Technical Information

Name: Applicant X10 (USA), Inc.

Blackriver Corporate Park
Address: 620 Naches Ave SW, Building A

City, State, Zip: Renton, WA 98057

Manufacturer

Name: X-10 Electronics (Shenzhen) Co. Ltd.

Address: Together Rich Industrial Park B

Sanwei Industrial District,

Xixiang Town
State, Zip: Baoan County,

City, State, Zip: Baoan County,

Shenzhen, China

Test Specification: FCC Rules and Regulations Part 15, Subpart C, Para. 15.231

Test Procedure: ANSI C63.4:2003

Test Sample Description

Test Sample: Eyeglasses FOFA Remote

Brandname: X-10 (USA), Inc.

Model Number: GXD-27

FCC ID: B4SGXD-27

Type: Pulsed Transmitter / UHF ASK Receiver

Power Requirements: 3V CR2032 battery

Frequency of Operation: 433.75 MHz

Applicable Rule Section: Part 15, Subpart C, Section 15.231

Tests Performed

Transmitter: Para. 15.231(b), Radiated Emissions, Fundamental and Harmonics

Transmitter: Para. 15.231(b), Radiated Emissions, Spurious Case

Transmitter: Para. 15.231(b)(3), Duty Cycle Determination

Transmitter: Para. 15.231(c), Occupied Bandwidth

Receiver: Para. 15.109(a), Receiver Radiated Spurious Emissions

Test Results

Receiver:	
15.109(a):	The field strength of spurious emissions did not exceed Class B Limits specified in paragraph 1.109(a).
Transmitter:	
15.231 (a):	This device transmits a control signal and is used as an: remote control transmitter.
15.231 (a)(1)	The transmitter is manually operated. Transmission ends within 5 seconds of deactivation.
15.231 (a)(3):	The transmitter does not perform periodic transmissions or the transmitter performs periodic transmissions at predetermined intervals greater than 1 hour apart and are shorter than 1 second in duration.
15.231 (b):	The fundamental field strength did not exceed $\underline{10989.6}$ $\mu\text{V/M}$ (Average) at a test distance of 3 meters. In addition, the requirements of section 15.35 for averaging pulsed emissions and for limiting peak emissions were met. The field strength of harmonic and spurious emissions did not exceed $\underline{1098.9}$ $\mu\text{V/M}$ (AVERAGE).
15.231 (c)	The Bandwidth of the emission was no wider than 0.25% of the center frequency

52 kHz) as measured 20 db down from the modulated carrier.

Determination of Field Strength Limits

The field strength limits shown below are found in Section 15.231:

The formula below was utilized to determine the limits:

Limit = L1 +
$$[(Fo-F1)(L2-L1)/(F2-F1)]$$

Solving Yields

Fundamental Limit =
$$10989.6$$
 µV/M (AVERAGE) @ 3 Meters
Harmonic Limit = 1098.9 µV/M (AVERAGE) @ 3 Meters

Duty Cycle Determination

The unit's RF output was directly coupled to the input of the spectrum analyzer. The analyzer was set for a frequency span of 0 Hz. The sweep time was then adjusted in order to display one full pulse train. The transmitter on time was then summed and compared to the time for one full cycle in order to obtain the duty cycle. (See plots for additional information.)

Calculation

1 Large Pulse =
$$\frac{1.34}{24.38}$$
 milliseconds
 $\frac{53}{24.38}$ x $\frac{460}{400}$ µs (small pulse) = $\frac{24.38}{400}$ milliseconds
 $\frac{24.38}{400}$ + $\frac{1.34}{400}$ = $\frac{25.72}{400}$ milliseconds
Duty Cycle (25.72/100)*100 = $\frac{25.72}{400}$ %
Correction Factor =20 log $\frac{0.2572}{400}$ = $\frac{-11.8}{400}$ dB

Spectrum Analyzer Desensitization Considerations

Due to the nature of the emissions being measured, care was taken to ensure that the resolution
bandwidth of the spectrum analyzer was adequate to provide accurate measurements. The
following formula was utilized: minimum bandwidth = $1/\{\text{minimum pulse width (in seconds)} \times 1.5\} = 1/\{\text{minimum pulse width (in seconds)} \times 1.5\} = 1/\{\text{min minimum pulse width (in seconds)} \times 1.5\} = 1/\{minimum pulse w$
Setting pulse desensitization equal to zero and utilizing the minimum observed pulse width of
460 μs yields a minimum required bandwidth of 1149 Hz. FCC specified bandwidth
of 100 kHz and 1 MHz were utilized below and above 1 GHz, respectively.

General Notes

- 1. All readings were taken utilizing a peak detector function at a test distance of 3 meters.
- 2. The duty cycle was applied to the peak readings in order to determine the average value of the emissions.
- 3. The frequency range was scanned from 30 MHz to 4.375 GHz. All emissions not reported were more than 20 dB below the specified limit.

Certification and Signatures

We certify that this report is a true representation of the results obtained from the tests of the equipment stated. We further certify that the measurements shown in this report were made in accordance with the procedures indicated and vouch for the qualifications of all Retlif Testing Laboratories personnel taking them.

Donald C. Lerner EMC Test Engineer

William K. Hayes
Executive Vice President

State K. Huy

Non-Warranty Provision

The testing services have been performed, findings obtained and reports prepared in accordance with generally accepted laboratory principles and practices. This warranty is in lieu of all others, either expressed or implied.

Non-Endorsement

This test report contains only findings and results arrived at after employing the specific test procedures and standards listed herein. It is not intended to constitute a recommendation, endorsement or certification of the product or material tested. This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Equipment List

FCC Part 15, Subpart C, Radiated Emissions, Fundamental and Harmonics

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	2/21/2008	2/21/2009
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	4/28/2008	4/28/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/30/2008	4/30/2009
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/30/2008	4/30/2009
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	4/28/2008	4/28/2009
512	Graphics Plotter	Hewlett Packard	N/A	7470A	9/25/2008	9/25/2009
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	7/17/2008	7/17/2009
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	10/24/2007	10/24/2008
723	H.P. Filter	Mini-Circuits	1 GHz	BHP-1000	7/14/2008	7/14/2009
767	Biconilog	EMCO	26 - 2000 MHz	3142B	8/8/2008	8/8/2009

FCC Part 15, Subpart C, Radiated Emissions, Spurious Case

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	2/21/2008	2/21/2009
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	4/28/2008	4/28/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/30/2008	4/30/2009
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/30/2008	4/30/2009
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	4/28/2008	4/28/2009
512	Graphics Plotter	Hewlett Packard	N/A	7470A	9/25/2008	9/25/2009
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	7/17/2008	7/17/2009
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	10/24/2007	10/24/2008
723	H.P. Filter	Mini-Circuits	1 GHz	BHP-1000	7/14/2008	7/14/2009
767	Biconilog	EMCO	26 - 2000 MHz	3142B	8/8/2008	8/8/2009

FCC Part 15, Subpart C, Duty Cycle Determination

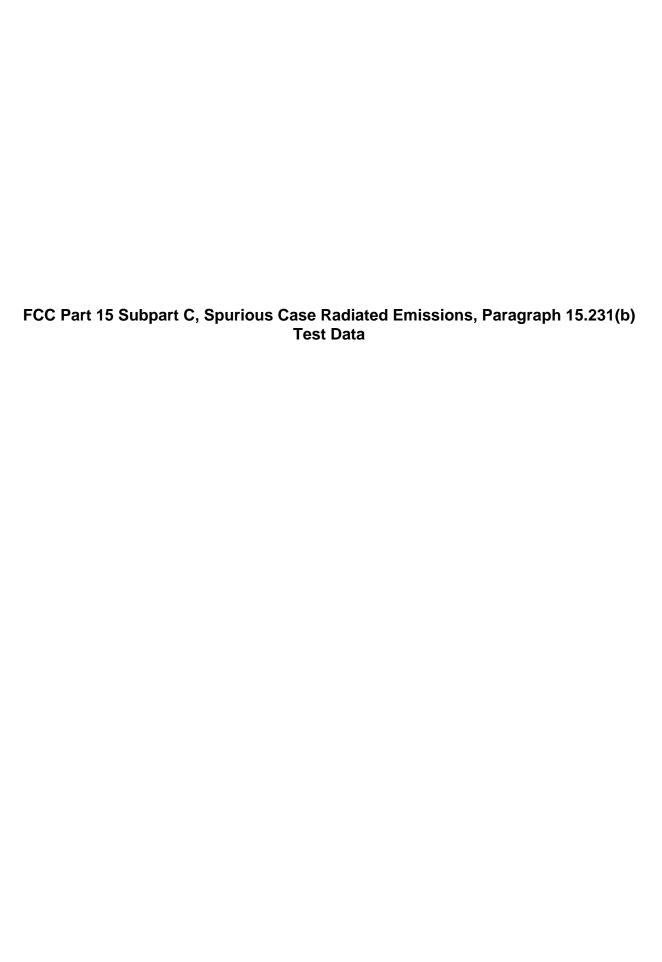
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/30/2008	4/30/2009
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/30/2008	4/30/2009
512	Graphics Plotter	Hewlett Packard	N/A	7470A	9/25/2008	9/25/2009

FCC Part 15, Subpart C, Occupied Bandwidth

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/30/2008	4/30/2009
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/30/2008	4/30/2009
512	Graphics Plotter	Hewlett Packard	N/A	7470A	9/25/2008	9/25/2009

FCC Part 15, Subpart B, Receiver Radiated Spurious Emissions

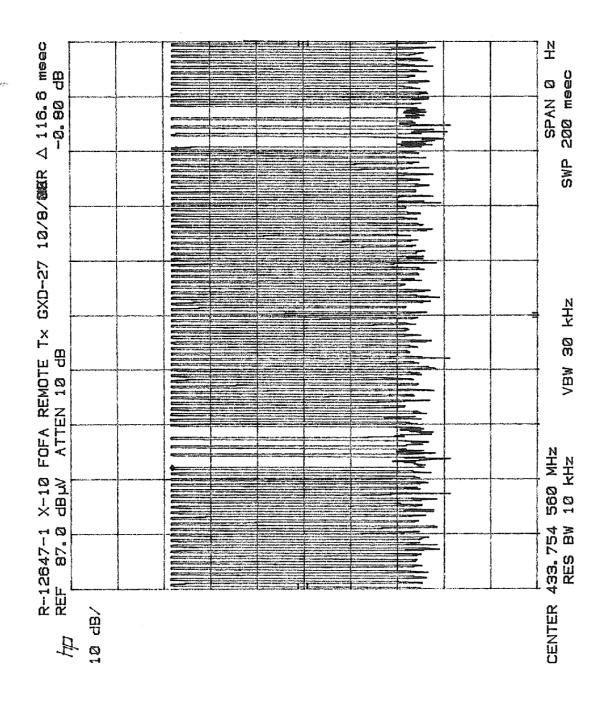
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3/10 Meter	RNY	9/12/2006	9/12/2009
128	Double Ridged Guide	Electro-Mechanics	1 GHz - 18 GHz	3105	2/21/2008	2/21/2009
133	Broadband Pre-Amplifier	Electro-Metrics	10 kHz - 1 GHz, 26dB	BPA-1000	4/28/2008	4/28/2009
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	4/30/2008	4/30/2009
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	4/30/2008	4/30/2009
206B	6.0 dB Attenuator	Texscan	0 - 1.0 GHz	FP-50 - 6 dB	4/28/2008	4/28/2009
512	Graphics Plotter	Hewlett Packard	N/A	7470A	9/25/2008	9/25/2009
543	Preamplifier	Hewlett Packard	1.0 GHz - 26.5 GHz	8449B	7/17/2008	7/17/2009
617	Interference Analyzer	Electro-Metrics	10 kHz - 1 GHz	EMC-30	10/24/2007	10/24/2008
723	H.P. Filter	Mini-Circuits	1 GHz	BHP-1000	7/14/2008	7/14/2009
767	Biconilog	EMCO	26 - 2000 MHz	3142B	8/8/2008	8/8/2009


FCC Part 15 Subpart C, Radiated Emissions, Fundamental and Harmonics, Paragraph 15.231(b) Test Data

Test Metho	d:	FCC Pa	art 15 Subpart C	, Radiated Em	issions, Funda	mental & Har	monic Emissions	, Paragraph
Customer:			ISA), Inc.	•	·	Job No.	R-12647-1	<i>,</i> <u> </u>
Test Sample	e:	,	ses FOFA Rem	ote				
Model No.:	•	GXD-27				FCC ID:	B4SGXD-27	
Operating N	lode.		ously transmittir	ng a Pulsed 43			D-OOND 21	
Technician:		R. Sood	•	19 a 1 aloca 40	55.75 WII 12 SIGIT	Date:	October 8, 2008	<u> </u>
Notes:	Test Dista					Date.	October 6, 2000	<u>'</u>
Notes.			vieters Inless otherwise	specified				
					O a manatiana	0	O a revisir de al	
Test Freq.	Ante Pol./H		EUT Orientation	Meter Reading	Correction Factor	Corrected Reading	Converted Reading	Peak Limit
MHz	(V/H)/N		X/Y/Z	dBµV	dB	dBµV/m	uV/m	uV/m
				•				
433.75	V / 2 V / 2		X	61.2 59.3	-0.6 -0.6	60.6 58.7	1071.5 861.0	109896.0
			Z					
	V / 2 H / 2		X	64.6 65.7	-0.6 -0.6	64.0 65.1	1584.9 1798.9	
			Y			62.8		
433.75	H / 2.2 433.75 H / 1.7		Z	63.4 67.9	-0.6 -0.6	67.3	1380.4 2317.4	109896.0
433.75	П/	1./		6.10	-0.0	01.3	2317.4	0.080801
867.50	V / ′	1 5	X	35.4	8.4	43.8	154.9	10989.6
007.30	V / ′		Y	32.5	8.4	40.9	110.9	10969.0
	V / 1		Z	40.7	8.4	49.1	285.1	
	H / ′		X	35.9	8.4	44.3	164.1	
	H / '		Y	32.1	8.4	40.5	105.9	
867.50	H/		Z	39.5	8.4	47.9	248.3	10989.6
307.00	117	1.0	_	00.0	0.1	17.0	210.0	10000.0
1301.2	V / ′	1.0	Х	36.7	1.5	38.2	*81.3	5000.0
	V / ′	1.0	Y	36.7	1.5	38.2	*81.3	
İ	V / ′	1.0	Z	36.7	1.5	38.2	*81.3	
	H/ <i>′</i>	1.0	Х	36.3	1.5	37.8	*77.6	
İ	H/ <i>′</i>		Y	36.3	1.5	37.8	*77.6	İ
1301.2	H/ <i>'</i>		Z	36.3	1.5	37.8	*77.6	5000.0
1735.0	V / ′	1.0	X	36.7	2.1	38.8	*87.1	10989.6
	V / ′	1.0	Υ	36.7	2.1	38.8	*87.1	
	V / ′		Z	36.7	2.1	38.8	*87.1	
	H / ′		X	36.3	2.1	38.4	*83.2	
	H / 1		Y	36.3	2.1	38.4	*83.2	
1735.0	H / ′	1.0	Z	36.6	2.1	38.4	*83.2	10989.6
2168.7	V / *		X	36.7	3.5	40.2	*102.3	10989.6
	V / *		Y	36.7	3.5	40.2	*102.3	<u> </u>
	V / ′		Z	36.7	3.5	40.2	*102.3	
	H / ′		X	36.3	3.5	39.8	*97.7	
0100 =	H / ′		Y	36.3	3.5	39.8	*97.7	10000
2168.7	H/′		Z	36.3	3.5	39.8	*97.7	10989.6
							not recorded wer	
						do not excee	ed the specified li	mits.
	= INOISE	rioor iVI	easurements (n	ıırıımum sensi	uvity).			

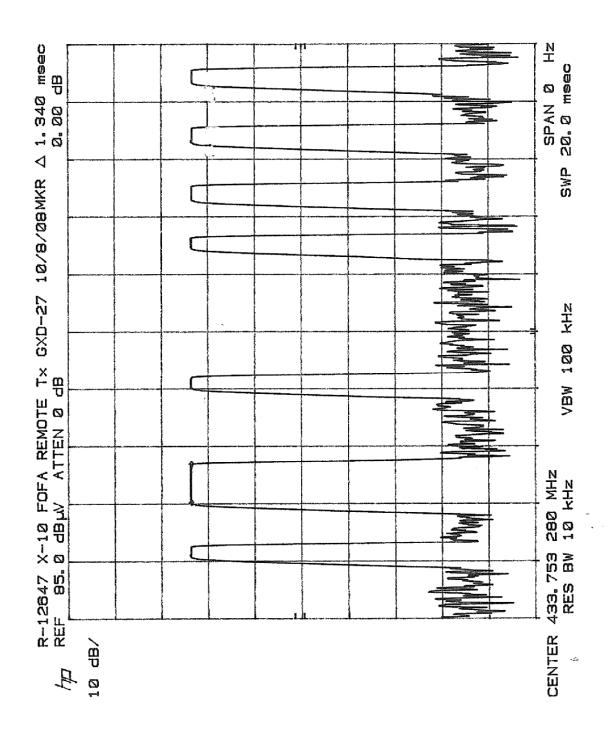
Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Funda	mental & Harr	monic Emissions,	Paragraph	
Customer:		X-10 (USA), Inc. Job No.					R-12647-1		
Test Sample	le:		ses FOFA Rem	ote	1				
Model No.:		GXD-27	GXD-27 FCC ID: B4SGXD-27						
Operating I		Continuously transmitting a Pulsed 433.75 MHz signal.							
Technician		R. Soodoo Date: October 8, 2008.							
Notes:	Test Dist				I	20.00.			
110100.			nless otherwise	specified					
	Ante		EUT	Meter	Correction	Corrected	Converted		
LACT ETAG		leight	Orientation	Reading	Factor	Reading	Reading	Peak Limit	
MHz	(V/H)-N		X/Y/Z	dBµV	dB	dBµV/m	uV/m	uV/m	
2602.8	V /		X	44.3	5.0	49.3	*291.7	10989.6	
	V /		Y	44.3	5.0	49.3	*291.7	1	
İ	V /		Z	44.3	5.0	49.3	*291.7		
	H/		X	44.3	5.0	49.3	*291.7		
i	H /		Υ	44.3	5.0	49.3	*291.7	İ	
2602.8	Η/		Z	44.3	5.0	49.3	*291.7	10989.6	
3036.6	V/	1.0	X	44.3	7.1	51.4	*371.5	10989.6	
	V/	1.0	Y	44.3	7.1	51.4	*371.5		
	V/	1.0	Z	44.3	7.1	51.4	*371.5		
	H/	1.0	X	44.3	7.1	51.4	*371.5		
	Η/	1.0	Υ	44.3	7.1	51.4	*371.5		
3036.6	H /	1.0	Z	44.3	7.1	51.4	*371.5	10989.6	
0.4=0.4							****	10000	
3470.4	V /		X	44.3	9.6	53.9	*495.5	10989.6	
	V /		Y	44.3	9.6	53.9	*495.5		
	V /		Z X	44.3	9.6	53.9	*495.5		
	H /		Y	44.3	9.6	53.9	*495.5		
3470.4	H /		Z	44.3 44.3	9.6 9.6	53.9 53.9	*495.5 *495.5	10989.6	
3470.4	П/	1.0	۷	44.3	9.0	55.9	495.5	10969.6	
3904.2	V /	1 0	Х	34.1	12.8	46.9	**221.3	5000.0	
1	V /		Y	34.1	12.8	46.9	**221.3	1	
	V /		Z	34.1	12.8	46.9	**221.3		
İ	H /		X	34.1	12.8	46.9	**221.3	İ	
i	Η/		Υ	34.1	12.8	46.9	**221.3	İ	
3904.2	Η/	1.0	Z	34.1	12.8	46.9	**221.3	5000.0	
4338.0	V /	1.0	X	35.3	13.2	48.5	**266.1	5000.0	
	V /		Υ	35.3	13.2	48.5	**266.1		
	V /		Z	35.3	13.2	48.5	**266.1		
	H /		X	35.3	13.2	48.5	**266.1		
	H /		Y	35.3	13.2	48.5	**266.1		
4338.0	H /		Z	35.3	13.2	48.5	**266.1	5000.0	
							not recorded were		
							d the specified lin	mits.	
	^=Noise	Floor Me	easurements (M	ıınımum syste	m sensitivity) **	KBW = 100	KHZ		

Test Metho	d:	FCC Pa	rt 15 Subpart C	, Radiated Em	issions, Funda	mental & Harn	nonic Emissions	, Paragraph
Customer:		X-10 (U	X-10 (USA), Inc. Job No. R-12647-1					
Test Sampl	le:	,	ses FOFA Rem	ote				
Model No.:	-	GXD-27 FCC ID : B4SGXD-27						
Operating I	Mode:		ously transmittir	ng a Pulsed 43	33.75 MHz sign			
Technician		R. Soodoo Date: October 8, 2008.						
Notes:	Test Dist	ance: 3 N	/leters		Dı	uty Cycle: 25.7°	· · · · · · · · · · · · · · · · · · ·	
			nless otherwise	specified		uty Cycle Corre		
	Ante		EUT	Peak	Correction	Corrected	Converted	Avg.
Test Freq.	Pol./H		Orientation	Reading	Factor	Reading	Reading	Limit
MHz	(V/H)-N	/leters	X/Y/Z	dBµV	dB	dBµV/m	uV/m	uV/m
433.75	V /		Х	60.6	-11.8	48.8	275.4	10989.6
	V /		Υ	58.7	-11.8	46.9	221.3	
i	V /	1.0	Z	64.0	-11.8	52.2	407.4	İ
	H/	1.0	Х	65.1	-11.8	53.3	462.4	
	H/	1.0	Y	62.8	-11.8	51.0	354.8	
433.75	H/	1.0	Z	67.3	-11.8	55.5	595.7	10989.6
867.50	V /		X	43.8	-11.8	32.0	39.8	1098.9
	V /		Υ	40.9	-11.8	29.1	28.5	
<u> </u>	V/		Z	49.1	-11.8	37.3	73.3	
<u> </u>	H /		X	44.3	-11.8	32.5	42.2	
007.50	H /		Y	40.5	-11.8	28.7	27.2	10000
867.50	H /	1.0	Z	47.9	-11.8	36.1	63.8	1098.9
1301.2	V /	1.0	X	38.2	-11.8	26.4	*20.9	500.0
1301.2	V /		Y	38.2	-11.8	26.4	*20.9	300.0
	V /		Z	38.2	-11.8	26.4	*20.9	
	H/		X	37.8	-11.8	26.0	*20.0	
	H /		Y	37.8	-11.8	26.0	*20.0	
1301.2	H/		Z	37.8	-11.8	26.0	*20.0	500.0
1735.0	V /	1.0	Х	38.8	-11.8	27.0	*22.4	1098.9
	V /	1.0	Y	38.8	-11.8	27.0	*22.4	
	V /	1.0	Z	38.8	-11.8	27.0	*22.4	
	H/	1.0	X	38.4	-11.8	26.6	*21.4	
	H/		Υ	38.4	-11.8	26.6	*21.4	
1735.0	H/	1.0	Z	38.4	-11.8	26.6	*21.4	1098.9
0400 7	37.7	4.0	V	40.0	44.0	00.4	*00.0	4000.0
2168.7	V /		X Y	40.2	-11.8	28.4	*26.3	1098.9
	V / H /		Z	40.2 40.2	-11.8	28.4 28.4	*26.3 *26.3	
	H /		X	39.8	-11.8 -11.8	28.4	*25.1	
	H /		Y	39.8	-11.8	28.0	*25.1	
2168.7	V /		Z	39.8	-11.8	28.0	*25.1	1098.9
2100.1							ot recorded were	
							ed the specified l	
			easurements (M			. GO HOL GAUGE	a the specifical	
	-140136	i looi ivie	asarcinents (IV	minimum syste	in Schollvity)			

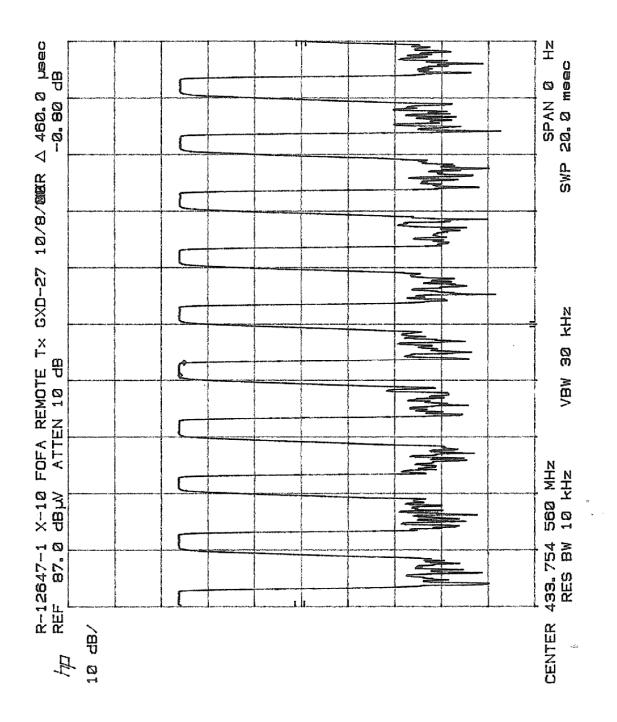

Test Metho	od:	FCC Part 15 Subpart C, Radiated Emissions, Fundamental & Harmonic Emissions,							
Customer:)	X-10 (U	SA), Inc.			Job No. R	-12647-1		
Test Samp			ses FOFA Rem	ote					
Model No.:		GXD-27				FCC ID: B	4SGXD-27		
Operating			ously transmittir	ng a Pulsed 43	3.75 MHz signa				
Technician		R. Soodoo Date: October 8, 2008.							
Notes:		nce: 3 Meters Duty Cycle: 25.7%							
1101001			nless otherwise	specified		ty Cycle Correc			
	Anten		EUT	Peak	Correction	Corrected	Converted	Av	α
Test Freq.	Pol./He		Orientation	Reading	Factor	Reading	Reading	Lin	
MHz	(V/H)-M		X/Y/Z	dBµV	dB	dBµV/m	uV/m	uV/	
2602.8 V			X	49.3	-11.8	37.5	*75.0	109	
2002.0	V / 1.		Y	49.3	-11.8	37.5	*75.0	103	0.5
	V / 1.	-	Z	49.3	-11.8	37.5	*75.0	i	
	H/1.		X	49.3	-11.8	37.5	*75.0	İ	
İ	H/1		Y	49.3	-11.8	37.5	*75.0	i	
2602.8	H/1		Z	49.3	-11.8	37.5	*75.0	109	8.9
3036.6	V / 1.	.0	Χ	51.4	-11.8	39.6	*95.5	109	8.9
	V / 1.	.0	Υ	51.4	-11.8	39.6	*95.5		
	V / 1.	.0	Z	51.4	-11.8	39.6	*95.5		
	H/1	.0	Χ	51.4	-11.8	39.6	*95.5		
	H / 1.	.0	Υ	51.4	-11.8	39.6	*95.5		
3036.6	3036.6 H / 1.0		Z	51.4	-11.8	39.6	*95.5	109	8.9
3470.4	V / 1.	-	Χ	53.9	-11.8	42.1	*127.4	109	8.9
	V / 1.		Υ	53.9	-11.8	42.1	*127.4		
	V / 1.		Z	53.9	-11.8	42.1	*127.4		
	H/1.		X	53.9	-11.8	42.1	*127.4		
0.470.4	H/1.		Y 7	53.9	-11.8	42.1	*127.4	400	0.0
3470.4	H / 1.	.0	Z	53.9	-11.8	42.1	*127.4	109	8.9
3904.2	V / 1.	0	Х	46.9	-11.8	35.1	**56.9	500	١.
1	V / 1.		Y	46.9	-11.8	35.1	**56.9	1	7.0
	V / 1.		Z	46.9	-11.8	35.1	**56.9		
	H/1		X	46.9	-11.8	35.1	**56.9		
	H/1		Y	46.9	-11.8	35.1	**56.9		
3904.2	H/1		Z	46.9	-11.8	35.1	**56.9	500	0.0
4338.0	V / 1.	.0	Х	48.5	-11.8	36.7	**68.4	500	0.0
	V / 1.	.0	Y	48.5	-11.8	36.7	**68.4		
	V / 1.	.0	Z	48.5	-11.8	36.7	**68.4		
	H / 1.		Χ	48.5	-11.8	36.7	**68.4		
	H / 1.		Υ	48.5	-11.8	36.7	**68.4		
4338.0	H / 1.		Z	48.5	-11.8	36.7	**68.4	500	
						All emissions n			е
			· · · · · · · · · · · · · · · · · · ·			do not exceed		mits.	
	*=Noise F	loor Me	asurements (N	linimum syste	m sensitivity) **	RBW = 100 kH	lz		

Test Me	thod:	FCC P	art 15 Subpar	t C, Spurio	ıs Case Radi	ated Emissions, Pa	ragraph 15.231(b).		
Custom	er:		JSA), Inc.	•		Job N				
Test Sar	nple:	Eyegla	sses FOFA Re	emote		-	•			
Model N	o.:	GXD-2				FCC ID N	o.: B4SGXD-2	7		
	ng Mode:			nsmitting a Pulsed 433.75 MHz signal.						
Technic	_	R.Sood		<u>g</u>		Da	te: October 8,	2008.		
Notes:			Distance: 3 Meters Temp: 16°C Humidity: 32.0%							
				30 MHz to 1	GHz Average	e above 1 GHz	rialinalty. Oz	2.070		
		ntenna	EUT	Meter	Correction	Corrected	Converted			
Frequen		osition	Orientation	Readings	Factor	Reading	Reading	Limit		
MHz	(V/H)	/ Meters	Degrees	dBuV	dB	dBuV/m	uV/m	uV/m		
			- 3		-					
30.00								100		
*35.00) V	/ / 1.0	0.0	28.0	4.3	32.3	41.2			
88.00								100		
88.00								150		
I								130		
								i		
i								i		
*195.0		/ / 1.0	0.0	22.9	-7.7	15.2	5.8			
*205.0	V	/ / 1.0	0.0	22.9	-7.7	15.2	5.8			
040.0								450		
216.0 216.0								150 200		
216.0								200		
960.0								200		
960.0								500		
*995.0		/ / 1.0	0.0	22.0	12.2	34.2	51.3			
*1050.0		/ / 1.0	0.0	27.3	2.0	29.3	29.2	<u> </u>		
*1700.0		// 1.0	0.0	36.7	2.1	38.8	87.1			
*4330.0	J V	/ / 1.0	0.0	34.3	13.2	47.5	266.1			
<u> </u>										
4400.0	<u> </u>							500		
								300		
	The fi	equency rar	nge was scanned	from 30 MHz to	4.4 GHz.					
	The e	missions ob	served from the E	UT do not exce	ed the specified I					
			corded were more							
	*This	emission is	not from the EUT.	it is a measure	ment of minimum	measurement system se	nsitivity (Noise Floor)			

Page 1 of 1


FCC Part 15.231(b)(3), Duty Cycle Determination Test Data

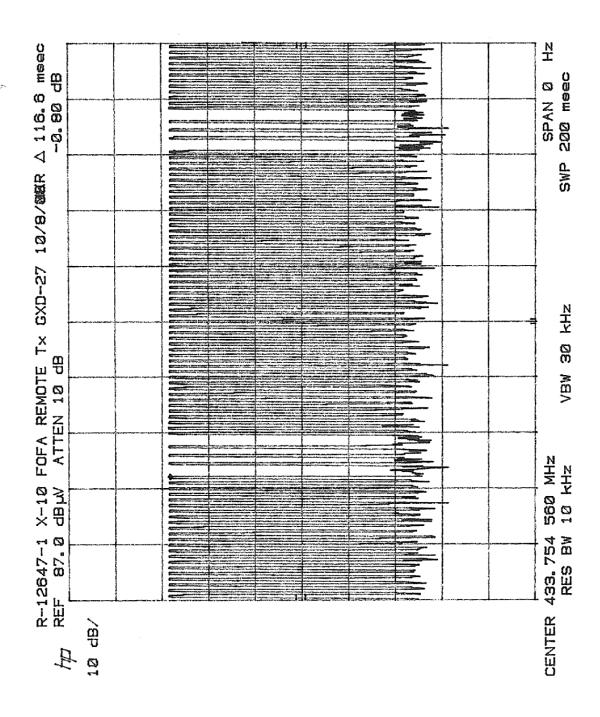
Test Method: FCC Part 15.35, Duty Cycle Determination.


Notes: Measurement of cycle time = 116.6mSec.

Customer	X-10 (USA), Inc.					
Test Sample	Eyegla	Eyeglasses FOFA Remote				
Model No.:	GXD-27					
Date: October 8, 2008		Tech: R.Soodoo	Sheet 1 of 4			

Test Method: FCC Part 15.35, Duty Cycle Determination. **Notes**: Measurement of 1 large pulse = 1.34 mSec.

Customer	X-10 (USA), Inc.				
Test Sample	Eyeglasses FOFA Remote				
Model No.:	GXD-27				
Date: October 8, 2008		Tech: R.Soodoo	Sheet 2 of 4		

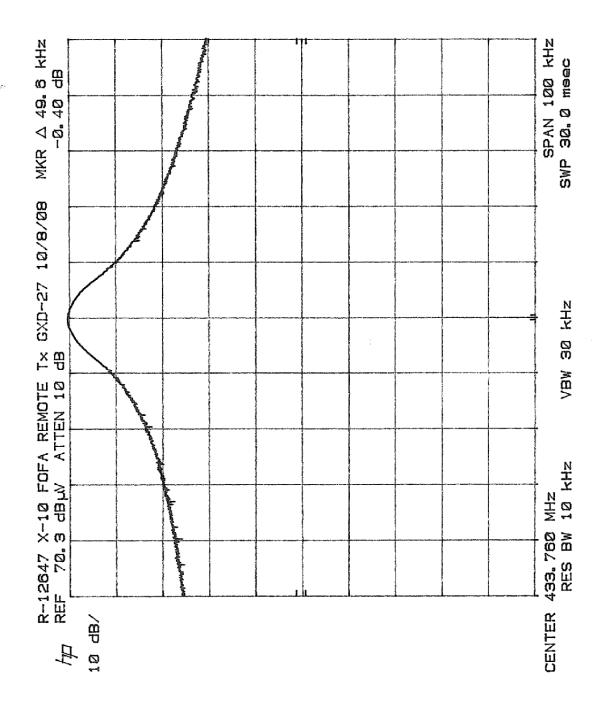


Test Method: FCC Part 15.35, Duty Cycle Determination.

Notes: Measurement of 1 small pulse = $460 \mu Sec.$

Measurements of 53 small pulses = $33(460\mu\text{Sec}) = 24.38\text{mSec}$.

Customer	X-10 (USA), Inc.				
Test Sample	Eyeglasses FOFA Remote				
Model No.:	GXD-27				
Date: October 8, 2008		Tech: R.Soodoo	Sheet 3 of 4		

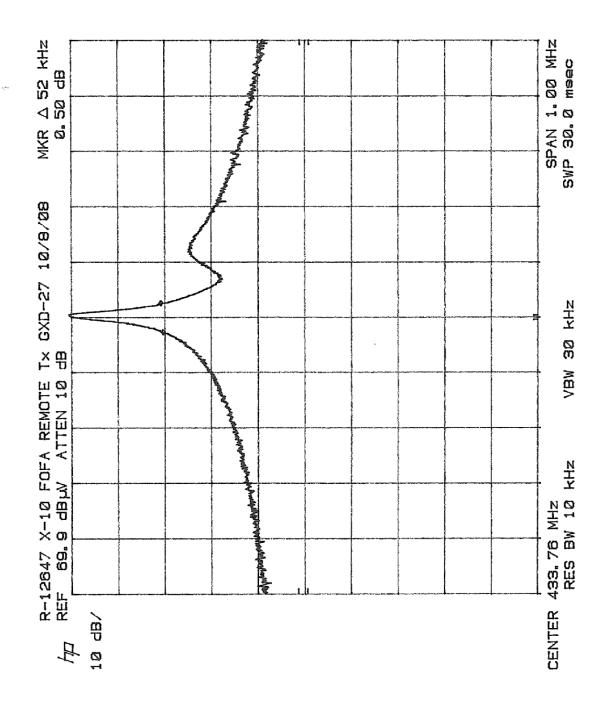


Test Method: FCC Part 15.35, Duty Cycle Determination.

Notes: Duty cycle = (1) $(1.34 \text{ mSec}) + (53) (460 \mu\text{Sec}) = 25.72 \text{ mSec}$. Duty cycle = $(25.72 \text{ mSec} / 100 = 0.257) 20 \log 0.257 = -11.8 \text{ dB}$

Customer	X-10 (USA), Inc.				
Test Sample	Eyeglasses FOFA Remote				
Model No.:	GXD-27				
Date: October 8	3. 2008	Tech: R.Soodoo	Sheet 4 of 4		

FCC Part 15, Subpart C, 15.231(c), Occupied Bandwidth
Test Data



Test Method: FCC Part 15, Subpart C, 15.231(c), Occupied Bandwidth.

Notes: Occupied Bandwidth measured 49.6 kHz, does not exceed 0.25% of center frequency

at the 20 dBc points (1.084 MHz)

Customer	X-10 (USA), Inc.					
Test Sample	Eyegla	Eyeglasses FOFA Remote				
Model No.:	GXD-27					
Date: October 8, 2008		Tech: R.Soodoo	Sheet 1 of 2			

Test Method: FCC Part 15, Subpart C, 15.231(c), Occupied Bandwidth.

Notes: Occupied Bandwidth measured 52.0 kHz, does not exceed 0.25% of center frequency at the 20 dBc points (1.084 MHz)

Customer	X-10 (USA), Inc.					
Test Sample	Eyegla	Eyeglasses FOFA Remote				
Model No.:	GXD-27					
Date: October 8, 2008		Tech: R.Soodoo	Sheet 2 of 2			

FCC Part 15 Subpart B, Receiver Radiated Spurious Emissions, **Test Data**

Test Meth	od:	FCC P	art 15 Subpar	t B, Receive	er Radiated S	purious Emissi	ons, Pa	aragraph 15.	109(a).		
Customer	:	X-10 (USA), Inc. Job No.: R-126						R-12647-1			
Test Samı	ole:	Eyegla	sses FOFA Re	emote				•			
Model No.	.:	GXD-2				FCC I	D No.:	B4SGXD-2	7		
Operating				e. turning on	for 18 millise	conds and then o	off for 2.				
Technicia		R.Sood		<u> </u>			Date:	October 8, 2	2008.		
Notes:			: 3 Meters			Temp: 16°		Humidity: 32			
				30 MHz to 1	GHz Averag	e above 1 GHz	0	riairiiaity. 02	0 /0		
		enna	EUT	Meter	Correction	Corrected		Converted			
Frequency		ition Orientation Readings Factor				Reading Reading Lim			nit		
MHz	(V/H) /			dBµV	dB	dBµV/m		uV/m	11/	uV/m	
IVII IZ	((((((((((((((((((((Meters	Degrees	ивру	l ub	αδμ ν/π		u v/III	4	7111	
30.00									1(00	
*35.00	V /	1.0	0.0	28.0	4.3	32.3		41.2			
88.00										00	
88.00									15	50	
<u> </u>										 	
<u> </u>										<u> </u>	
										l	
*195.0	V /	1.0	0.0	22.9	-7.7	15.2		5.8			
*205.0		1.0	0.0	22.9	-7.7	15.2		5.8			
216.0										50	
216.0									20	00	
960.0									20	<u> </u> 00	
960.0										00	
										<u> </u>	
*995.0	V /	1.0	0.0	22.0	12.2	34.2		51.3			
*1050.0	V /	1.0	0.0	27.3	2.0	29.3		29.2			
*1500.0		1.0	0.0	30.3	1.0	31.3		36.7			
*1995.0	V /	1.0	0.0	36.3	3.5	39.8		97.7			
							_				
2000.0										<u> </u>	
2000.0)0	00	
	The fre	guency rar	l nge was scanned	l from 30 MHz to	2.0 GHz						
			served from the E			limits.					
	Emissio	ons not rec	orded were more	than 20dB unde	er the specified li	mit.					
	*This e	mission is	not from the EUT.	It is a measure	ment of minimum	n measurement syste	m sensiti	vity (Noise Floor)	•		

Page 1 of 1