Certificate Number: 1449-01

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report Part 3 of 3

Date of Report: March 25, 2004

Report Revision: Rev. O **Manufacturer:** Motorola

Product Description: XTS5000 UHF R2; 450-520MHz, 1-5 watts nominal; 6 line display;

512 channel

FCC ID: AZ489FT4864
Device Model: H18SDH9PW7AN

Test Period: 2/23/04-3/15/04

EME Tech: Clint Miller

Responsible Eng: Jim Fortier (Elect. Principle Staff Eng.)

Author: Michael Sailsman (Global EME Regulatory Affairs Liaison)

Note: Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

Signature on file	3/25/04
Ken Enger	Date Approved
Senior Resource Manager, Laboratory Director, CGISS EME Lab	

Note: This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

APPENDIX D

Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola CGISS

Object(s)	ET3DV6 - SN:139	3	
Calibration procedure(s)	QA CAL-01.v2 Calibration proced	ure for dosimetric E-field probe	
Calibration date:	April 16, 2003		
Condition of the calibrated item	In Tolerance (acco	ording to the specific calibration	document)
	critical for calibration)	lity: environment temperature 22 +/- 2 degrees (Celsius and humidity < 75%.
Calibration Equipment used (M&TE Model Type	critical for calibration)	Cal Date	Scheduled Calibration
Calibration Equipment used (M&TE Model Type RF generator HP 8684C	critical for calibration) ID # US3642U01700	Cal Date 4-Aug-99 (in house check Aug-02)	Scheduled Calibration In house check: Aug-05
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A	critical for calibration) ID # US3642U01700 MY41495277	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03	Scheduled Calibration In house check: Aug-05 Apr-04
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	us3642U01700 MY41495277 MY41092180	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03 18-Sep-02	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	us3642U01700 MY41495277 MY41092180 GB41293874	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03 18-Sep-02 13-Sep-02	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Sep-03
All calibrations have been conducted. Calibration Equipment used (M&TE Model Type) RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	us3642U01700 MY41495277 MY41092180	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03 18-Sep-02	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03 18-Sep-02 13-Sep-02 3-May-00	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Sep-03 In house check: May 03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	Critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Sep-03 In house check: May 03 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	Critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-99 (in house check Aug-02) 2-Apr-03 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Sep-03 In house check: May 03 Sep-03 Sep-03

DASY - Parameters of Probe: ET3DV6 SN:1393

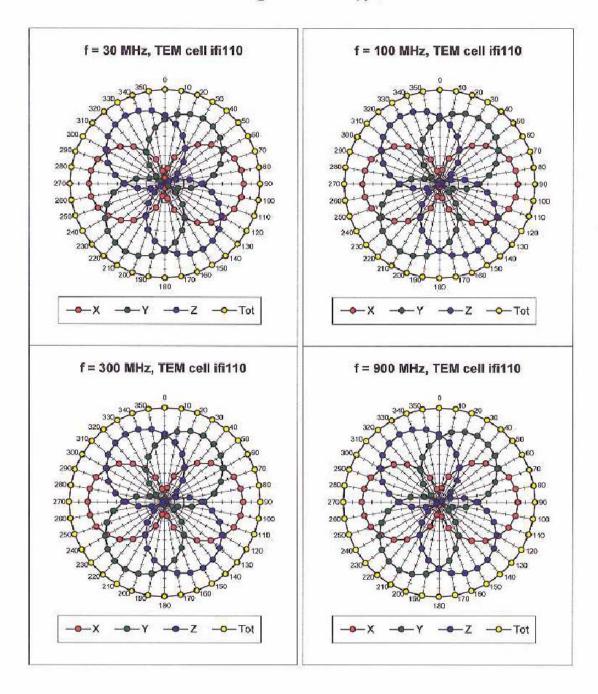
Sensitivity in Free Space		Diode Compression		
NormX 1.80 μV/(V/m) ²		DCP X	94	m'

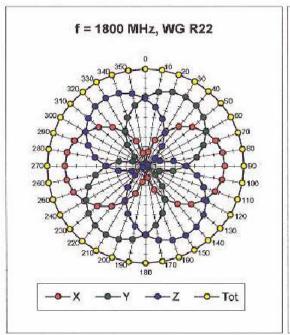
NormX	1.80 μV/(V/m) ²	DCP X	94	mV
NormY	1.49 μV/(V/m) ²	DCP Y	94	mV
NormZ	1.80 μV/(V/m) ²	DCP Z	94	mV

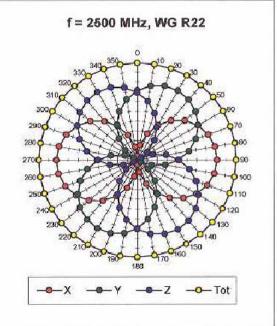
Sensitivity in Tissue Simulating Liquid

Head	900 MH	lz	ε _r = 41.5 ± 5%	σ = 0.97 ± 5%	mho/m
Valid for f	=800-1000 MHz wit	h Head T	ssue Simulating Liquid acc	ording to IEEE P1528	-200X
	ConvF X	7.0	± 9.5% (k=2)	Boundary 6	effect:
	ConvF Y	7.0	± 9.5% (k=2)	Alpha	0.31
	ConvF Z	7.0	± 9.5% (k=2)	Depth	2.71
Head	1800 MH	z	$\epsilon_{\rm r}$ = 40.0 ± 5%	$\sigma = 1.40 \pm 5\%$	mho/m
Valid for f	=1710-1910 MHz w	th Head	Tissue Simulating Liquid ac	cording to IEEE P152	8-200X

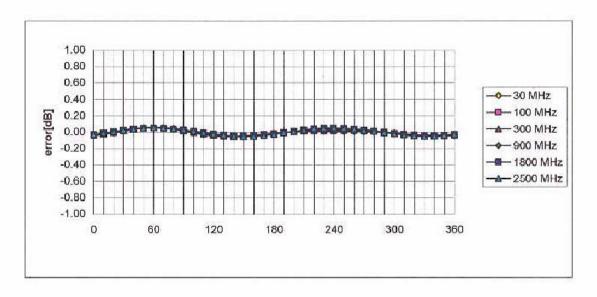
ConvF X	5.5 ± 9.5% (k=2)	Boundary	effect:
ConvF Y	5.5 \pm 9.5% (k=2)	Alpha	0.48
ConvF Z	5.5 ± 9.5% (k=2)	Depth	2.51

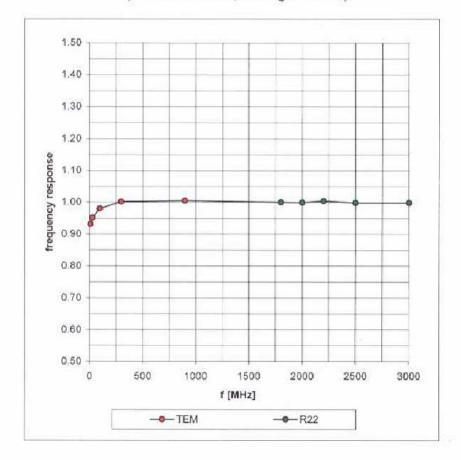

Boundary Effect


Head	900 MHz Typical	SAR gradient: 5 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction	Algorithm 9.0	5.3
	SAR _{be} [%] With Correction Alg	orithm 0.3	0.5
Head	1800 MHz Typical	SAR gradient: 10 % per mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction	Algorithm 12.2	8.3
	SAR _{be} [%] With Correction Alg	orithm 0.1	0.3

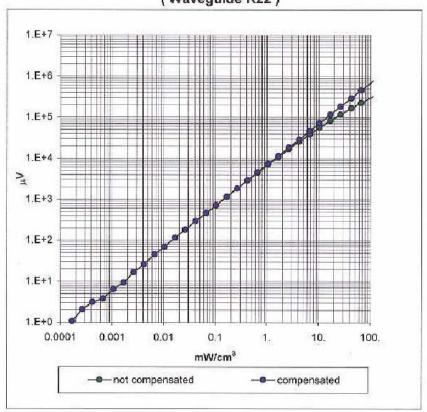

Sensor Offset

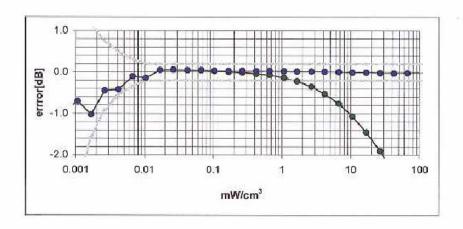
Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	0.9 ± 0.2	mm


Receiving Pattern (ϕ , θ = 0°

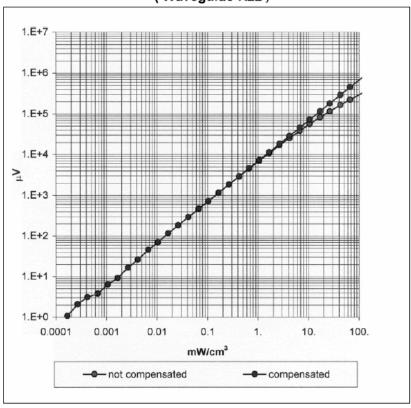


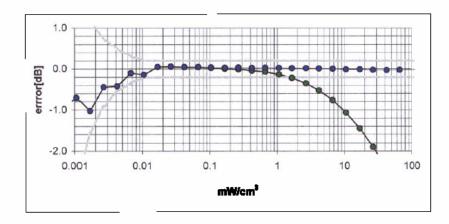
Isotropy Error (ϕ), $\theta = 0^{\circ}$


Frequency Response of E-Field

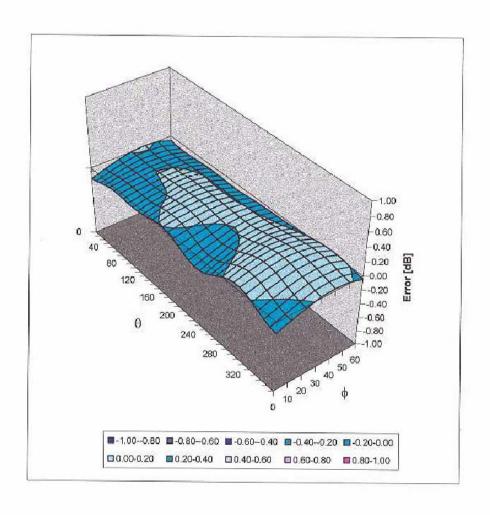

(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain})


(Waveguide R22)



Dynamic Range f(SAR_{brain})


(Waveguide R22)

Deviation from Isotropy in HSL

Error (0.), f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1393
Place of Assessment:	Zurich
Date of Assessment:	April 21, 2003
Probe Calibration Date:	April 16, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1393

Conversion factor (± standard deviation)

150 MHz	ConvF	8.8 ± 8 %	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
236 MHz	ConvF	$8.6 \pm 8\%$	$z_r = 59.8$ $C = 0.87 \text{ mho/m}$ (body tissue)
300 MHz	ConvF	$8.4 \pm 8\%$	$\varepsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
350 MHz	ConvF	$8.4 \pm 8\%$	$\varepsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue)
450 MHz	ConvF	8.0 ± 8 %	$\epsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue)
784 MHz	ConvF	$7.0\pm8\%$	$\epsilon_r = 55.4$ $\sigma = 0.97 \text{ mho/m}$ (body tissue)
1450 MHz	ConvF	$5.6 \pm 8\%$	$\epsilon_r = 54.0$ $\sigma = 1.30 \text{ mho/m}$ (body tissue)

Dosimetric E-Field Probe ET3DV6 SN:1393

Conversion factor (± standard deviation)

150 MHz	ConvF	9.7 ± 8%	$\varepsilon_r = 52.3$ $\sigma = 0.76$ mho/m (head tissue)
236 MHz	ConvF	$8.8 \pm 8\%$	$\epsilon_r = 48.3$ $\sigma = 0.82 \text{ mho/m}$ (head tissue)
300 MHz	ConvF	$8.5 \pm 8\%$	$\epsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
350 MHz	ConvF	$8.5 \pm 8\%$	$\varepsilon_r = 44.7$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
400 MHz	ConvF	$8.1\pm8\%$	$\epsilon_r = 44.4$ $\sigma = 0.87 \text{ mho/m}$ (head tissue - CENELEC)
450 MHz	ConvF	$8.1\pm8\%$	$\epsilon_r = 43.5$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
784 MHz	ConvF	$7.3\pm8\%$	$\epsilon_r = 41.8$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

450 MHz System Validation Dipole

Type:	D450V2
Serial Number:	1001
Place of Calibration:	Zurich
Date of Calibration:	April 5, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

1. Measurement Conditions

The measurements were performed in the flat phantom filled with head simulating liquid of the following electrical parameters at 450 MHz:

Relative Dielectricity 44.5 \pm 5% Conductivity 0.86 mho/m \pm 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 7.2 at 450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the longer side of the phantom. The standard measuring distance was 15mm from dipole center to the liquid surface including the 6mm thick phantom shell. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 389 mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 4.77 mW/g (Advanced Extrapolation)

averaged over 10 cm³ (10 g) of tissue: 3.17 mW/g (Advanced Extrapolation)

Advanced extrapolation has been applied to the measured SAR values to compensate for the probe boundary effect (see DASY User Manual for details).

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.342 ns (one direction)

Transmission factor: 0.997 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

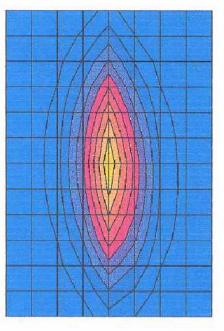
Feedpoint impedance at 450 MHz: $Re\{Z\} = 57.9 \Omega$

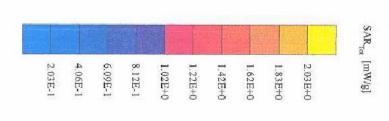
Im $\{Z\} = -6.0 \Omega$

Return Loss at 450 MHz -20.8 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.


Design


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Validation Dipole D450V2 SN:1001, d=15~mm Frequency: 450 MHz; Antenna Input Power: 388 [mW] Phantom Name: Calibration, Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe: ET3DV6 - SN1507; ConvP(7.20,7.20,7.20); Crest factor: 1.0; Head 450 MHz; $\sigma=0.86~mho/m$ s, = 44.5 $\rho=1.00~g/cm^3$ Cubes (2): Peak: 2.81 mW/g ± 0.03 dB, SAR (1g): 1.85 mW/g ± 0.03 dB, SAR (10g): 1.23 mW/g ± 0.03 dB, (Advanced extrapolation) Penetration depth: 13.1 (12.0, 14.4) [mm]

APPENDIX E

Illustration of Body-Worn Accessories

The purpose of this appendix is to illustrate the body-worn carry accessories for FCC ID: AZ489FT4864. The sample that was used in the following photos represents the product used to obtain the results presented herein.

Photo 1. Model NTN9179A Side View

Photo 2. Model NTN9179A Back View

Photo 3. Model NTN8381C Side View

Photo 4. Model NTN8381C Back View

Photo 5. Model NTN9184A Side View

Photo 6. Model NTN9184A Back View

Photo 7. Model NTN8382A Side View

Photo 8. Model NTN8382A Back View

Photo 9. Model NTN8385B w/ 2.5"swivel Side View

Photo 10. Model NTN8385B w/ 2.5"swivel Back View

Photo 11. Model NTN8387A Side View

Photo 12. Model NTN8387A Back View

Photo 13. Model NTN8725A Side View

Photo 14. Model NTN8725A Back View

Photo 15. Model NTN8266B Side View

Photo 16. Model NTN8266B Back View

Photo 17. Model NTNNTN8385BA w/ 3" swivel Side View

Photo 18. Model NTNNTN8385BA w/ 3" swivel Side View

Photo 19. Model NTN8380B Side View

Photo 20. Model NTN8380B Back View

Appendix F Accessories and options test status and separation distances

The following table summarizes the test status and separation distance provided by each of the bodyworn accessories:

		Separation distance between base of DUT antenna and phantom	
Carry Case Model	Tested ?	surface. (mm)	Comments
NTN8266B	Yes	23	NA
NTN8725A	Yes	29	Tested with NTN8383A
NTN9179A	Yes	49	Tested with NTN9212A&NTN9213A
NTN9184A	Yes	55	NA
NTN8387A	Yes	58	Tested with NTN5243A
NTN8380B	Yes	64	Includes NTN8039B
NTN5243A	Yes	NA	Tested with NTN8387A
NTN9212A	Yes	NA	Swivel D clip tested with NTN9179A
NTN9213A	Yes	NA	3" swivel D clip tested with NTN9179A
NTN8383A	Yes	NA	Tested with NTN8725A
NTN8382B	Yes	52	NA
NTN8039B	Yes	NA	Tested with NTN8385B
NTN8385B	Yes	NA	Tested with NTN8039B and NTN8040B
NTN8381C	Yes	63	NA
NTN8040B	Yes	NA	Tested with NTN8385B
HLN6875A	Yes	39	NA
NTN6875A	No	NA	Provides greater separation distance than tested belt clip
NTN8384A	No	NA	Similar to NTN8383A

Attachments	Tested ?	Separation distance between base of DUT antenna and phantom surface. (mm)	Comments
Audio		,	
			Included with ear pieces
BDN6676D	Yes	NA	& headsets
NTN7660B	Yes	NA	NA
0100200002	Yes	NIA	Tested with interface
0180300E83	37	NA NA	module BDN6708B
NTN8613A	Yes	NA	Tested with ZMN6031A
PSM			
NMN6250A	Yes	18	Includes NTN8327A
NMN6251A	Yes	18	Includes NTN8327A
NMN6247A	Yes	18	Includes NTN8327A
NTN8327A	Yes	NA	External RF switch
RSM			
NMN6191C	Yes	NA	NA
NMN6193C	Yes	NA	NA
NMN6193BSPO3	Yes	NA	NA
NMN6193BSPO4	Yes	NA	NA
RMN5023A	Yes	NA	NA
RMN5025A	Yes	NA	NA
RMN5021A	Yes	NA	NA
RMN5026A	Yes	NA	NA
Headset			
NMN6258A	Yes	NA	NA
RMN4049A	Yes	NA	NA
NMN6246B	Yes	NA	Tested with BDN6676D
BDN6645A	Yes	NA	Tested with BDN6673B
BDN6673B	Yes	NA	Tested with BDN6635B
BDN6635B	Yes	NA	Tested with BDN6673B
BDN6636B	Yes	NA	Tested with BDN6673B
NMN6245A	Yes	NA	Tested with BDN6676D
NMN6259A	Yes	NA	NA
NMN1020A	Yes	NA	Tested with BDN6676D, NKN6498A, & NKN6050A
Ear piece			
ZMN6031A	Yes	NA	Tested with NTN8613A adapter
ZMN6032A	Yes	NA	Tested with NTN8613A adapter
BDN6780A	Yes	NA	Tested with BDN6676D adapter

BDN6726A	Yes	NA	Receive only, Test with BDN6676 adapter
BDN6728A	Yes	NA	Tested with BDN6676 adapter
BDN6729A	Yes	NA	Tested with BDN6676D adapter
BDN6730A	Yes	NA	Tested with BDN6676D adapter
ZMN6038A	Yes	NA	Tested with NTN8613A
ZMN6039A	Yes	NA	Tested with NTN8613A
BDN6667A	Yes	NA	Tested with BDN6676D
BDN6668A	Yes	NA	Tested with BDN6676D
BDN6665A	No	NA	Similar to BDN6726A
BDN6666A	No	NA	Similar to BDN6728A
BDN6664A	No	NA	Similar to BDN6726A
BDN6727A	No	NA	Similar to BDN6726A
BDN6669A	No	NA	Similar to BDN6729A
BDN6731A	No	NA	Similar to BDN6729A
BDN6670A	No	NA	Similar to BDN6730A
BDN6781A	No	NA	Similar to BDN6726A
BDN6732A	No	NA	Similar to BDN6730A
Comport			
NTN1625A	Yes	NA	Tested with BDN6676D & NKN6508A
NTN1663A	Yes	NA	Tested with BDN6676D & NKN6512A
NTN1736A	Yes	NA	Tested with BDN6676D & NKN6525A
NTN1624A	Yes	NA	Tested with BDN6676D adapter
Interface module			
BDN6671B	Yes	NA	Tested with BDN6641A & 0180300E83
BDN6708B	Yes	NA	Tested with BND6678A 0180300E83
BDN6678A	Yes	NA	Tested with BDN6671B
BDN6677B	No	NA	Similar to BDN6678A (Beige)
BDN6641A	No	NA	Similar to BDN6677B