

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions, Inc EME Test Laboratory

Motorola Solutions Malaysia Sdn. Bhd. (455657-H) Plot 2, Bayan Lepas Technoplex Industrial Park, Mukim 12, S.W.D.

11900 Bayan Lepas, Penang, Malaysia.

Date of Report: 09/16/2014

Report Revision: B

Report ID: P2189-EME-00010 & 00011_

PMUE4541A & PMUE4542A

Rev B 0140916

Responsible Engineer: Veeramani Veerapan (Sr.EME Engineer) **Report Author:** Veeramani Veerapan (Sr.EME Engineer)

Date/s Tested: 06/30/14-07/09/14

Manufacturer/Location: Motorola Solutions, Inc, Penang

Sector/Group/Div.: EMS **Date submitted for test:** 06/23/14

DUT Description: Handheld Portable PMUE4541A, XCVR 403-470 MHz, Display &

Handheld Portable PMUE4542A, XCVR 403-470 MHz, Non-Display

Test TX mode(s): TDMA (PTT)

Max. Power output: 3.3 W Nominal Power: 3.0 W

Tx Frequency Bands: 403-470 MHz

Signaling type: TDMA
Model(s) Tested: PMUE4541A

Model(s) Certified: PMUE4541A & PMUE4542A Serial Number(s): 546TQM0149 & 546TQM0140

Classification: Occupational/Controlled

FCC ID: AZ489FT4922; Rule Part 90 (406.1-470 MHz), Part 22 (459.025-459.65 MHz)

IC: 109U-89FT4922; (406.1-430 MHz and 450-470 MHz)

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10 grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Dearray Zakharia

Deanna Zakharia EME Lab Senior Resource Manager, Laboratory Director Approval Date: 9/16/2014 Certification Date: 9/9/2014

Certification No. L1140903 &

L1140904

Part 1 of 2

Introduction	4
FCC SAR Summary	4
Abbreviations / Definitions	4
Referenced Standards and Guidelines	4
Description of Device Under Test (DUT)	6
Optional Accessories and Test Criteria	7
7.1 Antenna	7
7.2 Battery	7
7.3 Body worn Accessory	7
7.4 Audio cable Accessories	8
Description of Test System	8
8.1 Descriptions of Robotics/Probes/Readout Electronics	9
8.2 Description of Phantom(s)	9
8.3 Description of Simulated Tissue	9
Additional Test Equipment	10
SAR Measurement System Validation and Verification	10
10.1 System Validation	10
10.2 System Verification	11
10.3 Equivalent Tissue Test Results	11
Environmental Test Conditions	12
DUT Test Setup and Methodology	13
12.1 Measurements	13
12.2 DUT Configuration(s)	13
12.3 DUT Positioning Procedures	13
12.3.1 Body	14
12.3.2 Head	14
12.3.3 Face	14
12.4 DUT Test Channels	14
12.5 SAR Result Scaling Methodology	14
12.6 DUT Test Plan	15
DUT Test Data	15
13.1 Assessments at the Body	15
-	
·	
•	
	FCC SAR Summary Abbreviations / Definitions Referenced Standards and Guidelines SAR Limits Description of Device Under Test (DUT) Optional Accessories and Test Criteria 7.1 Antenna 7.2 Battery 7.3 Body worn Accessory 7.4 Audio cable Accessories Description of Test System 8.1 Descriptions of Robotics/Probes/Readout Electronics 8.2 Description of Phantom(s) 8.3 Description of Simulated Tissue Additional Test Equipment SAR Measurement System Validation and Verification 10.1 System Validation 10.2 System Verification 10.3 Equivalent Tissue Test Results Environmental Test Conditions DUT Test Setup and Methodology 12.1 Measurements 12.2 DUT Configuration(s) 12.3 DUT Positioning Procedures 12.3.1 Body 12.3.2 Head 12.3.3 Face 12.4 DUT Test Channels 12.5 SAR Result Scaling Methodology 12.6 DUT Test Plan

	13.2 Assessments at the Face	17
	Assessments outside FCC Part 90 at the Face	18
	13.3 Assessments for Industry Canada	18
	13.4 Shortened Scan Assessment.	
14.0		
15.0	Results Summary	19
16.0		
17.0	System Uncertainty	
APP A B C	ENDICES Measurement Uncertainty Budget Probe Calibration Certificates Dipole Calibration Certificates	23
Part	2 of 2	
APP	ENDICES	
D	System Verification Check Scans	2
E	DUT Scans	
F	Shortened Scan of Highest SAR Configuration	15
G	DUT Power Slump.	17
Η	DUT Test Position Photos	18

Report Revision History

Date	Revision	Comments
08/13/2014	О	Initial release
09/09/2014	A	Add Part 22 info and update the ant gain at Sec 7.0
09/16/2014	В	To correct the calibration dates for the DAK-12 SN1051

I

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for model number PMUE4541A. This device is classified as Occupational/Controlled.

2.0 FCC SAR Summary

TABLE 1

Equipment	Frequency	Max Calc at Body (W/Kg)		Frequency (W/Kg) (W/Kg)		Max Calc at Head (W/Kg)	
Class	band (MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR	1g-SAR	10g-SAR
TNF	403-470	1.39	1.01	1.63	1.22	NA	NA
*Simultane	ous Results	NA	NA	NA	NA	NA	NA

3.0 Abbreviations / Definitions

CNR: Calibration Not Required EME: Electromagnetic Energy DUT: Device Under Test NA: Not Applicable

PTT: Push to Talk

SAR: Specific Absorption Rate RSM: Remote Speaker Microphone 4FSK: 4 Level Frequency Shift Keying TDMA: Time Division Multiple Access

DSP: Digital Signal Processor

TNF: Licensed Non-Broadcast Transmitter Held to Face

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of

the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.:1997.
- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
 - (*) The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.
- FCC KDB 648474 D01 SAR Evaluation Considerations for Wireless Handsets v01r02 (12/04/2013)
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r01 (04/04/2011)
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r02 (12/05/2013)
 D02 RF Exposure Reporting v01r01 (05/28/2013)
- FCC KDB 447498 D01 General RF Exposure Guidance v05r01 (05/28/2013)

5.0 SAR Limits

TABLE 2

	SAR (W/Kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

6.0 Description of Device Under Test (DUT)

This portable device operates using TDMA signaling incorporating traditional simplex twoway radio transmission protocol.

The modulation scheme used for digital two-way radio communications is 4 Level Frequency Shift Keying (4FSK) and Time Division Multiple Access (TDMA). 4FSK is a modulation technique that transmits information by altering the frequency of the radio frequency (RF) signal. Data is converted into complex symbols, which alter the RF signal and transmit the information. When the signal is received, the change in frequency is converted back into symbols and then into the original data. The system can accommodate 2-voice channels in a standard 12.5 kHz channel as used in two-way radio.

Time Division Multiple Access (TDMA) is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables independent units to transmit voice information without interference from each other. Transmission from a unit or base station is accommodated in time-slot lengths of 30 milliseconds and frame lengths of 60 milliseconds. The 4FSK TDMA modulation technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. The maximum duty cycle for TDMA 1:2 is 50%.

The model represented under this filing utilizes removable antennas capable of transmitting in the 403-470 MHz band respectively. The nominal output powers are 3.0 W with maximum output powers of 3.3 W as defined by upper limit of the production line final test station. The intended operating positions are "at the face" with the DUT at least 2.5cm inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in section 4.0 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category.

7.1 Antennas

There are 3 antennas offered for this product. The table below lists their descriptions.

TABLE 3

Antenna Models	Description	Selected for test	Tested
PMAE4095A	Stubby antenna, 435-470MHz, 1/4 wave, -4.15dBd gain	Yes	Yes
PMAE4094A	Stubby antenna, 420-445MHz, 1/4 wave, -4.15dBd gain	Yes	Yes
PMAE4093A	Stubby antenna, 403-425MHz, 1/4 wave, -4.15dBd gain	Yes	Yes

7.2 Battery

There is one battery offered for this product. The table below lists its description.

TABLE 4

Battery Models Description		Selected for test	Tested	Comments
PMNN4468A	Battery, Li-Ion capacity, 2200mAh	Yes	Yes	

7.3 Body worn Accessories

All body worn accessories were considered. The table below lists the body worn accessories, and body worn accessory descriptions.

TABLE 5

Body worn Models	Description	Selected for test	Tested	Comments
PMLN7190A	Swivel Carry Holster Yes		Yes	
PMLN6074A	Wrist Strap	No	No	Test not required
PMLN7128A	Belt Clip	Yes	Yes	
PMLN7076A	Flexible Hand Strap	No	No	Test not required

7.4 Audio Cable Accessories

All offered audio cable accessories were considered. The table below lists the audio cable accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

TABLE 6

Audio Acc.		Selected		
Models	Description	for test	Tested	Comments
PMLN7156A	Earbud with in-line Mic & PTT, Mag One	Yes	Yes	
				Intended for test. Per KDB
PMLN7158A	One wire surveillance earpiece in-line Mic & PTT	Yes	No	provisions test not required.
				Intended for test. Per KDB
PMLN7189A	Swivel earpiece in-line Mic & PTT	Yes	No	provisions test not required.
				Intended for test. Per KDB
PMLN7157A	Two wire surveillance kit, Black	Yes	No	provisions test not required.
				Receive only, for
	Translucent Acoustic tube for PMLN7157A &			PMLN7157A & for
RLN6242A	PMLN7158A	No	No	PMLN7158A
				Receive only, for
	High noise yellow foam earpieces for PMLN7157A			PMLN7157A & for
5080384F72	& PMLN7158A	No	No	PMLN7158A

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

TABLE 7

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.2.969	DAE4	ES3DV3 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

TABLE 8

Phantom type	Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (Wood)
Dual Flat	NA	300MHz -6GHz;				
SAM	NA	Er = 4+/- 1, Loss Tangent =	600x400x190	2mm +/- 0.2mm	Wood	< 0.05
Elliptical	ELI5 1150 ELI5 1147	≤0.05				

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 9. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (by mass)
TABLE 9

	450 MHz		
Ingredients	Head	Body	
Sugar	56.0	46.5	
Diacetin	0	0	
De ionized –			
Water	39.1	50.53	
Salt	3.8	1.87	
HEC	1.0	1.0	
Bacteria	0.1	0.1	

9.0 Additional Test Equipment

The table below lists additional test equipment used during the SAR assessment.

TABLE 10

TABLE IV											
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date							
Power Meter	E4419B	MY40330364	6/3/2014	6/3/2015							
Power Sensor	8482B	3318A07546	6/4/2014	6/4/2015							
Power Sensor	8482B	3318A07392	6/4/2014	6/4/2015							
Power Meter	E4416A	MY50001037	2/19/2014	2/19/2015							
Power Sensor	N8481B	MY51450002	2/24/2014	2/24/2015							
Signal Generator	E4438C	MY45091014	11/2/2012	11/2/2014							
NARDA Bi-Directional Coupler	3020A	41935	8/26/2013	8/26/2014							
Amplifier	10W1000C	312858	CNR	CNR							
Dickson Temperature Recorder	TM320	12253047	11/8/2013	11/8/2014							
Omega Digital Thermometer with Therm probe	HH806AU	080307	11/8/2013	11/8/2014							
Network Analyzer	E5071B	MY42403218	7/20/2013	7/20/2014							
Dielectric Assessment Kit	DAK-12	1051	6/17/2014	6/17/2015							
Speag Dipole	D450V3	1054	10/18/2013	10/18/2015							
Speag Probe	ES3DV3	3274	10/21/2013	10/21/2014							
Speag DAE	DAE4	1294	10/22/2013	10/22/2014							

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C and D respectively.

10.1 System Validation

The SAR measurement system was validated according to the procedures in KDB 865664. The validation status summary table is below.

TABLE 11

Dates	Probe Calibration Point		Probe SN		ed Tissue meters	Validation for CW			
	roi	IIIt	SIN	σ $\epsilon_{ m r}$		Sensitivity	Linearity	Isotropy	
03/12/2013	Body	450	3274	0.90	54.3	Pass	Pass	Pass	
03/12/2013	Head	450	3274	0.83	42.0	Pass	Pass	Pass	

10.2 System Verification

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 12

Probe Serial#	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when nor malized to 1W (W/kg)	Tested Date
		SPEAG D450V3/ 1054		1.04	4.16	07/03/14
	FCC Body		*4.60 +/- 10%	1.07	4.28	07/04/14
3274				1.08	4.32	07/08/14
	IEEE/IEC Hood	SPEAG	*4.72 +/- 10%	1.17	4.68	07/07/14
	IEEE/IEC Head	D450V3/1054	'4./2 ⁺ /- 10%	1.15	4.60	07/09/14

^{*}Dipole manufacture's reference target

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The table below summarizes the measured tissue parameters used for the SAR assessment.

TABLE 13

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
403	FCC Body	0.94 (0.89-0.98)	57.0 (54.1-59.8)	0.93	55.0	07/08/14
403	IEEE/ IEC Head	0.87 (0.83-0.91)	43.8 (41.6- 46.0)	0.85	43.4	07/07/14
	FCC Body	0.94 (0.89-0.98)	57.0 (54.1-59.8)	0.91	55.5	07/04/14
425	IEEE/ IEC Head	0.87 (0.83-0.91)	43.8 (41.6- 46.0)	0.88	43.4	07/09/14

TABLE 13 (Continued)

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
	FCC Body	0.94	56.8	0.94	55.4	07/03/14
445	1 CC Body	(0.89-0.99)	(53.9-59.6)	0.93	55.2	07/04/14
	IEEE/ IEC Head	0.87 (0.83-0.91)	43.6 (41.4-45.7)	0.88	42.5	07/07/14
	ECC D. 4	0.94	56.7	0.95	55.2	07/03/14
458.3	FCC Body	(0.89-0.99)	(53.8-59.5)	0.94	55.1	07/04/14
150.5	IEEE/ IEC Head	0.87 (0.83-0.91)	43.5 (41.3-45.6)	0.89	42.3	07/07/14
				0.95	55.3	07/03/14
	FCC Body	0.94 (0.89-0.99)	56.7 (53.9-59.54)	0.93	55.2	07/04/14
450		(0.03 0.33)	(55.5 55.54)	0.97	54.4	07/08/14
	IEEE/ 0.87		43.5	0.88	42.4	07/07/14
	IEC Head	(0.83-0.91)	(41.33-45.68)	0.90	42.9	07/09/14

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

TABLE 14

	Target	Measured
		Range: 23.1 – 24.9°C
Ambient Temperature	18 − 25 °C	Avg. 23.9 °C
		Range: 39.9 – 59.0 %
Relative Humidity	30 – 70 %	Avg. 49.0 %
		Range: 21.0-21.4°C
Tissue Temperature	NA	Avg. 21.2°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Elliptical flat phantoms filled with applicable simulated tissue were used for body and face testing.

The table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

TABLE 15

Description	≤3 GHz >3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surfac	$5 \pm 1 \text{ mm}$ $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom sur normal at the measurement location	face $30^{\circ} \pm 1^{\circ}$ $20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm $3-4$ GHz: \leq 12 mm
	$2 - 3 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$
	When the x or y dimension of the test device, in
Maximum area scan spatial resolution: ΔxArea, ΔyAre	the measurement plane orientation, is smaller
Waximum area scan spatial resolution. AxArea, AyAre	than the above, the measurement resolution must
	be \leq the corresponding x or y dimension of the
	test device with at least one measurement point
	on the test device.
Maximum zoom scan spatial resolution: ΔxZoom, ΔyZ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$2 - 3 \text{ GHz: } \le 5 \text{ mm*}$ $4 - 6 \text{ GHz: } \le 4 \text{ mm*}$
Maximum zoom scan spatial uniform grid: ΔzZoom	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$
resolution, normal to	$\leq 5 \text{ mm}$ $4-5 \text{ GHz} \leq 3 \text{ mm}$
phantom surface	$5-6 \text{ GHz} \le 2 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in APPENDIX H.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory with the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX F. For this device the "Max Calc. 1g-SAR" and "Max Calc. 10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P int = Initial Power (W)

Drift = DASY drift results (dB)

SAR meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If P_int > P_max, then P_max/P_int = 1. Drift = 1 for positive drif

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined from section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in TDMA mode and then 50% duty cycle was applied respectively to the final results.

13.0 DUT Test Data

13.1 Assessments at the Body

The battery PMNN4468A was used for assessments at the Body because it is the only offered battery (refer to Exhibit 7B for the illustration of the battery). The conducted power measurement for all test channels within Part 90 frequency range (406.1-470 MHz) which is listed in Table 16. SAR plots of the highest result per Table (bolded) is presented in Appendix E.

Test Freq (MHz) Power (W) 406.125 3.21 416 3.23 420 3.21 425 3.24 433 3.23 435 3.24 445 3.27 447 3.25 458.3 3.26 470 3.26

TABLE 16

Assessments at the Body with Body-worn PMLN7190A

Assessment of the offered antennas with the default battery and body worn per KDB 643646. Testing of additional channels was not required per KDB 447498. All results are below 4.0 W/kg. SAR plots of the highest results per Table (bolded) is presented in Appendix E.

TABLE 17

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)		Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
				435.000							
			447.000								
PMAE4095A	PMAE4095A PMNN4468A P	PMLN7190A	PMLN7156A	458.300	3.26	-0.41	2.490	1.820	1.39	1.01	CcC(KKL)-AB- 140703-02
				470.000							
				420.000							
PMAE4094A	PMNN4468A	PMLN7190A	PMLN7156A	433.000							
			11.121.7710011	445.000	3.24	-0.34	1.680	1.220	0.93	0.67	CcC(KKL)-AB- 140703-03
				406.125							
PMAE4093A	PMNN4468A	PMLN7190A	PMLN7156A	416.000							
	IMINITIOA		1 WILIV/130A	425.000	3.26	-0.37	1.990	1.440	1.10	0.79	CcC(KKL)-AB- 140704-02

Assessments at the Body with Body-worn PMLN7128A

Assessment of the offered antennas with the default battery and body worn per KDB 643646. Testing of additional channels was not required per KDB 447498. All results are below 4.0 W/kg. SAR plots of the highest result per Table (bolded) is presented in Appendix E.

TABLE 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
		·		435.000			8/	8/	. 8/	(8/	
			447.000								
PMAE4095A	PMNN4468A PMLN7128A	PMLN7156A	458.300	3.25	-0.38	2.090	1.540	1.16	0.85	CcC(KKL)-AB- 140704-03	
				470.000							
		PMLN7128A		420.000							
PMAE4094A	PMNN4468A		PMLN7156A	433.000							
			11,121,713011	445.000	3.24	-0.38	1.800	1.320	1.00	0.73	CcC(KKL)-AB- 140704-04
				406.125							
PMAE4093A	PMNN4468A	PMLN7128A	PMLN7156A	416.000							
	1 MININTTOOA			425.000	3.25	-0.38	1.800	1.320	1.00	0.73	CcC(KKL)-AB- 140704-05

Assessment at the Body with other audio accessories

Assessment per "KDB 643646 D01 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall < 4.0 W/kg, SAR testing for that audio accessory is not necessary." This was applicable to all remaining accessories.

Assessment outside FCC Part 90 at the Body

Assessment using highest SAR configuration Part 90 assessment above run# CcC(KKL)-AB-140703-02, (Table 17) across the offered antennas (if applicable).

TABLE 19

								Meas.	Max Calc.	Max Calc.	
					Init	SAR	Meas.	10g-	1g-	10g-	
		Carry	Cable	Test Freq	Pwr	Drift	1g-SAR	SAR	SAR	SAR	
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	Run#
PMAE4093A	PMNN4468A	PMLN7190A	PMLN7156A	403.000	3.25	-0.44	1.610	1.200	0.90	0.67	CcC(KKL)-AB- 140708-02

13.2 Assessments at the Face

The battery PMNN4468A was used for assessments at the Face because it is only one offered battery (refer to Exhibit 7B for the illustration of the battery). The conducted power measurement for all test channels within Part 90 frequency range (406.1-470 MHz) which is listed in Table 20. SAR plot of the highest result per Table (bolded) is presented in Appendix E.

TABLE 20

Test Freq (MHz)	Power (W)
406.125	3.21
416	3.23
420	3.21
425	3.24
433	3.23
435	3.24
445	3.27
447	3.25
458.3	3.26
470	3.26

Assessment of the offered antennas with the default battery with front of DUT positioned 2.5cm facing phantom. SAR plot of the highest result per Table (bolded) is presented in Appendix E.

TABLE 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)		Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
	-	-	-	435.000							
PMAE4095A PMNN4468A				447.000							
	NONE	NONE	458.300	3.29	-0.30	2.490	1.800	1.34	0.97	CcC(KKL)-FACE- 140707-02	
				470.000							
		NONE		420.000							
PMAE4094A	PMNN4468A		NONE	433.000							
				445.000	3.28	-0.25	2.260	1.630	1.20	0.87	CcC(KKL)-FACE- 140707-03
				406.125							
PMAE4093A	PMNN4468A	NONE	NONE	416.000							
				425.000	2.99	-0.20	2.820	2.060	1.63	1.19	CcC(KKL)-FACE- 140709-02

Assessment outside FCC Part 90 at the Face

Assessment using highest SAR configuration Part 90 assessment above run# CcC(KKL)-FACE-140707-04, (Table 21) across the offered antennas (if applicable).

TABLE 22

								Meas.	Max Calc.	Max Calc.	
		_				SAR		10g-	1g-	10g-	
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr (W)		1g-SAR (W/kg)		SAR (W/kg)	SAR (W/kg)	Run#
PMAE4093A	PMNN4468A	NONE	NONE	403.000	3.25		1.180	0.863	0.70		CcC(KKL)-FACE- 140707-05

13.3 Assessments for Industry Canada

Based on the assessment results for body and face per KDB643646 D01, additional tests were not required for the Industry Canada frequency range (406.1-430 MHz) and (450-470 MHz) as the testing performed is in compliance with Industry Canada frequency range.

13.4 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from the Part 90 was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR results from the table below is provided in APPENDIX E.

TABLE 23

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz) Short	(W)	(dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g- SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
PMAE4093A	PMNN4468A	NONE	NONE	425.000	3.02	-0.270	2.810	2.100	1.63	1.22	CcC(KKL)-FACE- 140709-03

14.0 Simultaneous Transmission Exclusion

Not applicable.

15.0 Results Summary

Based on the test guidelines from KDB 643646 and satisfying frequencies with Part 15 FCC band to be in compliance with Industry Canada Frequency range, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

TABLE 24

Designator	Frequency band		c at Body /kg)	Max Calc at Face (W/kg)		
3	(MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR	
Overall	403-470	1.39	1.01	1.63	1.22	
FCC	406.1-470	1.39	1.01	1.63	1.22	
Industry Canada	406.1-430					
madbir y Canada	& 450-470	1.39	1.01	1.63	1.22	

All results are scaled to the maximum output power

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are below 4.0W/kg (Occupational).

17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 300 MHz to 550 MHz

encertainty Budget for B									
							h =	<i>i</i> =	
а	b	c	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
	TEEE	Tol.	Prob		c_i	c_i	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.	(0)	(0)	(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				12	11	482
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k =2				23	23	

FCD-0558 Uncertainty Budget Rev.8.1

Notes for uncertainty budget Table:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MY

Certificate No: ES3-3274_Oct13

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3274

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v8, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

October 21, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Certificate No: ES3-3274_Oct13

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP CF A. B. C. D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media,
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3274_Oct13

October 21, 2013

Probe ES3DV3

SN:3274

Calibrated:

Manufactured: February 25, 2010 October 21, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3274_Oct13

Page 3 of 11

October 21, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3274

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.21	1.13	1.19	± 10.1 %
DCP (mV) ⁸	99.4	99.5	100.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	150.4	±3.5 %
		Y	0.0	0.0	1.0		150.3	
		Z	0.0	0.0	1.0		154.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

October 21, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3274

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
300	45.3	0.87	6.94	6.94	6.94	0.15	2.66	± 13.4 %
450	43.5	0.87	6.55	6.55	6.55	0.19	2.58	± 13.4 %
750	41.9	0.89	6.40	6.40	6.40	0.28	1.97	± 12.0 %
900	41.5	0.97	6.10	6.10	6.10	0.71	1.20	± 12.0 %
1810	40.0	1.40	5.21	5.21	5.21	0.69	1.30	± 12.0 %
1950	40.0	1,40	5.00	5.00	5.00	0.66	1.32	± 12.0 %
2300	39.5	1.67	4.89	4.89	4.89	0.71	1.28	± 12.0 %
2450	39.2	1.80	4.61	4.61	4.61	0.80	1.28	± 12.0 %
2600	39.0	1.96	4.42	4.42	4.42	0.80	1.30	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and α) can be released to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance targer than half the probe tip diameter from the boundary.

October 21, 2013

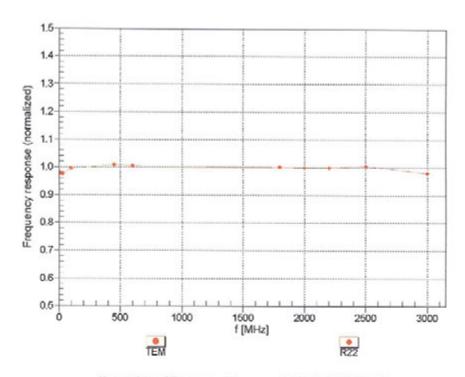
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3274

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^a (mm)	Unct. (k=2)
300	58.2	0.92	7.01	7.01	7.01	0.11	1.25	± 13.4 %
450	56.7	0.94	7.00	7.00	7.00	0.14	1.74	± 13.4 %
750	55.5	0.96	6.09	6.09	6.09	0.80	1.16	± 12.0 %
900	55.0	1.05	5.92	5.92	5.92	0.76	1.23	± 12.0 %
1810	53.3	1.52	4.90	4.90	4.90	0.62	1.40	± 12.0 %
1950	53.3	1.52	4.87	4.87	4.87	0.49	1.65	± 12.0 %
2300	52.9	1.81	4.49	4.49	4.49	0.80	1.26	± 12.0 %
2450	52.7	1.95	4.28	4.28	4.28	0.80	1.15	± 12.0 %
2600	52.5	2.16	4.12	4.12	4.12	0.66	0.98	± 12.0 %

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

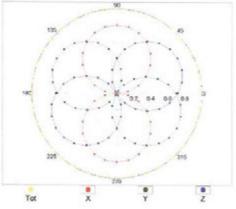
the ConvF uncertainty for indicated target tissue parameters.

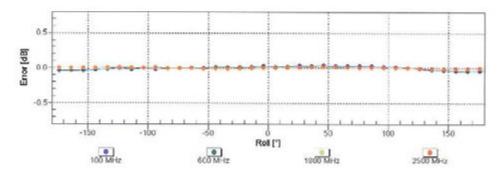
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance targer than half the probe tip diameter from the boundary.

October 21, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

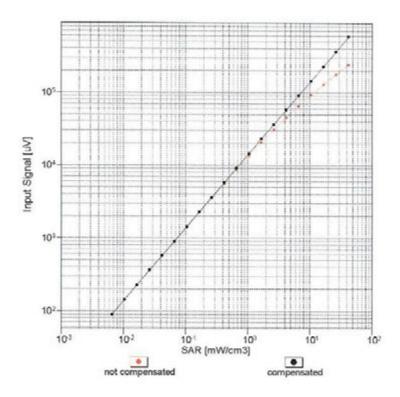
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

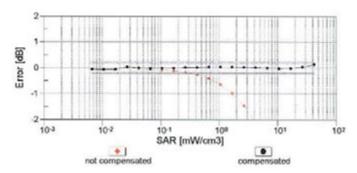

Certificate No: ES3-3274_Oct13


Page 7 of 11

October 21, 2013

Receiving Pattern (\$\phi\$), 9 = 0°

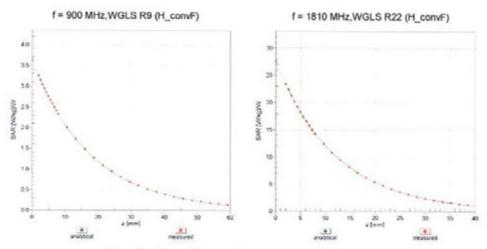

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3274_Oct13

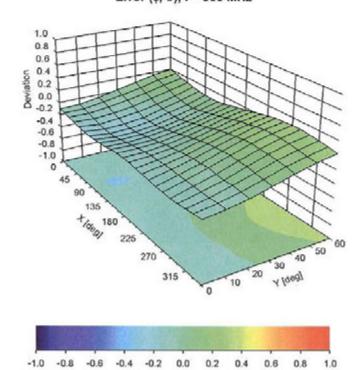
Page 8 of 11

October 21, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3274_Oct13


Page 9 of 11

ES3DV3- SN:3274 October 21, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ø, 9), f = 900 MHz

Certificate No: ES3-3274_Oct13

Page 10 of 11

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

October 21, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3274

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-123.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type: ES3DV3

Serial Number: 3274

Place of Assessment: Zurich

Date of Assessment: October 24, 2013

Probe Calibration Date: October 21, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450, 900 and at 1810 MHz.

Assessed by:

Sale Sign

ES3DV3-SN:3274

Page 1 of 2

October 24, 2013

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3274

Conversion factor (± standard deviation)

 $150 \pm 50 \text{ MHz}$

ConvF

8.05 ± 10%

 $\varepsilon_r = 52.3 \pm 5\%$

 $\sigma = 0.76 \pm 5\% \text{ mho/m}$

(head tissue)

 $250 \pm 50 \text{ MHz}$

CONVF

 $7.69 \pm 10\%$

 $\epsilon_r = 47.6 \pm 5\%$

 $\sigma = 0.83 \pm 5\%$ mho/m

(head tissue)

 $150 \pm 50 \text{ MHz}$

ConvF

 $7.86\pm10\%$

 $\varepsilon_r = 61.9 \pm 5\%$

 $\sigma = 0.80 \pm 5\% \text{ mho/m}$

(body tissue)

 $250 \pm 50 \text{ MHz}$

ConvF $7.60 \pm 10\%$

 $\epsilon_r = 59.4 \pm 5\%$

 $\sigma = 0.88 \pm 5\% \text{ mho/m}$

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Cortificate No. D450V3-1054 Oct13

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Motorola MY

Accreditation No.: SCS 108

S

Object	D450V3 - SN: 10	54	
Calibration procedure(s)	QA CAL-15.v7 Calibration proces	dure for dipole validation kits bek	ow 700 MHz
Calibration date:	October 18, 2013		
		onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 \pm 3) $^{\circ}$ C	and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	TE critical for calibration) ID # GB41293874	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14
Primary Standards Power meter E4419B	ID#		
Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator	ID# GB41293874 MY41498087	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733)	Apr-14 Apr-14
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	ID# GB41293874 MY41498087 SN: S5054 (3c)	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Apr-14 Apr-14 Apr-14
Primary Standards Power moter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k)	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736)	Apr-14 Apr-14 Apr-14 Apr-14
Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.3 / 06327	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Apr-14 Apr-14 Apr-14 Apr-14
Primary Standards Power moter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13
Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14
Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check
Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US37390585 S4206 Name	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Apr-15
Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US37390585 S4206	04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Apr-15 In house check: Oct-14

Certificate No: D450V3-1054_Oct13

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Scrvizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

5548

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1054_Oct13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.8.7		
Advanced Extrapolation			
ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm		
15 mm	with Spacer		
dx, dy , $dz = 5 mm$			
450 MHz ± 1 MHz			
	DASY5 Advanced Extrapolation ELI4 Flat Phantom 15 mm dx, dy, dz = 5 mm		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.72 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.782 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.10 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.4 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.60 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.771 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.04 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1054_Oct13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.6 Ω - 3.0 jΩ	
Return Loss	- 22.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.2 Ω - 7.8 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.346 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 16, 2005

DASY5 Validation Report for Head TSL

Date: 18.10.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1054

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.88 \text{ S/m}$; $\epsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

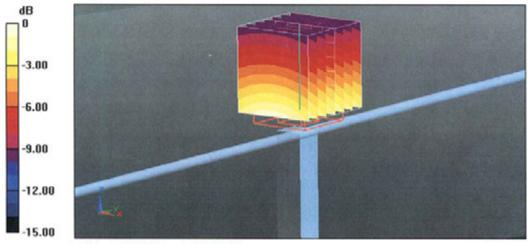
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 28.12.2012;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.07.2013
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

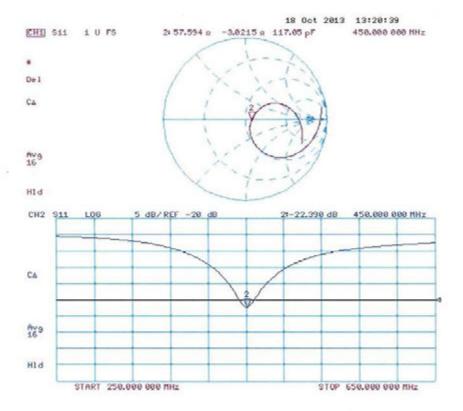
Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.179 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.782 W/kg


Maximum value of SAR (measured) = 1.27 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

Certificate No: D450V3-1054_Oct13

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.10.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 56.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

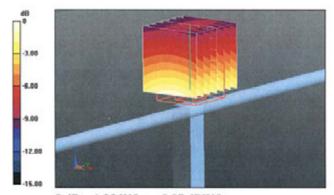
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(7.03, 7.03, 7.03); Calibrated: 28.12.2012;

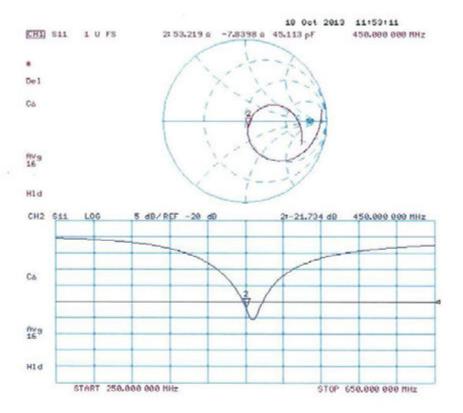
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 18.07.2013


Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 37.179 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.771 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

Impedance Measurement Plot for Body TSL

