## 2.983(e)(5) Measurement of Radiated Spurious Emissions per 2.993

#### **Definition:**

Emissions from the equipment when connected into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communication desired. The reduction in the level of these spurious emissions will not affect the quality of the information being transmitted.

Test Method: Per EIA RS 152-B.

Connect the equipment and follow the procedure described in paragraph 2.2.1.1 and paragraph 5.0. Measure the amplitude of each spurious radiated signal through the  $10^{th}$  harmonic. The level in dBuV/m is calculated on the following page. The spurious signals are then measured on the 3 meter range.

Spurious attenuation  $dB = 10 \log \frac{Po \text{ Watts}}{Calc. \text{ Spurious power}}$ 

Test Results: See TABLE I on following Page.

All radiated spurious emissions are below the FCC Specifications.

## SPURIOUS RADIATED SIGNAL MEASURESPEN PBD6-1AB-L

(Ref: Part 2, Subpart J, 2.991 & 2.993)

| Date 7-23-99           | Pass Fail (at Freq)             |
|------------------------|---------------------------------|
| EUT RF DOWER AMPLIFIER | Operating Power 45 WATTS        |
| Part No. PAG-14BL M    | Operating Mode <u>SATURATED</u> |
| Serial No. 0001        | Test Engineer CHI CA/           |

FREQUENCY TUNED TO 420 MHz

| ANT<br>POL | FREQ<br>MHz | SPECTRUM<br>ANALYZER<br>(dBµV) | ANT.<br>FACTOR<br>(dB) | CABLE<br>LOSS<br>(dB) | AMP<br>GAIN<br>(dB) | dBμV/m | FUND<br>FIELD<br>STRENGTH<br>dBµV/m | SPUR<br>BELOW<br>CARR-<br>IER<br>(dBc) |
|------------|-------------|--------------------------------|------------------------|-----------------------|---------------------|--------|-------------------------------------|----------------------------------------|
| Н          | 840         | 52.4                           | 22:5                   | 2.0                   | 22                  | 54.9   | 143.9                               | 89                                     |
| M          | 1260        | 48.6                           | 27.0                   | 50                    | 22                  | 58.6   |                                     | 85.3                                   |
| H          | 1680        | 22.4                           | 30.0                   | 6.0                   | 22                  | 46.4   |                                     | 97.5                                   |
| 14         | 2100        | 46.9                           | 29.0                   | 6.5                   | 42                  | 40.4   |                                     | 103.5                                  |
| H          | 2520        | 55.1                           | 30.0                   | 7.5                   | 42                  | 50.6   |                                     | 93.3                                   |
| H          | 2940        | 40.7                           | 31.0                   | 80                    | 42                  | 37.7   |                                     | 106.2                                  |
| +1         | 3360        | 48.9                           | 32.                    | 9.0                   | 42                  | 47.9   |                                     | 96.0                                   |
| H-         | 3780        | 46.2                           | 3.3                    | 10.0                  | 42                  | 47.2   | $\lor$                              | 96.7                                   |
| -(         | 4 200       | 39.1                           | 33.5                   | 10.5                  | 42                  | 41.1   | 143.9                               | 102-8                                  |
|            |             |                                |                        | ,                     |                     |        |                                     |                                        |
|            |             |                                |                        |                       |                     |        |                                     |                                        |

Fundamental Field Strength  $(V/m) = 1/3 (Ro \times Po)^{\frac{1}{2}} = \frac{1}{3} (SO \times 45)^{\frac{1}{2}}$ Ro = Amplifier Output Impedance  $(Ohms) = 50 \Omega$  = 15.8 V/mPo = Amplifier Output Power (Watts) = 45W = 143.9 dBW/m

Conversion from  $\mu V/m$  to  $dB\mu V/m = (\mu V/m)^{\log} \times 20$ 

FCC LIMIT = 43HEET 20 log (45) = 60 dBC

# SPURIOUS RADIATED SIGNAL MEASUREMENTS BBD6-1AB-L

(Ref: Part 2, Subpart J, 2.991 & 2.993)

| Date 7-23-99          | Pass Fail (at Freq)             |
|-----------------------|---------------------------------|
| EUT RF POWER AMPUFIER | Operating Power 45 WATTS        |
| Part No. PAG-1ABL M   | Operating Mode <u>SATURATED</u> |
| Serial No. 000        | Test Engineer CHI CAI           |

## FREQUENCY TUNED TO 420 MHz

| ANT      | FREQ<br>MHz | SPECTRUM<br>ANALYZER<br>(dBµV) | ANT.<br>FACTOR<br>(dB) | CABLE<br>LOSS<br>(dB) | AMP<br>GAIN<br>(dB) | dBμV/m | FUND<br>FIELD<br>STRENGTH<br>dBµV/m | SPUR<br>BELOW<br>CARR-<br>IER<br>(dBc) |
|----------|-------------|--------------------------------|------------------------|-----------------------|---------------------|--------|-------------------------------------|----------------------------------------|
| ٧        | 840         | 54.6                           | 22.5                   | 20                    | 22                  | 57.1   | 143.9                               | 86.8                                   |
| ٧        | 1260        | 48.3                           | 27.0                   | 5-0                   | 22                  | 58.3   |                                     | 85.6                                   |
| V        | 1680        | 37.5                           | 30.0                   | 6.0                   | 22                  | 51.5   |                                     | 92.4                                   |
| <b>~</b> | 2100        | 53.1                           | 29.0                   | 6.5                   | 42                  | 46.6   |                                     | 97.3                                   |
| V        | 25 20       | 59.6                           | 30.0                   | 7.5                   | 42                  | 55.1   |                                     | 88-8                                   |
| V        | 2940        | 40.7                           | 31.0                   | 8.0                   | 42                  | 37.7   |                                     | 106.2                                  |
| . 🗸 .    | 33 60       | 51.8                           | 32.0                   | 9.0                   | 42                  | 50-8   |                                     | 93.1                                   |
| V        | 3780        | 45-6                           | 33.0                   | 10.0                  | 42                  | 46.6   | $\downarrow$                        | 97.3                                   |
| V        | 4200        | 32.9                           | 33.5                   | 10-5                  | 47                  | 34.9   | 143.9                               | 109.6                                  |
|          |             |                                |                        |                       |                     | ( · 1  |                                     | !                                      |
|          |             |                                |                        |                       |                     |        |                                     |                                        |

Fundamental Field Strength  $(V/m) = 1/3 (Ro \times Po)^{\frac{1}{2}} = 1/3 (50 \times 45)^{\frac{1}{2}}$ Ro = Amplifier Output Impedance  $(Ohms) = 50 \Omega$  =  $15 \cdot 8 V/m$ Po = Amplifier Output Power (Watts) = 45W = 143.9 dP/V/mConversion from  $\mu V/m$  to  $dB\mu V/m = (\mu V/m) \log \times 20$ 

FCC (IMIT = SHEET 210 Log(45) = 60 dBC

### 2.983(e)(6) Measurement of Frequency Stability per 2.995

The EUT is a power amplifier and contains no circuitry for generating or stabilizing the RF signal. The driver will be responsible for this task.

### 2.983(e)(7) Frequency Spectrum to be investigated per 2.997

The Frequency was searched from the lowest radio frequency generated in the equipment through the 10<sup>th</sup> harmonic of the carrier frequency.

## 2.983(e) Test Data

Refer to 2.983(e) (1) through 2.983(e) (7).

## 2.983(e)(1) Measurement of RF Power Output per 2.985

<u>Definition:</u> For RF Power Amplifiers.

<u>Test Method:</u> See FIGURE 2.

Output Power Is measured across a precision 50 ohm load with a wide band sampling RF Voltmeter.

Test Results:

### **POWER OUTPUT**

| FREQUENCY | NOMINAL VOLTAGE | 85% VOLTAGE | 115% VOLTAGE |
|-----------|-----------------|-------------|--------------|
|           | 13.8 VDC        | 11.73 VDC   | 15.87 VDC    |
| 420 MHz   | 45 Watts        | 37 Watts    | 50 Watts     |

## 2.983(e)(2) Measurement of Modulation Characteristics per 2.987(b) (1)

This EUT is a Power Amplifier and contains no circuitry to modify the RF signal provided by the driver except to raise the power level.

#### 2.983(e)(3) Measurement of Occupied Bandwidth per 2.989

#### Definition:

Occupied Bandwidth, that is the frequency bandwidth such that, below its upper frequency limits, the mean power radiated by a given emission.

<u>Test Method:</u> Connect the Equipment per FIGURE 3. Measurements were made with the modulating signal at 2.5 kHz with 5 kHz of FM deviation.

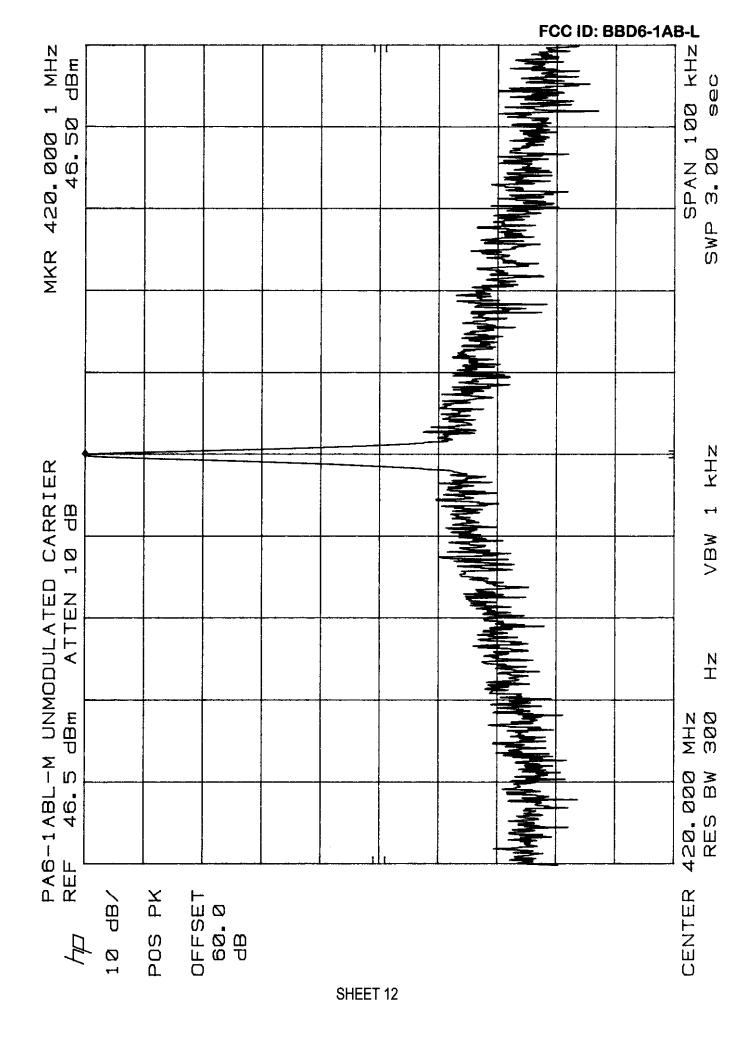
<u>Test Results:</u> See Plots following FIGURE 3.

The center frequency of the signal did not shift with modulation. The Spectrum Bandwidth was well within the limits specified in the FCC Regulations.

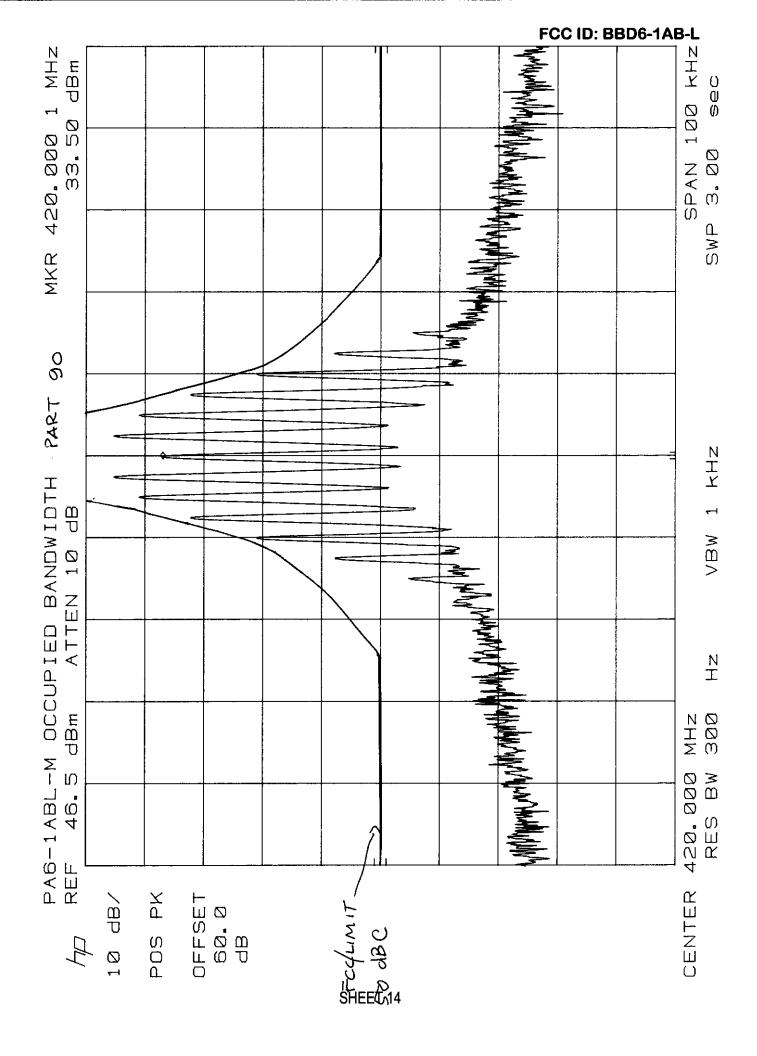
| 2.983(h)    | Description and Test Data for Encoding Device(s)                                                |  |  |
|-------------|-------------------------------------------------------------------------------------------------|--|--|
|             | This section does not apply to the EUT.                                                         |  |  |
| 2.983(i)    | Type Acceptance Data for an External Power<br>Amplifier used in Amateur Radio Service – Part 97 |  |  |
| <del></del> |                                                                                                 |  |  |

This section does not apply to the EUT.

# APPENDIX A TEST EQUIPMENT


# TEST EQUIPMENT LOG


TYPE OF TEST: FCC TYPE ACCEPTANCE


| DATE 08-03-99                | TEST PROCEDURE PART 2, 22, & 70 |
|------------------------------|---------------------------------|
| EUT RF AMP                   | OTHER                           |
| MODEL # / SERIAL # PAG - I A | BL-M                            |
| TEST ENGINEER CHI CAI        |                                 |

| DESCRIPTION       | MANUFACTURER            | MODEL # / SERIAL #          | CAL. DUE DATE         |
|-------------------|-------------------------|-----------------------------|-----------------------|
| SIGNAL GEN.       | MARCONI                 | 2024 / 112236-002           | 3-17-2000             |
| SPEC. ANALYZER    | HP                      | 8566B/2403A06307&2407A03212 | 2-10-2000             |
| PLOTTER           | HP                      | 7070A                       | N/R                   |
| DUAL DIR. COUPLER | HP                      | 778D                        | CAL@ TIME<br>OF TEST  |
| 50 OHM LOAD       | ELECTRO<br>IMPULSE LAB. | DA-242A/4/7940097           | CAL@ TIME<br>OF TEST  |
| 50 OHM LOAD       | TERMALINE               | 8053 / 8945                 | CAL @ TIME<br>OF TEST |
| 50 OHM LOAD       | INMET                   | IN020M-100W                 | CAL @ TIME<br>OF TEST |
| 40 Db ATT.        | INMET                   | 18N50W-40Db                 | CAL @ TIME<br>OF TEST |
| POWER SUPPLY      | ACOPIAN                 | 28PT10AFHP / 6              | N/R                   |
| MULTI-VOLTMETER   | GOLDSTAR                | DM-333 / S61004151          | 4-1-2000              |
| LOG PERIODIC ANT. | A.H. SYSTEMS.           | SAA-200-512 / 347           | 10-10-1999            |
| DRG ANT.          | EMCO                    | 3115 / 2280                 | 1-8-2000              |
| WIDEBAND AMP.     | IFI                     | 5500                        | N/R                   |
| PREAMP.           | MINI-CIRCUITS           | ZFL-2000 / 001              | 5-7-2000              |
| PREAMP.           | AVANTEK                 | SWL88-6176 / 1847           | 5-7-2000              |

FCC/TA







# 2.983(e)(4) Measurement of Antenna Conducted Spurious Emissions per 2.991

#### **Definition:**

Conducted Spurious Emissions are emissions at the antenna terminals on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communication desired. The reduction in the level of these spurious emissions will not affect the quality of the information being transmitted.

Conducted Spurious Emissions shall be attenuated below the maximum level of the carrier frequency in accordance with the following formula:

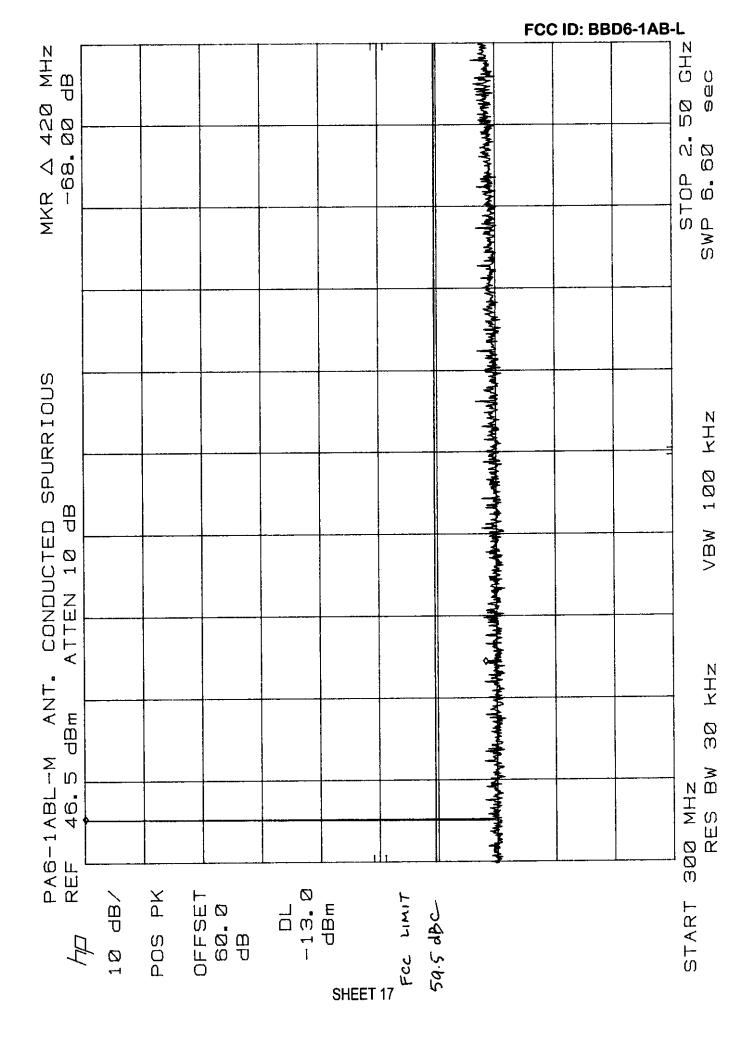
Spurious attenuation in dB =  $43 + 10 \log_{10} Po$ 

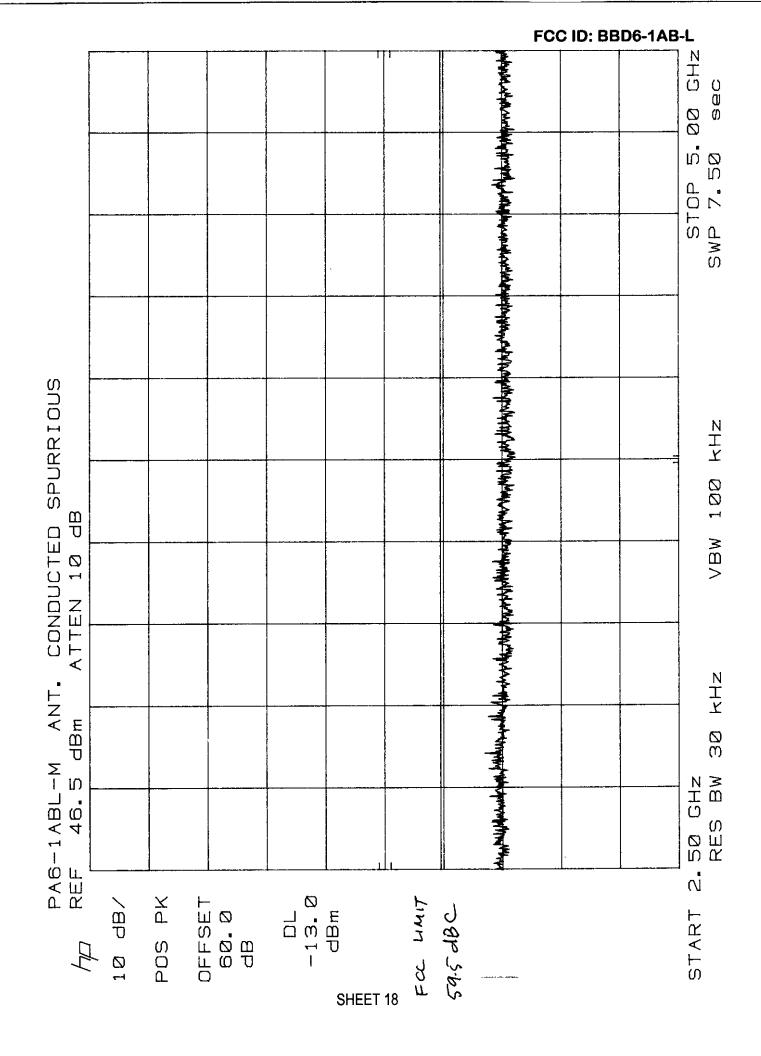
Where Po = Output in Watts

 $=43+10\log_{10}(45)$ 

= 60 dB

<u>Test Method:</u> Per EIA RS 152-B, Paragraph 4.


Connect the equipment as shown in FIGURE 4.


Adjust the Audio Oscillator so that the frequency deviation of the transmitter is a 5 kHz at a modulation frequency of 2.5 kHz. Adjust the Spectrum Analyzer to display the Modulated Carrier.

Scan the frequency spectrum from the lowest radio frequency generated in the equipment through the 10<sup>th</sup> harmonic of the carrier frequency.

Test Results: See Plots following FIGURE 4.

All spurious antenna conducted emissions are below the FCC Specifications.



