

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Enterprise Mobility Solutions EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322. Date of Report: 9/21/2010

Report Revision: O

Report ID: SAR rpt_ H98QDD9PW5AN (MNUE1005A)

_Rev.O_100921_SR8653

Responsible Engineer:Kim Uong (Principal Staff Eng.)Report Author:Kim Uong (Principal Staff Eng.)Date/s Tested:7/27/10 - 9/02/10, 9/16/10, 9/20/10Manufacturer/Location:Motorola, Reynosa/Schaumburg

Sector/Group/Div.: G&PS **Date submitted for test:** 7/23/10

DUT Description: APX6000 UHF R1 380 – 470 MHz, 3-5.7W, 6.25K/12.5K/25K, Basic Top Display

Model. Capable of digital and analog FM transmission. Also capable of TDMA

transmission.

Test TX mode(s): CW (PTT)

Max. Power output: 5.7 Watts

Nominal Power: 5.0 Watts

Tx Frequency Bands: 380 - 470 MHz

Signaling type: FM and TDMA

Model(s) Tested:H98QDD9PW5AN (MNUE1005A)Model(s) Certified:H98QDD9PW5AN (MNUE1005A)Serial Number(s):NUE1006A0052, NUE1006A0043

Classification: Occupational/Controlled

FCC ID: AZ489FT4899

FCC Rule Part(s): 90 (406.1 - 470 MHz) IC: 109U-89FT4899

IC standard(s): RSS 102 issue 4; Safety Code 6

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Signature on file – Deanna Zakharia

Deanna Zakharia

EMS EME Lab Senior Resource Manager, Laboratory Director

Approval Date: 10/1/2010

Certification Date:

Certification No.:

^{*} Refer to section 15 of part 1 for highest SAR summary results.

Part 1 of 2

1.0	Introduction	4
2.0	Abbreviations / Definitions	4
3.0	Referenced Standards and Guidelines	4
4.0	SAR Limits	5
5.0	SAR Result Scaling Methodology	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	7
	7.1 Antennas	7
	7.2 Batteries	7
	7.3 Body worn Accessories	7
	7.4 Audio Accessories	8
8.0	Description of Test System	8
	8.1 Description of Robotics/Probes/Readout Electronics	8
	8.2 Description of Phantom(s)	
	8.2.1 Dual Flat Phantom	
	8.2.2 SAM Phantom	
	8.2.3 Elliptical Flat Phantom	
	8.3 Description of Simulated Tissue	
9.0	Additional Test Equipment	
10.0		
	10.1 Equivalent Tissue Test Results	
	10.2 System Check Test Results	
	Environmental Test Conditions	
12.0	DUT Test Methodology	
	12.1 Measurements	
	12.2 DUT Configuration(s)	
	12.3 DUT Positioning Procedures	
	12.3.1 Body	
	12.3.2 Head	
	12.3.3 Face	
	12.4 DUT Test Channels	
	12.5 DUT Test Plan	
	12.5.1 General Test Flowchart	
13.0	DUT Test Data	
	13.1 Assessments at the Face (CW mode)	
	13.2 Assessments at the Body (CW mode)	
	13.3 Shorten Scan Assessment	
	Simultaneous Transmission Exclusion	
15.0	Conclusion	31

	APP	PENDICES	
	A	Measurement Uncertainty	32
	В	Probe Calibration Certificates	35
	C	Dipole Calibration Certificates	49
Part 2 of 2			
	APP	PENDICES	
	D	Test System Verification Scans	2
	E	FCC Part 90 (406.1 – 470 MHz)	
		DUT Scans (Shortened Scan and Highest SAR configurations)	19
	F	DUT Scans - FCC Part 90 (406.1-470 MHz)	24
	G	DUT Scans (380-470 MHz)	35
	Н	DUT Supplementary Data (Power Slump)	
	I	DUT Test Position Photos	
	J	DUT and Body worn Accessory Photos	48

Report Revision History

Date	Revision	Comments
9/21/2010	О	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the EMS EME Test Laboratory for model number H98QDD9PW5AN (MNUE1005A).

2.0 Abbreviations / Definitions

CNR: Calibration Not Required

CQPSK: Compatible Quadrature Phase-Shift Keying

CW: Continues Wave DUT: Device Under Test FM: Frequency Modulation

NA: Not Applicable PTT: Push to Talk

PSM: Public Safety Microphone RSM: Remote Speaker Microphone TDMA: Time Division Multiple Access

SAR: Specific Absorption Rate

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005

- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (1999), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
 - * The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

TABLE 1

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population /	(Occupational /	
	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average - ANSI -			
(averaged over the whole body)	0.08	0.4	
Spatial Peak - ANSI -			
(averaged over any 1-g of tissue)	1.6	8.0	
Spatial Peak – ICNIRP/ANSI -			
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0	
Spatial Peak - ICNIRP -			
(Head and Trunk 10-g)	2.0	10.0	

5.0 SAR Result Scaling Methodology:

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX H. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P \text{ int}} \cdot DC$$

P_max = Maximum Power (W)
P_int = Initial Power (W)
Drift = DASY drift results (dB)
SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)
DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied: If P_int > P_max, then P_max/P_int = 1. Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target.

6.0 Description of Device Under Test (DUT):

This device operates using digital and analog frequency modulation (FM) as well as TDMA signaling incorporating traditional simplex two-way radio transmission protocol.

Time Division Multiple Access (TDMA) is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables each unit to transmit its voice information without interference from other transmitting units. Transmission from a unit or base station is accommodated during two time-slot lengths of 30 milliseconds with frame length of 60 milliseconds. C4FM CQPSK modulation is used and includes 12.5kHz channel spacing. The TDMA technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. The maximum duty cycle for TDMA is 2:1 and is controlled by software. The FM signal is continuous. However, because of hand shaking or Push-To-Talk (PTT) between users and/or base stations a conservative 50% duty cycle is applied. The TDMA mode was not tested because its duty cycle is inherently 50% and would include an additional 50% duty cycle for PTT.

The model represented under this filing utilizes a removable antenna and is capable of transmitting in the 380-470 MHz band. The nominal output power is 3 to 5 watts with maximum output powers of 5.7 watts as defined by upper limit of the production line final

test station. The intended operating positions are "at the face" with the DUT or PSM at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria:

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required. The following sections identify the test criteria and details for each accessory category.

7.1 Antennas:

All offered antennas were tested. The table below lists the antennas and their descriptions.

TABLE 2

Antenna Models	Description	*Tested
PMAE4065A	UHF/GPS whip; 380-520, 1575 MHz; 1/4 wave; 1.5dBi gain	Yes
FAF5259A	UHF/PSM/GPS Stubby; 380-470, 1575 MHz; 1/4 wave; 1.5dBi gain	Yes

^{*}Refer to Exhibit 7B for antenna separation distances.

7.2 Batteries:

All offered batteries were tested. The table below lists the batteries, and there descriptions.

TABLE 3

Battery Models	Description	*Tested	Comments
PMNN4403A	Impres Li Ion slim 2150mAh	Yes	Height = 85mm
NNTN7038A	Hi Cap Impres Li Ion 2900mAh	Yes	Height = 85mm

^{*}Refer to Exhibit 7B for antenna separation distances.

7.3 Body worn Accessories:

All offered body worn accessories were tested. The table below lists the body worn accessories, and their descriptions.

TABLE 4

Body worn Models	Description	*Tested	Comments
HLN6875A	3" Belt Clip	Yes	NA
NTN9179A	Swivel D clip & belt loop	Yes	NA

^{*}Refer to Exhibit 7B for antenna separation distances.

7.4 Audio Accessories:

All audio accessories were tested. The table below lists the audio accessories and their descriptions.

TABLE 5

Audio Acc. Models	Description	Comments
PMMN4059A	Public Safety Microphone (PSM) 18" IP55, 3.5mm jack TX/RX	
RMN5058A	Core L/W Headset	

8.0 Description of Test System:

8.1 Descriptions of Robotics/Probes/Readout Electronics:

The laboratory utilizes a Dosimetric Assessment System (DASY4TM) SAR measurement system Version 4.7 build 80 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE3 and DAE4, and ES3DV3 E-field probe. The DASY4TM system is operated per the instructions in the DASY4TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

8.2.1 Dual Flat Phantom

Not Applicable

8.2.2 SAM Phantom

Not Applicable

8.2.3 Elliptical Flat Phantom

TABLE 6

Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
OVAL1011 OVAL1018 OVAL1019	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190	2mm +/- 0.2mm	Wood	< 0.05

8.3 Description of Simulated Tissue:

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE Std 1528 - 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". The simulated tissue used is also compliant to that specified in IEC62209-1 (2005) and adopted by CENELEC as EN62209-1 (2006).

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

Simulated Tissue Composition (by mass)

TABLE 7

% of listed	450MHz		
ingredients	Head	Body	
Sugar	56.0	46.5	
Diacetin	0	0	
De ionized -Water	39.1	50.53	
Salt	3.8	1.87	
HEC	1.0	1.0	
Bact.	0.1	0.1	

Reference section 10.1 for target parameters

9.0 Additional Test Equipment:

The table below lists additional test equipment used during the SAR assessment.

TABLE 8

	DLE 0		
			Calibration
Equipment Type	Model Number	Serial Number	Due Date
Power Meter (Agilent)	E4419B	MY45103725	4/19/2011
Power Meter (Agilent)	E4418B	US39251152	3/2/2011
Power Meter (Agilent)	E4418B	GB40206480	12/7/2010
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495730	4/13/2011
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495733	4/13/2011
Power Sensor (Agilent)	8482B	3318A06773	5/7/2011
Power Sensor (Agilent)	8481B	3318A10894	3/5/2011
Signal Generator (Agilent)	E4428C	MY47381119	1/14/2012
Bi-Directional Coupler (NARDA)	3020A	40295	6/3/2012
AMP (Amplifier Research)	10WD1000	28782	CNR
Temperatur	e Recording Equipme	ent	
Dickson Temperature Recorder	TM125	1195889	2/16/2011
Omega Digital Thermometer with J Type TC Probe	HH202A	18800	11/10/2010
Omega Digital Thermometer with J Type TC Probe	HH202A	18801	4/19/2011
Omega Digital Thermometer with J Type TC Probe	HH202A	18812	3/24/2011
T	issue Station		
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/10/2011
Dielectric Probe Kit (HP)	85070C	US99360076	CNR
	Dipole		
Speag Dipole	D450V2	1001	4/26/2012
Speag Dipole	D450V2	1002	9/26/2010

10.0 SAR Measurement System Verification:

The SAR measurements were conducted with probe model/serial number ES3DV3/SN3147. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

Dipole validation scans using head tissue equivalent medium are provided in APPENDIX D. The EMS EME lab validated the dipole to the applicable IEEE 1528-2003 system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the EMS EME system performance validation are provided herein.

10.1 Equivalent Tissue Test Results:

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The table 9 summarizes the measured tissue parameters used for the SAR assessment.

TABLE 9

Frequency (MHz)	Tissue Type	Conductivity Target & Range (S/m)	Dielectric Constant Target & Range	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
				0.84	44.2	7/27/2010
				0.83	43.8	7/28/2010
395	IEEE/IEC	0.87	44.2	0.84	44.1	7/29/2010
373	Head	(0.83 - 0.91)	(42.0-46.4)	0.84	44.2	7/30/2010
				0.86	44.6	7/31/2010
				0.87	43.7	9/02/2010
				0.85	43.2	7/27/2010
				0.84	42.9	7/28/2010
	IEEE/ IEC	0.87	43.8	0.84	43.2	7/29/2010
422	Head	(0.83-0.91)	(41.6-46.0)	0.85	43.3	7/30/2010
	Head	(0.83-0.91)		0.87	43.7	7/31/2010
				0.89	45.9	8/06/2010
				0.88	42.7	9/02/2010
	IEEE/ IEC	0.87	43.6	0.85	42.4	7/28/2010
438	Head	(0.83-0.91)	43.6 (41.4-45.8)	0.88	43.2	7/31/2010
	пеац	(0.83-0.91)	(41.4-43.6)	0.89	42.2	9/02/2010
) IEEE/ IEC Head			0.87	42.4	7/27/2010
			43.5 (41.3-45.7)	0.86	42.1	7/28/2010
450		0.87 (0.83-0.91)		0.86	42.2	7/29/2010
450				0.88	42.6	7/30/2010
				0.89	42.9	7/31/2010
				0.90	41.9	9/02/2010
				0.88	42.3	7/27/2010
				0.87	42.0	7/28/2010
454	IEEE/ IEC	0.87	43.5	0.87	42.3	7/29/2010
454	Head		(41.3-45.7)	0.88	42.4	7/30/2010
				0.90	42.8	7/31/2010
				0.91	41.8	9/02/2010

TABLE 9 (continued)

Frequency (MHz)	Tissue Type	Conductivity Target & Range (S/m)	Dielectric Constant Target & Range	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
				0.90	57.5	8/01/2010
		0.93	57.2	0.91	57.6	8/02/2010
395	FCC Body	(0.88 -0.98)	57.3 (54.4 – 60.2)	0.89	57.4	8/03/2010
		(0.88 -0.98)	(34.4 – 00.2)	0.89	57.5	8/04/2010
				0.89	57.1	8/05/2010
				0.91	56.7	8/01/2010
				0.92	56.9	8/02/2010
				0.90	56.7	8/03/2010
422	ECC D. 4.	0.94	57.0	0.90	56.8	8/04/2010
422	FCC Body	(0.89 - 0.98)	(54.1-59.8)	0.90	56.4	8/05/2010
				0.90	56.0	8/06/2010
				0.90	55.6	9/02/2010
				0.93	55.1	9/20/2010
				0.92	56.3	8/01/2010
		0.04	56.0	0.92	56.4	8/03/2010
438	FCC Body	0.94	56.8	0.91	56.0	8/05/2010
		(0.89 - 0.98)	(53.9-59.6)	0.91	55.7	8/06/2010
				0.93	54.2	9/16/2010
				0.93	56.1	8/01/2010
				0.95	56.3	8/02/2010
				0.93	56.1	8/03/2010
450	ECC D. 4.	0.94	56.7	0.93	56.1	8/04/2010
450	FCC Body	(0.89 - 0.99)	(53.9-59.5)	0.93	55.8	8/05/2010
				0.92	55.4	8/06/2010
				0.94	54.0	9/16/2010
				0.96	54.6	9/20/2010
				0.94	56.0	8/01/2010
		0.04	56.7	0.95	56.2	8/02/2010
454	FCC Body	0.94	56.7	0.93	56.1	8/03/2010
		(0.89 - 0.99)	(53.9-59.5)	0.93	56.0	8/04/2010
				0.93	55.7	8/05/2010

10.2 System Check Test Results:

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D explains how the targets were set and includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 10

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #		System Check Test Results when normalized to 1W (W/kg)	Tested Date
	,			8/	4.44	7/27/2010
					4.48	7/28/2010
	IEEE/ IEC Head			4.58 +/- 10%	4.56	7/29/2010
					4.60	7/30/2010
			SPEAG		4.60	7/31/2010
3147		2/18/2010	D450V2		4.12	8/1/2010
			/1002		4.12	8/2/2010
	ECC D - 4			4.40 + / 100/	4.24	8/3/2010
	FCC Body			4.40 +/- 10%	4.16	8/4/2010
					4.12	8/5/2010
					4.12	8/6/2010
	IEEE/ IEC Head		CDEAC	4.72 +/- 10%	4.80	9/2/2010
3147	ECC De des	2/18/2010	SPEAG D450V2 /1001	4.22 +/ 100/	4.24	9/16/2010
	FCC Body		D430 V 2 / 1001	4.32 +/- 10%	4.36	9/20/2010

Note: See APPENDIX D for an explanation of the reference SAR targets stated above.

11.0 Environmental Test Conditions:

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

TABLE 11

	Target	Measured
		Range: 21.2 -23.8°C
Ambient Temperature	18 - 25 °C	Avg. 21.7°C
		Range: 48.4 – 71.8%
Relative Humidity	30 - 70 %	Avg. 54.4%
		Range: 20.2-21.7°C
Tissue Temperature	NA	Avg. 21.0°C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using coarse and 5x5x7 zoom scan. Elliptical flat phantoms filled with applicable simulated tissue were used for body and face testing.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were used to test all possible accessory combinations.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in APPENDIX I.

12.3.1 Body:

The DUT and PSM were positioned in the intended use configuration against the phantom with the offered body worn and audio accessories where applicable.

12.3.2 Head:

Not applicable.

12.3.3 Face:

The DUT was positioned with its' front and back side separated 2.5cm from the phantom. Note that this product has two microphones, one on the front and one on the back of the DUT and therefore both sides were assessed. The offered PSMs were also tested with 2.5cm separation from the phantom.

12.4 DUT Test Channels:

The number of test channels was determined by the following equation.

$$N_c = 2 * roundup[10 * (f_{hioh} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

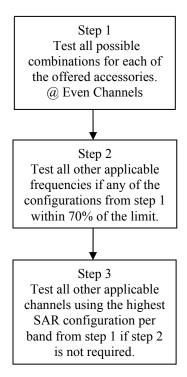
 $F_{low} = Lower channel$

 F_c = Center channel

12.5 DUT Test Plan:

All modes of operation identified in section 6.0 were considered during the development of the test plan. The mode which presented the highest duty cycle was chosen for SAR assessment.

All accessories listed in section 7.0 of this report were evaluated and only those identified for testing were used to develop the SAR test plan for this product.


Tests were performed in each band at the even channels of the UHF (380-470MHz) Band. Depending on the SAR result for each of the test configurations at these channels, the other frequency channels are assessed only for the configuration that indicated highest SAR result or for each of the configurations that indicated SAR results within 70% of the specification limit as recommended by the FCC. If the 70% threshold is not required then the highest SAR configurations from the even channel assessments were tested at all other applicable frequencies.

Note that test results that are outside the relevant FCC frequency allocations are presented herein in blue font.

12.5.1 General Test Flowchart

The following flowcharts identify the general approach to the test sequences for body and face positions.

DUT Body Test Methodology (General flowchart)

Flowchart Objectives Body

Step 1 - The objective is to determine the highest SAR configuration at the even channels for all combinations of offered accessories at the body. Refer to section 12.5 for additional frequency channels test consideration details.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 1 is below the recommended 70% threshold. Refer to section 12.5 for additional channels test consideration details.

DUT PSM Body Test Methodology (General flowchart)

Flowchart **Objectives PSM Body**

Step 1 Test all possible combinations for each of the PSM accessories.

@ Even Channels

Step 2

Test all other applicable frequencies if any of the configurations from step 1 are within 70% of the limit.

Step 3

Test all other applicable channels using the highest SAR configuration per band from step 1 if step 2 is not required.

Step 1 - The objective is to determine the highest SAR configuration at the even channels for all combinations of offered accessories at the body.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to section 12.5 for additional channels test consideration details.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 1 is below the recommended 70% threshold. Refer to section 12.5 for additional channels test consideration details.

DUT Face Test Methodology (General flowchart)

Step 1 Test all possible combinations for each of the offered accessories.

@ Even Channels

Step 2
Test all other applicable frequencies if any of the configurations from step 1 are within 70% of the limit.

Step 3
Test all other applicable channels using the highest SAR configuration per band from step 1 if step 2 is not required.

Flowchart Objectives Face

Step 1 - The objective is to determine the highest SAR configuration at the even channels for all combinations of offered accessories at the body. Refer to section 12.5 for additional frequency channels test consideration details.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to section 12.5 for additional channels test consideration details.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 2 is below the recommended 70% threshold. Refer to section 12.5 for additional channels test consideration details.

DUT PSM Face Test Methodology (General flowchart)

Flowchart Objectives PSM Face

Step 1 Test all possible combinations for each of the PSM accessories.

@ Even Channels

Step 2 Test all other applicable frequencies if any of the configurations from step 1 are within 70% of the limit.

Step 3 Test all other applicable channels using the highest SAR configuration per band from step 1 if step 2 is not required.

Step 1 - The objective is to determine the highest SAR configuration at the even channels for all combinations of offered accessories at the body. Refer to section 12.5 for additional channels test consideration details.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to section 12.5 for additional channels test consideration details.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 1 is below the recommended 70% threshold. Refer to section 12.5 for additional channels test consideration details.

13.0 DUT Test Data

13.1 Assessments at the Face (CW mode):

Assessment at the Face with antenna FAF5259A: The DUT was tested with antenna FAF5259A using batteries NNTN7038A and PMNN4403A, at the applicable even frequency channels (2, 4, and 6). The DUT front and back sides separated 2.5cm from the phantom. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 1.0

TABLE 12

					IABLE		-					
			Assessm	ents at the I	Face (CW n	node) wi	th anten	na FAF52				
Antonno	Pottowy	Carry	Test Position	Additional attachments	Test Freq.	Initial Power	SAR Drift	Meas.	Meas. 10g- SAR	SAR	Max Calc. 10g- SAR	
Antenna	Battery	Accessory	Position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	Run#
					200.0125							
					380.0125 395.0000	5.64	-0.674	6.96	5.18	4.11	3.06	MeC-Face-100727-03
E 4 E 50 50 4					406.1250	3.04	-0.074	0.90	3.18	4.11	3.00	WIEC-Face-100727-03
FAF5259A (380 – 470 /	NNTN7038A	None	Front DUT	None	422.1250	5.6	-0.278	5.93	4.42	3.22	2.40	MeC-Face-100727-04
1575 MHz)			at 2.5cm		438.1250	3.0	0.270	3.73	7.72	3.22	2.40	Wice 1 acc 100727 04
					453.9875	5.53	-0.026	2.82	2.1	1.46	1.09	MeC-Face-100727-05
					469.9875						2,00	
					380.0125							
					395.0000	5.62	-0.681	7.04	5.22	4.18	3.10	MeC-Face-100727-06
FAF5259A			D 1 DVIII		406.1250							
(380 - 470 /	NNTN7038A	None	Back DUT at 2.5cm	None	422.1250	5.58	-0.226	7.06	5.23	3.80	2.81	MeC-Face-100727-07
1575 MHz)			ut 2.00m		438.1250							
					453.9875	5.55	-0.0686	3.18	2.37	1.66	1.24	MeC-Face-100727-08
					469.9875							
					380.0125							
					395.0000	5.68	-0.768	7.84	5.76	4.69	3.45	MeC-Face-100728-02
FAF5259A			Front DUT		406.1250							
(380 – 470 / 1575 MHz)	PMNN4403A	None	at 2.5cm	None	422.1250	5.62	-0.336	7.49	5.51	4.10	3.02	MeC-Face-100728-03
1373 WHIZ)					438.1250							
					453.9875	5.51	-0.0736	3.29	2.43	1.73	1.28	MeC-Face-100728-04
					469.9875							
					200.0125							
					380.0125 395.0000	5.66	-0.749	6.54	4.85	3.91	2.90	MeC-Face-100728-05
E A E 5 2 5 0 A					406.1250	3.00	-0.749	0.34	4.83	3.71	2.90	WICC-1 acc-100/28-03
FAF5259A (380 - 470 /	PMNN4403A	None	Back DUT	None	422.1250	5.59	-0.298	7.34	5.44	4.01	2.97	MeC-Face-100728-06
1575MHz)			at 2.5cm		438.1250	3.37	0.270	7.54	3.77	7.01	2.71	11100 1 1100 100 120-00
					453.9875	5.61	-0.127	3.23	2.4	1.69	1.26	MeC-Face-100728-07
					469.9875		/					

Assessment at the Face with antenna FAF5259A – Other Frequency channels:

The DUT was tested at all other applicable frequencies using the highest SAR configuration from table 12. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 2.0

TABLE 13

		Assessm	ents at the Fa	ace (CW mode	e) with anter	ına FAF5	5259A – C	Other Free	quency ch	nannels		
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq.	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)		Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
				None	380.0125	5.67	-0.23	6.11	4.53	3.24	2.40	MeC-Face-100728-08
FAF5259A (380 - 470 /	PMNN4403A	None	Front DUT	None	406.125	5.66	-0.801	10.18	7.59	6.16	4.60	MeC-Face-100806-11
1575MHz)	I WINN4403A	None	at 2.5cm	None	438.1250	5.68	-0.154	4.9	3.62	2.55	1.88	MeC-Face-100728-10
				None	469.9875	5.63	-0.131	2.49	1.84	1.30	0.96	MeC-Face-100728-11

Assessment at the Face with antenna PMAE4065A: The DUT was tested with antenna PMAE4065A using batteries NNTN7038A and PMNN4403A, at the applicable even frequency channels (2, 4, and 6). The DUT front and back sides separated 2.5cm from the phantom. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 3.0.

TABLE 14

Assessments at the Face (CW mode) with antenna PMAE4065A Meas. Max Max Max Max Max Max												
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)		Max Calc. 10g- SAR (W/kg)	Run#
					380.0125							
					395.0000	5.67	-0.499	6.89	5.11	3.88	2.88	MeC-Face-100729-02
PMAE4065A					406.1250							
(380 - 520 /	NNTN7038A	None	Front DUT at 2.5cm	None	422.1250	5.62	-0.305	5.62	4.16	3.06	2.26	MeC-Face-100729-03
1575MHz)					438.1250							
					453.9875	5.64	-0.124	3.55	2.63	1.85	1.37	MeC-Face-100729-04
					469.9875							
					380.0125							
					395.0000	5.69	-0.509	7.36	5.46	4.14	3.07	MeC-Face-100729-05
DMAE4065A					406.1250	3.07	0.507	7.50	5.10	1.11	3.07	1400 1 400 100/29 03
PMAE4065A (380 - 520 /	NNTN7038A	None	Back DUT at 2.5cm	None	422.1250	5.66	-0.279	6.4	4.72	3.44	2.53	MeC-Face-100729-06
1575MHz)			at 2.5cm		438.1250							
					453.9875	5.67	-0.153	3.9	2.89	2.03	1.50	MeC-Face-100729-07
					469.9875							
					380.0125							
					395.0000	5.67	-0.772	7.91	5.82	4.75	3.49	MeC-Face-100729-08
PMAE4065A (380 - 520 /	PMNN4403A	None	Front DUT	None	406.1250			- 10				
1575MHz)	I MININAAOSA	None	at 2.5cm	None	422.1250	5.62	-0.257	7.19	5.31	3.87	2.86	MeC-Face-100729-09
					438.1250	7.66	0.150	4.20	2.24	2.20	1.60	N G F 100720 10
					453.9875 469.9875	5.66	-0.158	4.39	3.24	2.29	1.69	MeC-Face-100729-10
					409.9873							
					380.0125							
					395.0000	5.67	-0.701	6.75	5	3.99	2.95	MeC-Face-100730-02
PMAE4065A			DI- DUT		406.1250							
(380 - 520 /	PMNN4403A	None	Back DUT at 2.5cm	None	422.1250	5.69	-0.262	6.71	4.97	3.57	2.64	MeC-Face-100730-03
13/31/1112)	1575MHz)	at 2.5cm		438.1250								
					453.9875	5.62	-0.0932	4.22	3.13	2.19	1.62	MeC-Face-100730-04
					469.9875							

Assessment at the Face with antenna PMAE4065A – Other Frequency channels:

The DUT was tested at all other applicable frequencies using the highest SAR configuration from table 14. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 4.0

TABLE 15

		Assessme	ents at the Fa	ace (CW mod	e) with ante	nna PMA	E4065A -	- Other F	requency	channels	i	
Antenna	Battery	Carry Accessory	Test Position	Additional attachments		Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
PMAE4065A (380 - 520 /	PMNN4403 A	None	Front DUT at 2.5cm	None	380.0125 406.1250	5.65	-0.289 -0.484	6.78 8.01	5.01	3.66	2.70 3.34	MeC-Face-100902-02 MeC-Face-100902-03
1575MHz)					438.1250 469.9875	5.53 5.59	-0.123	5.18 3.67	3.8	2.75 1.95	2.01	MeC-Face-100902-04 MeC-Face-100902-05

Assessment at the Face with PSM PMMN4059A and antenna FAF5259A: The DUT was tested with PSM PMMN4059A and antenna FAF5259A using batteries NNTN7038A and PMNN4403A, at the applicable even frequency channels (2, 4, and 6). The PSM front side separated 2.5cm from the phantom. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 5.0

TABLE 16

	Assessments at the Face (CW mode) with PSM PMMN4059A and antenna FAF5259A Max												
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq.	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#	
					380.0125								
					395.0000	5.68	-0.589	1.52	1.1	0.87	0.63	MeC-Face-100730-09	
FAF5259A			Front PSM		406.1250								
(380 - 470 / 1575MHz)	NNTN7038A	None	at 2.5cm	PMMN4059A	422.1250	5.63	-0.176	2.92	2.1	1.54	1.11	MeC-Face-100730-10	
13/3MITZ)					438.1250								
					453.9875	5.66	-0.29	6.58	4.75	3.54	2.56	MeC-Face-100730-11	
					469.9875								
					380.0125								
					395.0000	5.67	-0.696	1.42	1.03	0.84	0.61	MeC-Face-100731-02	
FAF5259A			Front PSM		406.1250								
(380 - 470 / 1575MHz)	PMNN4403A	None	at 2.5cm	PMMN4059A	422.1250	5.68	-0.167	2.61	1.89	1.36	0.99	MeC-Face-100731-03	
13/3MITZ)					438.1250								
					453.9875	5.62	-0.35	6.55	4.74	3.60	2.61	MeC-Face-100731-04	
					469.9875								
					380.0125	5.64	-0.44	1.25	0.901	0.70	0.50	MeC-Face-100731-05	
FAF5259A (380 - 470 /	- 470 / PMNN4403A None Front PSN	Front PSM	M DMMNI4050A	406.1250	5.66	-0.807	2.14	1.55	1.30	0.94	MeC-Face-100731-06		
1575MHz)			438.1250	5.62	-0.026	3.66	2.65	1.87	1.35	MeC-Face-100731-07			
					469.9875	5.65	-0.304	4.88	3.51	2.64	1.90	MeC-Face-100731-08	

13.2 Assessments at the Body (CW mode):

Assessment at the Body with antenna FAF5259A: The DUT was tested with antenna FAF5259A using batteries NNTN7038A and PMNN4403A, body worn accessories HLN6875A and NTN9179A, and audio cable RMN5058A at the applicable even frequency channels (2, 4, and 6). Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 6.0

TABLE 17

	Assessments at the Body (CW mode) with antenna FAF5259A Meas. Max Max													
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq.	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)			Max Calc. 10g- SAR (W/kg)	Run#		
					380.0125									
					395.0000	5.67	-0.736	8.49	4.04	5.06	2.41	MeC-Ab-100802-10		
FAF5259A					406.1250									
(380 - 470 /	NNTN7038A	HLN6875A Belt clip	Against phantom	RMN5058A (headset)	422.1250	5.64	-0.247	4.78	2.55	2.56	1.36	MeC-Ab-100802-11		
1575MHz)		Den enp	phanton	(Heudset)	438.1250									
					453.9875	5.65	-0.145	2.74	2.04	1.43	1.06	MeC-Ab-100802-12		
					469.9875									
					380.0125									
					395.0000	5.65	-0.996	4.74	2.7	3.01	1.71	MeC-Ab-100802-13		
FAF5259A	D 0 D 1 4 4 0 2 4	HLN6875A	Against phantom	RMN5058A (headset)	406.1250									
(380 - 470 / 1575MHz)	PMNN4403A	Belt clip			422.1250	5.67	-0.345	3.9	2.29	2.12	1.25	MeC-Ab-100802-14		
					438.1250									
					453.9875	5.66	-0.133	2.68	1.99	1.39	1.03	MeC-Ab-100802-15		
					469.9875									
					380.0125									
					395.0000	5.68	-0.631	7.66	3.57	4.44	2.07	MeC-Ab-100802-16		
F. F. F. G. S. A.		N 7 7 1 7 0 1			406.1250	3.00	-0.031	7.00	3.37	7.77	2.07	WCC-A0-100802-10		
FAF5259A (380 - 470 /	NNTN7038A	NTN9179A D-clip and		RMN5058A	422.1250	5.66	-0.236	5.46	2.53	2.90	1.35	MeC-Ab-100802-17		
1575MHz)		Belt Loop	Against phantom	(headset)	438.1250	3.00	-0.230	3.40	2.33	2.70	1.00	WCC-A0-100802-17		
					453.9875	5.65	-0.0867	2.52	1.23	1.30	0.63	MeC-Ab-100802-18		
					469.9875	3.03	0.0007	2.32	1.23	1.50	0.03	100002 10		
					109.9075									
					380.0125									
					395.0000	5.66	-0.803	3.66	2.76	2.22	1.67	MeC-Ab-100803-02		
FAF5259A	- 470 / PMNN4403A D-clip and	DMNISOSO A	406.1250											
(380 - 470 /		RMN5058A (headset)	422.125	5.62	-0.414	4.54	2.21	2.53	1.23	MeC-Ab-100803-03				
1575MHz)			438.1250											
					453.9875	5.65	-0.0824	2.24	1.16	1.15	0.60	MeC-Ab-100803-04		
					469.9875									

Assessment at the Body with antenna FAF5259A – Other Frequency channels:

The DUT was tested at all other applicable frequencies using the highest SAR configuration from table 17. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 7.0

TABLE 18

		Assessmen	ts at the Bo	dy (CW moo	le) with An	tenna FA	F5259A	– Other F	requency	channels	;	
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
					380.0125	5.69	-0.429	7.89	3.41	4.36	1.89	MeC-Ab-100803-05
FAF5259A (380 - 470 /	NNTN7038A	HLN6875A	Against	RMN5058A	406.1250	5.69	-0.4	6.3	3.44	3.46	1.89	MeC-Ab-100803-06
1575MHz)	ININTIN/036A	Belt clip	phantom	(headset)	438.1250	5.65	-0.183	3.75	2.78	1.97	1.46	MeC-Ab-100803-07
					469.9875	5.66	-0.127	2.07	1.52	1.07	0.79	MeC-Ab-100803-08
					380.0125	5.72	-0.246	8.47	3.37	4.48	1.78	JsT-Ab-100805-05
FAF5259A	NINITNI7020 A	NTN9179A	Against	RMN5058A	406.1250	5.47	-0.619	10.13	3.97	6.09	2.39	JsT-Ab-100920-02
(380 - 470 / 1575MHz)	NNTN7038A	D-clip and Belt Loop	phantom	(headset)	438.1250	5.67	-0.212	4.28	1.76	2.26	0.93	JsT-Ab-100805-07
					469.9875	5.67	-0.13	1.79	0.799	0.93	0.41	JsT-Ab-100805-08

Assessment at the Body with antenna PMAE4065A: The DUT was tested with antenna PMAE4065A using batteries NNTN7038A and PMNN4403A, body worn accessories HLN6875A and NTN9179A, and audio cable RMN5058A at the applicable even frequency channels (2, 4, and 6). Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 8.0

TABLE 19

	Assessments at the Body (CW mode) with antenna PMAE4065A Meas. Max Max Ma													
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)		Max Calc. 10g- SAR (W/kg)	Run#		
					380.0125									
					395.0000	5.69	-0.199	7.07	3.43	3.71	1.80	MeC-Ab-100804-05		
PMAE4065A					406.1250									
(380 - 520 /	NNTN7038A	HLN6875A Belt clip	Against phantom	RMN5058A (headset)	422.1250	5.65	-0.188	4.08	2.18	2.15	1.15	MeC-Ab-100804-06		
1575MHz)		Den enp	phantom	(neadset)	438.1250									
					453.9875	5.61	-0.0744	3.47	2.57	1.79	1.33	MeC-Ab-100804-07		
					469.9875									
					380.0125									
					395.0000	5.67	-0.26	6.12	4.56	3.27	2.43	MeC-Ab-100804-08		
PMAE4065A		HLN6875A	Against	RMN5058A	406.1250									
(380 - 520 / 1575MHz)	PMNN4403A	Belt clip	phantom	(headset)	422.1250	5.64	-0.244	5.12	3.81	2.74	2.04	MeC-Ab-100804-09		
10 (01111111)					438.1250									
					453.9875	5.66	-0.146	3.49	2.58	1.82	1.34	MeC-Ab-100804-10		
					469.9875									
					200.0125									
					380.0125	7.66	0.112	7.70	2.25	400	4.60	N G 41 100004 11		
					395.0000	5.66	-0.113	7.78	3.25	4.02	1.68	MeC-Ab-100804-11		
PMAE4065A (380 - 520 /	NNTN7038A	NTN9179A D-clip and	Against	RMN5058A	406.1250	7.60	0.150	5.05	2.26	200	4.00	N. G. 11. 100004.10		
1575MHz)	NIVIIV/030A	Belt Loop	phantom	(headset)	422.1250	5.68	-0.152	5.95	2.36	3.09	1.23	MeC-Ab-100804-12		
					438.1250		0.4=0			4.00				
					453.9875	5.63	-0.179	3.61	1.62	1.90	0.85	MeC-Ab-100804-13		
					469.9875									
					380.0125									
					395.0000	5.71	-0.322	5.99	2.49	3.23	1.34	JsT-Ab-100805-02		
DMAE4065 *		NITNO 1 70 4		t RMN5058A n (headset)	406.1250	2.7.2						131 113 10000 02		
PMAE4065A (380 - 520 /	PMNN4403A	NTN9179A D-clip and	Against phantom		422.1250	5.67	-0.213	5.58	2.35	2.95	1.24	JsT-Ab-100805-03		
1575MHz)		Belt Loop	phantom		438.1250									
					453.9875	5.67	-0.121	3.31	1.46	1.71	0.75	JsT-Ab-100805-04		
					469.9875	2.07		2.21		,-	3.70	122 120 10000 01		
					.07.7073									

Assessment at the Body with antenna PMAE4065A – Other Frequency channels:

The DUT was tested at all other applicable frequencies using the highest SAR configuration from table 19. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 9.0

TABLE 20

		Assessment	s at the Bo	dy (CW mod	e) with ant	enna PM	AE4065A	- Other	Frequenc	y channe	ls	
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
					380.0125	5.76	-0.276	7.5	2.97	4.00	1.58	JsT-Ab-100805-09
PMAE4065A (380 – 520 /	NNTN7038A	NTN9179A D-clip and	Against	RMN5058A	406.1250	5.74	-0.282	7.92	3.18	4.23	1.70	MeC-Ab-100805-10
1575MHz)	ININTIN/USOA	Belt Loop	phantom	(headset)	438.1250	5.71	-0.166	4.58	1.88	2.38	0.98	MeC-Ab-100805-11
					469.9875	5.71	-0.241	2.61	1.22	1.38	0.64	MeC-Ab-100805-12

Assessment at the Body with PSM PMMN4059A and antenna FAF5259A: The DUT was tested with PSM PMMN4059A and antenna FAF5259A using batteries NNTN7038A and PMNN4403A, and PSM belt clip 4205823V01, at the applicable even frequency channels (2, 4, and 6). Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in APPENDIX F and G Section 10.0

TABLE 21

	Assessment at the Body with PSM PMMN4059A and antenna FAF5259A											
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq.	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
					380.0125	5.65	-0.741	9.73	5.41	5.82	3.24	MeC-Ab-100801-02
			Against phantom	PMMN4059A	395.0000	5.68	-0.58	10.17	6.11	5.83	3.50	MeC-Ab-100731-09
FAF5259A	NNTN7038A	4205823V01 PSM Belt clip			406.1250	5.66	-0.164	10.94	6.39	5.72	3.34	MeC-Ab-100801-03
(380 - 470 /					422.1250	5.64	-0.109	9.72	6.14	5.04	3.18	MeC-Ab-100731-10
1575MHz)					438.1250	5.64	-0.411	12.92	8.25	7.18	4.58	MeC-Ab-100801-04
					453.9875	5.67	-0.439	12	8.56	6.67	4.76	MeC-Ab-100731-11
					469.9875	5.64	-0.134	6.55	4.68	3.41	2.44	MeC-Ab-100801-05
					380.0125	5.66	-0.633	8.66	4.82	5.04	2.81	MeC-Ab-100801-09
			Against phantom		395.0000	5.68	-0.68	10.49	6.08	6.16	3.57	MeC-Ab-100801-06
FAF5259A		4205823V01			406.1250	5.64	-0.168	10.94	6.47	5.75	3.40	MeC-Ab-100801-10
(380 - 470 / 1575MHz)	PMNN4403A	PSM Belt clip		PMMN4059A	422.1250	5.66	-0.0982	10.54	6.46	5.43	3.33	MeC-Ab-100801-07
					438.1250	5.50	-0.481	13.46	8.38	7.79	4.85	MeC-Ab-100916-09
					453.9875	5.6	-0.428	11.7	8.39	6.57	4.71	MeC-Ab-100801-08
					469.9875	5.64	-0.192	6.54	4.68	3.45	2.47	MeC-Ab-100801-12

13.3 Shorten Scan Assessment

Short scan assessment: A "shortened" scan was performed to validate the SAR drift of the full DASY4TM coarse and 5x5x7 zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a 5x5x7 zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The both SAR results from the table below are provided in APPENDIX E.

TABLE 22

	Short scan assessment											
Antenna	Battery	Carry Accessory	Test Position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
	Full scan											
FAF5259A (380 - 470 / 1575MHz)	PMNN4403A	None	Front DUT at 2.5cm	None	406.125	5.66	-0.801	10.18	7.59	6.16	4.60	MeC-Face-100806-11
10 / 01/1112)	Shortened scan											
FAF5259A (380 - 470 /			Front DUT									
1575MHz)	PMNN4403A	None	at 2.5cm	None	406.125	5.64	-0.417	10.9	8.04	6.06	4.47	MeC-Face-100902-06

14.0 Simultaneous Transmission Exclusion:

Not applicable.

15.0 Conclusion:

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing: model H98QDD9PW5AN (MNUE1005A):

TABLE 23: RF Exposure Results for FCC Part 90

	Max Calc at 1	Body (W/kg)	Max Calc at Face (W/kg			
Frequency Range (MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR		
406.1-470	7.79	4.85	6.16	4.60		

TABLE 24: RF Exposure Results for entire frequency range

Frequency Range (MHz)	Max Calc at 1	Body (W/kg)	Max Calc at Face (W/kg)			
Frequency Kange (WITIZ)	1g-SAR	10g-SAR	1g-SAR	10g-SAR		
380-470	7.79	4.85	6.16	4.60		

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of **8 W/kg** per the requirements of 47 CFR 2.1093(d).

APPENDIX A Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT ranging from 100MHz to 800MHz and for Dipole test frequency ranging from 300MHz to 800MHz. Therefore, the highest tolerance for the probe calibration uncertainty is indicated.

Table A1: Uncertainty Budget for Device Under Test, for 100 MHz to 800 MHz

							h =	i =
a	b	c	d	e = f(d,k)	f	g	cxf/e	c x g / e
	IEEE	Tol.	Prob		c_{i}	c_i	1 g	10 g
	1528	(± %)	Dist		(1 g)	(10 g)	u_i	\boldsymbol{u}_{i}
Uncertainty Component	section			Div.			(±%)	(±%)
Measurement System								
Probe Calibration	E.2.1	10.0	N	1.00	1	1	10.0	10.0
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0
Test sample Related								
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9
Phantom and Tissue Parameters								
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9
Combined Standard Uncertainty			RSS				14	13
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				27	27

FCD-0558 Uncertainty Budget Rev.8

Table A2: Uncertainty Budget for System Validation (dipole & flat phantom) for 300 MHz to 800 MHz

Sheertainey Buaget 101 System							h =	<i>i</i> =
a	b	\boldsymbol{c}	d	e = f(d,k)	f	g	cxf/e	c x g / e
		Tol.	Prob.		c_i	c_i	1 g	10 g
		(± %)	Dist.		(1 g)	(10 g)	u_i	u_i
Uncertainty Component	IEEE 1528 section	(= /0)	Dist.	Div.	(- 6)	(10 g)	(±%)	$(\pm \%)$
Measurement System				DIV.			(± /0)	(± /0)
Probe Calibration	E.2.1	9.0	N	1.00	1	1	9.0	9.0
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0
Dipole								
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9
Phantom and Tissue Parameters								
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5
Combined Standard Uncertainty			RSS				11	11
Expanded Uncertainty								
(95% CONFIDENCE LEVEL)			k=2				22	22

FCD-0558 Uncertainty Budget Rev.8

Notes for Tables 1, 2, 3 and 4

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Client Motorola EME

Accreditation No.: SCS 108

Certificate No: ES3-3147_Feb10

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes Calibration date: February 18, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. E\$3-3013_Dec09)	Dec-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	T. Mg
Approved by:	Niels Kuster	Quality Manager	X/12
			1 V./85
		•	Issued: February 19, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3147_Feb10

Probe ES3DV3

SN:3147

Manufactured: July 12, 2007
Last calibrated: February 13, 2009
Recalibrated: February 18, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3147_Feb10

Page 3 of 11

DASY - Parameters of Probe: ES3DV3 SN:3147

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.25	1.22	1.20	± 10.1%
DCP (mV) ^B	90.7	94.9	92.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: ES3DV3 SN:3147

Calibration Parameter Determined in Head Tissue Simulating Media

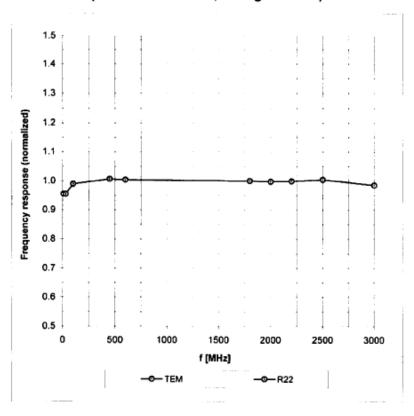
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
300	± 50 / ± 100	45.3 ± 5%	0.87 ± 5%	6.79	6.79	6.79	0.23	0.86 ± 13.3%
450	± 50 / ± 100	$43.5 \pm 5\%$	$0.87 \pm 5\%$	6.43	6.43	6.43	0.23	1.45 ± 13.3%
750	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	6.24	6.24	6.24	0.64	1.19 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	5.85	5.85	5.85	0.70	1.14 ± 11.0%
1810	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	5.06	5.06	5.06	0.42	1.80 ± 11.0%
1950	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	4.81	4.81	4.81	0.44	1.69 ± 11.0%
2300	± 50 / ± 100	$39.5 \pm 5\%$	1.67 ± 5%	4.68	4.68	4.68	0.40	1.85 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	4.42	4.42	4.42	0.40	2.06 ± 11.0%
2600	± 50 / ± 100	$39.0 \pm 5\%$	1.96 ± 5%	4.29	4.29	4.29	0.48	1.71 ± 11.0%
3500	± 50 / ± 100	$37.9 \pm 5\%$	2.91 ± 5%	4.09	4.09	4.09	1.00	1.23 ± 13.1%
3700	± 50 / ± 100	$37.7 \pm 5\%$	3.12 ± 5%	3.68	3.68	3.68	1.00	1.30 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3147_Feb10 Page 5 of 11

DASY - Parameters of Probe: ES3DV3 SN:3147

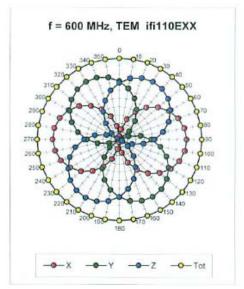
Calibration Parameter Determined in Body Tissue Simulating Media

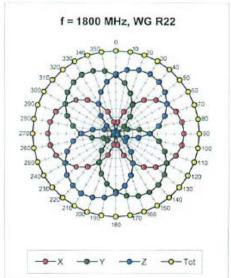

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X C	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	$0.94 \pm 5\%$	6.82	6.82	6.82	0.10	2.74 ± 13.3%
750	± 50 / ± 100	55.5 ± 5%	$0.96 \pm 5\%$	5.95	5.95	5.95	0.78	1.14 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	5.81	5.81	5.81	0.88	1.13 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.90	4.90	4.90	0.28	2.75 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.75	4.75	4.75	0.42	1.98 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	4.33	4.33	4.33	0.45	1.82 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.18	4.18	4.18	0.70	1.29 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.07	4.07	4.07	0.87	1.15 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	3.50	3.50	3.50	1.00	1.38 ± 13.1%
3700	± 50 / ± 100	51.0 ± 5%	$3.55 \pm 5\%$	3.38	3.38	3.38	0.64	1.93 ± 13.1%

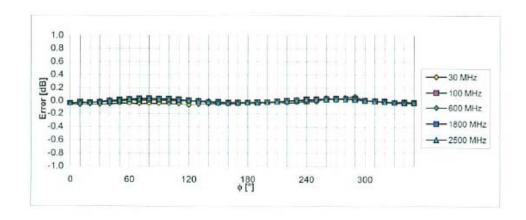
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3147_Feb10

Frequency Response of E-Field

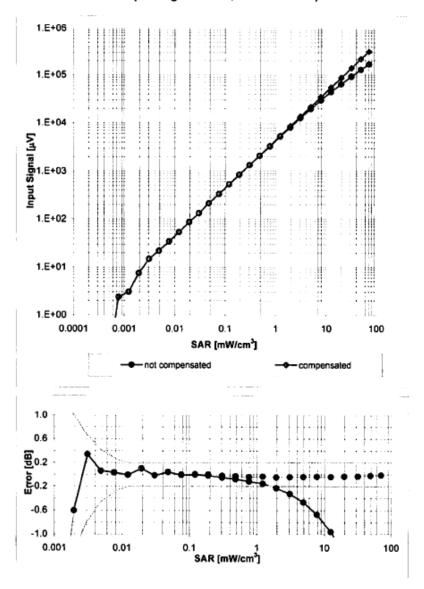

(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3147_Feb10

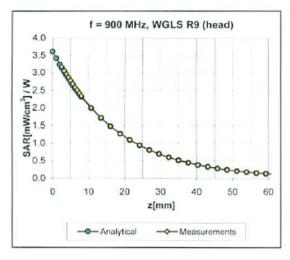
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

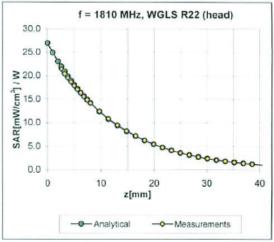

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3147_Feb10

Page 8 of 11

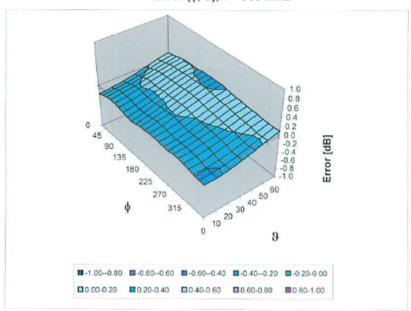
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3147_Feb10


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3147_Feb10 Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info⊄speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3		
Serial Number:	3147		
Place of Assessment:	Zurich		
Date of Assessment:	February 22, 2010		
Probe Calibration Date:	February 18, 2010		

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

ES3DV3-SN:3147 Page 1 of 2 February 22, 2010

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3147

Conversion factor (± standard deviation)

150 MHz $8.0 \pm 10\%$ ConvF $\varepsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue) 250 MHz ConvF $7.2 \pm 10\%$ $\varepsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue) 150 MHz ConvF 7.7±10% $\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue) 250 MHz $7.3 \pm 10\%$ ConvF $\varepsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue) 300 MHz ConvF $7.1 \pm 9\%$ $\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

APPENDIX C Dipole Calibration Certificates

S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

> Certificate No: D450V2-1002_Sep08 **Motorola CGISS**

Client CALIBRATION CERTIFICATE Object D450V2 - SN: 1002 QA CAL-15.v5 Calibration procedure(s) Calibration Procedure for dipole validation kits below 800 MHz Calibration date: September 26, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 01-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 01-Apr-08 (No. 217-00788) Apr-09 01-Apr-08 (No. 217-00788) Power sensor E4412A MY41498087 Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 01-Jul-08 (No. 217-00865) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Mar-09 Type-N mismatch combination SN: 5047.2 / 06327 01-Jul-08 (No. 217-00867) Jul-09 Reference Probe ET3DV6 (LF) SN: 1507 27-Jun-08 (No. ET3-1507_Jun08) Jun-09 DAE4 SN: 601 14-Mar-08 (No. DAE4-601_Mar08) Mar-09 Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 04-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 19-Oct-01 (in house check Oct-07) In house check: Oct-08 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 29, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V2-1002 Jul08

Page 1 of 6

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

poramical dana dana dana dana dana dana dana da	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.1 ± 6 %	0.83 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C		_

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.97 mW / g
SAR normalized	normalized to 1W	4.95 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	5.03 mW/g ± 18.1 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.33 mW / g
SAR normalized	normalized to 1W	3.34 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	3.37 mW / g ± 17.6 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.3 Ω - 6.1 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.348 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2002

DASY5 Validation Report for Head TSL

Date/Time: 26.09.2008 13:21:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1002

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\varepsilon_r = 43.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 27.06.2008

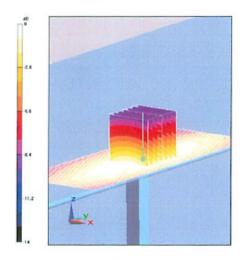
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4

Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

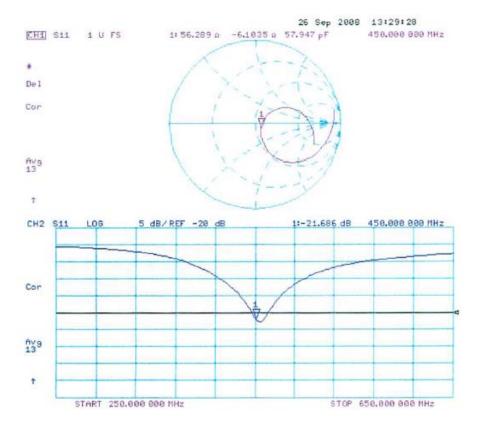
d=15mm, Pin=398mW/Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.09 mW/g


d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.7 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 2.92 W/kg

SAR(1 g) = 1.97 mW/g; SAR(10 g) = 1.33 mW/g


Maximum value of SAR (measured) = 2.12 mW/g

0 dB = 2.12 mW/g

Page 5 of 6

Impedance Measurement Plot for Head TSL

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME

Accreditation Nc.: SCS 108

Certificate No: D450V2-1001_Apr10

CALIBRATION CERTIFICATE Object D450V2 - SN: 1001 QA CAL-15.v5 Calibration procedure(s) Calibration Procedure for dipole validation kits below 800 MHz Calibration date: April 26, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Type-N mismatch combination SN: 5047.3 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Jul-10 Reference Probe ET3DV6 (LF) SN: 1507 03-Jul-09 (No. ET3-1507_Jul09) DAE4 SN: 654 23-Apr-10 (No. DAE4-654_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: April 26, 2010

Certificate No: D450V2-1001_Apr10 Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V2-1001_Apr10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.83 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.93 mW / g
SAR normalized	normalized to 1W	4.85 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.05 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.28 mW / g
SAR normalized	normalized to 1W	3.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.33 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.3 Ω - 9.3 jΩ
Return Loss	- 20.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.343 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2002

DASY5 Validation Report for Head TSL

Date/Time: 26.04.2010 11:59:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1001

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 03.07.2009

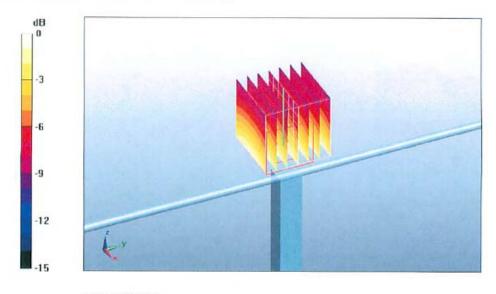
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 23.04.2010

Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Pin=398mW/d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

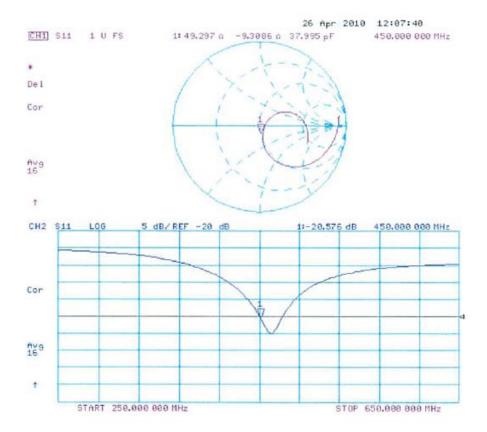

dz=5mm

Reference Value = 50.7 V/m; Power Drift = 0.0013 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.93 mW/g; SAR(10 g) = 1.28 mW/g

Maximum value of SAR (measured) = 2.07 mW/g



0 dB = 2.07 mW/g

Certificate No: D450V2-1001_Apr10

Page 5 of 6

Impedance Measurement Plot for Head TSL

