



**FCC CFR47 PART 95 REQUIREMENT**

**CERTIFICATION REPORT**

**FOR**

**TRANSMITTER FOR MEDICAL**

**MODEL: ZM-940PA**

**FCC ID: B6BZM-940PA**

**REPORT NUMBER: 05I3334-1**

**ISSUE DATE: APRIL 18, 2005**

*Prepared for*

**NIHON KOHDEN CORPORATION  
1-31-4, NISHIOCHIAI SHINJUKU-KU  
TOKYO 161-8560, JAPAN**

*Prepared by*

**COMPLIANCE CERTIFICATION SERVICES  
561F MONTEREY ROAD,  
MORGAN HILL, CA 95037, USA  
TEL: (408) 463-0885  
FAX: (408) 463-0888**



Revision History

| Rev. | Revisions                                                                                  | Revised By |
|------|--------------------------------------------------------------------------------------------|------------|
| B    | Updated the authorized bandwidth for emission type F1D is 20KHz, and CFR 47 section 2.1049 | Thu        |

## TABLE OF CONTENTS

|                                                                     |           |
|---------------------------------------------------------------------|-----------|
| <b>1. ATTESTATION OF TEST RESULTS .....</b>                         | <b>4</b>  |
| <b>2. TEST METHODOLOGY.....</b>                                     | <b>5</b>  |
| <b>3. FACILITIES AND ACCREDITATION .....</b>                        | <b>5</b>  |
| <b>4. CALIBRATION AND UNCERTAINTY .....</b>                         | <b>5</b>  |
| 4.1        MEASURING INSTRUMENT CALIBRATION .....                   | 5         |
| 4.2        MEASUREMENT UNCERTAINTY .....                            | 5         |
| <b>5. EQUIPMENT UNDER TEST.....</b>                                 | <b>6</b>  |
| 5.1        DESCRIPTION OF EUT .....                                 | 6         |
| 5.2        MAXIMUM OUTPUT POWER.....                                | 6         |
| 5.3        SOFTWARE AND FIRMWARE .....                              | 6         |
| 5.4        WORST-CASE CONFIGURATION AND MODE .....                  | 6         |
| <b>6. TEST AND MEASUREMENT EQUIPMENT.....</b>                       | <b>7</b>  |
| <b>7. SETUP OF EQUIPMENT UNDER TEST (RF).....</b>                   | <b>8</b>  |
| <b>8. SETUP OF EQUIPMENT UNDER TEST (DIGITAL CONFIG #1).....</b>    | <b>10</b> |
| <b>9. SETUP OF EQUIPMENT UNDER TEST (DIGITAL CONFIG #2).....</b>    | <b>12</b> |
| <b>10. FIELD STRENGTH AND UNDESIRED EMISSIONS MEASUREMENT .....</b> | <b>14</b> |
| <b>11. EMISSION BANDWIDTH.....</b>                                  | <b>31</b> |
| <b>12. PEAK OUTPUT POWER .....</b>                                  | <b>35</b> |
| <b>13. SPURIOUS EMISSIONS AT ANTENNA TERMINAL .....</b>             | <b>39</b> |
| <b>14. FREQUENCY STABILITY MEASUREMENT .....</b>                    | <b>46</b> |
| <b>15. RADIATED EMISSIONS FOR DIGITAL PORTION .....</b>             | <b>50</b> |
| <b>16. POWER LINE CONDUCTED EMISSIONS .....</b>                     | <b>57</b> |
| <b>17. SETUP PHOTOS .....</b>                                       | <b>61</b> |

## 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** NIHON KOHDEN CORPORATION  
1-31-4, NISHIOCHIAI SHINJUKU-KU  
TOKYO 161-8560, JAPAN

**EUT DESCRIPTION:** TRANSMITTER FOR MEDICAL

**MODEL:** ZM-940PA

**SERIAL NUMBER:** 90001

**DATE TESTED:** April 12 – 14, 2005

| APPLICABLE STANDARDS          |                         |
|-------------------------------|-------------------------|
| STANDARD                      | TEST RESULTS            |
| FCC PART 95 SUBPART H         | NO NON-COMPLIANCE NOTED |
| DIGITAL DEVICE CONFIGURATION: | NO NON-COMPLIANCE NOTED |
| FCC PART 15 SUBPART B         |                         |

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Tested By:



THANH NGUYEN  
EMC TECHNICIAN  
COMPLIANCE CERTIFICATION SERVICES

Approved & Released For CCS By:



THU CHAN  
EMC SUPERVISOR  
COMPLIANCE CERTIFICATION SERVICES

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603A (2001), ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15 and FCC CFR 47 Part 95.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

## 4. CALIBRATION AND UNCERTAINTY

### 4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

### 4.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                           | UNCERTAINTY    |
|-------------------------------------|----------------|
| Radiated Emission, 30 to 200 MHz    | +/- 3.3 dB     |
| Radiated Emission, 200 to 1000 MHz  | +4.5 / -2.9 dB |
| Radiated Emission, 1000 to 2000 MHz | +4.5 / -2.9 dB |
| Power Line Conducted Emission       | +/- 2.9 dB     |

Uncertainty figures are valid to a confidence level of 95%.

## 5. EQUIPMENT UNDER TEST

### 5.1 DESCRIPTION OF EUT

|                                |                                 |
|--------------------------------|---------------------------------|
| a). Type of EUT:               | WMTS TRANSMITTER                |
| b). Brand Name:                | NIHON KOHDEN                    |
| c). Model No:                  | ZM-940PA                        |
| d). FCC ID:                    | B6BZM-940PA                     |
| e). Power Supply:              | 4.5 VDC (3 x AA)                |
| f). Number of Channels:        | 239 Channels                    |
| g). Frequency Range:           | 608.025 ~ 613.9750 MHz.         |
| h). RF Conducted Output Power: | 1 mW                            |
| i). Channel Spacing:           | 50 KHz (25 KHz when interleave) |
| j). Type of Modulation:        | F1D                             |
| k). Antenna Type:              | INTERNAL (HELICAL MONOPOLE)     |
| l). Antenna Gain:              | 0 dBi                           |

### 5.2 MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

608 to 614 MHz Authorized Band

| Frequency Range<br>(MHz) | Modulation | Output<br>Power<br>(dBm) | Output<br>Power<br>(mW) |
|--------------------------|------------|--------------------------|-------------------------|
| 608.025 - 613.975        | F1D        | 0.31                     | 1.07                    |

### 5.3 SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Channel Writer Application rev. 1.0.1.0.

The EUT driver software installed in the host support equipment during testing was QI901PK, rev. 02\_01.

The test utility software used during testing was Channel.exe.

### 5.4 WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 608.025 MHz.

## 6. TEST AND MEASUREMENT EQUIPMENT

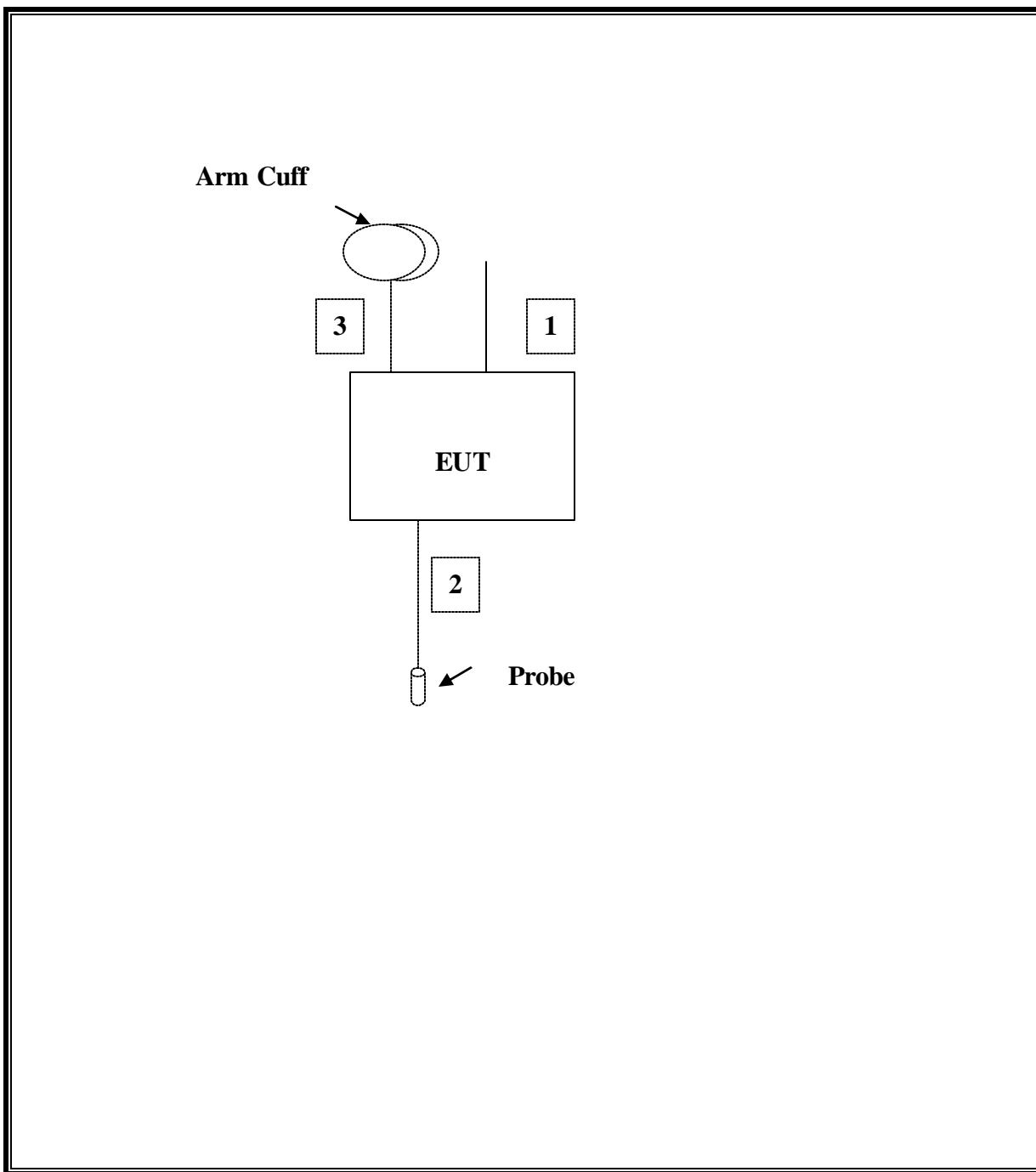
The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST                             |                      |                      |                       |                          |
|-------------------------------------------------|----------------------|----------------------|-----------------------|--------------------------|
| Name of Equipment                               | Manufacturer         | Model No.            | Serial No.            | Due Date                 |
| EMI Receiver, 9 kHz ~ 2.9 GHz<br>30MHz---- 2Ghz | HP<br>Sunol Sciences | 8542E<br>JB1 Antenna | 3942A00286<br>A121003 | 03/29/2006<br>03/03/2006 |
| Antenna, Horn 1 ~ 18 GHz                        | EMCO                 | 3117                 | 29301                 | 09/12/2005               |
| Preamplifier, 1 ~ 26 GHz                        | Miteq                | NSP2600-44           | 646456                | 08/17/2005               |
| EMI Test Receiver                               | R & S                | ESHS20               | 8271299/0006          | 10/22/2005               |
| LISN, 10 kHz ~ 30 MHz                           | FCC                  | LISN-50/250-25-2     | 2023                  | 08/30/2005               |
| LISN, 10 kHz ~ 30 MHz                           | Solar                | 8012-50-R-24-BNC     | 8379443               | 10/21/2005               |
| Site A Line Stabilizer / Conditioner            | Tripplite            | LC-1800a             | A0051681              | CNR                      |
| Spectrum analyzer                               | Agilent              | E4446A               | MY43360112            | 01/20/2006               |
| RF filter section                               | HP                   | 85420E               | 3705A00256            | 03/29/2006               |
| Temperature/Humidity Chamber                    | Thermotron           | SE 600-10-10         | 29800                 | 05/13/2005               |
| DC Power supply                                 | HP                   | E3610A               | KR24104150            | N/A                      |

## 7. SETUP OF EQUIPMENT UNDER TEST (RF)

### SUPPORT EQUIPMENT

N/A


### I/O CABLES

| TEST I / O CABLES |          |               |                |               |              |              |         |                     |
|-------------------|----------|---------------|----------------|---------------|--------------|--------------|---------|---------------------|
| Cable No          | I/O Port | # of I/O Port | Connector Type | Type of Cable | Cable Length | Data Traffic | Bundled | Remark              |
| 1                 | ECG      | 1             | ECG            | Un-shielded   | .7m          | Yes          | No      | N/A                 |
| 2                 | Sp02     | 1             | Sp02           | Un-shielded   | .7m          | Yes          | No      | Probe               |
| 3                 | NIBP     | 1             | NIBP socket    | Rubber        | 3m           | No           | No      | Connect to Arm Cuff |

### TEST SETUP

The EUT was installed with three 1.5 VDC batteries (periodically changed to ensure 4.5 VDC output). The EUT was tested in the X, Y, and Z positions, X was found to be worst case. During the testing process the EUT was put in continuous transmit mode.

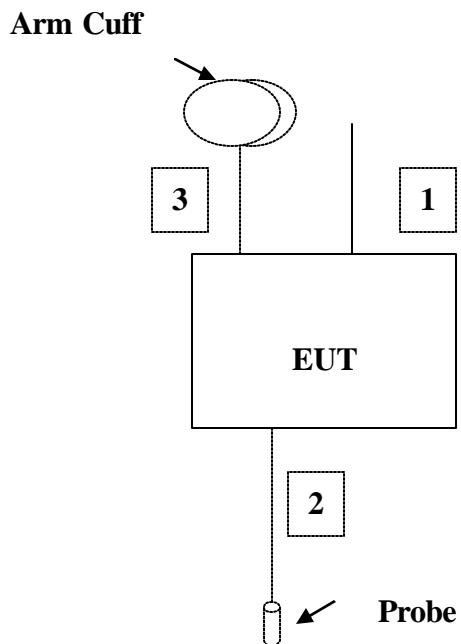
**SETUP DIAGRAM FOR TEST**



## 8. SETUP OF EQUIPMENT UNDER TEST (DIGITAL CONFIG #1)

### SUPPORT EQUIPMENT

N/A


### I/O CABLES

| TEST I / O CABLES |          |               |                |               |              |              |         |                     |
|-------------------|----------|---------------|----------------|---------------|--------------|--------------|---------|---------------------|
| Cable No          | I/O Port | # of I/O Port | Connector Type | Type of Cable | Cable Length | Data Traffic | Bundled | Remark              |
| 1                 | ECG      | 1             | ECG            | Un-shielded   | .7m          | Yes          | No      | N/A                 |
| 2                 | Sp02     | 1             | Sp02           | Un-shielded   | .7m          | Yes          | No      | Probe               |
| 3                 | NIBP     | 1             | NIBP socket    | Rubber        | 3m           | No           | No      | Connect to Arm Cuff |

### TEST SETUP

The EUT was installed with three 1.5 VDC batteries (periodically changed to ensure 4.5 VDC output). Worst case position was tested (Y). During the testing process the EUT was put in continuous transmit mode and NIBP was active.

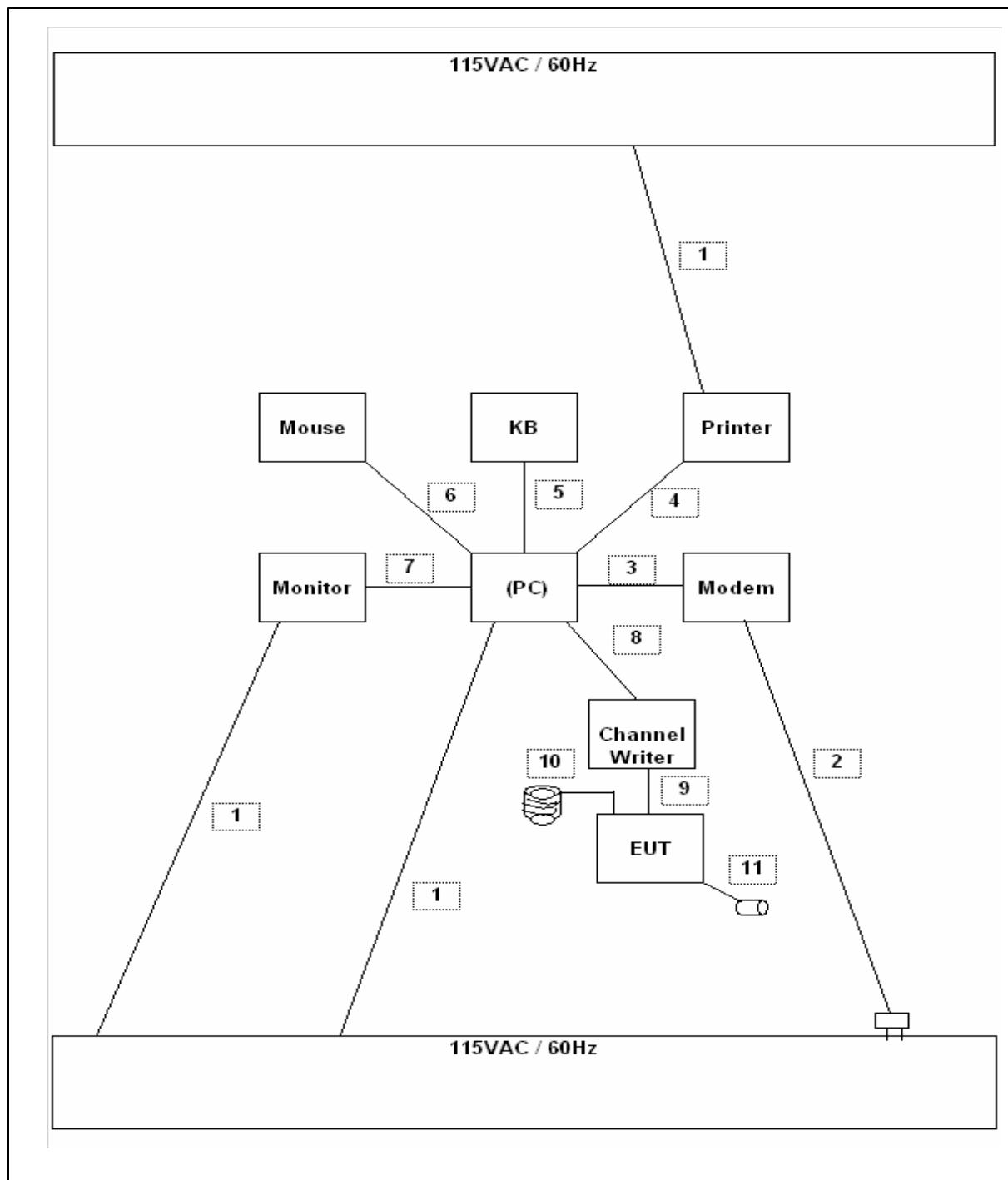
**SETUP DIAGRAM FOR TEST**



## 9. SETUP OF EQUIPMENT UNDER TEST (DIGITAL CONFIG #2)

### SUPPORT EQUIPMENT

| TEST PERIPHERALS |              |                 |               |             |
|------------------|--------------|-----------------|---------------|-------------|
| Device Type      | Manufacturer | Model Number    | Serial Number | FCC ID      |
| PC               | HP           | Vectra VL400 MT | US03763261    | DoC         |
| Mouse            | HP           | M-S34           | LZB74708572   | DZL211029   |
| Keyboard         | HP           | SK-2502         | HR805238420   | GYUR41SK    |
| Printer          | HP           | 2225C           | 2541S41679    | BS46XU2225C |
| Modem            | ACEEX        | 1414            | 9013538       | IFAXDM1414  |
| Monitor          | Dell         | M780            | 5322DE20E049  | DoC         |
| Channel Writer   | NIHON KOHDEN | QI-901PK        | 90001         | N/A         |


### I/O CABLES

| TEST I / O CABLES |          |               |                |               |              |              |         |                         |
|-------------------|----------|---------------|----------------|---------------|--------------|--------------|---------|-------------------------|
| Cable No          | I/O Port | # of I/O Port | Connector Type | Type of Cable | Cable Length | Data Traffic | Bundled | Remark                  |
| 1                 | AC       | 3             | US 115V        | Un-shielded   | 2m           | No           | No      | N/A                     |
| 2                 | DC       | 1             | DC Plug        | Un-shielded   | 2m           | No           | No      | N/A                     |
| 3                 | Serial   | 1             | DB9            | Shielded      | 1m           | Yes          | No      | N/A                     |
| 4                 | Parallel | 1             | DB25           | Shielded      | 2m           | Yes          | Yes     | N/A                     |
| 5                 | KB       | 1             | PS/2           | Shielded      | 2m           | Yes          | No      | N/A                     |
| 6                 | Mouse    | 1             | PS/2           | Un-shielded   | 2m           | Yes          | No      | N/A                     |
| 7                 | Video    | 1             | DB15           | Shielded      | 2m           | Yes          | Yes     | One Torroid on Each End |
| 8                 | USB      | 1             | USB            | Shielded      | 1.5m         | Yes          | Yes     | N/A                     |
| 9                 | ECG      | 1             | ECG            | Un-shielded   | .7m          | Yes          | No      | N/A                     |
| 10                | Sp02     | 1             | Sp02           | Un-shielded   | .7m          | Yes          | No      | Probe                   |
| 11                | NIBP     | 1             | NIBP socket    | Rubber Hose   | 3m           | No           | No      | Connect to Arm cuff     |

### TEST SETUP

The EUT was installed with three 1.5 VDC batteries (periodically changed to ensure 4.5 VDC output). Worst case position was tested (X). During the testing process the EUT was connected to the channel writer and EUT was set in changing channel/print mode.

## SETUP DIAGRAM FOR TEST



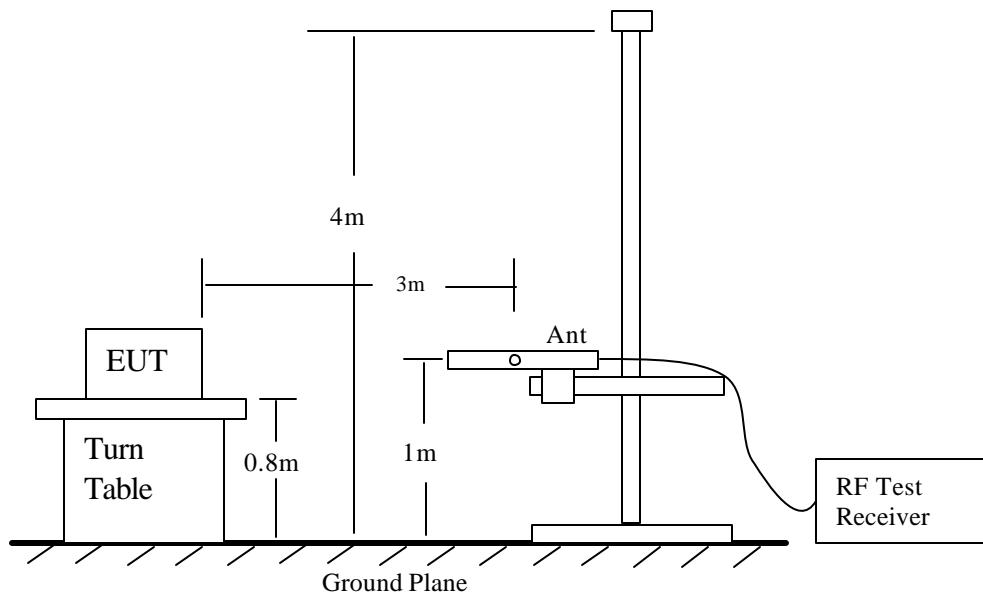
## 10. FIELD STRENGTH AND UNDESIRED EMISSIONS MEASUREMENT

### PROVISIONS APPLICABLE

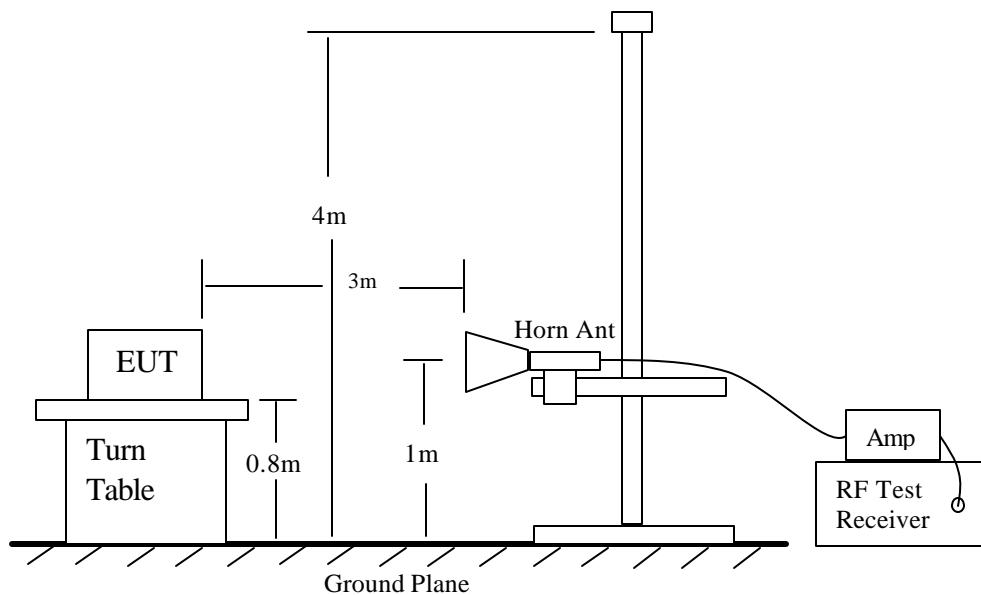
According to CFR 47 section 95.1115 (a) & (b).

#### LIMIT

##### (a) FUNDAMENTAL


| FREQUENCY<br>(MHz) | LIMIT<br>(dBuV/m) |
|--------------------|-------------------|
| 608-614            | 106 QUASI-PEAK    |

##### (b) SPURIOUS


| FREQUENCY<br>(MHz) | LIMIT<br>(dBuV/m) |
|--------------------|-------------------|
| 30-960             | 46 QUASI-PEAK     |
| >960               | 54 AVERAGE        |

### TEST PROCEDURE

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical and horizontal polarization located 3m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be placed 0.80 meter above the ground plane, the X, Y, and Z positions shall be tested and the worst case reported. The transmitter shall be switched on with typical modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted.

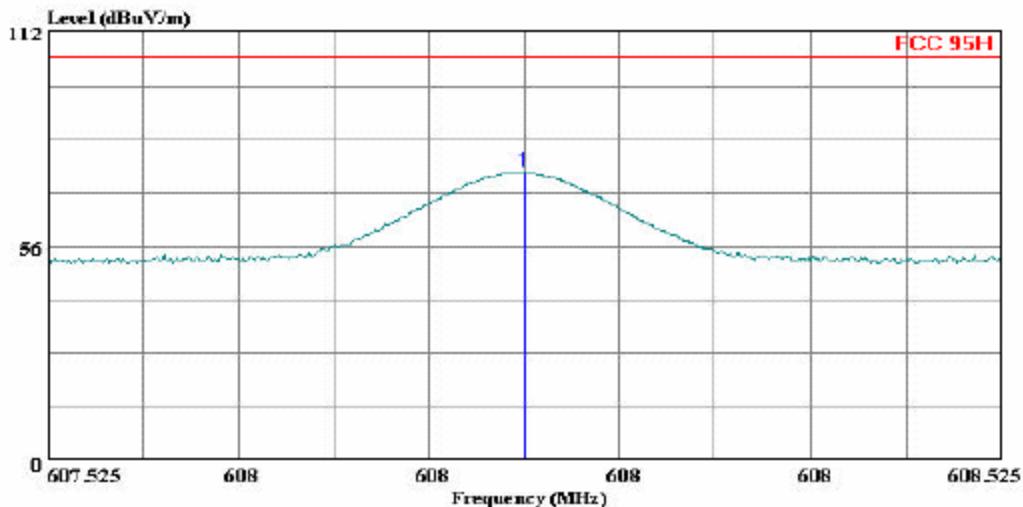


Radiated Emission Measurement 30 to 1000 MHz



Radiated Emission Above 1000 MHz

## TEST RESULTS


95.1115 (a)

LOW CHANNEL (VERTICAL)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 24 File#: EMILOW.EMI Date: 04-12-2005 Time: 17:47:13



(Audit ATC)

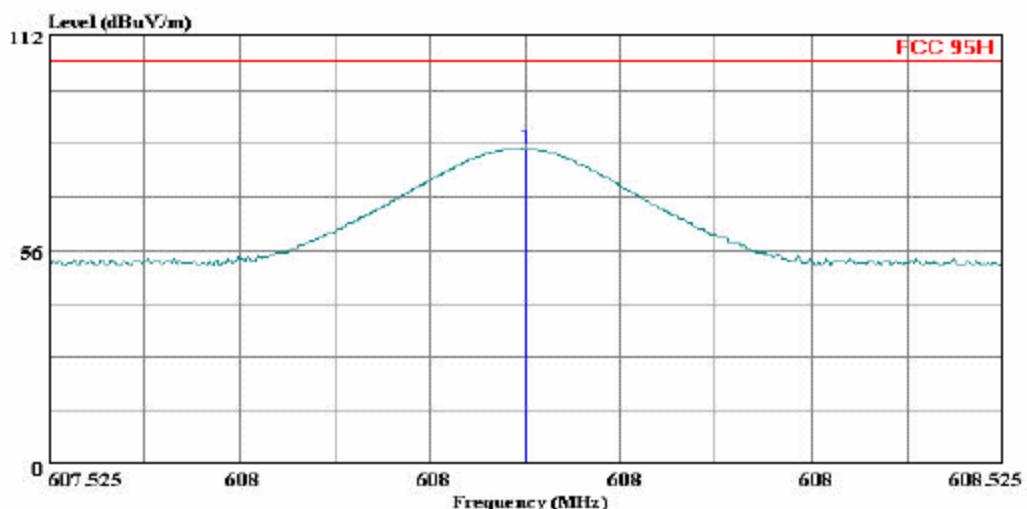
Trace: 23

Ref Trace:

Condition: FCC 95H VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT  
Target of Test: : FCC 95H  
Mode of Operation: Tx Low Channel

Page: 1

|      | Read    |        | Limit  | Over   |                    |
|------|---------|--------|--------|--------|--------------------|
| Freq | Level   | Factor | Level  | Line   | Limit Remark       |
| MHz  | dBuV    |        | dBuV/m | dBuV/m | dB                 |
| 1    | 608.025 | 53.78  | 21.63  | 75.41  | 106.00 -30.59 Peak |


95.1115 (a)

LOW CHANNEL (HORIZONTAL)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 22 File#: EMILOW.EMI Date: 04-12-2005 Time: 17:43:59



(Audit ATC)  
Trace: 21

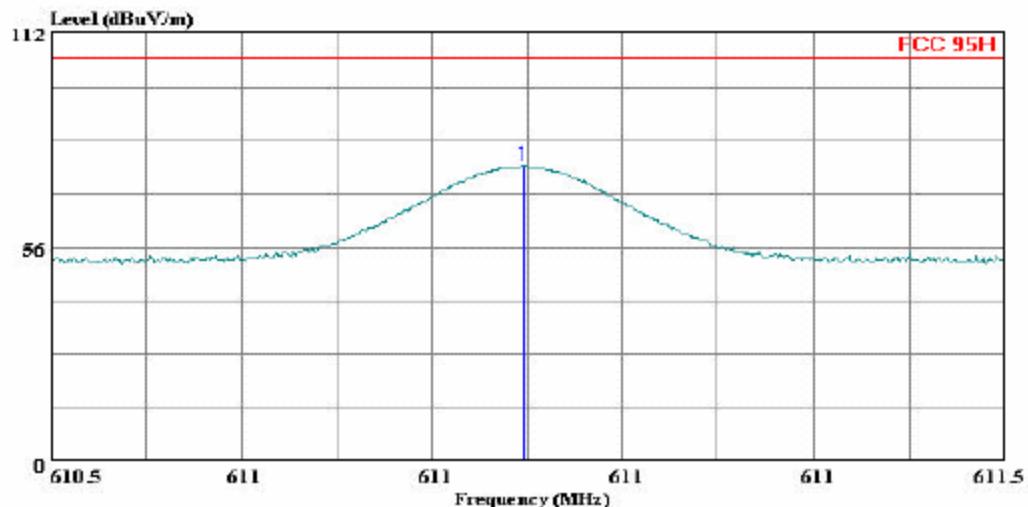
Ref Trace:

Condition: FCC 95H HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
BUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT  
Target of Test: : FCC 95H  
Mode of Operation: TX Low Channel

Page: 1

| Freq      | Read Level | Factor | Limit Level | Limit Line | Over Limit | Remark |
|-----------|------------|--------|-------------|------------|------------|--------|
| MHz       | dBuV       |        | dB          | dBuV/m     | dBuV/m     | dB     |
| 1 608.026 | 60.98      | 21.63  | 82.61       | 106.00     | -23.39     | Peak   |

95.1115 (a)


MIDDLE CHANNEL (VERTICAL)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 18 File#: EMILow.EMI

Date: 04-12-2005 Time: 17:31:35



(Audit ATC)

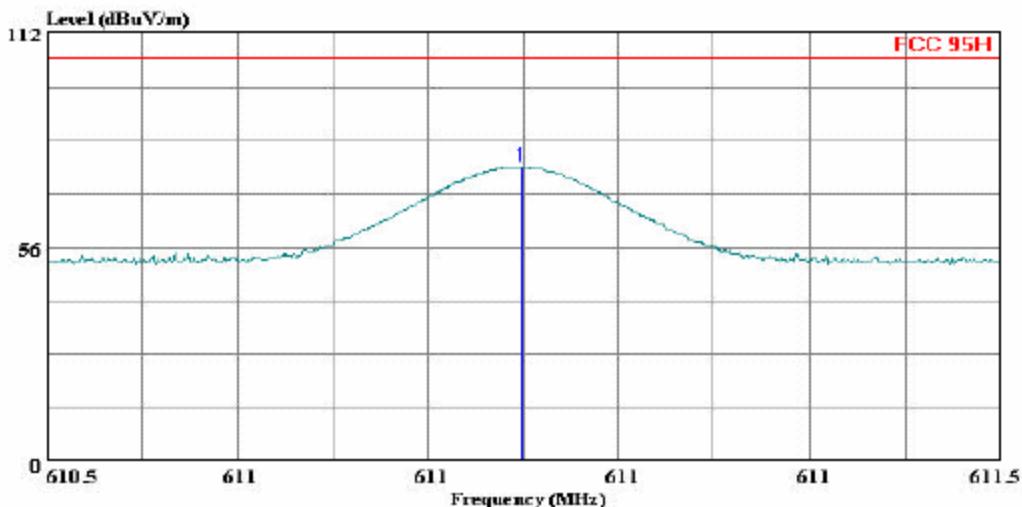
Trace: 17

Ref Trace:

Condition: FCC 95H VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT  
Target of Test: : FCC 95H  
Mode of Operation: Tx Mid Channel

Page: 1

| Freq | Read Level | Factor | Level | Limit Line | Over Limit | Remark      |
|------|------------|--------|-------|------------|------------|-------------|
| MHz  | dBuV       |        | dB    | dBuV/m     | dBuV/m     | dB          |
| 1    | 610.997    | 55.68  | 21.67 | 77.35      | 106.00     | -28.65 Peak |


95.1115 (a)

MIDDLE CHANNEL (HORIZONTAL)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

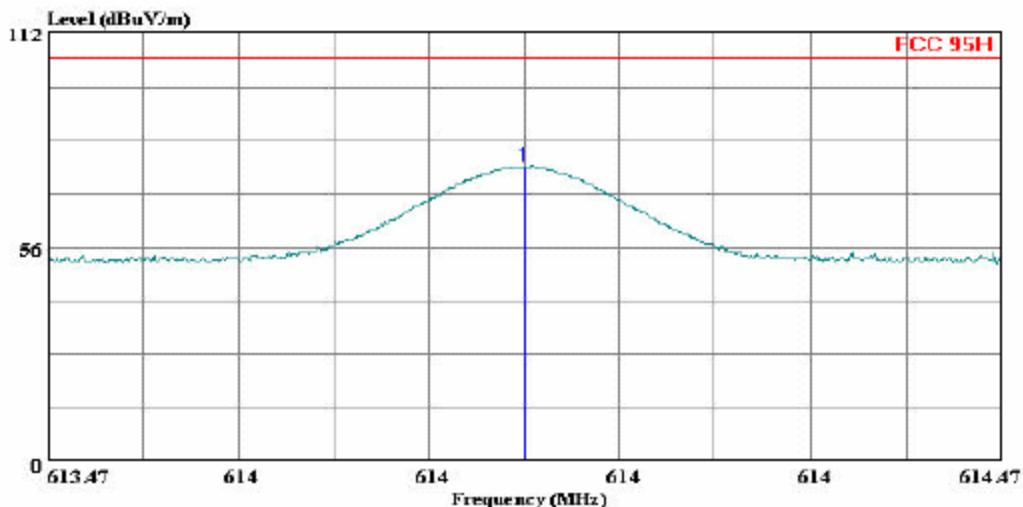
Data#: 20 File#: EMILow.EMI Date: 04-12-2005 Time: 17:34:24



Condition: FCC 95H HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT  
Target of Test: : FCC 95H  
Mode of Operation: Tx Mid Channel

Page: 1

| Freq | Read Level | Factor | Limit Level | Limit Line | Over Limit | Remark      |
|------|------------|--------|-------------|------------|------------|-------------|
|      |            |        | dB          | dBuV/m     | dBuV/m     |             |
| 1    | 610.999    | 55.49  | 21.67       | 77.16      | 106.00     | -28.84 Peak |


95.1115 (a)

HIGH CHANNEL (VERTICAL)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 10 File#: EMILOW.EMI Date: 04-12-2005 Time: 17:00:27



(Audit ATC)

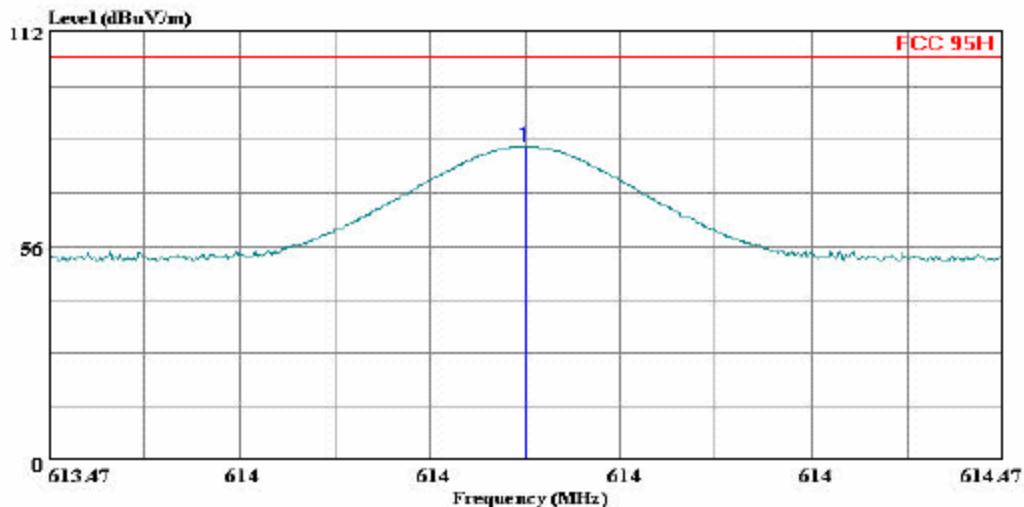
Trace: 9

Ref Trace:

Condition: FCC 95H VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT  
Target of Test: : FCC 95H  
Mode of Operation: Tx High Channel, Y Position

Page: 1

| Freq      | Read Level | Factor | Limit Level | Limit Line | Over Limit | Remark |
|-----------|------------|--------|-------------|------------|------------|--------|
| MHz       | dBuV       |        | dB          | dBuV/m     | dBuV/m     | dB     |
| 1 613.970 | 55.50      | 21.72  | 77.22       | 106.00     | -28.78     | Peak   |


95.1115 (a)

**HIGH CHANNEL (HORIZONTAL)**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 12 File#: EMILow.EMI Date: 04-12-2005 Time: 17:04:22



(Audit ATC)

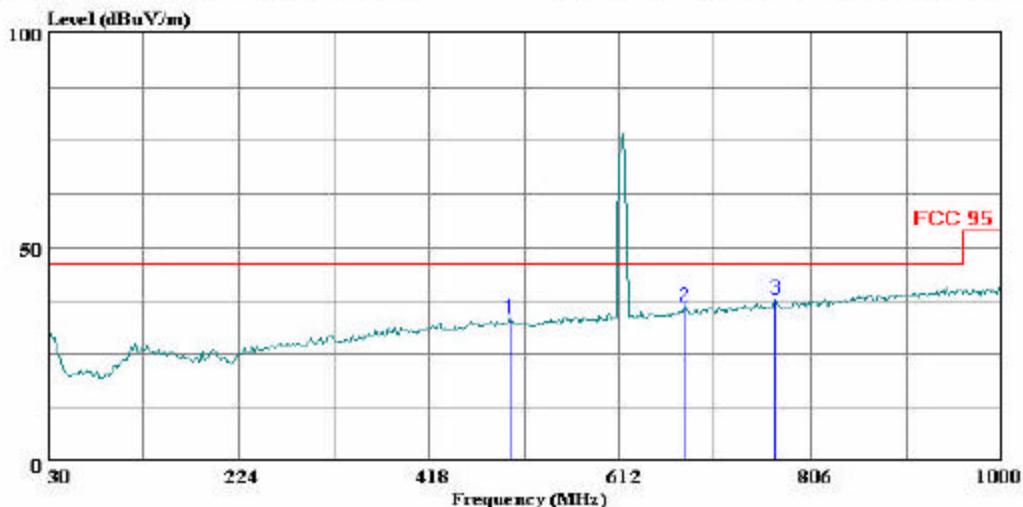
Trace: 11

Ref Trace:

Condition: FCC 95H HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT  
Target of Test: : FCC 95H  
Mode of Operation: TX High Channel, Y Position

Page: 1

|      | Read    |        | Limit |        |        |             |
|------|---------|--------|-------|--------|--------|-------------|
| Freq | Level   | Factor | Level | Line   | Over   | Remark      |
| MHz  | dBuV    |        | dB    | dBuV/m | dBuV/m |             |
| 1    | 613.970 | 60.50  | 21.72 | 82.22  | 106.00 | -23.78 Peak |


95.1115 (b)

LOW CHANNEL (VERTICAL UNDER 1 GHz)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

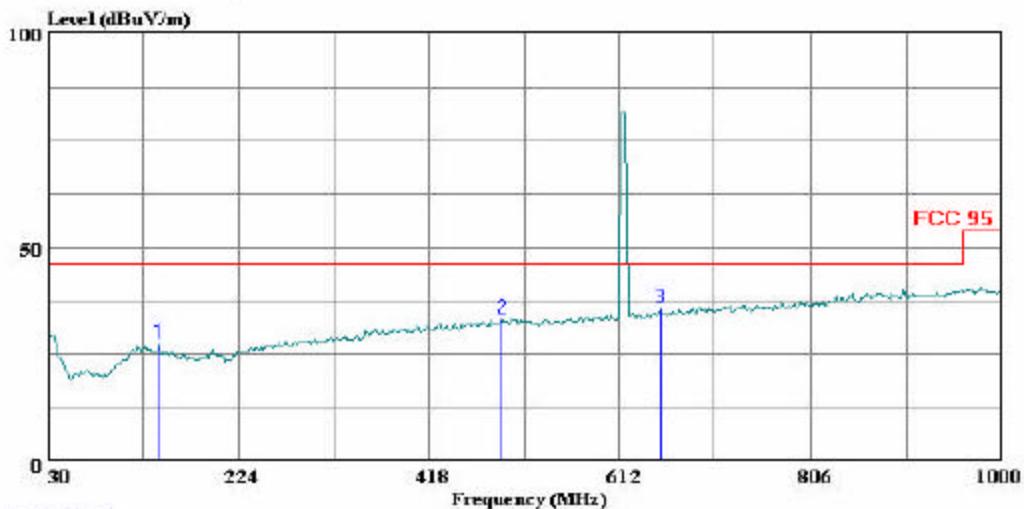
Data#: 30 File#: EMILow.EMI Date: 04-15-2005 Time: 16:05:41



Condition: FCC 95 VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT with ECG , SPO2 and Arm cuff  
Target of Test: : FCC 95H  
Mode of Operation: Tramit Low Channel.

Page: 1

| Freq | Read    |        | Limit  | Over   | Remark            |
|------|---------|--------|--------|--------|-------------------|
|      | Level   | Factor |        |        |                   |
| MHz  | dBuV    | dB     | dBuV/m | dBuV/m | dB                |
| 1    | 500.450 | 12.85  | 20.23  | 33.09  | 46.00 -12.91 Peak |
| 2    | 679.900 | 13.33  | 22.83  | 36.16  | 46.00 -9.84 Peak  |
| 3    | 769.140 | 13.73  | 24.13  | 37.86  | 46.00 -8.14 Peak  |


95.1115 (b)

LOW CHANNEL (HORIZONTAL UNDER 1GHz)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 32 File#: EMILow.EMI Date: 04-15-2005 Time: 16:17:56



(Auxx ATC)  
Trace: 31

Ref Trace:

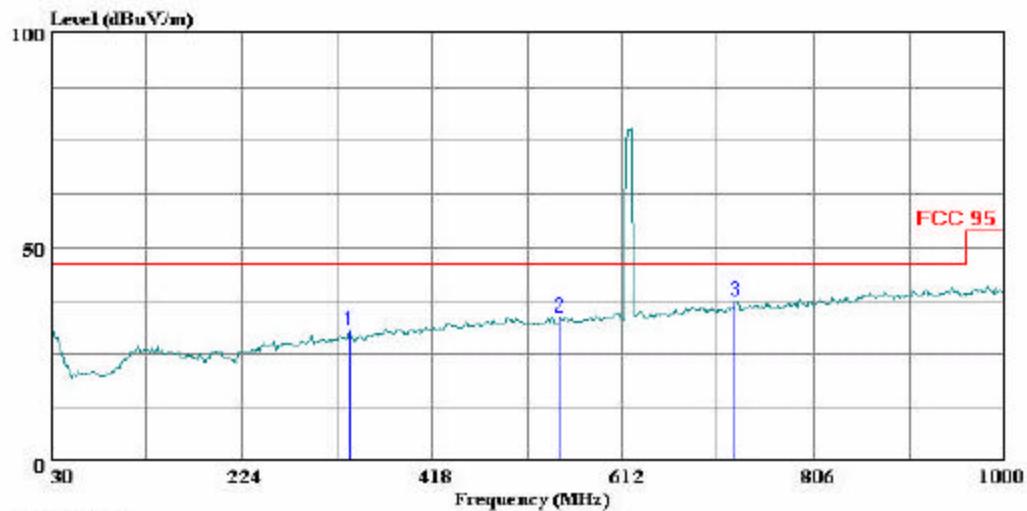
Condition: FCC 95 HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT with ECG , SPO2 and Arm cuff  
Target of Test: : FCC 95H  
Mode of Operation: Tramit Low Channel.

Page: 1

| Freq | Read    |        | Limit | Over   | Remark |             |
|------|---------|--------|-------|--------|--------|-------------|
|      | Level   | Factor |       |        |        |             |
|      | MHz     | dBuV   | dB    | dBuV/m | dBuV/m | dB          |
| 1    | 143.490 | 12.71  | 14.63 | 27.34  | 46.00  | -18.67 Peak |
| 2    | 492.690 | 13.03  | 20.11 | 33.14  | 46.00  | -12.86 Peak |
| 3    | 654.680 | 13.23  | 22.43 | 35.66  | 46.00  | -10.34 Peak |

**95.1115 (b) LOW CHANNEL (VERTICAL & HORIZONTAL ABOVE 1GHz)**

| 04/13/05 High Frequency Measurement<br>Compliance Certification Services, Morgan Hill Open Field Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|------------------|------------|---------------|-----------|--------------|------------|----------------|---------------|------------------|-------------------|--------------|---------------|-------------------------|-----------------------|--------------------------------------|--------------------------|-------------------------------------|----------------------------------|-----------------------|----------------------------------|----------------------------------|-------------------|-------------------------------------|------------------------------|-------------------|----------------------|---------------|----------------|---------------------|-----|------|------|------|-----|-------|-----|-----|--------------|--------------|--------------|---------------|-------|---------------|---|-------|-----|---------|------|------|----------|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|
| Test Engr: Thanh Nguyen<br>Project #:05I3334-1<br>Company: NIHON KOHDEN Corporation.<br>EUT Descrip.: Transmitter for medical.<br>EUT M/N:ZM-94PA<br>Test Target: FCC Part 95H<br>Mode Oper:Tx low Channel 9002 (608.025MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| <b>Test Equipment:</b> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 20%;">EMCO Horn 1-18GHz</td> <td style="width: 20%;">Pre-amplifier 1-26GHz</td> <td style="width: 20%;">Pre-amplifier 26-40GHz</td> <td colspan="4" style="width: 24%;">Horn &gt; 18GHz</td> <td style="width: 12%;">Limit</td> </tr> <tr> <td>T120; S/N: 29310 @3m</td> <td>T63 Miteq 646456</td> <td></td> <td colspan="4"></td> <td>FCC 15.209</td> </tr> <tr> <td colspan="6">Hi Frequency Cables</td> <td colspan="3"></td> </tr> <tr> <td>2 foot cable</td> <td>3 foot cable</td> <td>4 foot cable</td> <td>12 foot cable</td> <td>HPF</td> <td>Reject Filter</td> <td colspan="3"></td> </tr> <tr> <td>2_Thanh</td> <td></td> <td></td> <td>12_Thanh</td> <td></td> <td></td> <td colspan="3"></td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               | EMCO Horn 1-18GHz       | Pre-amplifier 1-26GHz | Pre-amplifier 26-40GHz               | Horn > 18GHz             |                                     |                                  |                       | Limit                            | T120; S/N: 29310 @3m             | T63 Miteq 646456  |                                     |                              |                   |                      |               | FCC 15.209     | Hi Frequency Cables |     |      |      |      |     |       |     |     | 2 foot cable | 3 foot cable | 4 foot cable | 12 foot cable | HPF   | Reject Filter |   |       |     | 2_Thanh |      |      | 12_Thanh |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| EMCO Horn 1-18GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pre-amplifier 1-26GHz               | Pre-amplifier 26-40GHz               | Horn > 18GHz     |            |               |           | Limit        |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| T120; S/N: 29310 @3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T63 Miteq 646456                    |                                      |                  |            |               |           | FCC 15.209   |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| Hi Frequency Cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 2 foot cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 foot cable                        | 4 foot cable                         | 12 foot cable    | HPF        | Reject Filter |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 2_Thanh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                      | 12_Thanh         |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| <b>Peak Measurements</b><br>RBW=VBW=1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| <b>Average Measurements</b><br>RBW=1MHz , VBW=10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>f<br/>GHz</th> <th>Dist<br/>(m)</th> <th>Read Pk<br/>dBuV</th> <th>Read Avg<br/>dBuV</th> <th>AF<br/>dB/m</th> <th>CL<br/>dB</th> <th>Amp<br/>dB</th> <th>D Corr<br/>dB</th> <th>Fltr<br/>dB</th> <th>Peak<br/>dBuV/m</th> <th>Avg<br/>dBuV/m</th> <th>Pk Lim<br/>dBuV/m</th> <th>Avg Lim<br/>dBuV/m</th> <th>Pk Mar<br/>dB</th> <th>Avg Mar<br/>dB</th> <th>Notes<br/>(V/H)</th> </tr> </thead> <tbody> <tr> <td>1.216</td> <td>3.0</td> <td>55.2</td> <td>43.5</td> <td>28.0</td> <td>1.5</td> <td>-38.4</td> <td>0.0</td> <td>0.0</td> <td>46.2</td> <td>34.5</td> <td>74</td> <td>54</td> <td>-27.8</td> <td>-19.5</td> <td>V</td> </tr> <tr> <td>1.824</td> <td>3.0</td> <td>57.1</td> <td>43.5</td> <td>30.7</td> <td>1.9</td> <td>-38.7</td> <td>0.0</td> <td>0.0</td> <td>50.9</td> <td>37.3</td> <td>74</td> <td>54</td> <td>-23.1</td> <td>-16.7</td> <td>V</td> </tr> <tr> <td>2.432</td> <td>3.0</td> <td>54.3</td> <td>43.5</td> <td>32.1</td> <td>2.2</td> <td>-39.0</td> <td>0.0</td> <td>0.0</td> <td>49.6</td> <td>38.8</td> <td>74</td> <td>54</td> <td>-24.4</td> <td>-15.2</td> <td>V</td> </tr> <tr> <td>3.040</td> <td>3.0</td> <td>57.2</td> <td>45.1</td> <td>32.5</td> <td>2.5</td> <td>-38.6</td> <td>0.0</td> <td>0.0</td> <td>53.6</td> <td>41.5</td> <td>74</td> <td>54</td> <td>-20.4</td> <td>-12.5</td> <td>V</td> </tr> <tr> <td>1.216</td> <td>3.0</td> <td>56.7</td> <td>46.3</td> <td>28.0</td> <td>1.5</td> <td>-38.4</td> <td>0.0</td> <td>0.0</td> <td>47.8</td> <td>37.4</td> <td>74</td> <td>54</td> <td>-26.2</td> <td>-16.6</td> <td>H</td> </tr> <tr> <td>1.824</td> <td>3.0</td> <td>57.1</td> <td>43.4</td> <td>30.7</td> <td>1.9</td> <td>-38.7</td> <td>0.0</td> <td>0.0</td> <td>50.9</td> <td>37.2</td> <td>74</td> <td>54</td> <td>-23.1</td> <td>-16.8</td> <td>H</td> </tr> <tr> <td>2.432</td> <td>3.0</td> <td>57.8</td> <td>44.6</td> <td>32.1</td> <td>2.2</td> <td>-39.0</td> <td>0.0</td> <td>0.0</td> <td>53.1</td> <td>39.9</td> <td>74</td> <td>54</td> <td>-20.9</td> <td>-14.1</td> <td>H</td> </tr> <tr> <td>3.040</td> <td>3.0</td> <td>56.3</td> <td>44.4</td> <td>32.5</td> <td>2.5</td> <td>-38.6</td> <td>0.0</td> <td>0.0</td> <td>52.7</td> <td>40.8</td> <td>74</td> <td>54</td> <td>-21.3</td> <td>-13.2</td> <td>H</td> </tr> </tbody> </table> |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               | f<br>GHz                | Dist<br>(m)           | Read Pk<br>dBuV                      | Read Avg<br>dBuV         | AF<br>dB/m                          | CL<br>dB                         | Amp<br>dB             | D Corr<br>dB                     | Fltr<br>dB                       | Peak<br>dBuV/m    | Avg<br>dBuV/m                       | Pk Lim<br>dBuV/m             | Avg Lim<br>dBuV/m | Pk Mar<br>dB         | Avg Mar<br>dB | Notes<br>(V/H) | 1.216               | 3.0 | 55.2 | 43.5 | 28.0 | 1.5 | -38.4 | 0.0 | 0.0 | 46.2         | 34.5         | 74           | 54            | -27.8 | -19.5         | V | 1.824 | 3.0 | 57.1    | 43.5 | 30.7 | 1.9      | -38.7 | 0.0 | 0.0 | 50.9 | 37.3 | 74 | 54 | -23.1 | -16.7 | V | 2.432 | 3.0 | 54.3 | 43.5 | 32.1 | 2.2 | -39.0 | 0.0 | 0.0 | 49.6 | 38.8 | 74 | 54 | -24.4 | -15.2 | V | 3.040 | 3.0 | 57.2 | 45.1 | 32.5 | 2.5 | -38.6 | 0.0 | 0.0 | 53.6 | 41.5 | 74 | 54 | -20.4 | -12.5 | V | 1.216 | 3.0 | 56.7 | 46.3 | 28.0 | 1.5 | -38.4 | 0.0 | 0.0 | 47.8 | 37.4 | 74 | 54 | -26.2 | -16.6 | H | 1.824 | 3.0 | 57.1 | 43.4 | 30.7 | 1.9 | -38.7 | 0.0 | 0.0 | 50.9 | 37.2 | 74 | 54 | -23.1 | -16.8 | H | 2.432 | 3.0 | 57.8 | 44.6 | 32.1 | 2.2 | -39.0 | 0.0 | 0.0 | 53.1 | 39.9 | 74 | 54 | -20.9 | -14.1 | H | 3.040 | 3.0 | 56.3 | 44.4 | 32.5 | 2.5 | -38.6 | 0.0 | 0.0 | 52.7 | 40.8 | 74 | 54 | -21.3 | -13.2 | H |
| f<br>GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dist<br>(m)                         | Read Pk<br>dBuV                      | Read Avg<br>dBuV | AF<br>dB/m | CL<br>dB      | Amp<br>dB | D Corr<br>dB | Fltr<br>dB | Peak<br>dBuV/m | Avg<br>dBuV/m | Pk Lim<br>dBuV/m | Avg Lim<br>dBuV/m | Pk Mar<br>dB | Avg Mar<br>dB | Notes<br>(V/H)          |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 1.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 55.2                                 | 43.5             | 28.0       | 1.5           | -38.4     | 0.0          | 0.0        | 46.2           | 34.5          | 74               | 54                | -27.8        | -19.5         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 1.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 57.1                                 | 43.5             | 30.7       | 1.9           | -38.7     | 0.0          | 0.0        | 50.9           | 37.3          | 74               | 54                | -23.1        | -16.7         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 2.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 54.3                                 | 43.5             | 32.1       | 2.2           | -39.0     | 0.0          | 0.0        | 49.6           | 38.8          | 74               | 54                | -24.4        | -15.2         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 3.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 57.2                                 | 45.1             | 32.5       | 2.5           | -38.6     | 0.0          | 0.0        | 53.6           | 41.5          | 74               | 54                | -20.4        | -12.5         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 1.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 56.7                                 | 46.3             | 28.0       | 1.5           | -38.4     | 0.0          | 0.0        | 47.8           | 37.4          | 74               | 54                | -26.2        | -16.6         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 1.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 57.1                                 | 43.4             | 30.7       | 1.9           | -38.7     | 0.0          | 0.0        | 50.9           | 37.2          | 74               | 54                | -23.1        | -16.8         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 2.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 57.8                                 | 44.6             | 32.1       | 2.2           | -39.0     | 0.0          | 0.0        | 53.1           | 39.9          | 74               | 54                | -20.9        | -14.1         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| 3.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                 | 56.3                                 | 44.4             | 32.5       | 2.5           | -38.6     | 0.0          | 0.0        | 52.7           | 40.8          | 74               | 54                | -21.3        | -13.2         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| No other spurious emissions were detected above 3GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">f Measurement Frequency</td> <td style="width: 33%;">Amp Preamp Gain</td> <td style="width: 33%;">Avg Lim Average Field Strength Limit</td> </tr> <tr> <td>Dist Distance to Antenna</td> <td>D Corr Distance Correct to 3 meters</td> <td>Pk Lim Peak Field Strength Limit</td> </tr> <tr> <td>Read Analyzer Reading</td> <td>Avg Average Field Strength @ 3 m</td> <td>Avg Mar Margin vs. Average Limit</td> </tr> <tr> <td>AF Antenna Factor</td> <td>Peak Calculated Peak Field Strength</td> <td>Pk Mar Margin vs. Peak Limit</td> </tr> <tr> <td>CL Cable Loss</td> <td>HPF High Pass Filter</td> <td></td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               | f Measurement Frequency | Amp Preamp Gain       | Avg Lim Average Field Strength Limit | Dist Distance to Antenna | D Corr Distance Correct to 3 meters | Pk Lim Peak Field Strength Limit | Read Analyzer Reading | Avg Average Field Strength @ 3 m | Avg Mar Margin vs. Average Limit | AF Antenna Factor | Peak Calculated Peak Field Strength | Pk Mar Margin vs. Peak Limit | CL Cable Loss     | HPF High Pass Filter |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| f Measurement Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amp Preamp Gain                     | Avg Lim Average Field Strength Limit |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| Dist Distance to Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D Corr Distance Correct to 3 meters | Pk Lim Peak Field Strength Limit     |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| Read Analyzer Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg Average Field Strength @ 3 m    | Avg Mar Margin vs. Average Limit     |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| AF Antenna Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak Calculated Peak Field Strength | Pk Mar Margin vs. Peak Limit         |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |
| CL Cable Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HPF High Pass Filter                |                                      |                  |            |               |           |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |               |                |                     |     |      |      |      |     |       |     |     |              |              |              |               |       |               |   |       |     |         |      |      |          |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |


95.1115 (b)

MIDDLE CHANNEL (VERTICAL UNDER 1 GHz)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 36 File#: EMILOW.EMI Date: 04-15-2005 Time: 16:33:04

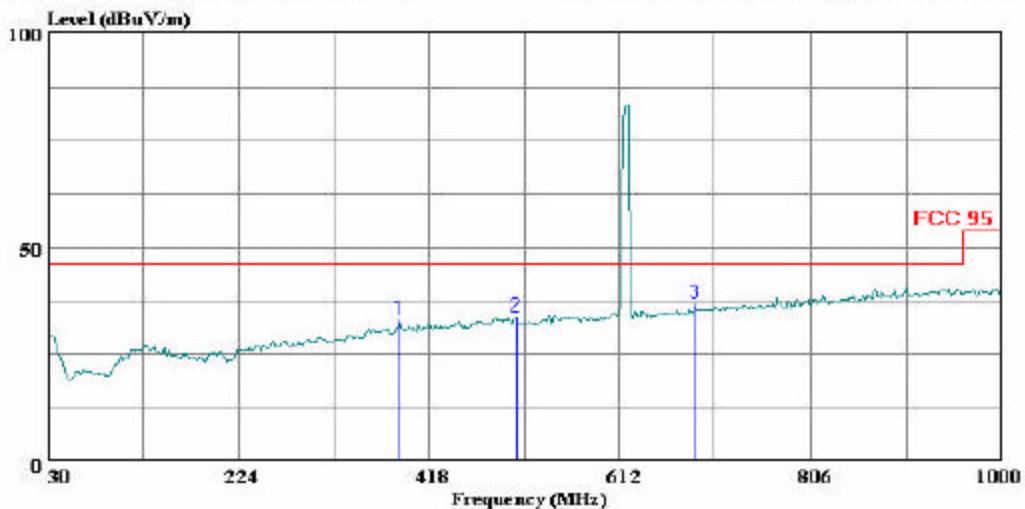


(Audit ATC)  
Trace: 35

Ref Trace:

Condition: FCC 95 VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT with ECG , SPO2 and Arm cuff  
Target of Test: : FCC 95H  
Mode of Operation: Tramit MID Channel.

Page: 1


| Freq | Read    |       | Limit | Over   | Line   | Limit  | Remark |
|------|---------|-------|-------|--------|--------|--------|--------|
|      | MHz     | dBuV  | dB    | dBuV/m | dBuV/m | dB     |        |
| 1    | 334.580 | 13.98 | 16.53 | 30.51  | 46.00  | -15.49 | Peak   |
| 2    | 547.980 | 12.84 | 20.86 | 33.70  | 46.00  | -12.30 | Peak   |
| 3    | 727.430 | 13.98 | 23.53 | 37.51  | 46.00  | -8.49  | Peak   |

**95.1115 (b) MIDDLE CHANNEL (HORIZONTAL UNDER 1GHz)**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 34 File#: EMILOW.EMI Date: 04-15-2005 Time: 16:28:27



(Audix ATC)

Trace: 33

Ref Trace:

Condition: FCC 95 HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT with ECG, SPO2 and Arm cuff  
Target of Test: : FCC 95H  
Mode of Operation: Tramit MID Channel.

Page: 1

| Freq | Read    |        | Limit  | Over   | Remark            |
|------|---------|--------|--------|--------|-------------------|
|      | Level   | Factor |        |        |                   |
| MHz  | dBuV    | dB     | dBuV/m | dBuV/m | dB                |
| 1    | 387.930 | 15.02  | 17.77  | 32.79  | 46.00 -13.21 Peak |
| 2    | 507.240 | 13.27  | 20.31  | 33.58  | 46.00 -12.42 Peak |
| 3    | 688.630 | 13.66  | 22.87  | 36.53  | 46.00 -9.47 Peak  |

**95.1115 (b) MIDDLE CHANNEL (VERTICAL & HORIZONTAL ABOVE 1GHz)**

04/13/05 High Frequency Measurement  
Compliance Certification Services, Morgan Hill Open Field Site

Test Engr: Thanh Nguyen  
Project #:05I3334-1  
Company: NIHON KOHDEN Corporation.  
EUT Descrip.: Transmitter for medical.  
EUT M/N:ZM-94PA  
Test Target: FCC Part 95H  
Mode Oper: Tx Mid Channel 9240 (611.000MHz)

Test Equipment:

|                      |                       |                        |               |                   |
|----------------------|-----------------------|------------------------|---------------|-------------------|
| EMCO Horn 1-18GHz    | Pre-amplifier 1-26GHz | Pre-amplifier 26-40GHz | Horn > 18GHz  | Limit             |
| T120; S/N: 29310 @3m | T63 Miteq 646456      |                        |               | FCC 15.209        |
| Hi Frequency Cables  |                       |                        |               |                   |
| 2 foot cable         | 3 foot cable          | 4 foot cable           | 12 foot cable | HPF Reject Filter |
| 2_Thanh              |                       |                        | 12_Thanh      |                   |

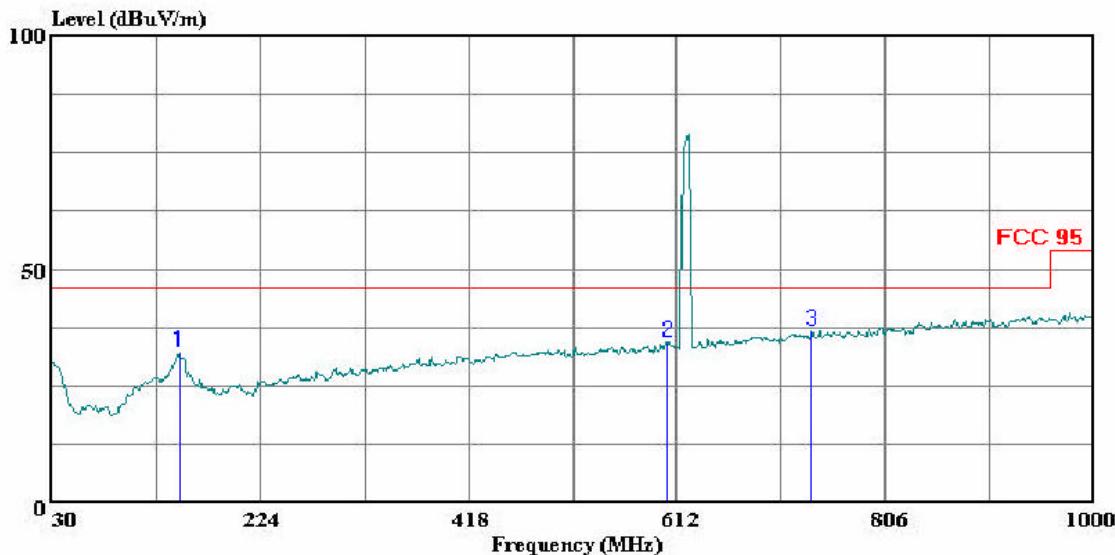
**Peak Measurements**  
RBW=VBW=1MHz

**Average Measurements**  
RBW=1MHz, VBW=10Hz

| f<br>GHz | Dist<br>(m) | Read Pk<br>dBuV | Read Avg.<br>dBuV | AF<br>dB/m | CL<br>dB | Amp<br>dB | D Corr<br>dB | Fltr<br>dB | Peak<br>dBuV/m | Avg<br>dBuV/m | Pk Lim<br>dBuV/m | Avg Lim<br>dBuV/m | Pk Mar<br>dB | Avg Mar<br>dB | Notes<br>(V/H) |
|----------|-------------|-----------------|-------------------|------------|----------|-----------|--------------|------------|----------------|---------------|------------------|-------------------|--------------|---------------|----------------|
| 1.222    | 3.0         | 56.7            | 44.0              | 28.0       | 1.5      | -38.4     | 0.0          | 0.0        | 47.8           | 35.1          | 74               | 54                | -26.2        | -18.9         | V              |
| 1.833    | 3.0         | 55.3            | 43.2              | 30.7       | 1.9      | -38.7     | 0.0          | 0.0        | 49.1           | 37.0          | 74               | 54                | -24.9        | -17.0         | V              |
| 2.444    | 3.0         | 56.4            | 44.9              | 32.1       | 2.2      | -39.0     | 0.0          | 0.0        | 51.7           | 40.2          | 74               | 54                | -22.3        | -13.8         | V              |
| 3.055    | 3.0         | 58.2            | 45.1              | 32.6       | 2.5      | -38.6     | 0.0          | 0.0        | 54.7           | 41.5          | 74               | 54                | -19.3        | -12.5         | V              |
| 1.222    | 3.0         | 57.4            | 45.7              | 28.0       | 1.5      | -38.4     | 0.0          | 0.0        | 48.5           | 36.8          | 74               | 54                | -25.5        | -17.2         | H              |
| 1.833    | 3.0         | 56.3            | 43.2              | 30.7       | 1.9      | -38.7     | 0.0          | 0.0        | 50.2           | 37.0          | 74               | 54                | -23.8        | -17.0         | H              |
| 2.444    | 3.0         | 55.9            | 44.4              | 32.1       | 2.2      | -39.0     | 0.0          | 0.0        | 51.2           | 39.7          | 74               | 54                | -22.8        | -14.3         | H              |
| 3.055    | 3.0         | 56.2            | 44.1              | 32.6       | 2.5      | -38.6     | 0.0          | 0.0        | 52.6           | 40.6          | 74               | 54                | -21.4        | -13.4         | H              |

No other spurious emissions were detected above 3GHz

|      |                       |        |                                |         |                              |
|------|-----------------------|--------|--------------------------------|---------|------------------------------|
| f    | Measurement Frequency | Amp    | Preamp Gain                    | Avg Lim | Average Field Strength Limit |
| Dist | Distance to Antenna   | D Corr | Distance Correct to 3 meters   | Pk Lim  | Peak Field Strength Limit    |
| Read | Analyzer Reading      | Avg    | Average Field Strength @ 3 m   | Avg Mar | Margin vs. Average Limit     |
| AF   | Antenna Factor        | Peak   | Calculated Peak Field Strength | Pk Mar  | Margin vs. Peak Limit        |
| CL   | Cable Loss            | HPF    | High Pass Filter               |         |                              |


95.1115 (b)

HIGH CHANNEL (VERTICAL UNDER 1 GHz)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 2 File#: EMILow.EMI Date: 04-12-2005 Time: 16:28:27



(Audix ATC)

Trace: 1

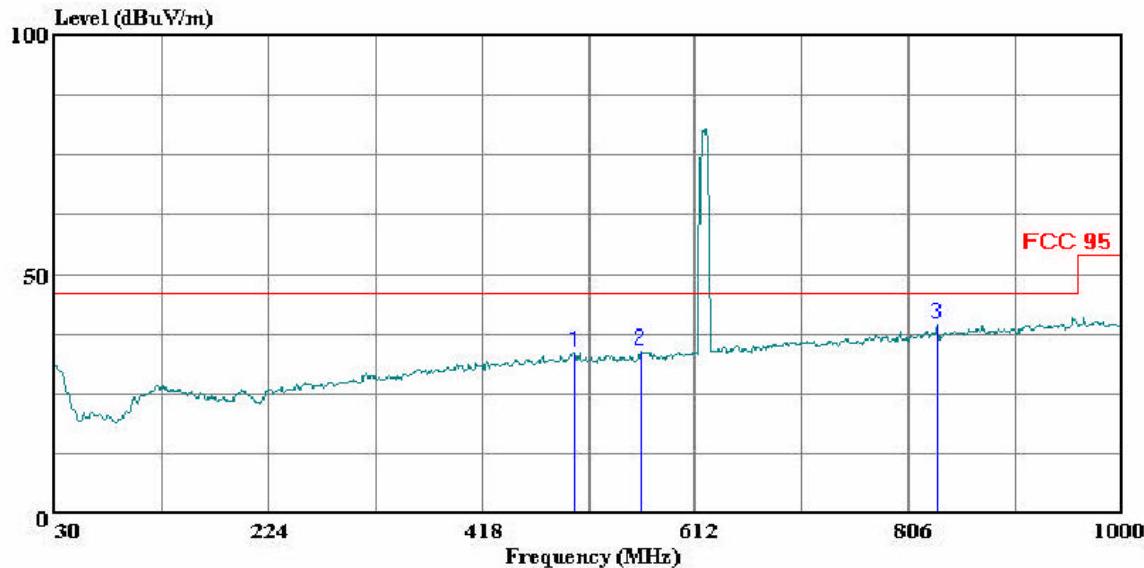
Ref Trace:

Condition: FCC 95 VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT with ECG , SPO2 and Arm cuff  
Target of Test: : FCC 95H  
Mode of Operation: Tx High Channel

Page: 1

|      | Read    |        | Limit | Over   |        |             |
|------|---------|--------|-------|--------|--------|-------------|
| Freq | Level   | Factor | Level | Line   | Limit  | Remark      |
|      | MHz     | dBuV   | dB    | dBuV/m | dBuV/m | dB          |
| 1    | 148.340 | 18.02  | 14.33 | 32.34  | 46.00  | -13.66 Peak |
| 2    | 603.270 | 12.79  | 21.55 | 34.35  | 46.00  | -11.65 Peak |
| 3    | 737.130 | 13.13  | 23.67 | 36.80  | 46.00  | -9.20 Peak  |

95.1115 (b)


HIGH CHANNEL (HORIZONTAL UNDER 1GHz)



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 4 File#: EMI Low.EMI

Date: 04-12-2005 Time: 16:36:22



(Audix ATC)

Trace: 3

Ref Trace:

Condition: FCC 95 HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT with ECG , SPO2 and Arm cuff  
Target of Test: : FCC 95H  
Mode of Operation: Tx High Channel

Page: 1

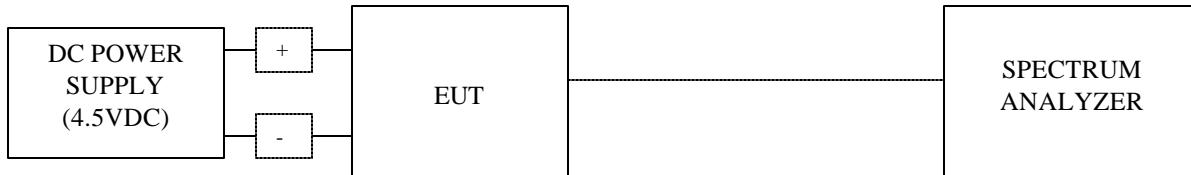
| Freq | Read    |        | Limit  | Over   | Remark            |
|------|---------|--------|--------|--------|-------------------|
|      | Level   | Factor |        |        |                   |
| MHz  | dBuV    | dB     | dBuV/m | dBuV/m | dB                |
| 1    | 502.390 | 13.44  | 20.24  | 33.68  | 46.00 -12.32 Peak |
| 2    | 562.530 | 12.97  | 21.02  | 33.99  | 46.00 -12.01 Peak |
| 3    | 832.190 | 14.52  | 24.95  | 39.47  | 46.00 -6.53 Peak  |

**95.1115 (b) HIGH CHANNEL (VERTICAL & HORIZONTAL ABOVE 1GHz)**

| 04/13/05 High Frequency Measurement<br>Compliance Certification Services, Morgan Hill Open Field Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------|------------|---------------|--------------------------------------------|--------------|------------|----------------|---------------|------------------|-------------------|--------------|---------------|-------------------------|-----------------------|--------------------------------------|--------------------------|-------------------------------------|----------------------------------|-----------------------|----------------------------------|----------------------------------|-------------------|-------------------------------------|------------------------------|-------------------|----------------------|---------------------|----------------|-------|-----|----|------|-----------------------------------|--------------|--------------|--------------|---------------|------|---------------|--------------------------------------------|---------|-------|-------|----------|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|-------|-----|------|------|------|-----|-------|-----|-----|------|------|----|----|-------|-------|---|------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Test Engr: Thanh Nguyen<br>Project #:05I3334-1<br>Company: NIHON KOHDEN Corporation.<br>EUT Descrip.: Transmitter for medical.<br>EUT M/N:ZM-94PA<br>Test Target: FCC Part 95H<br>Mode Oper: Tx Mid Channel 9478 (631.975MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>Test Equipment:</b> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 20%;">EMCO Horn 1-18GHz</td> <td style="width: 20%;">Pre-amplifier 1-26GHz</td> <td style="width: 20%;">Pre-amplifier 26-40GHz</td> <td colspan="3" style="width: 30%;">Horn &gt; 18GHz</td> <td style="width: 10%;">Limit</td> </tr> <tr> <td>T120; S/N: 29310 @3m</td> <td>T63 Miteq 646456</td> <td></td> <td colspan="3"></td> <td>FCC 15.209</td> </tr> <tr> <td colspan="6">Hi Frequency Cables</td> <td>Peak Measurements<br/>RBW=VBW=1MHz</td> </tr> <tr> <td>2 foot cable</td> <td>3 foot cable</td> <td>4 foot cable</td> <td>12 foot cable</td> <td>HPF</td> <td>Reject Filter</td> <td>Average Measurements<br/>RBW=1MHz, VBW=10Hz</td> </tr> <tr> <td>2_Thanh</td> <td></td> <td></td> <td>12_Thanh</td> <td></td> <td></td> <td></td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               | EMCO Horn 1-18GHz       | Pre-amplifier 1-26GHz | Pre-amplifier 26-40GHz               | Horn > 18GHz             |                                     |                                  | Limit                 | T120; S/N: 29310 @3m             | T63 Miteq 646456                 |                   |                                     |                              |                   | FCC 15.209           | Hi Frequency Cables |                |       |     |    |      | Peak Measurements<br>RBW=VBW=1MHz | 2 foot cable | 3 foot cable | 4 foot cable | 12 foot cable | HPF  | Reject Filter | Average Measurements<br>RBW=1MHz, VBW=10Hz | 2_Thanh |       |       | 12_Thanh |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMCO Horn 1-18GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pre-amplifier 1-26GHz               | Pre-amplifier 26-40GHz               | Horn > 18GHz      |            |               | Limit                                      |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| T120; S/N: 29310 @3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T63 Miteq 646456                    |                                      |                   |            |               | FCC 15.209                                 |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Hi Frequency Cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                      |                   |            |               | Peak Measurements<br>RBW=VBW=1MHz          |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 foot cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 foot cable                        | 4 foot cable                         | 12 foot cable     | HPF        | Reject Filter | Average Measurements<br>RBW=1MHz, VBW=10Hz |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2_Thanh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                      | 12_Thanh          |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>f<br/>GHz</th> <th>Dist<br/>(m)</th> <th>Read Pk<br/>dBuV</th> <th>Read Avg.<br/>dBuV</th> <th>AF<br/>dB/m</th> <th>CL<br/>dB</th> <th>Amp<br/>dB</th> <th>D Corr<br/>dB</th> <th>Fltr<br/>dB</th> <th>Peak<br/>dBuV/m</th> <th>Avg<br/>dBuV/m</th> <th>Pk Lim<br/>dBuV/m</th> <th>Avg Lim<br/>dBuV/m</th> <th>Pk Mar<br/>dB</th> <th>Avg Mar<br/>dB</th> <th>Notes<br/>(V/H)</th> </tr> </thead> <tbody> <tr> <td>1.228</td> <td>3.0</td> <td>57</td> <td>43.9</td> <td>28.0</td> <td>1.5</td> <td>-38.4</td> <td>0.0</td> <td>0.0</td> <td>48.2</td> <td>35.0</td> <td>74</td> <td>54</td> <td>-25.8</td> <td>-19.0</td> <td>V</td> </tr> <tr> <td>1.842</td> <td>3.0</td> <td>58.7</td> <td>43.2</td> <td>30.7</td> <td>1.9</td> <td>-38.7</td> <td>0.0</td> <td>0.0</td> <td>52.6</td> <td>37.0</td> <td>74</td> <td>54</td> <td>-21.4</td> <td>-17.0</td> <td>V</td> </tr> <tr> <td>2.456</td> <td>3.0</td> <td>57.9</td> <td>44.1</td> <td>32.1</td> <td>2.2</td> <td>-39.0</td> <td>0.0</td> <td>0.0</td> <td>53.2</td> <td>39.4</td> <td>74</td> <td>54</td> <td>-20.8</td> <td>-14.6</td> <td>V</td> </tr> <tr> <td>3.070</td> <td>3.0</td> <td>56.5</td> <td>45.1</td> <td>32.6</td> <td>2.5</td> <td>-38.6</td> <td>0.0</td> <td>0.0</td> <td>53.0</td> <td>41.5</td> <td>74</td> <td>54</td> <td>-21.0</td> <td>-12.5</td> <td>V</td> </tr> <tr> <td>1.228</td> <td>3.0</td> <td>56.1</td> <td>45.3</td> <td>28.0</td> <td>1.5</td> <td>-38.4</td> <td>0.0</td> <td>0.0</td> <td>47.2</td> <td>36.4</td> <td>74</td> <td>54</td> <td>-26.8</td> <td>-17.6</td> <td>H</td> </tr> <tr> <td>1.842</td> <td>3.0</td> <td>55.6</td> <td>43.5</td> <td>30.7</td> <td>1.9</td> <td>-38.7</td> <td>0.0</td> <td>0.0</td> <td>49.4</td> <td>37.4</td> <td>74</td> <td>54</td> <td>-24.6</td> <td>-16.6</td> <td>H</td> </tr> <tr> <td>2.456</td> <td>3.0</td> <td>54.7</td> <td>44.7</td> <td>32.1</td> <td>2.2</td> <td>-39.0</td> <td>0.0</td> <td>0.0</td> <td>50.0</td> <td>40.0</td> <td>74</td> <td>54</td> <td>-24.0</td> <td>-14.0</td> <td>H</td> </tr> <tr> <td>3.070</td> <td>3.0</td> <td>56.3</td> <td>44.4</td> <td>32.6</td> <td>2.5</td> <td>-38.6</td> <td>0.0</td> <td>0.0</td> <td>52.7</td> <td>40.8</td> <td>74</td> <td>54</td> <td>-21.3</td> <td>-13.2</td> <td>H</td> </tr> <tr> <td colspan="15">No other spurious emissions were detected above 3GHz</td> </tr> </tbody> </table> |                                     |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               | f<br>GHz                | Dist<br>(m)           | Read Pk<br>dBuV                      | Read Avg.<br>dBuV        | AF<br>dB/m                          | CL<br>dB                         | Amp<br>dB             | D Corr<br>dB                     | Fltr<br>dB                       | Peak<br>dBuV/m    | Avg<br>dBuV/m                       | Pk Lim<br>dBuV/m             | Avg Lim<br>dBuV/m | Pk Mar<br>dB         | Avg Mar<br>dB       | Notes<br>(V/H) | 1.228 | 3.0 | 57 | 43.9 | 28.0                              | 1.5          | -38.4        | 0.0          | 0.0           | 48.2 | 35.0          | 74                                         | 54      | -25.8 | -19.0 | V        | 1.842 | 3.0 | 58.7 | 43.2 | 30.7 | 1.9 | -38.7 | 0.0 | 0.0 | 52.6 | 37.0 | 74 | 54 | -21.4 | -17.0 | V | 2.456 | 3.0 | 57.9 | 44.1 | 32.1 | 2.2 | -39.0 | 0.0 | 0.0 | 53.2 | 39.4 | 74 | 54 | -20.8 | -14.6 | V | 3.070 | 3.0 | 56.5 | 45.1 | 32.6 | 2.5 | -38.6 | 0.0 | 0.0 | 53.0 | 41.5 | 74 | 54 | -21.0 | -12.5 | V | 1.228 | 3.0 | 56.1 | 45.3 | 28.0 | 1.5 | -38.4 | 0.0 | 0.0 | 47.2 | 36.4 | 74 | 54 | -26.8 | -17.6 | H | 1.842 | 3.0 | 55.6 | 43.5 | 30.7 | 1.9 | -38.7 | 0.0 | 0.0 | 49.4 | 37.4 | 74 | 54 | -24.6 | -16.6 | H | 2.456 | 3.0 | 54.7 | 44.7 | 32.1 | 2.2 | -39.0 | 0.0 | 0.0 | 50.0 | 40.0 | 74 | 54 | -24.0 | -14.0 | H | 3.070 | 3.0 | 56.3 | 44.4 | 32.6 | 2.5 | -38.6 | 0.0 | 0.0 | 52.7 | 40.8 | 74 | 54 | -21.3 | -13.2 | H | No other spurious emissions were detected above 3GHz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| f<br>GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dist<br>(m)                         | Read Pk<br>dBuV                      | Read Avg.<br>dBuV | AF<br>dB/m | CL<br>dB      | Amp<br>dB                                  | D Corr<br>dB | Fltr<br>dB | Peak<br>dBuV/m | Avg<br>dBuV/m | Pk Lim<br>dBuV/m | Avg Lim<br>dBuV/m | Pk Mar<br>dB | Avg Mar<br>dB | Notes<br>(V/H)          |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 57                                   | 43.9              | 28.0       | 1.5           | -38.4                                      | 0.0          | 0.0        | 48.2           | 35.0          | 74               | 54                | -25.8        | -19.0         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 58.7                                 | 43.2              | 30.7       | 1.9           | -38.7                                      | 0.0          | 0.0        | 52.6           | 37.0          | 74               | 54                | -21.4        | -17.0         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 57.9                                 | 44.1              | 32.1       | 2.2           | -39.0                                      | 0.0          | 0.0        | 53.2           | 39.4          | 74               | 54                | -20.8        | -14.6         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 56.5                                 | 45.1              | 32.6       | 2.5           | -38.6                                      | 0.0          | 0.0        | 53.0           | 41.5          | 74               | 54                | -21.0        | -12.5         | V                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 56.1                                 | 45.3              | 28.0       | 1.5           | -38.4                                      | 0.0          | 0.0        | 47.2           | 36.4          | 74               | 54                | -26.8        | -17.6         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 55.6                                 | 43.5              | 30.7       | 1.9           | -38.7                                      | 0.0          | 0.0        | 49.4           | 37.4          | 74               | 54                | -24.6        | -16.6         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 54.7                                 | 44.7              | 32.1       | 2.2           | -39.0                                      | 0.0          | 0.0        | 50.0           | 40.0          | 74               | 54                | -24.0        | -14.0         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                 | 56.3                                 | 44.4              | 32.6       | 2.5           | -38.6                                      | 0.0          | 0.0        | 52.7           | 40.8          | 74               | 54                | -21.3        | -13.2         | H                       |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No other spurious emissions were detected above 3GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">f Measurement Frequency</td> <td style="width: 33%;">Amp Preamp Gain</td> <td style="width: 33%;">Avg Lim Average Field Strength Limit</td> </tr> <tr> <td>Dist Distance to Antenna</td> <td>D Corr Distance Correct to 3 meters</td> <td>Pk Lim Peak Field Strength Limit</td> </tr> <tr> <td>Read Analyzer Reading</td> <td>Avg Average Field Strength @ 3 m</td> <td>Avg Mar Margin vs. Average Limit</td> </tr> <tr> <td>AF Antenna Factor</td> <td>Peak Calculated Peak Field Strength</td> <td>Pk Mar Margin vs. Peak Limit</td> </tr> <tr> <td>CL Cable Loss</td> <td>HPF High Pass Filter</td> <td></td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               | f Measurement Frequency | Amp Preamp Gain       | Avg Lim Average Field Strength Limit | Dist Distance to Antenna | D Corr Distance Correct to 3 meters | Pk Lim Peak Field Strength Limit | Read Analyzer Reading | Avg Average Field Strength @ 3 m | Avg Mar Margin vs. Average Limit | AF Antenna Factor | Peak Calculated Peak Field Strength | Pk Mar Margin vs. Peak Limit | CL Cable Loss     | HPF High Pass Filter |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| f Measurement Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amp Preamp Gain                     | Avg Lim Average Field Strength Limit |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dist Distance to Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D Corr Distance Correct to 3 meters | Pk Lim Peak Field Strength Limit     |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Read Analyzer Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Avg Average Field Strength @ 3 m    | Avg Mar Margin vs. Average Limit     |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AF Antenna Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak Calculated Peak Field Strength | Pk Mar Margin vs. Peak Limit         |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CL Cable Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HPF High Pass Filter                |                                      |                   |            |               |                                            |              |            |                |               |                  |                   |              |               |                         |                       |                                      |                          |                                     |                                  |                       |                                  |                                  |                   |                                     |                              |                   |                      |                     |                |       |     |    |      |                                   |              |              |              |               |      |               |                                            |         |       |       |          |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |       |     |      |      |      |     |       |     |     |      |      |    |    |       |       |   |                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 11. EMISSION BANDWIDTH

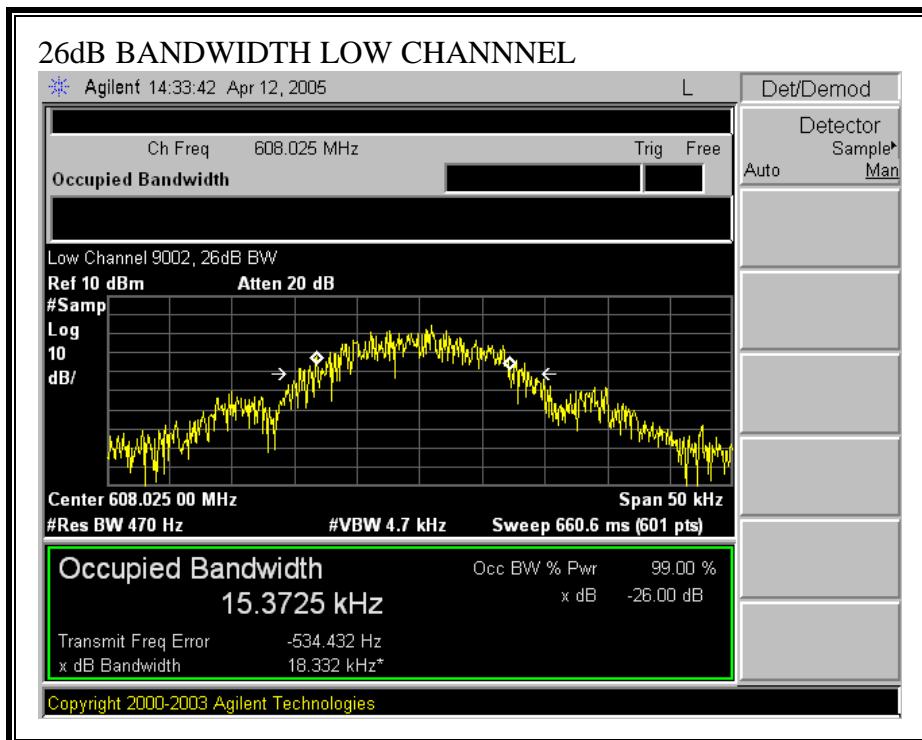
### PROVISIONS APPLICABLE

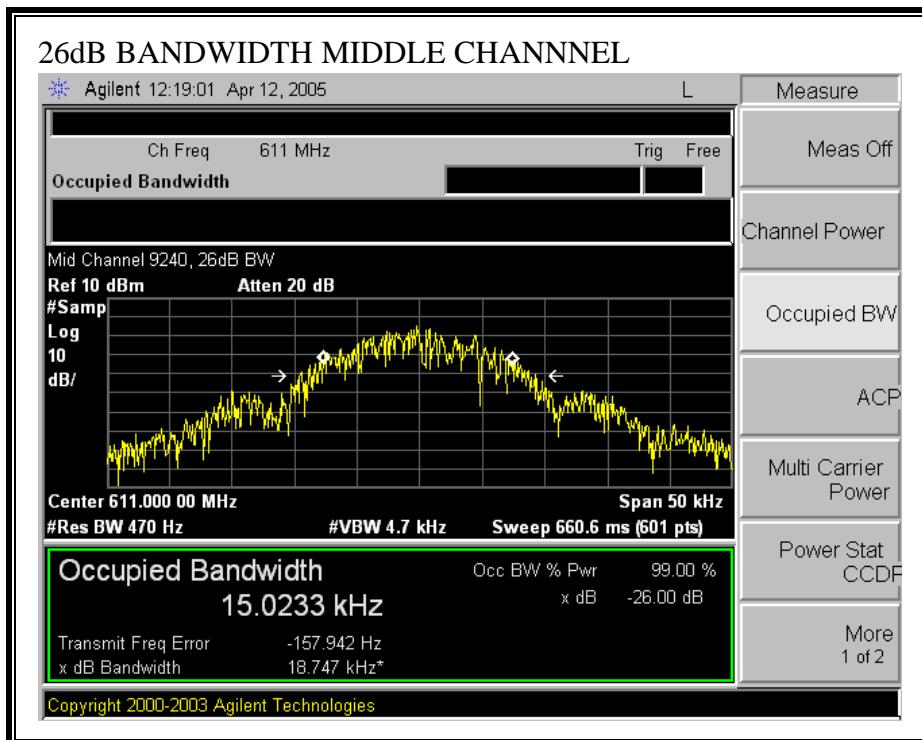

According to CFR 47 section 2.1049

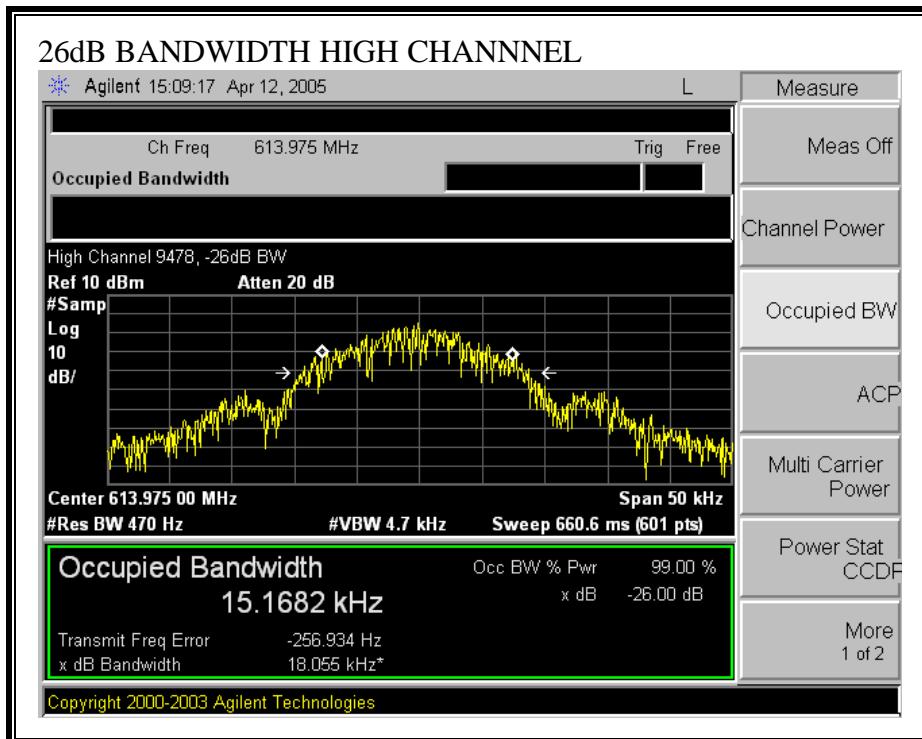
### LIMIT

The 26dB bandwidth shall be less than 20 KHz (F1D).

### TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 26dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 26dB bandwidth function is utilized.





### TEST RESULTS

No non-compliance noted:

| CHANNEL | FREQUENCY (MHz) | 26 dB BANDWIDTH (KHz) | 99% BANDWIDTH (KHz) |
|---------|-----------------|-----------------------|---------------------|
| LOW     | 608.025         | 18.332                | 15.3725             |
| MIDDLE  | 611             | 18.747                | 15.0233             |
| HIGH    | 613.975         | 18.055                | 15.1682             |

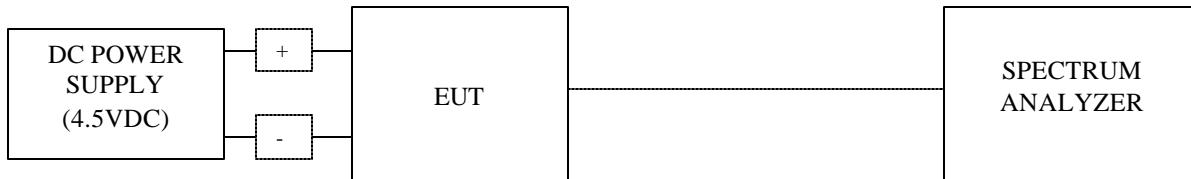






## 12. PEAK OUTPUT POWER

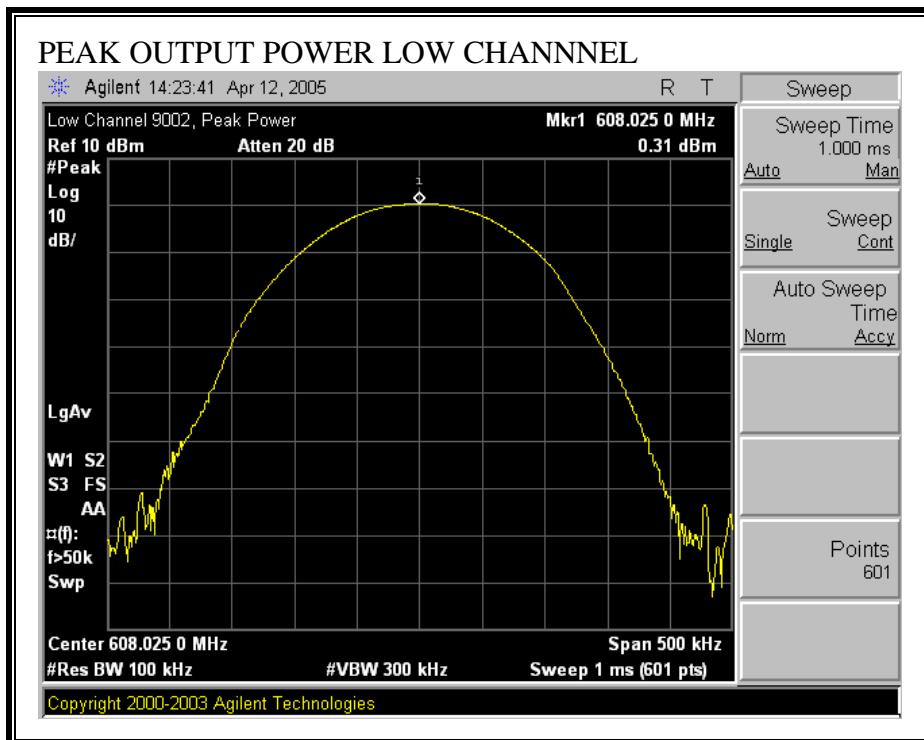
### PROVISIONS APPLICABLE

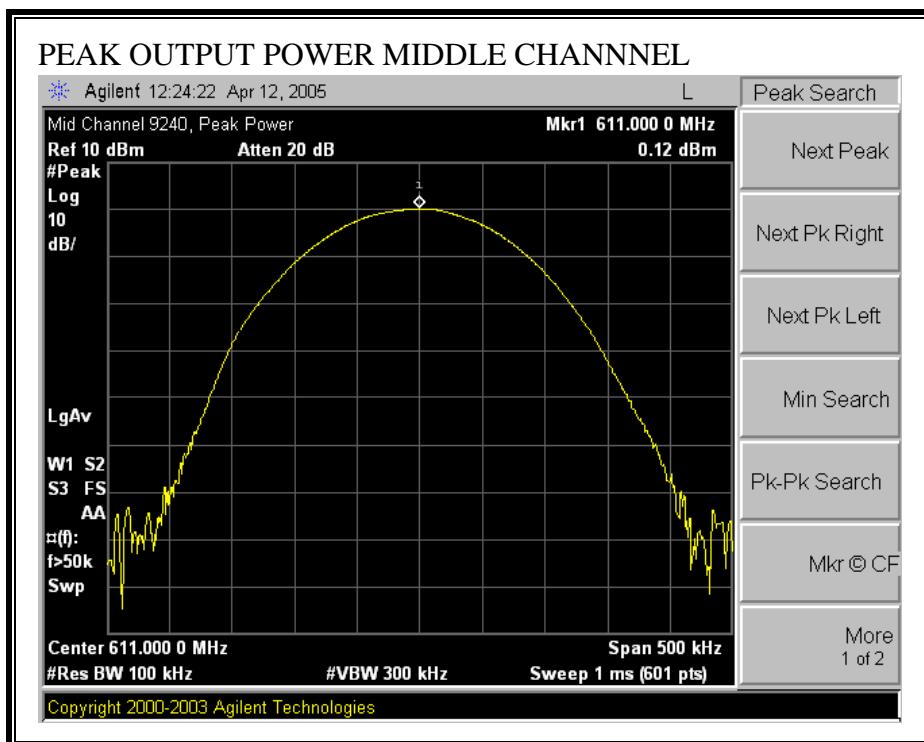

According to CFR47 section 2.1046

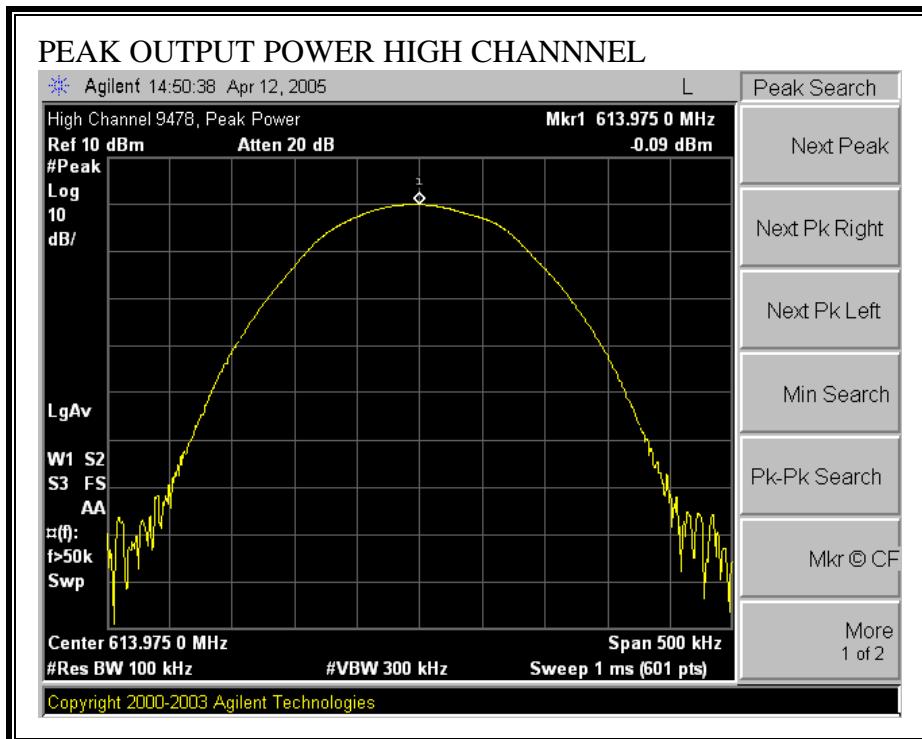
#### LIMIT

| FREQUENCY<br>(MHz) | LIMIT<br>(dBm) |
|--------------------|----------------|
| 608-614            | 10.8           |

### TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set greater than the 26dB bandwidth. The VBW is set to 3 times the RBW.





### TEST RESULTS

No non-compliance noted:

| CHANNEL | FREQUENCY<br>(MHz) | PEAK OUTPUT POWER<br>(dBm) | LIMIT<br>(dBm) | MARGIN<br>(dB) |
|---------|--------------------|----------------------------|----------------|----------------|
| LOW     | 608.025            | 0.31                       | 10.8           | -10.47         |
| MIDDLE  | 611                | 0.12                       | 10.8           | -10.63         |
| HIGH    | 613.975            | -0.09                      | 10.8           | -10.81         |



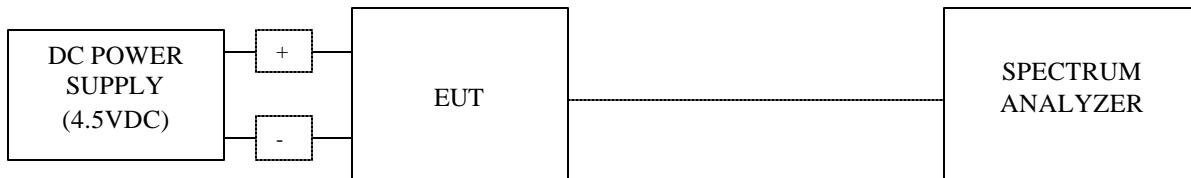




### 13. SPURIOUS EMISSIONS AT ANTENNA TERMINAL

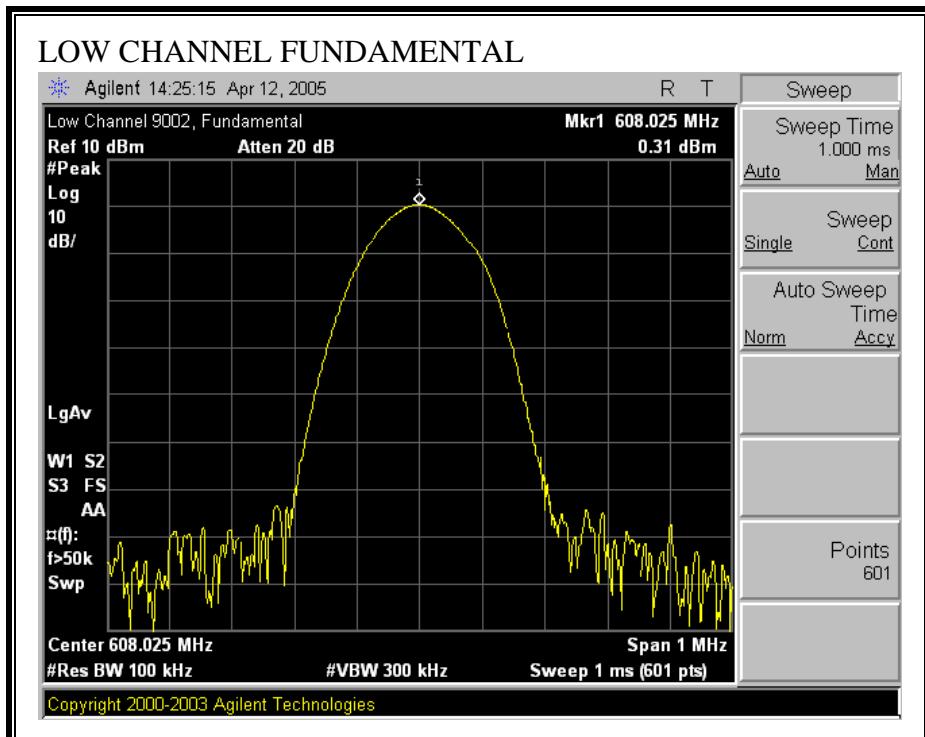
#### PROVISIONS APPLICABLE

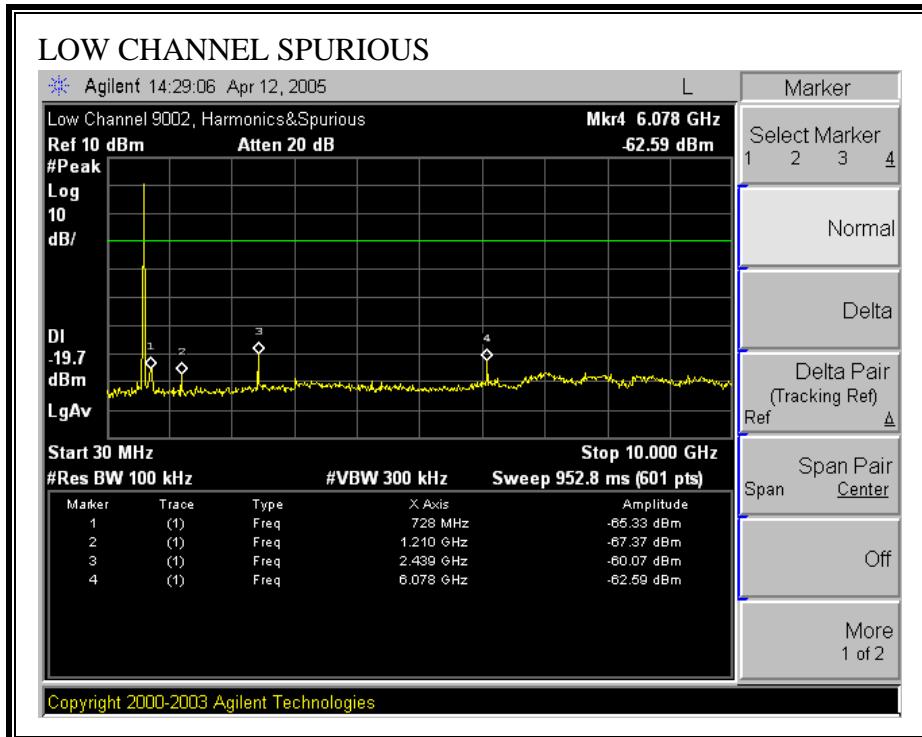
According to CFR47 section 2.1051

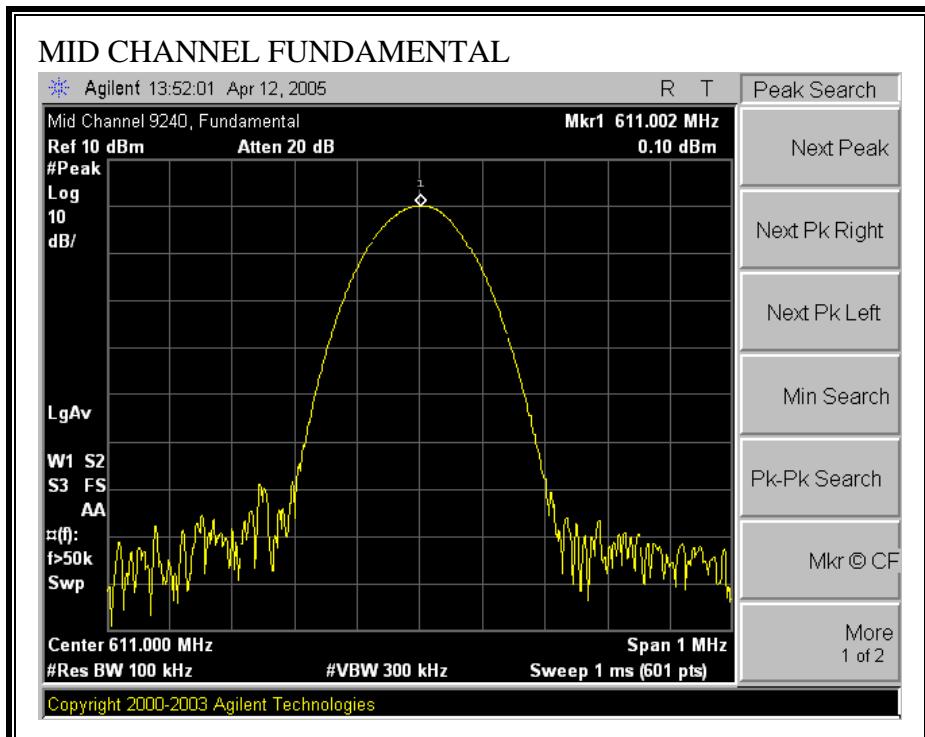

#### LIMIT

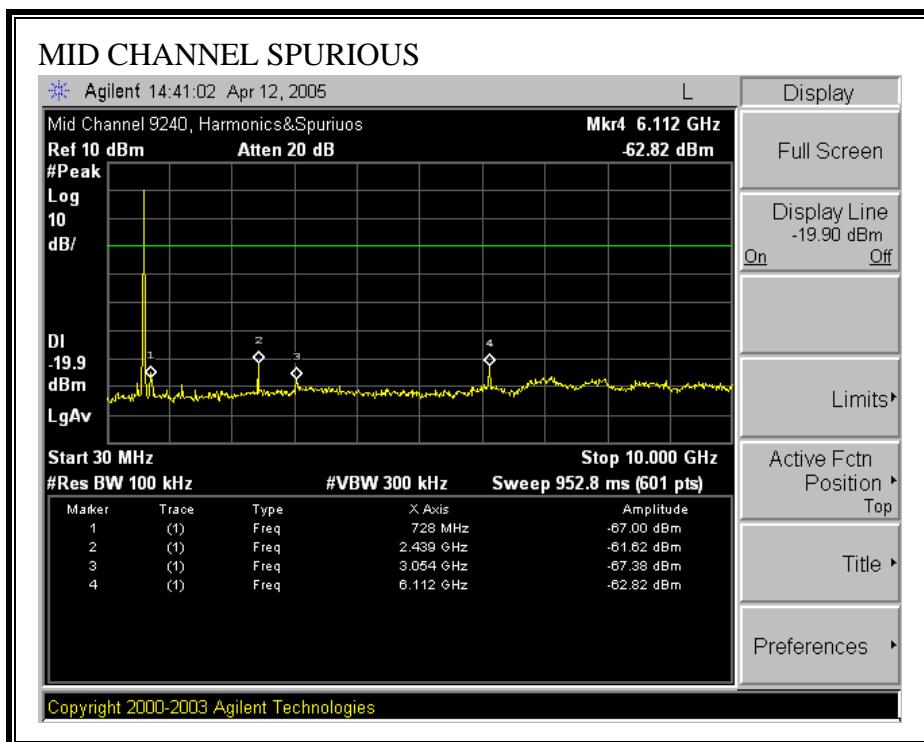
All the conducted emission spurious level shall be at least -20dBc below the band that contains the highest level of desired power.

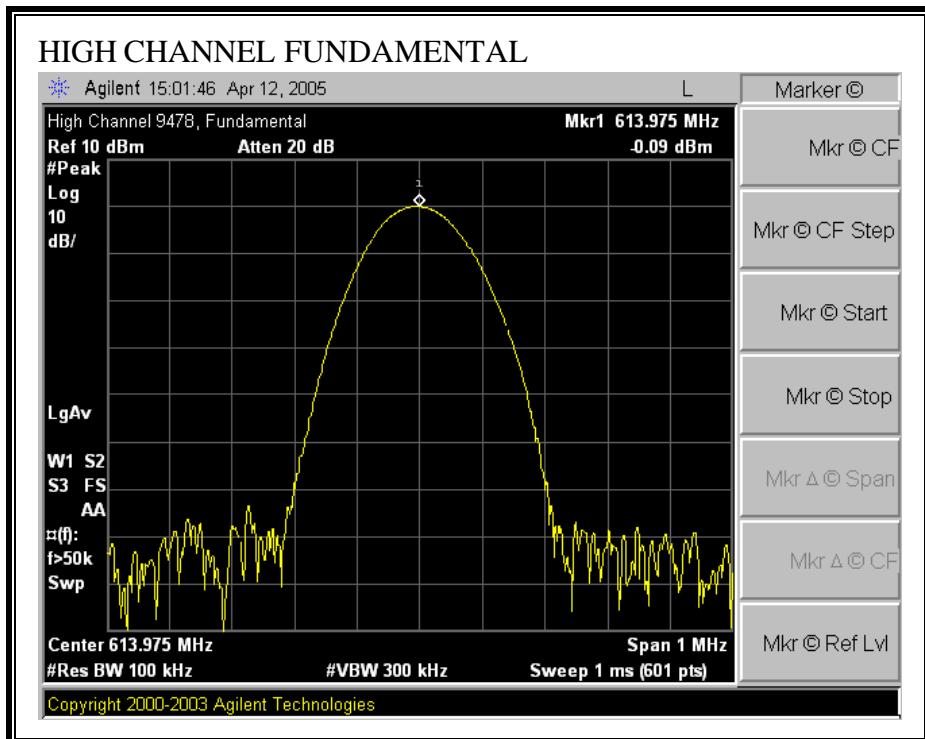
#### TEST PROCEDURE

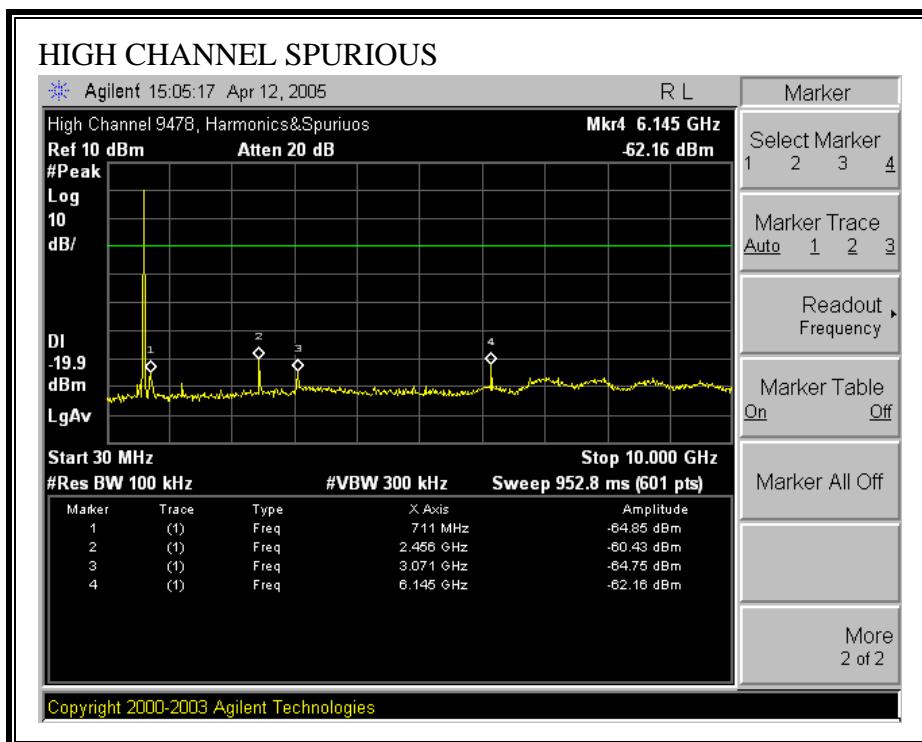

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz. The VBW is set to 300 kHz.


The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.





#### TEST RESULTS


No non-compliance noted:













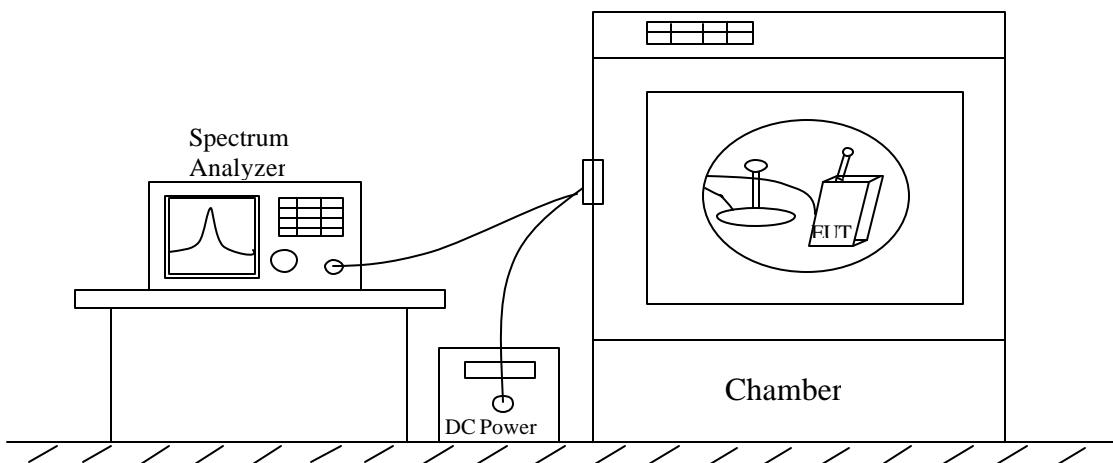

## **14. FREQUENCY STABILITY MEASUREMENT**

### **PROVISIONS APPLICABLE**

According to CFR 47 section 2.1055

### **LIMIT**

An emission is maintained within the band of operation under the manf's specified conditions.


### **TEST PROCEDURE**

#### Frequency stability versus environmental temperature

- 1) Set the temperature of chamber to 25°C @ low/high channel. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 2) Set SA Resolution Bandwidth to 300 Hz and Video Resolution Bandwidth to 300 Hz and Frequency Span to 20 KHz. Record this frequency as reference frequency.
- 3) Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measured frequencies on each temperature step.
- 3) Repeat step 2 with a 10°C increased per stage until the highest temperature +65°C is measured; record all measured frequencies on each temperature step.

#### Frequency stability versus input voltage

- 1). Setup the configuration as shown below for frequencies measured at temperature if it is 25°C.
- 2). Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 300 Hz and Video Resolution Bandwidth to 300 Hz and Frequency Span to 20 KHz. Record this frequency as reference frequency.
- 3). For battery operated only device, supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.



*Frequency stability measurement configuration*

## TEST RESULTS

No non compliant noted

**LOW CHANNEL**

| Reference Frequency: LOW CHANNEL 608.025 MHz |                                |                                               |             |                |
|----------------------------------------------|--------------------------------|-----------------------------------------------|-------------|----------------|
| Limit: 608 MHz                               |                                |                                               |             |                |
| Power Supply<br>(Vdc)                        | Environment<br>Temperature (C) | Frequency Deviation Measured with Time Elapse |             |                |
|                                              |                                | (MHz)                                         | Limit (MHz) | Margin (MHz)   |
| 4.50                                         | 50                             | 608.02506                                     | 608.000     | 0.025057328    |
| 4.50                                         | 40                             | 608.02501                                     | 608.000     | 0.025005578    |
| 4.50                                         | 30                             | 608.02491                                     | 608.000     | 0.02491352     |
| 4.50                                         | <b>25</b>                      | <b>608.02508</b>                              | 608.000     | <b>0.02508</b> |
| 4.50                                         | 20                             | 608.02496                                     | 608.000     | 0.024956087    |
| 4.50                                         | 10                             | 608.02497                                     | 608.000     | 0.024966097    |
| 4.50                                         | 0                              | 608.02500                                     | 608.000     | 0.025002397    |
| 4.50                                         | -10                            | 608.02489                                     | 608.000     | 0.024887024    |
| 4.50                                         | -20                            | 608.02492                                     | 608.000     | 0.024923548    |
| 4.50                                         | -30                            | 608.02479                                     | 608.000     | 0.024791575    |

| Reference Frequency: LOW CHANNEL 608.025 MHz |                                |                                               |                |                |
|----------------------------------------------|--------------------------------|-----------------------------------------------|----------------|----------------|
| Limit: 608 MHz                               |                                |                                               |                |                |
| Power Supply<br>(Vdc)                        | Environment<br>Temperature (C) | Frequency Deviation Measured with Time Elapse |                |                |
|                                              |                                | (MHz)                                         | Limit (MHz)    | Margin (MHz)   |
| <b>4.5 (Normal)</b>                          | <b>25</b>                      | <b>608.02508</b>                              | <b>608.000</b> | <b>0.02508</b> |
| 3.825 (85%)                                  | <b>25</b>                      | 608.02502                                     | 608.000        | 0.025019332    |
| 5.175 (115%)                                 | <b>25</b>                      | 608.02501                                     | 608.000        | 0.025005647    |
| 3.15 (endpoint)                              | <b>25</b>                      | 608.02506                                     | 608.000        | <b>0.02506</b> |

\*Operating environment of the EUT is specified in the user manual as follows;

- Operating temp: 5 – 40 deg. C
- Operating voltage: 3.2 - 4.8 VDC

## HIGH CHANNEL

| Reference Frequency: HIGH CHANNEL 613.975MHz |                                |                                               |             |                 |
|----------------------------------------------|--------------------------------|-----------------------------------------------|-------------|-----------------|
| Limit: 614 MHz                               |                                |                                               |             |                 |
| Power Supply<br>(Vdc)                        | Environment<br>Temperature (C) | Frequency Deviation Measured with Time Elapse |             |                 |
|                                              |                                | (MHz)                                         | Limit (MHz) | Margin (MHz)    |
| 4.50                                         | 50                             | 613.97505                                     | 614.000     | -0.02494567     |
| 4.50                                         | 40                             | 613.97505                                     | 614.000     | -0.024946625    |
| 4.50                                         | 30                             | 613.97500                                     | 614.000     | -0.025002047    |
| 4.50                                         | <b>25</b>                      | <b>613.97501</b>                              | 614.000     | <b>-0.02499</b> |
| 4.50                                         | 20                             | 613.97500                                     | 614.000     | -0.025000003    |
| 4.50                                         | 10                             | 613.97497                                     | 614.000     | -0.025034006    |
| 4.50                                         | 0                              | 613.97499                                     | 614.000     | -0.025009704    |
| 4.50                                         | -10                            | 613.97523                                     | 614.000     | -0.024767496    |
| 4.50                                         | -20                            | 613.97498                                     | 614.000     | -0.025024521    |
| 4.50                                         | -30                            | 613.97488                                     | 614.000     | -0.025120459    |

| Reference Frequency:HIGH CHANNEL 613.975MHz |                                |                                               |                |                     |
|---------------------------------------------|--------------------------------|-----------------------------------------------|----------------|---------------------|
| Limit: 614 MHz                              |                                |                                               |                |                     |
| Power Supply<br>(Vdc)                       | Environment<br>Temperature (C) | Frequency Deviation Measured with Time Elapse |                |                     |
|                                             |                                | (MHz)                                         | Limit (MHz)    | Margin (MHz)        |
| <b>4.5 (Normal)</b>                         | <b>25</b>                      | <b>613.97501</b>                              | <b>614.000</b> | <b>-0.024993955</b> |
| 3.825 (85%)                                 | <b>25</b>                      | 613.97501                                     | <b>614.000</b> | -0.024985651        |
| 5.175 (115%)                                | <b>25</b>                      | 613.97502                                     | <b>614.000</b> | -0.024980278        |
| 3.15 (endpoint)                             | <b>25</b>                      | 613.97500                                     | <b>614.000</b> | <b>-0.02500</b>     |

\*Operating environment of the EUT is specified in the user manual as follows;

- Operating temp: 5 – 40 deg. C
- Operating voltage: 3.2 - 4.2 VDC

## 15. RADIATED EMISSIONS FOR DIGITAL PORTION

### PROVISIONS APPLICABLE

According to CFR47 section 15.109

### LIMITS

§15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) |
|--------------------|--------------------------------------|
| 30 - 88            | 100                                  |
| 88 - 216           | 150                                  |
| 216 - 960          | 200                                  |
| Above 960          | 500                                  |

§15.109 (c) In the emission tables above, the tighter limit applies at the band edges. Sections 15.33 and 15.35 which specify the frequency range over which radiated emissions are to be measured and the detector functions and other measurement standards apply.

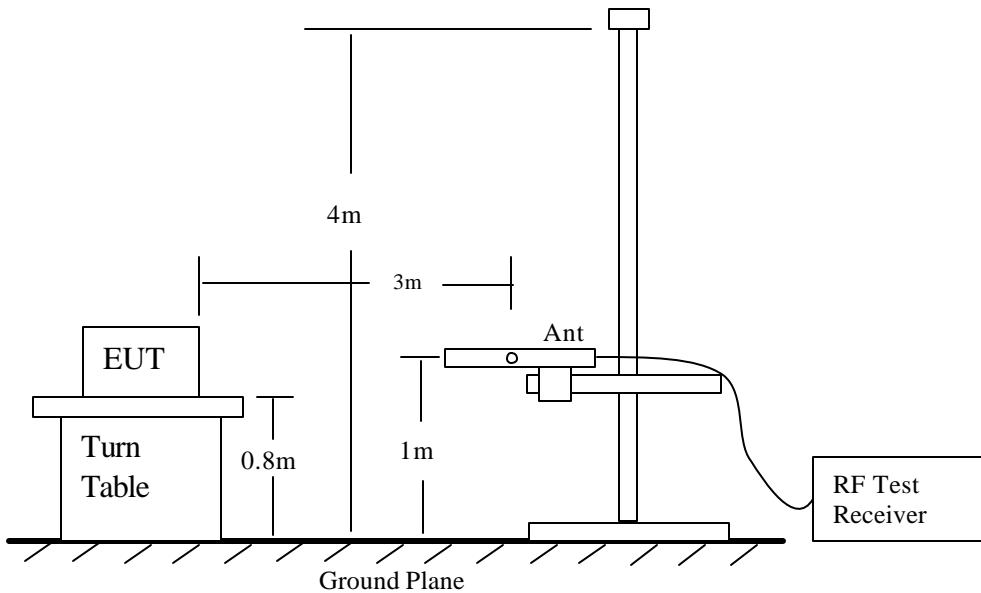
§15.109 (g) As an alternative to the radiated emission limits shown in paragraphs (a) and (b) of this section, digital devices may be shown to comply with the standards contained in the Third Edition of International Electrotechnical Commission ("IEC"), International Special Committee on Radio Interference (CISPR) Pub. 22 (1997), "Information Technology Equipment -- Radio Disturbance Characteristics -- Limits and Methods of Measurement." This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of CISPR publications may be purchased from the Global Engineering Documents, P. O. Box 8500 (S-4485), Philadelphia, PA 19178-4485, (303) 792-2181 or (800) 624-3974. Copies also may be inspected, but not reproduced, during normal business hours at the following locations: Federal Communications Commission, Reference Information Center, Room CY-A257, 445 12th Street, SW., Washington, DC, and Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC. In addition:

(1) The test procedure and other requirements specified in this part shall continue to apply to digital devices.

(2) If, in accordance with §15.33 of this part, measurements must be performed above 1000 MHz, compliance above 1000 MHz shall be demonstrated with the emission limit in paragraph (a) or (b) of this section, as appropriate. Measurements above 1000 MHz may be performed at the distance specified in the CISPR 22 publications for measurements below 1000 MHz provided the limits in paragraphs (a) and (b) of this section are extrapolated to the new measurement distance using an inverse linear distance extrapolation factor (20 dB/decade), e.g., the radiated limit above 1000 MHz for a Class B digital device is 150 uV/m, as measured at a distance of 10 meters.

(3) The measurement distances shown in CISPR Pub. 22, including measurements made in accordance with this paragraph above 1000 MHz, are considered, for the purpose of §15.31(f)(4) of this part, to be the measurement distances specified in this part.

(4) If the radiated emissions are measured to demonstrate compliance with the alternative standards in this paragraph, compliance must also be demonstrated with the conducted limits shown in §15.107(e).


## MEASUREMENT PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

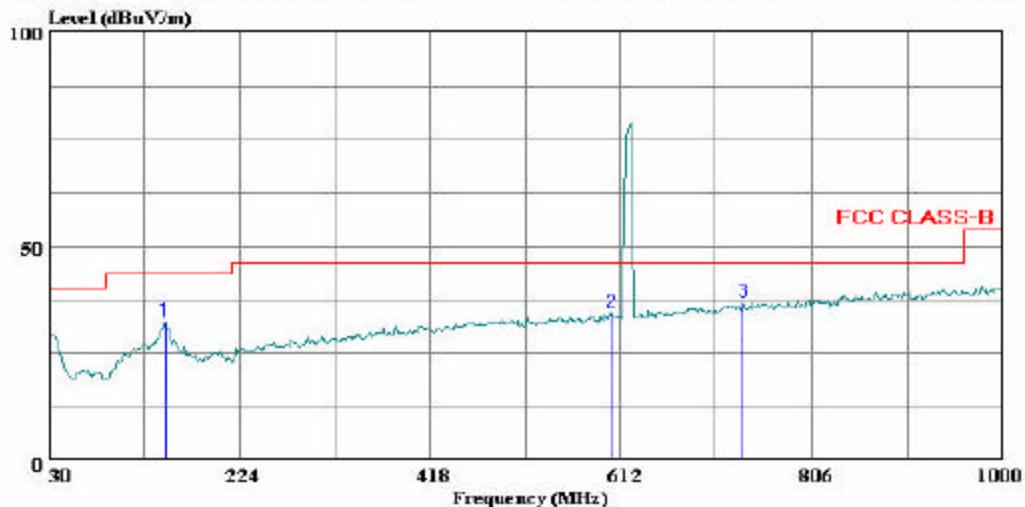
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.



Radiated Emission Measurement 30 to 1000 MHz

## TEST RESULTS


No non-compliance noted:

**DIGITAL SPURIOUS EMISSIONS 30 TO 1000 MHz (VERTICAL)**  
**DIGITAL CONFIGURATION #1**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 2 File#: EMILOW.EMI Date: 04-12-2005 Time: 16:28:27

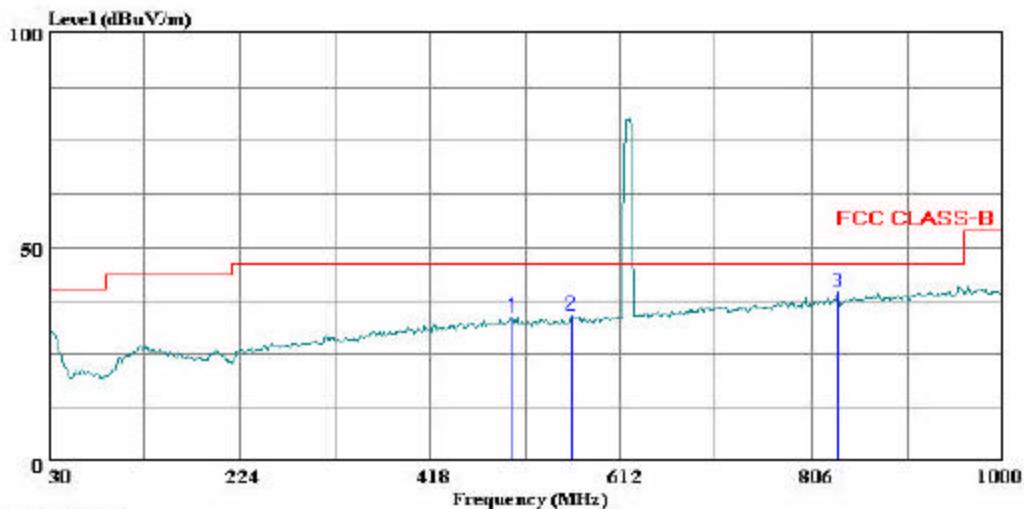


(Audit ATC)  
Trace: 1

Ref Trace:

Condition: FCC CLASS-B VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : Digital config #1(EUT with Cuff,ECG )  
Target of Test: : FCC Class B  
Mode of Operation: NIBP Activate  
: Tx Worst case High Channel.

Page: 1


| Freq | Read    |        | Limit | Over   | Line   | Limit  | Remark |
|------|---------|--------|-------|--------|--------|--------|--------|
|      | Level   | Factor |       |        |        |        |        |
|      | MHz     | dBuV   | dB    | dBuV/m | dBuV/m | dB     |        |
| 1    | 148.340 | 18.02  | 14.33 | 32.34  | 43.50  | -11.16 | Peak   |
| 2    | 603.270 | 12.79  | 21.55 | 34.35  | 46.00  | -11.65 | Peak   |
| 3    | 737.130 | 13.13  | 23.67 | 36.80  | 46.00  | -9.20  | Peak   |

**DIGITAL SPURIOUS EMISSIONS 30 TO 1000 MHz (HORIZONTAL)**  
**DIGITAL CONFIGURATION #1**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data# : 4 File#: EMILow.EMI Date: 04-12-2005 Time: 16:36:22



(Audit ATC)

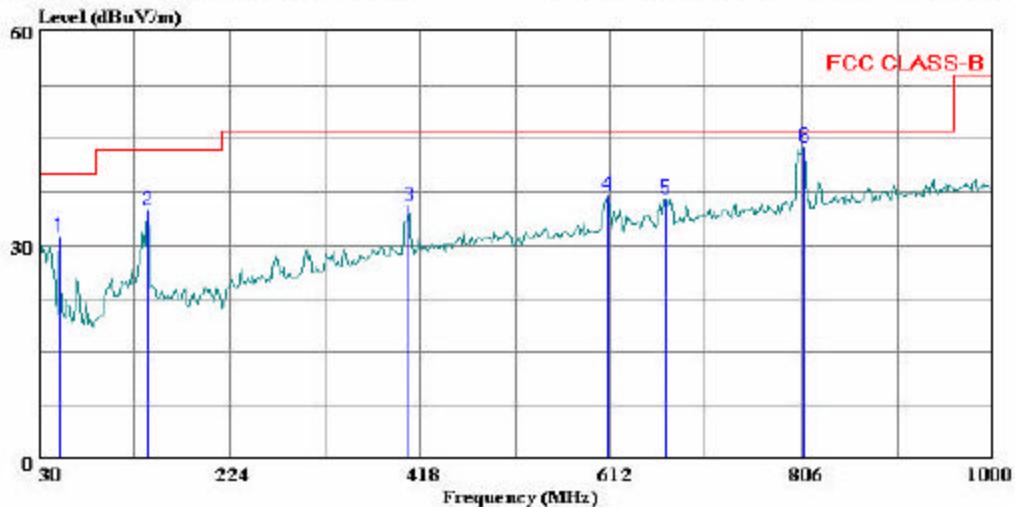
Trace: 3

Ref Trace:

Condition: FCC CLASS-B HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : Digital Config #1 (EUT with Cuff, ECG )  
Target of Test: : FCC Class B  
Mode of Operation: NIBP Activate  
: TX Worst Case High Channel.

Page: 1

| Freq | Read    |        | Limit  | Over   | Remark            |
|------|---------|--------|--------|--------|-------------------|
|      | Level   | Factor |        |        |                   |
| MHz  | dBuV    | dB     | dBuV/m | dBuV/m | dB                |
| 1    | 502.390 | 13.44  | 20.24  | 33.68  | 46.00 -12.32 Peak |
| 2    | 562.530 | 12.97  | 21.02  | 33.99  | 46.00 -12.01 Peak |
| 3    | 832.190 | 14.52  | 24.95  | 39.47  | 46.00 -6.53 Peak  |


**DIGITAL SPURIOUS EMISSIONS 30 TO 1000 MHz (VERTICAL)**  
**DIGITAL CONFIGURATION #2**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 26 File#: EMILOW.EMI

Date: 04-12-2005 Time: 18:15:41



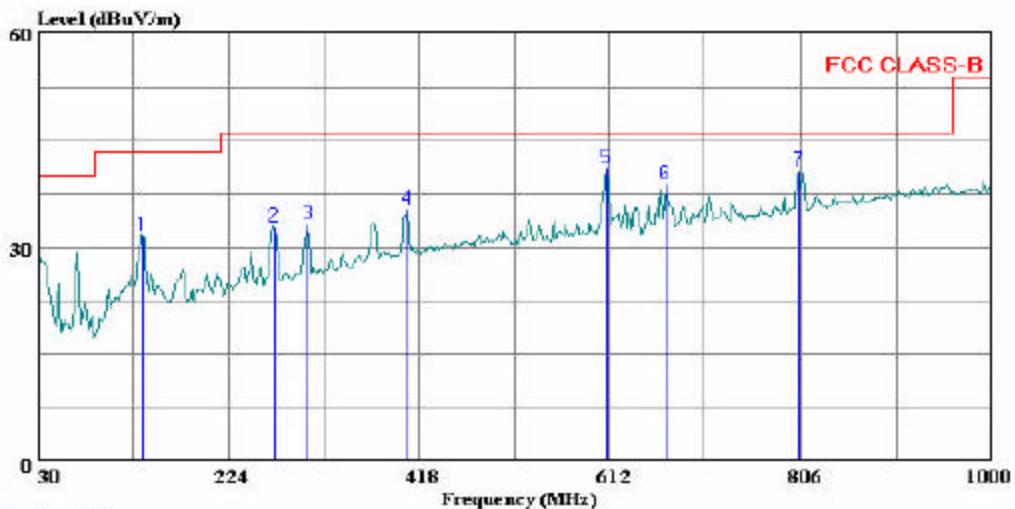
(Audit ATC)

Trace: 25

Ref Trace:

Condition: FCC CLASS-B VERTICAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT , channel writer, PC and Peripheral  
Target of Test: : FCC Class B  
Mode of Operation: Print/Change channel

Page: 1


| Freq | Read    |        | Limit  | Over   | Remark            |
|------|---------|--------|--------|--------|-------------------|
|      | Level   | Factor |        |        |                   |
| MHz  | dBuV    | dB     | dBuV/m | dBuV/m | dB                |
| 1    | 51.340  | 22.07  | 9.05   | 31.12  | 40.00 -8.88 Peak  |
| 2    | 140.580 | 20.10  | 14.77  | 34.87  | 43.50 -8.63 Peak  |
| 3    | 407.330 | 17.27  | 18.21  | 35.48  | 46.00 -10.52 Peak |
| 4    | 609.090 | 15.34  | 21.66  | 37.00  | 46.00 -9.00 Peak  |
| 5    | 668.260 | 13.81  | 22.66  | 36.46  | 46.00 -9.54 Peak  |
| 6    | 807.940 | 19.06  | 24.69  | 43.75  | 46.00 -2.25 Peak  |

**DIGITAL SPURIOUS EMISSIONS 30 TO 1000 MHz (HORIZONTAL)**  
**DIGITAL CONFIGURATION #2**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 28 File#: EMILOW.EMI Date: 04-12-2005 Time: 18:19:46



(Audit ATC)

Trace: 27

Ref Trace:

Condition: FCC CLASS-B HORIZONTAL  
Test Operator: : Thanh Nguyen  
Project #: : 05I3334-1  
Company: : NIHON KOHDEN Corporation  
EUT: : Transmitter for Medical  
Model No : ZM-940PA  
Configuration: : EUT, channel writer, PC and Peripheral  
Target of Test: : FCC Class B  
Mode of Operation: Print/Change channel

Page: 1

| Freq | Read    |        | Limit  | Over   | Remark            |
|------|---------|--------|--------|--------|-------------------|
|      | Level   | Factor |        |        |                   |
| MHz  | dBuV    | dB     | dBuV/m | dBuV/m | dB                |
| 1    | 136.700 | 16.71  | 14.93  | 31.64  | 43.50 -11.86 Peak |
| 2    | 270.560 | 18.15  | 14.63  | 32.78  | 46.00 -13.22 Peak |
| 3    | 305.480 | 17.40  | 15.80  | 33.20  | 46.00 -12.80 Peak |
| 4    | 405.390 | 17.04  | 18.18  | 35.22  | 46.00 -10.78 Peak |
| 5    | 609.090 | 19.49  | 21.66  | 41.15  | 46.00 -4.85 Peak  |
| 6    | 669.230 | 16.08  | 22.65  | 38.73  | 46.00 -7.27 Peak  |
| 7    | 803.090 | 16.14  | 24.59  | 40.73  | 46.00 -5.27 Peak  |

## 16. POWER LINE CONDUCTED EMISSIONS

### PROVISIONS APPLICABLE

According to CFR 47 section 15.107 (a)

#### LIMIT

§15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |                       |
|-----------------------------|------------------------|-----------------------|
|                             | Quasi-peak             | Average               |
| 0.15-0.5                    | 66 to 56 <sup>*</sup>  | 56 to 46 <sup>*</sup> |
| 0.5-5                       | 56                     | 46                    |
| 5-30                        | 60                     | 50                    |

<sup>\*</sup> Decreases with the logarithm of the frequency.

### TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

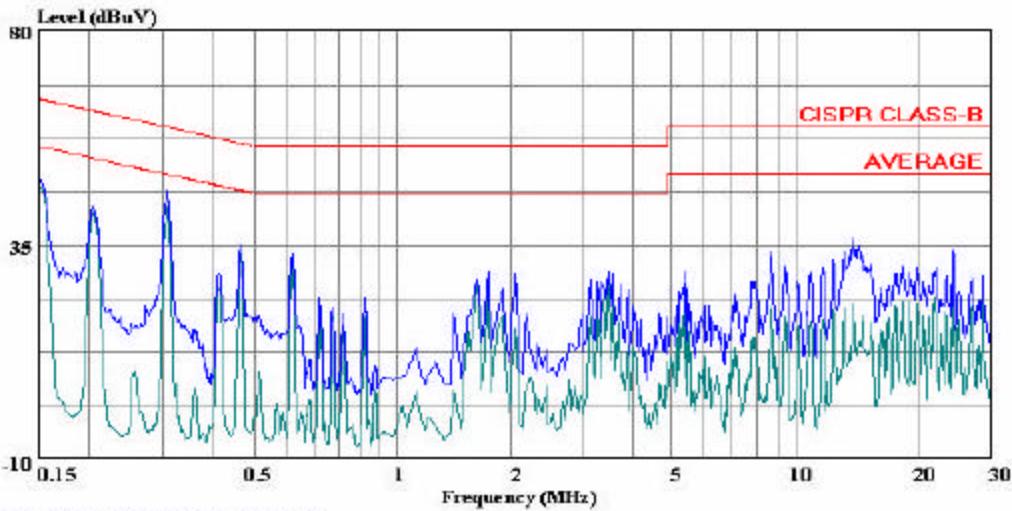
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

### TEST RESULTS

No non-compliance noted:

## 6 WORST EMISSIONS


| CONDUCTED EMISSIONS DATA (115VAC 60Hz) |           |           |           |               |       |       |         |         |        |
|----------------------------------------|-----------|-----------|-----------|---------------|-------|-------|---------|---------|--------|
| Freq.<br>(MHz)                         | Reading   |           |           | Closs<br>(dB) | Limit | FCC_B | Margin  |         | Remark |
|                                        | PK (dBuV) | QP (dBuV) | AV (dBuV) |               |       |       | QP (dB) | AV (dB) |        |
| 0.31                                   | 46.56     | --        | 43.39     | 0.00          | 60.02 | 50.02 | -13.46  | -6.63   | L1     |
| 0.15                                   | 49.92     | --        | 47.62     | 0.00          | 65.89 | 55.89 | -15.97  | -8.27   | L1     |
| 13.84                                  | 36.36     | --        | 22.57     | 0.00          | 60.00 | 50.00 | -23.64  | -27.43  | L1     |
| 0.31                                   | 43.56     | --        | 40.13     | 0.00          | 60.05 | 50.05 | -16.49  | -9.92   | L2     |
| 0.15                                   | 46.14     | --        | 43.79     | 0.00          | 65.89 | 55.89 | -19.75  | -12.10  | L2     |
| 13.99                                  | 39.82     | --        | 26.62     | 0.00          | 60.00 | 50.00 | -20.18  | -23.38  | L2     |
| 6 Worst Data                           |           |           |           |               |       |       |         |         |        |

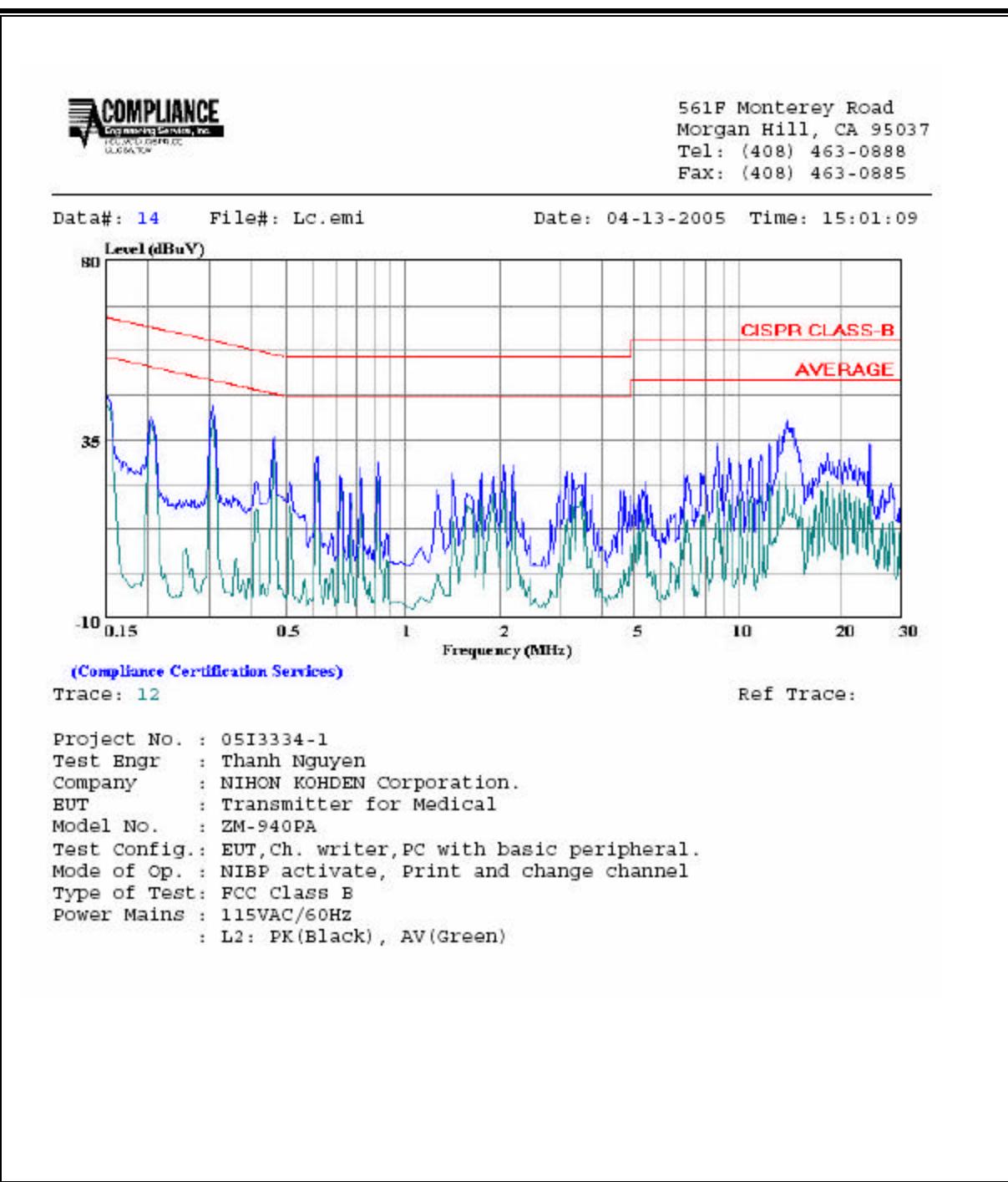
**LINE 1 RESULT**



561F Monterey Road  
Morgan Hill, CA 95037  
Tel: (408) 463-0888  
Fax: (408) 463-0885

Data#: 7 File#: Lc.emi Date: 04-13-2005 Time: 14:47:29




(Compliance Certification Services)

Trace: 5

Ref Trace:

Project No. : 05I3334-1  
Test Engr : Thanh Nguyen  
Company : NIHON KOHDEN Corporation.  
BUT : Transmitter for Medical  
Model No. : ZM-940PA  
Test Config.: EUT, Ch. writer, PC with basic peripheral.  
Mode of Op. : NIBP activate, Print and change channel  
Type of Test: FCC Class B  
Power Mains : 115VAC/60Hz  
: L1: PK(Black), AV(Green)

**LINE 2 RESULT**

