2.23	80.0	± 9.6 %
		Y	5.57	73.04	16.70		80.0	
		Z	4.61	70.20	15.31		80.0	
10499-AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.00	73.47	16.94	2.23	80.0	± 9.6 %
		Y	5.49	72.55	16.41		80.0	
		Z	4.58	69.82	15.05		80.0	
10500-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.21	81.53	22.11	2.23	80.0	± 9.6 %
		Y	7.80	79.86	21.08		80.0	
		Z	6.72	77.16	19.75		80.0	
10501-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.59	74.82	19.51	2.23	80.0	± 9.6 %
		Y	6.44	74.74	19.11		80.0	
		Z	5.84	73.00	18.19		80.0	
10502-AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.60	74.45	19.33	2.23	80.0	± 9.6 %
		Y	6.44	74.45	18.97		80.0	
		Z	5.86	72.75	18.08		80.0	
10503-AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.03	80.30	21.82	2.23	80.0	± 9.6 %
		Y	7.77	79.18	21.01		80.0	
		Z	6.84	76.83	19.80		80.0	
10504-AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.44	73.78	19.54	2.23	80.0	± 9.6 %
		Y	6.39	74.22	19.34		80.0	
		Z	5.91	72.78	18.54		80.0	
10505-AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.45	73.26	19.36	2.23	80.0	± 9.6 %
		Y	6.40	73.83	19.22		80.0	
		Z	5.95	72.45	18.46		80.0	
10506-AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.38	79.28	21.32	2.23	80.0	± 9.6 %
		Y	8.02	78.26	20.60		80.0	
		Z	7.18	76.19	19.51		80.0	
10507-AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.66	72.90	19.35	2.23	80.0	± 9.6 %
		Y	6.62	73.56	19.28		80.0	
		Z	6.21	72.35	18.58		80.0	

10508-AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.65	72.32	19.16	2.23	80.0	± 9.6 %
		Y	6.61	73.09	19.14		80.0	
		Z	6.23	71.96	18.48		80.0	
10509-AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.93	76.26	20.19	2.23	80.0	± 9.6 %
		Y	7.67	75.94	19.77		80.0	
		Z	7.04	74.32	18.88		80.0	
10510-AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.01	72.04	19.03	2.23	80.0	± 9.6 %
		Y	6.94	72.80	19.05		80.0	
		Z	6.58	71.77	18.45		80.0	
10511-AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.98	71.59	18.90	2.23	80.0	± 9.6 %
		Y	6.92	72.43	18.96		80.0	
		Z	6.58	71.46	18.38		80.0	
10512-AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.86	78.99	21.05	2.23	80.0	± 9.6 %
		Y	8.37	77.89	20.35		80.0	
		Z	7.53	75.92	19.32		80.0	
10513-AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.01	72.71	19.29	2.23	80.0	± 9.6 %
		Y	6.94	73.36	19.24		80.0	
		Z	6.56	72.27	18.60		80.0	
10514-AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.90	72.00	19.06	2.23	80.0	± 9.6 %
		Y	6.84	72.79	19.09		80.0	
		Z	6.49	71.77	18.48		80.0	
10515-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.04	64.62	16.07	0.00	150.0	± 9.6 %
		Y	1.16	63.76	15.24		150.0	
		Z	0.98	62.69	14.22		150.0	
10516-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	1.26	84.97	24.62	0.00	150.0	± 9.6 %
		Y	0.77	69.41	17.82		150.0	
		Z	0.54	67.02	15.17		150.0	
10517-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.96	68.09	17.59	0.00	150.0	± 9.6 %
		Y	1.02	65.62	15.99		150.0	
		Z	0.83	64.21	14.57		150.0	
10518-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.77	67.14	16.56	0.00	150.0	± 9.6 %
		Y	4.86	67.12	16.45		150.0	
		Z	4.73	66.69	16.16		150.0	
10519-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	5.00	67.45	16.70	0.00	150.0	± 9.6 %
		Y	5.09	67.42	16.59		150.0	
		Z	4.96	67.01	16.31		150.0	
10520-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.85	67.45	16.64	0.00	150.0	± 9.6 %
		Y	4.93	67.40	16.52		150.0	
		Z	4.81	66.98	16.23		150.0	
10521-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.78	67.47	16.64	0.00	150.0	± 9.6 %
		Y	4.87	67.41	16.51		150.0	
		Z	4.74	66.98	16.21		150.0	
10522-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.82	67.38	16.64	0.00	150.0	± 9.6 %
		Y	4.91	67.36	16.53		150.0	
		Z	4.77	66.91	16.22		150.0	

10523-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.69	67.33	16.52	0.00	150.0	± 9.6 %
		Y	4.78	67.27	16.40		150.0	
		Z	4.64	66.83	16.09		150.0	
10524-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.78	67.37	16.64	0.00	150.0	± 9.6 %
		Y	4.86	67.33	16.52		150.0	
		Z	4.73	66.89	16.22		150.0	
10525-AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.73	66.40	16.23	0.00	150.0	± 9.6 %
		Y	4.81	66.36	16.10		150.0	
		Z	4.67	65.91	15.80		150.0	
10526-AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.94	66.82	16.37	0.00	150.0	± 9.6 %
		Y	5.01	66.77	16.25		150.0	
		Z	4.88	66.32	15.95		150.0	
10527-AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.86	66.81	16.34	0.00	150.0	± 9.6 %
		Y	4.93	66.74	16.20		150.0	
		Z	4.80	66.29	15.90		150.0	
10528-AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.88	66.83	16.37	0.00	150.0	± 9.6 %
		Y	4.95	66.76	16.24		150.0	
		Z	4.82	66.32	15.94		150.0	
10529-AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.88	66.83	16.37	0.00	150.0	± 9.6 %
		Y	4.95	66.76	16.24		150.0	
		Z	4.82	66.32	15.94		150.0	
10531-AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.90	67.00	16.41	0.00	150.0	± 9.6 %
		Y	4.96	66.91	16.27		150.0	
		Z	4.83	66.47	15.96		150.0	
10532-AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.74	66.89	16.37	0.00	150.0	± 9.6 %
		Y	4.81	66.78	16.21		150.0	
		Z	4.68	66.34	15.91		150.0	
10533-AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.89	66.84	16.35	0.00	150.0	± 9.6 %
		Y	4.96	66.78	16.21		150.0	
		Z	4.83	66.33	15.91		150.0	
10534-AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.38	66.97	16.40	0.00	150.0	± 9.6 %
		Y	5.46	66.93	16.28		150.0	
		Z	5.33	66.54	16.02		150.0	
10535-AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.46	67.11	16.45	0.00	150.0	± 9.6 %
		Y	5.53	67.07	16.34		150.0	
		Z	5.41	66.68	16.08		150.0	
10536-AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.33	67.11	16.44	0.00	150.0	± 9.6 %
		Y	5.40	67.06	16.32		150.0	
		Z	5.27	66.66	16.05		150.0	
10537-AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.39	67.08	16.42	0.00	150.0	± 9.6 %
		Y	5.46	67.03	16.31		150.0	
		Z	5.34	66.64	16.04		150.0	
10538-AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.51	67.15	16.50	0.00	150.0	± 9.6 %
		Y	5.58	67.11	16.38		150.0	
		Z	5.46	66.74	16.13		150.0	
10540-AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.40	67.09	16.48	0.00	150.0	± 9.6 %
		Y	5.47	67.05	16.37		150.0	
		Z	5.35	66.66	16.10		150.0	

10541-AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.39	67.03	16.45	0.00	150.0	± 9.6 %
		Y	5.46	66.98	16.33		150.0	
		Z	5.34	66.61	16.08		150.0	
10542-AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.53	67.02	16.46	0.00	150.0	± 9.6 %
		Y	5.61	67.00	16.36		150.0	
		Z	5.49	66.62	16.10		150.0	
10543-AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.62	67.03	16.47	0.00	150.0	± 9.6 %
		Y	5.70	67.03	16.38		150.0	
		Z	5.58	66.65	16.13		150.0	
10544-AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.65	67.05	16.37	0.00	150.0	± 9.6 %
		Y	5.74	67.06	16.28		150.0	
		Z	5.60	66.66	16.02		150.0	
10545-AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.87	67.47	16.51	0.00	150.0	± 9.6 %
		Y	5.94	67.43	16.40		150.0	
		Z	5.82	67.06	16.15		150.0	
10546-AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.76	67.37	16.48	0.00	150.0	± 9.6 %
		Y	5.83	67.34	16.38		150.0	
		Z	5.71	66.96	16.13		150.0	
10547-AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.85	67.43	16.50	0.00	150.0	± 9.6 %
		Y	5.92	67.41	16.40		150.0	
		Z	5.80	67.04	16.15		150.0	
10548-AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.20	68.63	17.06	0.00	150.0	± 9.6 %
		Y	6.18	68.32	16.84		150.0	
		Z	6.13	68.17	16.69		150.0	
10550-AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.78	67.30	16.45	0.00	150.0	± 9.6 %
		Y	5.85	67.29	16.36		150.0	
		Z	5.73	66.90	16.10		150.0	
10551-AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.81	67.43	16.48	0.00	150.0	± 9.6 %
		Y	5.87	67.38	16.37		150.0	
		Z	5.75	67.03	16.13		150.0	
10552-AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.70	67.17	16.37	0.00	150.0	± 9.6 %
		Y	5.77	67.15	16.27		150.0	
		Z	5.65	66.78	16.02		150.0	
10553-AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.79	67.20	16.40	0.00	150.0	± 9.6 %
		Y	5.87	67.21	16.32		150.0	
		Z	5.74	66.81	16.06		150.0	
10554-AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	6.05	67.43	16.45	0.00	150.0	± 9.6 %
		Y	6.13	67.44	16.37		150.0	
		Z	6.00	67.06	16.13		150.0	
10555-AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.22	67.81	16.61	0.00	150.0	± 9.6 %
		Y	6.28	67.78	16.51		150.0	
		Z	6.17	67.44	16.29		150.0	
10556-AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.22	67.79	16.60	0.00	150.0	± 9.6 %
		Y	6.29	67.78	16.51		150.0	
		Z	6.17	67.41	16.27		150.0	
10557-AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.22	67.78	16.61	0.00	150.0	± 9.6 %
		Y	6.28	67.76	16.52		150.0	
		Z	6.16	67.41	16.29		150.0	

10558-AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.28	67.99	16.73	0.00	150.0	± 9.6 %
		Y	6.34	67.93	16.62		150.0	
		Z	6.23	67.61	16.40		150.0	
10560-AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.27	67.80	16.67	0.00	150.0	± 9.6 %
		Y	6.34	67.79	16.59		150.0	
		Z	6.22	67.43	16.35		150.0	
10561-AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.18	67.75	16.69	0.00	150.0	± 9.6 %
		Y	6.25	67.73	16.60		150.0	
		Z	6.13	67.38	16.36		150.0	
10562-AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.36	68.29	16.96	0.00	150.0	± 9.6 %
		Y	6.40	68.18	16.83		150.0	
		Z	6.30	67.91	16.63		150.0	
10563-AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.64	68.64	17.07	0.00	150.0	± 9.6 %
		Y	6.68	68.56	16.96		150.0	
		Z	6.57	68.23	16.74		150.0	
10564-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	X	5.11	67.25	16.73	0.46	150.0	± 9.6 %
		Y	5.22	67.31	16.67		150.0	
		Z	5.08	66.89	16.39		150.0	
10565-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	X	5.39	67.75	17.05	0.46	150.0	± 9.6 %
		Y	5.48	67.77	16.98		150.0	
		Z	5.36	67.38	16.71		150.0	
10566-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	X	5.22	67.64	16.90	0.46	150.0	± 9.6 %
		Y	5.31	67.66	16.82		150.0	
		Z	5.19	67.26	16.54		150.0	
10567-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	X	5.25	68.04	17.24	0.46	150.0	± 9.6 %
		Y	5.33	67.98	17.11		150.0	
		Z	5.21	67.61	16.85		150.0	
10568-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	X	5.12	67.34	16.64	0.46	150.0	± 9.6 %
		Y	5.23	67.44	16.62		150.0	
		Z	5.10	66.99	16.30		150.0	
10569-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	X	5.18	68.05	17.26	0.46	150.0	± 9.6 %
		Y	5.27	68.00	17.13		150.0	
		Z	5.15	67.62	16.87		150.0	
10570-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	X	5.22	67.86	17.18	0.46	150.0	± 9.6 %
		Y	5.31	67.84	17.07		150.0	
		Z	5.19	67.44	16.80		150.0	
10571-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.48	67.76	17.65	0.46	130.0	± 9.6 %
		Y	1.74	67.60	17.11		130.0	
		Z	1.55	66.65	16.18		130.0	
10572-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.52	68.61	18.11	0.46	130.0	± 9.6 %
		Y	1.77	68.19	17.44		130.0	
		Z	1.58	67.25	16.50		130.0	
10573-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	149.14	40.37	0.46	130.0	± 9.6 %
		Y	3.89	88.62	24.44		130.0	
		Z	2.94	83.20	21.10		130.0	
10574-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.14	78.74	22.67	0.46	130.0	± 9.6 %
		Y	2.09	74.01	20.09		130.0	
		Z	1.89	73.09	19.02		130.0	

10575-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	X	4.93	67.13	16.84	0.46	130.0	± 9.6 %
		Y	5.06	67.24	16.80		130.0	
		Z	4.94	66.85	16.52		130.0	
10576-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	X	4.96	67.30	16.91	0.46	130.0	± 9.6 %
		Y	5.08	67.38	16.85		130.0	
		Z	4.97	67.00	16.58		130.0	
10577-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	X	5.21	67.64	17.08	0.46	130.0	± 9.6 %
		Y	5.32	67.70	17.02		130.0	
		Z	5.21	67.33	16.76		130.0	
10578-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	X	5.10	67.84	17.20	0.46	130.0	± 9.6 %
		Y	5.21	67.85	17.10		130.0	
		Z	5.10	67.50	16.85		130.0	
10579-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	X	4.88	67.22	16.58	0.46	130.0	± 9.6 %
		Y	5.01	67.36	16.57		130.0	
		Z	4.89	66.95	16.26		130.0	
10580-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	X	4.92	67.15	16.55	0.46	130.0	± 9.6 %
		Y	5.05	67.32	16.56		130.0	
		Z	4.94	66.89	16.25		130.0	
10581-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	X	5.02	67.95	17.18	0.46	130.0	± 9.6 %
		Y	5.13	67.96	17.07		130.0	
		Z	5.02	67.61	16.81		130.0	
10582-AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	X	4.83	66.95	16.37	0.46	130.0	± 9.6 %
		Y	4.97	67.14	16.39		130.0	
		Z	4.85	66.70	16.07		130.0	
10583-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.93	67.13	16.84	0.46	130.0	± 9.6 %
		Y	5.06	67.24	16.80		130.0	
		Z	4.94	66.85	16.52		130.0	
10584-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.96	67.30	16.91	0.46	130.0	± 9.6 %
		Y	5.08	67.38	16.85		130.0	
		Z	4.97	67.00	16.58		130.0	
10585-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.21	67.64	17.08	0.46	130.0	± 9.6 %
		Y	5.32	67.70	17.02		130.0	
		Z	5.21	67.33	16.76		130.0	
10586-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	5.10	67.84	17.20	0.46	130.0	± 9.6 %
		Y	5.21	67.85	17.10		130.0	
		Z	5.10	67.50	16.85		130.0	
10587-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.88	67.22	16.58	0.46	130.0	± 9.6 %
		Y	5.01	67.36	16.57		130.0	
		Z	4.89	66.95	16.26		130.0	
10588-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.92	67.15	16.55	0.46	130.0	± 9.6 %
		Y	5.05	67.32	16.56		130.0	
		Z	4.94	66.89	16.25		130.0	
10589-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	5.02	67.95	17.18	0.46	130.0	± 9.6 %
		Y	5.13	67.96	17.07		130.0	
		Z	5.02	67.61	16.81		130.0	
10590-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.83	66.95	16.37	0.46	130.0	± 9.6 %
		Y	4.97	67.14	16.39		130.0	
		Z	4.85	66.70	16.07		130.0	

10591-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	5.08	67.18	16.92	0.46	130.0	± 9.6 %
		Y	5.20	67.28	16.87		130.0	
		Z	5.09	66.90	16.61		130.0	
10592-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.26	67.53	17.04	0.46	130.0	± 9.6 %
		Y	5.38	67.61	16.99		130.0	
		Z	5.27	67.24	16.73		130.0	
10593-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.20	67.50	16.96	0.46	130.0	± 9.6 %
		Y	5.32	67.59	16.91		130.0	
		Z	5.20	67.21	16.65		130.0	
10594-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.25	67.64	17.10	0.46	130.0	± 9.6 %
		Y	5.36	67.71	17.03		130.0	
		Z	5.25	67.35	16.78		130.0	
10595-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.23	67.63	17.01	0.46	130.0	± 9.6 %
		Y	5.34	67.70	16.96		130.0	
		Z	5.24	67.33	16.70		130.0	
10596-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.16	67.62	17.01	0.46	130.0	± 9.6 %
		Y	5.28	67.71	16.96		130.0	
		Z	5.17	67.33	16.69		130.0	
10597-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	5.12	67.58	16.93	0.46	130.0	± 9.6 %
		Y	5.24	67.66	16.88		130.0	
		Z	5.12	67.28	16.61		130.0	
10598-AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	5.10	67.85	17.21	0.46	130.0	± 9.6 %
		Y	5.21	67.87	17.11		130.0	
		Z	5.11	67.54	16.87		130.0	
10599-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.75	67.77	17.09	0.46	130.0	± 9.6 %
		Y	5.85	67.82	17.03		130.0	
		Z	5.74	67.51	16.81		130.0	
10600-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	6.00	68.54	17.45	0.46	130.0	± 9.6 %
		Y	6.05	68.41	17.30		130.0	
		Z	6.00	68.27	17.17		130.0	
10601-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.82	68.07	17.23	0.46	130.0	± 9.6 %
		Y	5.91	68.07	17.14		130.0	
		Z	5.82	67.80	16.94		130.0	
10602-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.92	68.11	17.16	0.46	130.0	± 9.6 %
		Y	6.00	68.09	17.08		130.0	
		Z	5.93	67.86	16.90		130.0	
10603-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	6.04	68.51	17.49	0.46	130.0	± 9.6 %
		Y	6.11	68.44	17.37		130.0	
		Z	6.04	68.24	17.21		130.0	
10604-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.76	67.77	17.11	0.46	130.0	± 9.6 %
		Y	5.86	67.81	17.05		130.0	
		Z	5.76	67.51	16.83		130.0	
10605-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.87	68.06	17.26	0.46	130.0	± 9.6 %
		Y	5.96	68.09	17.19		130.0	
		Z	5.87	67.80	16.98		130.0	
10606-AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.64	67.55	16.88	0.46	130.0	± 9.6 %
		Y	5.75	67.64	16.85		130.0	
		Z	5.64	67.29	16.60		130.0	

10607-AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.91	66.49	16.54	0.46	130.0	± 9.6 %
		Y	5.02	66.53	16.45		130.0	
		Z	4.90	66.13	16.18		130.0	
10608-AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.14	66.93	16.70	0.46	130.0	± 9.6 %
		Y	5.24	66.95	16.61		130.0	
		Z	5.12	66.55	16.34		130.0	
10609-AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	5.03	66.83	16.58	0.46	130.0	± 9.6 %
		Y	5.13	66.86	16.50		130.0	
		Z	5.01	66.45	16.21		130.0	
10610-AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	5.08	66.98	16.74	0.46	130.0	± 9.6 %
		Y	5.18	66.99	16.64		130.0	
		Z	5.06	66.60	16.36		130.0	
10611-AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	5.01	66.84	16.61	0.46	130.0	± 9.6 %
		Y	5.11	66.86	16.52		130.0	
		Z	5.00	66.47	16.25		130.0	
10612-AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	5.03	66.98	16.64	0.46	130.0	± 9.6 %
		Y	5.13	67.01	16.56		130.0	
		Z	5.01	66.59	16.27		130.0	
10613-AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	5.04	66.91	16.55	0.46	130.0	± 9.6 %
		Y	5.14	66.95	16.48		130.0	
		Z	5.03	66.53	16.18		130.0	
10614-AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.97	67.12	16.80	0.46	130.0	± 9.6 %
		Y	5.07	67.09	16.67		130.0	
		Z	4.95	66.71	16.40		130.0	
10615-AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	5.01	66.63	16.38	0.46	130.0	± 9.6 %
		Y	5.12	66.70	16.33		130.0	
		Z	5.00	66.28	16.03		130.0	
10616-AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.57	67.06	16.72	0.46	130.0	± 9.6 %
		Y	5.66	67.07	16.63		130.0	
		Z	5.54	66.72	16.39		130.0	
10617-AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.63	67.18	16.74	0.46	130.0	± 9.6 %
		Y	5.72	67.18	16.65		130.0	
		Z	5.61	66.83	16.41		130.0	
10618-AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.53	67.26	16.81	0.46	130.0	± 9.6 %
		Y	5.61	67.25	16.71		130.0	
		Z	5.50	66.90	16.46		130.0	
10619-AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.54	67.05	16.64	0.46	130.0	± 9.6 %
		Y	5.64	67.09	16.57		130.0	
		Z	5.52	66.71	16.31		130.0	
10620-AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.68	67.19	16.75	0.46	130.0	± 9.6 %
		Y	5.76	67.19	16.67		130.0	
		Z	5.66	66.87	16.44		130.0	
10621-AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.64	67.24	16.89	0.46	130.0	± 9.6 %
		Y	5.73	67.23	16.78		130.0	
		Z	5.62	66.90	16.56		130.0	
10622-AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.64	67.34	16.93	0.46	130.0	± 9.6 %
		Y	5.72	67.32	16.82		130.0	
		Z	5.61	66.99	16.60		130.0	

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.54	66.98	16.65	0.46	130.0	± 9.6 %
		Y	5.63	67.00	16.57		130.0	
		Z	5.52	66.67	16.34		130.0	
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.71	67.08	16.75	0.46	130.0	± 9.6 %
		Y	5.80	67.10	16.67		130.0	
		Z	5.69	66.76	16.44		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.11	68.08	17.29	0.46	130.0	± 9.6 %
		Y	6.16	67.99	17.17		130.0	
		Z	6.07	67.70	16.95		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.81	67.07	16.64	0.46	130.0	± 9.6 %
		Y	5.91	67.11	16.57		130.0	
		Z	5.78	66.75	16.33		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	6.08	67.62	16.86	0.46	130.0	± 9.6 %
		Y	6.15	67.60	16.76		130.0	
		Z	6.04	67.28	16.54		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.89	67.28	16.63	0.46	130.0	± 9.6 %
		Y	5.98	67.31	16.57		130.0	
		Z	5.87	66.96	16.33		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.99	67.38	16.67	0.46	130.0	± 9.6 %
		Y	6.07	67.38	16.60		130.0	
		Z	5.97	67.07	16.38		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.62	69.36	17.65	0.46	130.0	± 9.6 %
		Y	6.56	68.98	17.41		130.0	
		Z	6.57	68.98	17.33		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.45	68.98	17.65	0.46	130.0	± 9.6 %
		Y	6.45	68.72	17.44		130.0	
		Z	6.41	68.59	17.31		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	6.06	67.73	17.04	0.46	130.0	± 9.6 %
		Y	6.13	67.68	16.93		130.0	
		Z	6.03	67.38	16.72		130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	6.02	67.61	16.82	0.46	130.0	± 9.6 %
		Y	6.08	67.56	16.72		130.0	
		Z	5.99	67.29	16.52		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.99	67.57	16.86	0.46	130.0	± 9.6 %
		Y	6.06	67.53	16.76		130.0	
		Z	5.96	67.24	16.55		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.85	66.86	16.25	0.46	130.0	± 9.6 %
		Y	5.95	66.97	16.25		130.0	
		Z	5.84	66.59	15.98		130.0	
10636- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.22	67.46	16.73	0.46	130.0	± 9.6 %
		Y	6.31	67.49	16.66		130.0	
		Z	6.19	67.15	16.44		130.0	
10637- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.41	67.91	16.92	0.46	130.0	± 9.6 %
		Y	6.48	67.88	16.84		130.0	
		Z	6.38	67.59	16.63		130.0	
10638- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.39	67.83	16.86	0.46	130.0	± 9.6 %
		Y	6.47	67.84	16.79		130.0	
		Z	6.36	67.51	16.57		130.0	

10639-AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.41	67.88	16.94	0.46	130.0	$\pm 9.6\%$
		Y	6.48	67.87	16.86		130.0	
		Z	6.37	67.56	16.64		130.0	
10640-AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.45	67.99	16.94	0.46	130.0	$\pm 9.6\%$
		Y	6.51	67.97	16.86		130.0	
		Z	6.42	67.68	16.65		130.0	
10641-AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.42	67.66	16.79	0.46	130.0	$\pm 9.6\%$
		Y	6.50	67.71	16.74		130.0	
		Z	6.39	67.37	16.51		130.0	
10642-AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.50	68.02	17.13	0.46	130.0	$\pm 9.6\%$
		Y	6.57	68.00	17.04		130.0	
		Z	6.46	67.70	16.83		130.0	
10643-AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.32	67.71	16.88	0.46	130.0	$\pm 9.6\%$
		Y	6.40	67.72	16.82		130.0	
		Z	6.30	67.40	16.60		130.0	
10644-AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.59	68.49	17.30	0.46	130.0	$\pm 9.6\%$
		Y	6.62	68.38	17.17		130.0	
		Z	6.55	68.17	17.01		130.0	
10645-AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.87	68.82	17.40	0.46	130.0	$\pm 9.6\%$
		Y	6.92	68.79	17.32		130.0	
		Z	6.81	68.47	17.09		130.0	
10646-AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	27.30	108.73	36.16	9.30	60.0	$\pm 9.6\%$
		Y	29.31	106.47	34.83		60.0	
		Z	21.71	98.51	31.93		60.0	
10647-AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	28.38	110.39	36.79	9.30	60.0	$\pm 9.6\%$
		Y	32.17	109.29	35.82		60.0	
		Z	22.95	100.38	32.63		60.0	
10648-AAA	CDMA2000 (1x Advanced)	X	1.02	68.09	14.51	0.00	150.0	$\pm 9.6\%$
		Y	1.05	66.19	13.95		150.0	
		Z	0.81	63.75	11.68		150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **PC Test**

Certificate No: **D2600V2-1069_Sep16**

CALIBRATION CERTIFICATE

Object **D2600V2 - SN:1069**

BNV

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

09-28-2016

Calibration date: **September 13, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 15, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	37.3 \pm 6 %	2.05 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.3 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	51.1 \pm 6 %	2.22 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.4 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.0 Ω - 6.3 $j\Omega$
Return Loss	- 23.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 4.6 $j\Omega$
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.05$ S/m; $\epsilon_r = 37.3$; $\rho = 1000$ kg/m³

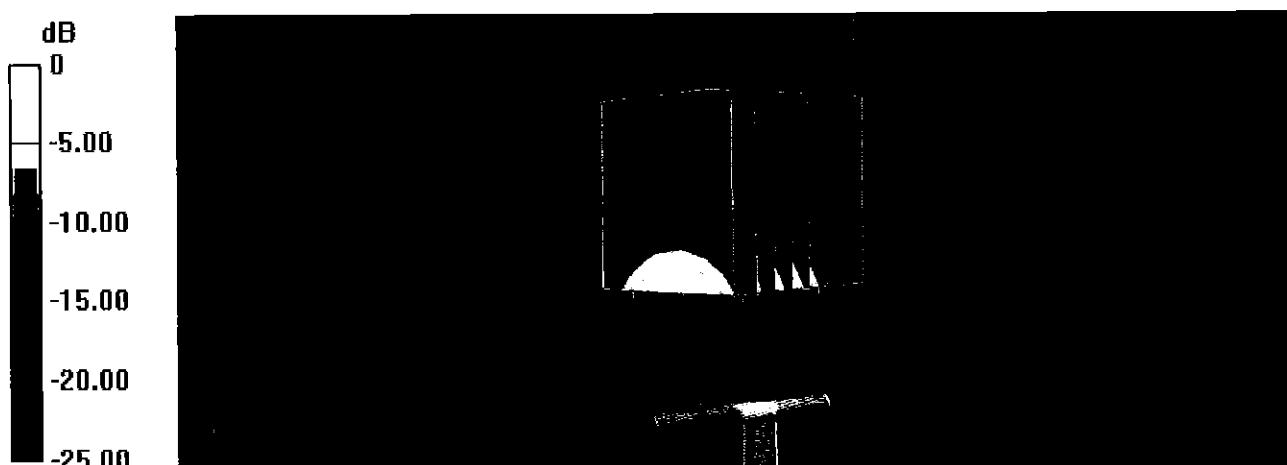
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

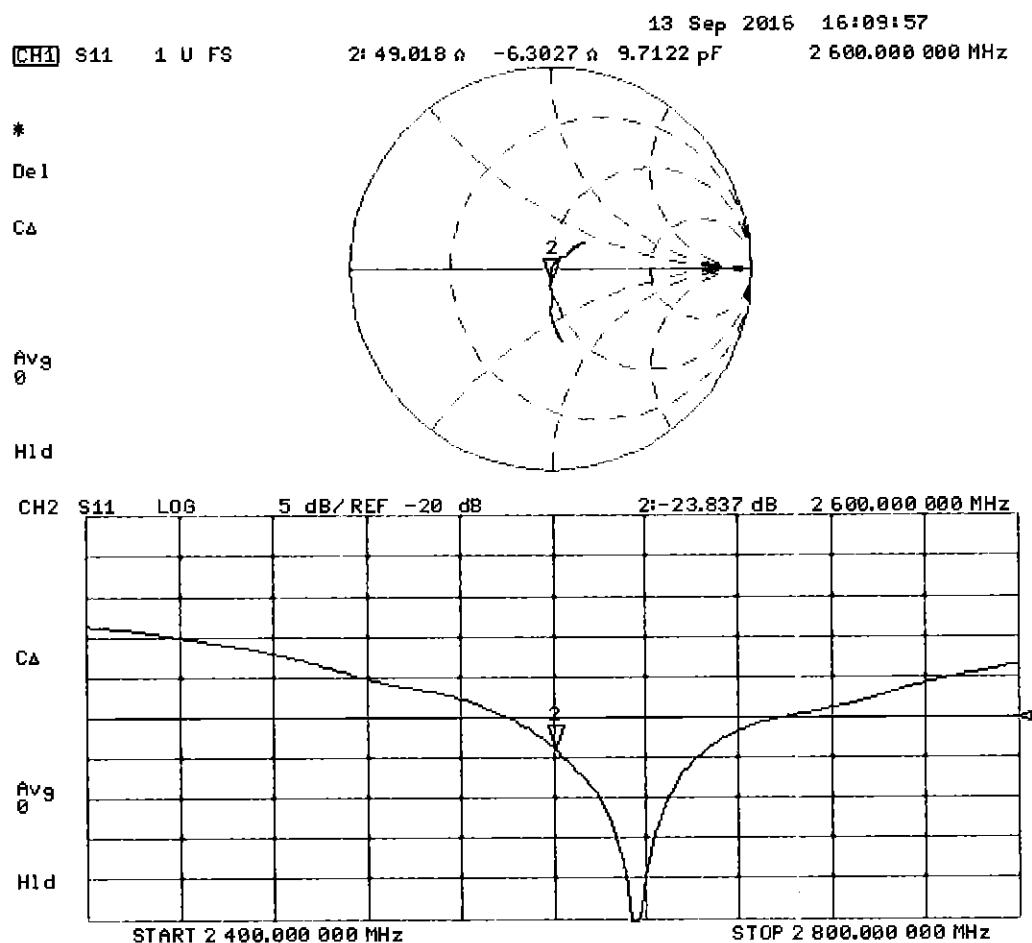
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.4 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (measured) = 24.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

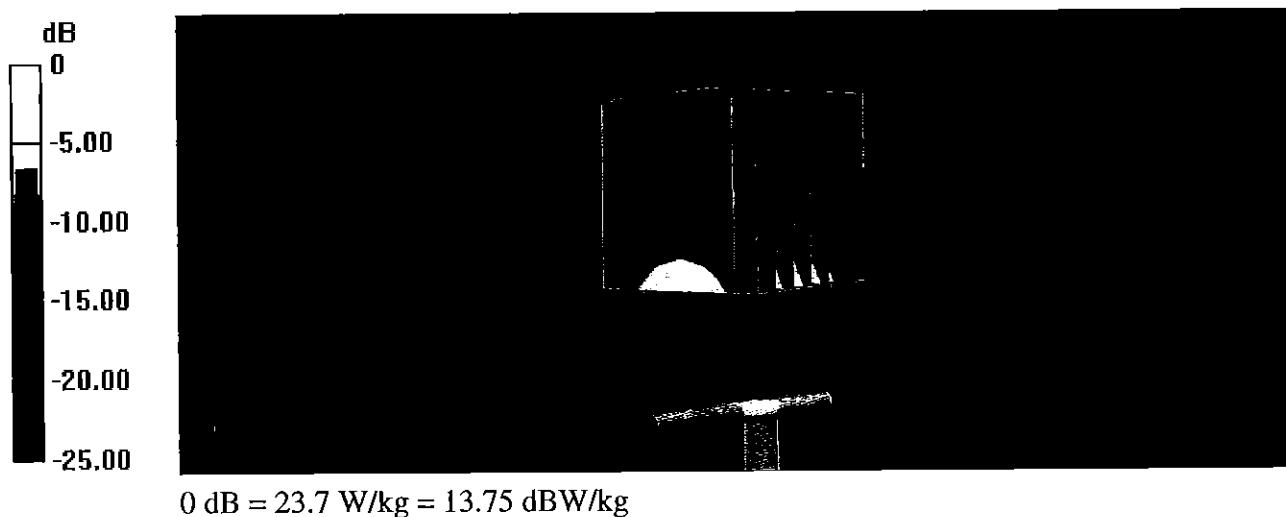
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

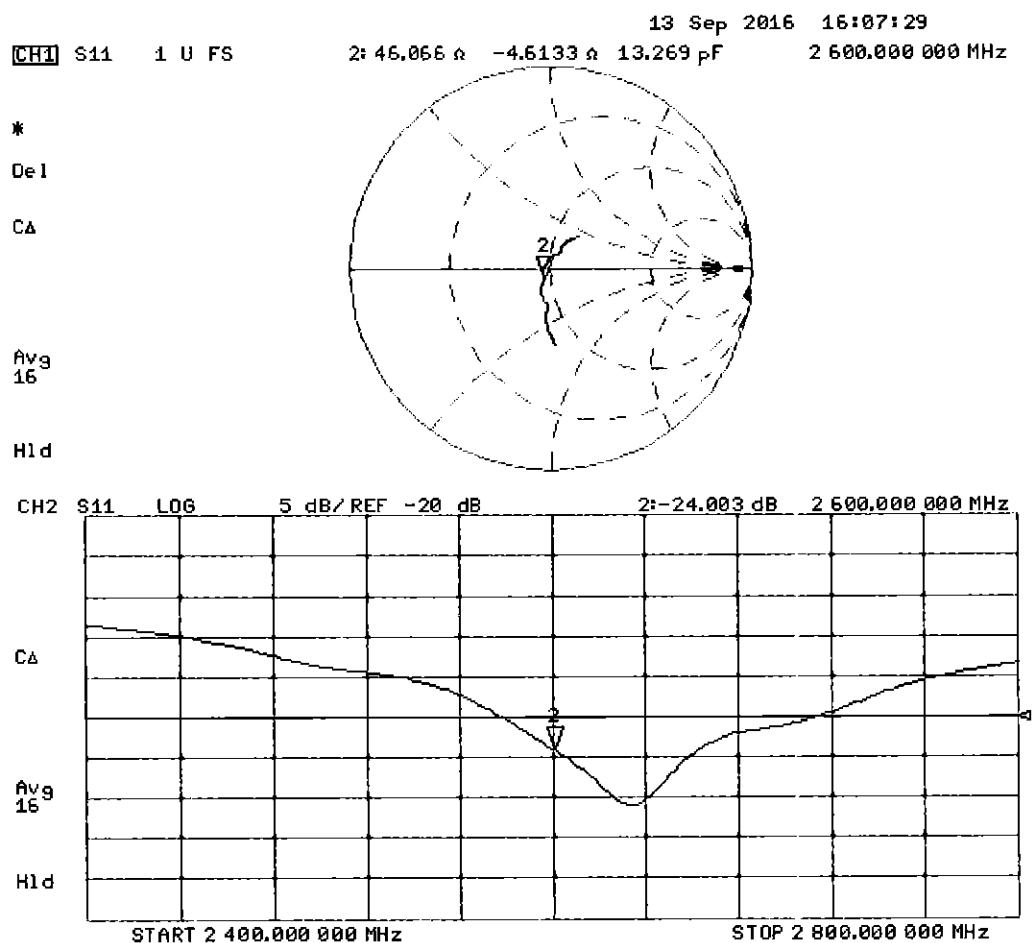
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.5 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.31 W/kg

Maximum value of SAR (measured) = 23.7 W/kg

Impedance Measurement Plot for Body TSL

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\epsilon_r\epsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp[-j\omega r(\mu_0\epsilon_r\epsilon_0)^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-1
Composition of the Tissue Equivalent Matter

Frequency (MHz)	2450-2600	2450-2600
Tissue	Head	Body
Ingredients (% by weight)		
DGBE		26.7
NaCl	See page 2	0.1
Water		73.2

FCC ID: BCG-A1892

SAR EVALUATION REPORT

Approved by:

Quality Manager

Test Dates:

06/28/17 – 07/13/17

DUT Type:

Watch

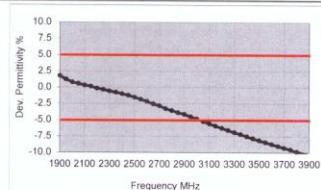
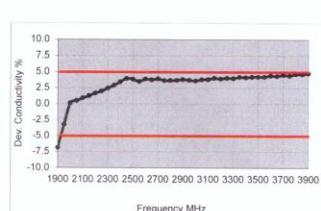
APPENDIX D:
Page 1 of 2

3 Composition / Information on ingredients

The item is composed of the following ingredients:

Water	50 – 73 %
Non-ionic detergents	25 – 50 % polyoxyethylenesorbitan monolaurate
NaCl	0 – 2 %
Preservative	0.05 – 0.1% Preventol-D7

Safety relevant ingredients:



CAS-No. 55965-84-9	< 0.1 %	aqueous preparation, containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyl-3(2H)-isothiazolone
CAS-No. 9005-64-5	<50 %	polyoxyethylenesorbitan monolaurate

According to international guidelines, the product is not a dangerous mixture and therefore not required to be marked by symbols.

Figure D-1
Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBB1900-3800V3)																																																																																																																																																																																																																																																																																																																																																			
Product No.	SL AAH 196 AB (Batch: 160330-1)																																																																																																																																																																																																																																																																																																																																																			
Manufacturer	SPEAG																																																																																																																																																																																																																																																																																																																																																			
Measurement Method																																																																																																																																																																																																																																																																																																																																																				
TSL dielectric parameters measured using calibrated DAK probe.																																																																																																																																																																																																																																																																																																																																																				
Setup Validation																																																																																																																																																																																																																																																																																																																																																				
Validation results were within $\pm 2.5\%$ towards the target values of Methanol.																																																																																																																																																																																																																																																																																																																																																				
Target Parameters																																																																																																																																																																																																																																																																																																																																																				
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.																																																																																																																																																																																																																																																																																																																																																				
Test Condition																																																																																																																																																																																																																																																																																																																																																				
Ambient	Environment temperatur (22 \pm 3) $^{\circ}$ C and humidity < 70%.																																																																																																																																																																																																																																																																																																																																																			
TSL Temperature	22 $^{\circ}$ C																																																																																																																																																																																																																																																																																																																																																			
Test Date	30-Mar-16																																																																																																																																																																																																																																																																																																																																																			
Operator	VM																																																																																																																																																																																																																																																																																																																																																			
Additional Information																																																																																																																																																																																																																																																																																																																																																				
TSL Density 1.054 g/cm ³ TSL Heat-capacity 3.389 kJ/(kg*K)																																																																																																																																																																																																																																																																																																																																																				
<table border="1"> <thead> <tr> <th rowspan="2">f [MHz]</th> <th colspan="2">Measured</th> <th colspan="2">Target</th> <th colspan="2">Diff. to Target [%]</th> </tr> <tr> <th>ϵ'</th> <th>ϵ''</th> <th>σ</th> <th>ϵ'</th> <th>σ</th> <th>$\Delta\epsilon'$</th> <th>$\Delta\sigma$</th> </tr> </thead> <tbody> <tr><td>1900</td><td>40.7</td><td>12.3</td><td>1.3</td><td>40.0</td><td>1.4</td><td>1.7</td><td>-6.9</td></tr> <tr><td>1950</td><td>40.5</td><td>12.5</td><td>1.4</td><td>40.0</td><td>1.4</td><td>1.2</td><td>-3.3</td></tr> <tr><td>2000</td><td>40.3</td><td>12.6</td><td>1.4</td><td>40.0</td><td>1.4</td><td>0.8</td><td>0.1</td></tr> <tr><td>2050</td><td>40.1</td><td>12.7</td><td>1.5</td><td>39.9</td><td>1.4</td><td>0.6</td><td>0.5</td></tr> <tr><td>2100</td><td>39.9</td><td>12.9</td><td>1.5</td><td>39.8</td><td>1.5</td><td>0.3</td><td>0.9</td></tr> <tr><td>2150</td><td>39.8</td><td>13.0</td><td>1.6</td><td>39.7</td><td>1.5</td><td>0.1</td><td>1.2</td></tr> <tr><td>2200</td><td>39.6</td><td>13.1</td><td>1.6</td><td>39.6</td><td>1.6</td><td>-0.2</td><td>1.7</td></tr> <tr><td>2250</td><td>39.4</td><td>13.2</td><td>1.7</td><td>39.6</td><td>1.6</td><td>-0.3</td><td>2.0</td></tr> <tr><td>2300</td><td>39.2</td><td>13.3</td><td>1.7</td><td>39.5</td><td>1.7</td><td>-0.6</td><td>2.4</td></tr> <tr><td>2350</td><td>39.1</td><td>13.5</td><td>1.8</td><td>39.4</td><td>1.7</td><td>-0.8</td><td>2.9</td></tr> <tr><td>2400</td><td>38.9</td><td>13.6</td><td>1.8</td><td>39.3</td><td>1.8</td><td>-1.0</td><td>3.4</td></tr> <tr><td>2450</td><td>38.7</td><td>13.7</td><td>1.9</td><td>39.2</td><td>1.8</td><td>-1.2</td><td>4.0</td></tr> <tr><td>2500</td><td>38.5</td><td>13.8</td><td>1.9</td><td>39.1</td><td>1.9</td><td>-1.5</td><td>3.9</td></tr> <tr><td>2550</td><td>38.3</td><td>13.9</td><td>2.0</td><td>39.1</td><td>1.9</td><td>-1.9</td><td>3.5</td></tr> <tr><td>2600</td><td>38.2</td><td>14.1</td><td>2.0</td><td>39.0</td><td>2.0</td><td>-2.2</td><td>3.9</td></tr> <tr><td>2650</td><td>37.9</td><td>14.2</td><td>2.1</td><td>38.9</td><td>2.0</td><td>-2.6</td><td>3.8</td></tr> <tr><td>2700</td><td>37.8</td><td>14.3</td><td>2.2</td><td>38.9</td><td>2.1</td><td>-2.8</td><td>3.9</td></tr> <tr><td>2750</td><td>37.5</td><td>14.4</td><td>2.2</td><td>38.8</td><td>2.1</td><td>-3.3</td><td>3.6</td></tr> <tr><td>2800</td><td>37.4</td><td>14.5</td><td>2.3</td><td>38.8</td><td>2.2</td><td>-3.6</td><td>3.6</td></tr> <tr><td>2850</td><td>37.2</td><td>14.6</td><td>2.3</td><td>38.7</td><td>2.2</td><td>-3.9</td><td>3.7</td></tr> <tr><td>2900</td><td>37.0</td><td>14.7</td><td>2.4</td><td>38.6</td><td>2.3</td><td>-4.1</td><td>3.8</td></tr> <tr><td>2950</td><td>36.8</td><td>14.8</td><td>2.4</td><td>38.6</td><td>2.3</td><td>-4.5</td><td>3.7</td></tr> <tr><td>3000</td><td>36.6</td><td>14.9</td><td>2.5</td><td>38.5</td><td>2.4</td><td>-4.8</td><td>3.6</td></tr> <tr><td>3050</td><td>36.4</td><td>15.0</td><td>2.5</td><td>38.4</td><td>2.5</td><td>-5.2</td><td>3.8</td></tr> <tr><td>3100</td><td>36.2</td><td>15.1</td><td>2.6</td><td>38.4</td><td>2.5</td><td>-5.6</td><td>3.8</td></tr> <tr><td>3150</td><td>36.1</td><td>15.2</td><td>2.7</td><td>38.3</td><td>2.6</td><td>-5.9</td><td>4.0</td></tr> <tr><td>3200</td><td>35.9</td><td>15.2</td><td>2.7</td><td>38.3</td><td>2.6</td><td>-6.2</td><td>3.9</td></tr> <tr><td>3250</td><td>35.7</td><td>15.3</td><td>2.8</td><td>38.2</td><td>2.7</td><td>-6.6</td><td>4.1</td></tr> <tr><td>3300</td><td>35.5</td><td>15.3</td><td>2.8</td><td>38.2</td><td>2.7</td><td>-6.9</td><td>4.0</td></tr> <tr><td>3350</td><td>35.4</td><td>15.4</td><td>2.9</td><td>38.1</td><td>2.8</td><td>-7.2</td><td>4.2</td></tr> <tr><td>3400</td><td>35.2</td><td>15.5</td><td>2.9</td><td>38.0</td><td>2.8</td><td>-7.5</td><td>4.1</td></tr> <tr><td>3450</td><td>35.0</td><td>15.5</td><td>3.0</td><td>38.0</td><td>2.9</td><td>-7.8</td><td>4.2</td></tr> <tr><td>3500</td><td>34.9</td><td>15.6</td><td>3.0</td><td>37.9</td><td>2.9</td><td>-8.1</td><td>4.2</td></tr> <tr><td>3550</td><td>34.7</td><td>15.6</td><td>3.1</td><td>37.9</td><td>3.0</td><td>-8.4</td><td>4.2</td></tr> <tr><td>3600</td><td>34.5</td><td>15.7</td><td>3.1</td><td>37.8</td><td>3.0</td><td>-8.7</td><td>4.4</td></tr> <tr><td>3650</td><td>34.4</td><td>15.8</td><td>3.2</td><td>37.8</td><td>3.1</td><td>-9.0</td><td>4.3</td></tr> <tr><td>3700</td><td>34.2</td><td>15.8</td><td>3.3</td><td>37.7</td><td>3.1</td><td>-9.3</td><td>4.5</td></tr> <tr><td>3750</td><td>34.1</td><td>15.9</td><td>3.3</td><td>37.6</td><td>3.2</td><td>-9.5</td><td>4.4</td></tr> <tr><td>3800</td><td>33.9</td><td>15.9</td><td>3.4</td><td>37.6</td><td>3.2</td><td>-9.9</td><td>4.7</td></tr> <tr><td>3850</td><td>33.7</td><td>16.0</td><td>3.4</td><td>37.5</td><td>3.3</td><td>-10.1</td><td>4.7</td></tr> </tbody></table>							f [MHz]	Measured		Target		Diff. to Target [%]		ϵ'	ϵ''	σ	ϵ'	σ	$\Delta\epsilon'$	$\Delta\sigma$	1900	40.7	12.3	1.3	40.0	1.4	1.7	-6.9	1950	40.5	12.5	1.4	40.0	1.4	1.2	-3.3	2000	40.3	12.6	1.4	40.0	1.4	0.8	0.1	2050	40.1	12.7	1.5	39.9	1.4	0.6	0.5	2100	39.9	12.9	1.5	39.8	1.5	0.3	0.9	2150	39.8	13.0	1.6	39.7	1.5	0.1	1.2	2200	39.6	13.1	1.6	39.6	1.6	-0.2	1.7	2250	39.4	13.2	1.7	39.6	1.6	-0.3	2.0	2300	39.2	13.3	1.7	39.5	1.7	-0.6	2.4	2350	39.1	13.5	1.8	39.4	1.7	-0.8	2.9	2400	38.9	13.6	1.8	39.3	1.8	-1.0	3.4	2450	38.7	13.7	1.9	39.2	1.8	-1.2	4.0	2500	38.5	13.8	1.9	39.1	1.9	-1.5	3.9	2550	38.3	13.9	2.0	39.1	1.9	-1.9	3.5	2600	38.2	14.1	2.0	39.0	2.0	-2.2	3.9	2650	37.9	14.2	2.1	38.9	2.0	-2.6	3.8	2700	37.8	14.3	2.2	38.9	2.1	-2.8	3.9	2750	37.5	14.4	2.2	38.8	2.1	-3.3	3.6	2800	37.4	14.5	2.3	38.8	2.2	-3.6	3.6	2850	37.2	14.6	2.3	38.7	2.2	-3.9	3.7	2900	37.0	14.7	2.4	38.6	2.3	-4.1	3.8	2950	36.8	14.8	2.4	38.6	2.3	-4.5	3.7	3000	36.6	14.9	2.5	38.5	2.4	-4.8	3.6	3050	36.4	15.0	2.5	38.4	2.5	-5.2	3.8	3100	36.2	15.1	2.6	38.4	2.5	-5.6	3.8	3150	36.1	15.2	2.7	38.3	2.6	-5.9	4.0	3200	35.9	15.2	2.7	38.3	2.6	-6.2	3.9	3250	35.7	15.3	2.8	38.2	2.7	-6.6	4.1	3300	35.5	15.3	2.8	38.2	2.7	-6.9	4.0	3350	35.4	15.4	2.9	38.1	2.8	-7.2	4.2	3400	35.2	15.5	2.9	38.0	2.8	-7.5	4.1	3450	35.0	15.5	3.0	38.0	2.9	-7.8	4.2	3500	34.9	15.6	3.0	37.9	2.9	-8.1	4.2	3550	34.7	15.6	3.1	37.9	3.0	-8.4	4.2	3600	34.5	15.7	3.1	37.8	3.0	-8.7	4.4	3650	34.4	15.8	3.2	37.8	3.1	-9.0	4.3	3700	34.2	15.8	3.3	37.7	3.1	-9.3	4.5	3750	34.1	15.9	3.3	37.6	3.2	-9.5	4.4	3800	33.9	15.9	3.4	37.6	3.2	-9.9	4.7	3850	33.7	16.0	3.4	37.5	3.3	-10.1	4.7
f [MHz]	Measured		Target		Diff. to Target [%]																																																																																																																																																																																																																																																																																																																																															
	ϵ'	ϵ''	σ	ϵ'	σ	$\Delta\epsilon'$	$\Delta\sigma$																																																																																																																																																																																																																																																																																																																																													
1900	40.7	12.3	1.3	40.0	1.4	1.7	-6.9																																																																																																																																																																																																																																																																																																																																													
1950	40.5	12.5	1.4	40.0	1.4	1.2	-3.3																																																																																																																																																																																																																																																																																																																																													
2000	40.3	12.6	1.4	40.0	1.4	0.8	0.1																																																																																																																																																																																																																																																																																																																																													
2050	40.1	12.7	1.5	39.9	1.4	0.6	0.5																																																																																																																																																																																																																																																																																																																																													
2100	39.9	12.9	1.5	39.8	1.5	0.3	0.9																																																																																																																																																																																																																																																																																																																																													
2150	39.8	13.0	1.6	39.7	1.5	0.1	1.2																																																																																																																																																																																																																																																																																																																																													
2200	39.6	13.1	1.6	39.6	1.6	-0.2	1.7																																																																																																																																																																																																																																																																																																																																													
2250	39.4	13.2	1.7	39.6	1.6	-0.3	2.0																																																																																																																																																																																																																																																																																																																																													
2300	39.2	13.3	1.7	39.5	1.7	-0.6	2.4																																																																																																																																																																																																																																																																																																																																													
2350	39.1	13.5	1.8	39.4	1.7	-0.8	2.9																																																																																																																																																																																																																																																																																																																																													
2400	38.9	13.6	1.8	39.3	1.8	-1.0	3.4																																																																																																																																																																																																																																																																																																																																													
2450	38.7	13.7	1.9	39.2	1.8	-1.2	4.0																																																																																																																																																																																																																																																																																																																																													
2500	38.5	13.8	1.9	39.1	1.9	-1.5	3.9																																																																																																																																																																																																																																																																																																																																													
2550	38.3	13.9	2.0	39.1	1.9	-1.9	3.5																																																																																																																																																																																																																																																																																																																																													
2600	38.2	14.1	2.0	39.0	2.0	-2.2	3.9																																																																																																																																																																																																																																																																																																																																													
2650	37.9	14.2	2.1	38.9	2.0	-2.6	3.8																																																																																																																																																																																																																																																																																																																																													
2700	37.8	14.3	2.2	38.9	2.1	-2.8	3.9																																																																																																																																																																																																																																																																																																																																													
2750	37.5	14.4	2.2	38.8	2.1	-3.3	3.6																																																																																																																																																																																																																																																																																																																																													
2800	37.4	14.5	2.3	38.8	2.2	-3.6	3.6																																																																																																																																																																																																																																																																																																																																													
2850	37.2	14.6	2.3	38.7	2.2	-3.9	3.7																																																																																																																																																																																																																																																																																																																																													
2900	37.0	14.7	2.4	38.6	2.3	-4.1	3.8																																																																																																																																																																																																																																																																																																																																													
2950	36.8	14.8	2.4	38.6	2.3	-4.5	3.7																																																																																																																																																																																																																																																																																																																																													
3000	36.6	14.9	2.5	38.5	2.4	-4.8	3.6																																																																																																																																																																																																																																																																																																																																													
3050	36.4	15.0	2.5	38.4	2.5	-5.2	3.8																																																																																																																																																																																																																																																																																																																																													
3100	36.2	15.1	2.6	38.4	2.5	-5.6	3.8																																																																																																																																																																																																																																																																																																																																													
3150	36.1	15.2	2.7	38.3	2.6	-5.9	4.0																																																																																																																																																																																																																																																																																																																																													
3200	35.9	15.2	2.7	38.3	2.6	-6.2	3.9																																																																																																																																																																																																																																																																																																																																													
3250	35.7	15.3	2.8	38.2	2.7	-6.6	4.1																																																																																																																																																																																																																																																																																																																																													
3300	35.5	15.3	2.8	38.2	2.7	-6.9	4.0																																																																																																																																																																																																																																																																																																																																													
3350	35.4	15.4	2.9	38.1	2.8	-7.2	4.2																																																																																																																																																																																																																																																																																																																																													
3400	35.2	15.5	2.9	38.0	2.8	-7.5	4.1																																																																																																																																																																																																																																																																																																																																													
3450	35.0	15.5	3.0	38.0	2.9	-7.8	4.2																																																																																																																																																																																																																																																																																																																																													
3500	34.9	15.6	3.0	37.9	2.9	-8.1	4.2																																																																																																																																																																																																																																																																																																																																													
3550	34.7	15.6	3.1	37.9	3.0	-8.4	4.2																																																																																																																																																																																																																																																																																																																																													
3600	34.5	15.7	3.1	37.8	3.0	-8.7	4.4																																																																																																																																																																																																																																																																																																																																													
3650	34.4	15.8	3.2	37.8	3.1	-9.0	4.3																																																																																																																																																																																																																																																																																																																																													
3700	34.2	15.8	3.3	37.7	3.1	-9.3	4.5																																																																																																																																																																																																																																																																																																																																													
3750	34.1	15.9	3.3	37.6	3.2	-9.5	4.4																																																																																																																																																																																																																																																																																																																																													
3800	33.9	15.9	3.4	37.6	3.2	-9.9	4.7																																																																																																																																																																																																																																																																																																																																													
3850	33.7	16.0	3.4	37.5	3.3	-10.1	4.7																																																																																																																																																																																																																																																																																																																																													

Figure D-2
2.4 GHz Head Tissue Equivalent Matter

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch		APPENDIX D: Page 2 of 2

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-I
SAR System Validation Summary (1g)

SAR SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE CAL. POINT	COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
						(σ)	(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
CAL 3	2450	4/13/2017	3118	ES3DV3	2450 Head	1.849	39.452	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
CAL 4	2450	4/17/2017	3329	ES3DV3	2450 Head	1.849	39.452	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
CAL 4	2600	4/14/2017	3329	ES3DV3	2600 Head	2.059	38.513	PASS	PASS	PASS	TDD	PASS	N/A

Table E-II
SAR System Validation Summary (10g)

SAR SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE CAL. POINT	COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
						(σ)	(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
CAL 2	2450	4/14/2017	3347	ES3DV3	2450 Body	1.952	51.593	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
CAL 3	2450	4/19/2017	3118	ES3DV3	2450 Body	1.970	50.772	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
CAL 3	2600	4/19/2017	3118	ES3DV3	2600 Body	2.171	50.170	PASS	PASS	PASS	TDD	PASS	N/A

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: BCG-A1892	PCTEST ENGINEERING LABORATORY, INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates: 06/28/17 – 07/13/17	DUT Type: Watch		APPENDIX E: Page 1 of 1