Issue Date: September 2, 2004

Page 1 of 23

EMC SAR - TEST REPORT

JQA APPLICATION No. : KL80040152R

Name of Product : <u>GSM Cellular-Phone</u>

Model/Type No. : GX25

FCC ID : APYHRO00036

Applicant : Sharp Corporation, Communication Systems Group

Address : 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Manufacturer : <u>Sharp Corporation, Communication Systems Group</u>

Address : 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

Receive date of EUT : July 20, 2004

Final Judgement : Passed

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) under METI Japan, National Institute of Information and Communications Technology (NICT) under MPHPT Japan, and Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland.

THE TEST RESULTS only responds to the test sample. This test report shall not be reproduced except in full.

Authorized by:

Takashi Yamanaka, Director JQA KITA-KANSAI Testing Center JQA Application No. : KL80040152R

Model No. : GX25

FCC ID : APYHRO00036

: CFR 47 FCC Rules Part 2 : September 2, 2004 Regulation

Issue Date

Page 2 of 23

DIRECTORY

	Page
A) Documentation	
Directory	2
Test Regulation / General Information	3 - 5
SAR Measurement Set-up	6
Test Configuration Positions	7 - 9
Measurement Process	10
Measurement Uncertainties	11
Test Conditions	12
EUT Tune-up Procedure	13
EUT Modification / Responsible Party / Deviation from Standard	14
Test results	15
Summary	16
EUT Photographs	17
B) Test data	
Test System Validation	18 - 19
Tissue Simulant Verification	20
SAR Measurement Data	21 - 22
Appendix	23

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 3 of 23

: September 2, 2004

TEST REGULATION

FCC Rules and Regulations Parts 2 Subpart J (October 1, 2003)

O - Mobile Devices (§2.1091) O - Occupational/Controlled Exposure

● - Portable Devices (§2.1093) ● - General Population/Uncontrolled Exposure

Test procedure:

The SAR measurement procedures were specified in FCC/OET Bulletin 65 Supplement C (July, 2001) and IEEE Std 1528[™]-2003

The exposure limits were specified in ANSI/IEEE C95.1-1999.

GENERAL INFORMATION

Description of the Equipment Under Test (EUT):

1) Name : GSM Cellular-Phone

2) Model/Type No. : GX25

3) Product Type : Pre-production (S/N: TA-257)

4) EUT Authorization : ○ - Verification • - Certification ○ - D.o.C.

5) Transmitting Frequency : 1850.20 MHz - 1909.80 MHz (PCS1900)

2402.00 MHz - 2480.00 MHz (Bluetooth)

6) Receiving Frequency : 1930.20 MHz - 1989.80 MHz (PCS1900)

2402.00 MHz - 2480.00 MHz (Bluetooth)

7) Max. RF Output Power : 29.56 dBm 8) Power Rating : 3.9VDC

Note: This device contains GSM 900 MHz and DCS 1800 MHz functions not operational in U.S. territories. This report is only appliance for PCS 1900 MHz band.

Definitions for symbols used in this test report:

- Black box indicates that the listed condition, standard or equipment is applicable for this Report.
- O Blank box indicates that the listed condition, standard or equipment is not applicable for this Report.

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 4 of 23

: September 2, 2004

Description of the Antenna:

Type : Inverted F type antenna

Dimensions : Maximum width 36.38 mm

Maximum length 16.37 mm

Location : Inside the back cover

[Bluetooth Antenna]

Type : Inverted L type antenna Dimensions : Maximum width 8.2 mm

Maximum length 19.05 mm

Location : Inside the back cover

Battery Option:

Lithium-ion Battery Pack XN-1BT30 (780mAh)

Probe Specification:

Construction : Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static changes

Calibration : In air form 10 MHz to 2.5 GHz

In head tissue simulating liquid (HSL) and

muscle tissue simulating liquid 900 MHz (accuracy ± 11.3%; k=2) 1800 MHz (accuracy ± 11.7%; k=2) 2450 MHz (accuracy ± 9.7%; k=2)

Frequency : 10 MHz to 3 GHz (dosimetry);

Linearity: ±0.2 dB (30 MHz to 3 GHz)

Directivity : ± 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal probe axis)

Dynamic Range : $5 \mu W/g$ to >100 mW/g; Linearity: $\pm 0.2 dB$

Surface Detection : ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Dimensions : Overall length 330 mm

Tip length 16 mm Body diameter 12 mm Tip diameter 6.8 mm

Distance from probe tip to dipole centers 2.7 mm

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 5 of 23

Twin SAM Phantom:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right head phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

: September 2, 2004

Shell Thickness : $2 \pm 0.2 \text{ mm}$

Filling Volume : Volume Approx. 25 liters

Dimensions : $810 \times 1000 \times 500 \text{ mm (H} \times L \times W)$

Mounting Device for Transmitters:

The Mounting Device enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Typical Composition of Ingredients for Liquid Tissue:

Ingredients	Frequency (MHz)					
(% by weight)	83	835 1900 245		50		
	Head	Body	Head	Body	Head	Body
Water	41.45	52.40	54.90	40.40	62.70	73.20
Salt (NaCl)	1.45	1.40	0.18	0.50	0.50	0.04
Sugar	56.00	45.00	0.00	58.00	0.00	0.00
HEC	1.00	1.00	0.00	1.00	0.00	0.00
Bactericide	0.10	0.10	0.00	0.10	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	36.80	0.00
DGBE	0.00	0.00	44.92	0.00	0.00	26.70

Salt : $99^{+}\%$ Pure Sodium Chloride Sugar : $98^{+}\%$ Pure Sucrose Water : De-ionized, $16 \text{ M}\Omega^{+}$ resistivity HEC : Hydroxyethyl Cellulose DGBE : $99^{+}\%$ Di (ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

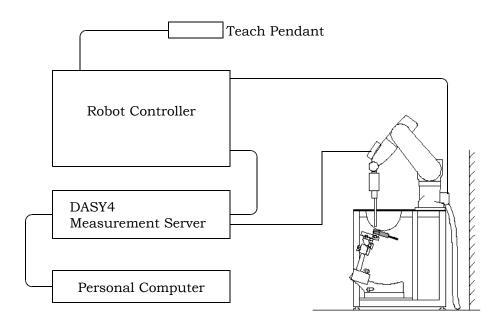
Triton X-100 (ultra pure) : Polyethylene glycol mono [4-(1,1,3,3-tetramethylbuthyl)phenyl]ether

The composition of ingredients is according to FCC/OET Bulletin 65 Supplement C (July, 2001).

Issue Date

Model No. : GX25

FCC ID : APYHRO00036


Page 6 of 23

: September 2, 2004

SAR MEASUREMENT SET-UP

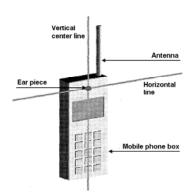
These measurements are performed using the DASY4 automated dosimetric assessment system (manufactured by Schmid & Partner Engineering AG (SPEAG) in Zürich, Switzerland). It consists of high precision robotics system, cell controller system, DASY4 measurement server, personal computer with DASY4 software, data acquisition electronic (DAE) circuit, the Electro-optical coupler (EOC), near-field probe, and the twin SAM phantom containing the equivalent tissue. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

The Robot is connected to the cell controller to allow software manipulation of the robot. The DAE is connected to the EOC. The DAE performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server.

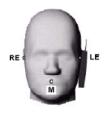
Model No. : GX25

FCC ID : APYHRO00036

Page 7 of 23


: September 2, 2004

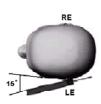
TEST CONFIGURATION POSITIONS


Issue Date

Cheek/Touch Position:

- 1. Position the device with the vertical center line of the body of the device and the horizontal line crossing the center of the ear piece in a plane parallel to the sagittal plane of the phantom.
- 2. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- 3. Translate the mobile phone box towards the phantom with the ear piece aligned with the line RE-LE until the phone touches the ear.

4. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.



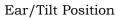
Ear/Tilt Position:

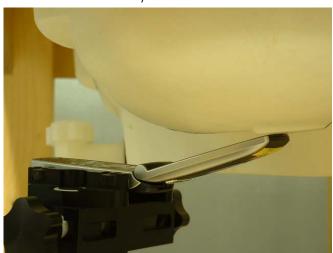
- 1. Position the device in the "Cheek/Touch Position".
- 2. While maintaining the device in the reference plane and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

JQA Application No. : KL80040152R Regulation : CFR 47 FCC Rules Part 2 : September 2, 2004 Issue Date

Model No. : GX25

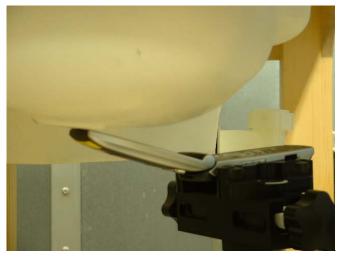
FCC ID : APYHRO00036


Page 8 of 23


Test Set-up (Photographs):

Cheek/Touch Position

Left Head

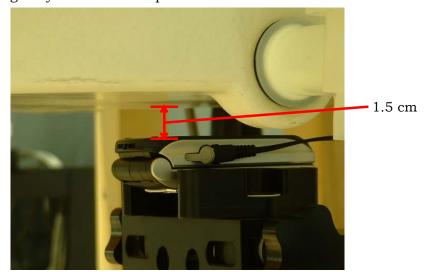


Cheek/Touch Position

Right Head

Ear/Tilt Position

JQA Application No.: KL80040152R : CFR 47 FCC Rules Part 2 Regulation Issue Date : September 2, 2004


Model No. : GX25

FCC ID : APYHRO00036

Page 9 of 23

Body Worn Configuration:

For body-worn operating configurations, the device is tested against a flat phantom representing the user body. A headset is connected to the device. Belt-clips or holsters are not supplied with the device as an accessory, then the device is 1.5 cm on distance from the flat phantom. It is recommended for testing body-worn SAR compliance.

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 10 of 23

: September 2, 2004

MEASUREMENT PROCESS

Area Scan for Maximum Search:

The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was $10 \text{ mm} \times 10 \text{ mm}$. The evaluation on the measured area scan gives the interpolated maximum (hot spot) of the measured area.

Cube Scan for Spatial Peak SAR Evaluation:

The 1g and 10g peak evaluations were available for the predefined cube 5×5×7 scans. The grid spacing was 8 mm × 8 mm × 5 mm. The first procedure is an extrapolation to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (35000 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. This last procedure is repeated for a 10g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Extrapolation:

The extrapolation is based on a least square algorithm. Through the points in the first 3 cm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from one another.

Interpolation:

The maximum interpolated value is serched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) are computed by the 3D spline algorithm. The 3D spline is composed of three one-dimensional splines with the "Not a knot"-condition (x, y and z -directions). The volume is integrated with the trapezoidal algorithm.

JQA Application No. : KL80040152R Regulation : CFR 47 FCC Rules Part 2 : September 2, 2004 Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 11 of 23

MEASUREMENT UNCERTAINTIES

Uncertainty Component	Uncertainty value (%)	Probability distribution	Divisor	Ci	Standard uncertainty 1g (%)	V i
Measurement System						
Probe calibration	4.8	Normal	1	1	4.8	8
Axial isotropy	4.7	Rectangular	√3	0.7	1.9	∞
Hemispherical isotropy	9.6	Rectangular	√3	0.7	3.9	8
Boundary effect	1.0	Rectangular	√3	1	0.6	8
Linearity	4.7	Rectangular	√3	1	2.7	8
Detection limits	1.0	Rectangular	√3	1	0.6	8
Readout electronics	1.0	Normal	1	1	1.0	8
Response time	0.8	Rectangular	√3	1	0.5	8
Integration time	2.6	Rectangular	√3	1	1.5	8
RF ambient conditions	3.0	Rectangular	√3	1	1.7	∞
Mechanical tolerance	0.4	Rectangular	√3	1	0.2	8
Probe positioning	2.9	Rectangular	√3	1	1.7	8
Extrapolation, interpolation and	1.0	Rectangular	√3	1	0.6	8
integration algorithms		_				
Test Sample Related						
Device positioning	3.4	Normal	1	1	3.4	23
Device holder uncertainty	4.6	Normal	1	1	4.6	5
Output power drift	5.0	Rectangular	√3	1	2.9	8
Physical parameters						
Phantom uncertainty	4.0	Rectangular	√3	1	2.3	8
Liquid conductivity -	5.0	Rectangular	√3	0.6	1.7	8
deviation from target values		_				
Liquid Conductivity -	10.0	Rectangular	√3	0.6	3.5	8
measurement uncertainty						
Liquid Permittivity -	5.0	Rectangular	√3	0.6	1.7	8
deviation from target values						
Liquid Permittivity -	5.0	Rectangular	√3	0.6	1.7	8
measurement uncertainty						
Combined Standard					11.3	
Uncertainty						
Expanded Uncertainty (k=2) (confidence interval of 95%)					22.5	

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 12 of 23

: September 2, 2004

TEST CONDITIONS

SAR Measurement

was performed in the following test site.

Test location:

KAMEOKA EMC Branch Shielded Room

9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan

Test instruments used in SAR measurement:

Name	Model No.	Device ID	Last Cal. Date	Cal. Interval
● - E-Field Probe○ - E-Field Probe	ET3DV6 ET3DV6	S - 1 S - 2	February, 2004	1 Year
● - DASY3 DAE	DAE3 V1	S - 3	February, 2004	1 Year
○ - Validation Dipole● - Validation Dipole○ - Validation Dipole	D900V2 D1800V2 D2450V2	S - 4 S - 5 S - 6	February, 2003	2 Years
5 . amaanon Dipore		~ 3		

Additional instruments used in test system validation:

Name	Model No.	Device ID	Last Cal. Date	Cal. Interval
O - Signal Generator	8673D	B - 2		
 Signal Generator 	MG3681A	B - 3	February, 2004	1 Year
- Power Meter	E4417A	B - 51	August, 2003	1 Year
- Power Sensor	E9300B	B - 32	May, 2004	1 Year
Power Amplifier	A0840-3833-R	A - 34	N/A	N/A
 Network Analyzer 	8719ET	B - 53	September, 2003	1 Year
• - Dielectric Probe Kit	85070D	B - 54	N/A	N/A

Test instruments used to measure conducted power output:

Name	Model No.	Device ID	Last Cal. Date	Cal. Interval
• - Power Meter	E4417A	B - 51	August, 2003	1 Year
- Power Sensor	E9321A	B - 52	May, 2004	1 Year
Fixed Attenuator	54-10	D - 82	November, 2003	1 Year
Fixed Attenuator	54-10	D - 83	November, 2003	1 Year

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 13 of 23

: September 2, 2004

EUT TUNE-UP PROCEDURE

The following procedures had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power, a Radio Communication Tester "Rohde & Schwarz, CMU-200" was used to program the EUT.

SM Mobile Station : GSM 1900

Network Support : GSM Mode - Circuit Switched

GPRS Mode - Packet Data (GPRS Level 10 / 2 slots)

Power Control Level (PCL) : 0 (30.0 dBm)

Channel	Frequency
0512	1850.20
0661	1880.00
0810	1909.80

For the Bluetooth transmitter, RF test mode prepared by the manufacturer was used to program the EUT.

Communication system : Bluetooth

Modulation type : Frequency Hopping Spread Spectrum (FHSS)

Channel	Frequency
00	2402.00
39	2441.00
78	2480.00

Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurements, before and after the SAR measurements was done.

: CFR 47 FCC Rules Part 2 : September 2, 2004 JQA Application No. : KL80040152R Regulation

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 14 of 23

	EU1 Modification		
• - No modifications were conducted by JO	QA to achieve complian	ace to applied levels.	
 To achieve compliance to applied levels compliance test. 	s, the following change	(s) were made by JQA during the	
The modification(s) will be implemen	ted in all production m	nodels of this equipment.	
Applicant : N/A	Date :	N/A	
Typed Name : N/A	Position :	N/A	
Responsible Party of Test Item(Produce Responsible party : Contact Person :			
		Signatory	
	viation from Standa	<u>ard</u>	
 No deviations from the standard descri 			
 The following deviations were employed 	d from the standard de	scribed in page 3.	

JQA Application No. : KL80040152R Regulation : CFR 47 FCC Rules Part 2 : September 2, 2004 Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 15 of 23

TEST RESULTS

Head Configuration		
The requirements are	• - Passed	○ - Not Passed
The Maximum SAR (1g) is	<u>0.618</u> mW/g at _	1880.00 MHz
Phantom Position	• - Left Head	○ - Right Head
Device Position	• - Cheek/Touch	○ - Ear/Tilt
Antenna Position	○ - In ○ - O	ıt ● - Fixed
Modulation Type	-	GSM
Measurement Uncertainty	-	22.5 %
Remarks:		
Body-worn Configuration		
The requirements are	• - Passed	○ - Not Passed
The Maximum SAR (1g) is	<u>0.282</u> mW/g at	1880.00 MHz
Modulation Type	-	GSM+GPRS
Measurement Uncertainty	-	22.5 %
Remarks:		

JQA Application No.: KL80040152R Regulation: C

Model No. : GX25

FCC ID : APYHRO00036

Regulation : CFR 47 FCC Rules Part 2

Issue Date : September 2, 2004

Page 16 of 23

SUMMARY

GENERAL REMARKS:

The EUT was tested according to the requirements of FCC Rules and Regulations Part 2 Subpart J (October 1, 2003) under the test configuration, as shown in page 7.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgement.

FINAL JUDGEMENT:

The "as received" sample;

- - fulfill the test requirements of the regulation mentioned on page 3.
- O fulfill the test requirements of the regulation mentioned on page 3, but with certain qualifications.
- O doesn't fulfill the test regulation mentioned on page 3.

Begin of testing : July 20, 2004

End of testing : July 27, 2004

- JAPAN QUALITY ASSURANCE ORGANIZATION -

Approved by:

Issued by:

Akio Hosoda Manager EMC Div.

JQA KITA-KANSAI Testing Center

Shigeru Kinoshita Deputy Manager

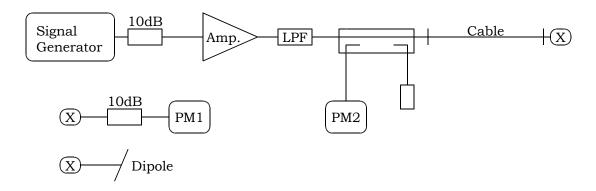
EMC Div.

JQA KITA-KANSAI Testing Center

Issue Date

Model No. : GX25

FCC ID : APYHRO00036


Page 18 of 23

: September 2, 2004

TEST SYSTEM VALIDATION

The power meter PM1 (including 10dB Attenuator) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for 250 mW at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

The dipole antenna is matched to be used near flat phantom filled with tissue simulating solution. A specific distance holder is used in the positioning of the antenna to ensure correct spacing between the phantom and the dipole.

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 19 of 23

: September 2, 2004

System Validation Results:

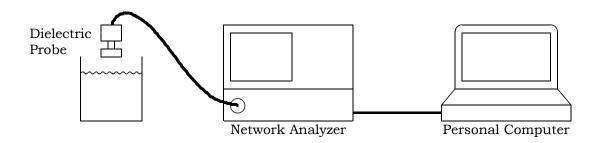
System Validation Dipole: D1800V2, S/N: 2d038

Ambient Conditions: 21	°C 58%	Depth of Liquid: 15.0 cm			Test Date: Ju	uly 20, 2004
Liquid		- Parameters	Target	Measured	Deviation [%]	Limit [%]
Medium	Temp. [°C]	1 at affecters	Target	Measureu	Deviation [/0]	1.mmt [/0]
		€ r	40.00	38.26	-4.35	± 5
Head 1800MHz	21.0	σ	1.40	1.386	-1.00	± 5
		1g SAR (mW/g)	9.62	9.44	-1.87	± 10
Ambient Conditions: 22°C 58% Depth of Liquid: 15.0 cm Test Date: July 26, 2004				uly 26, 2004		
		€ r	40.00	38.53	-3.68	± 5
Head 1800MHz	22.0	σ	1.40	1.360	-2.86	± 5
		1g SAR (mW/g)	9.62	9.63	+0.10	± 10
Ambient Conditions: 21	Ambient Conditions: 21°C 52% Depth of Liquid: 15.0 cm Test Date: July 27, 2004				uly 27, 2004	
		€r	53.30	54.09	+1.48	± 5
Muscle 1800MHz	21.0	σ	1.52	1.489	-2.04	± 5
		1g SAR (mW/g)	9.21	9.48	+2.93	± 10

Note) Please refer to Appendix for the result presentation in plot format.

Issue Date

Model No. : GX25


FCC ID : APYHRO00036

Page 20 of 23

: September 2, 2004

TISSUE SIMULANT VERIFICATION

The tissue dielectric parameters of the tissue medium at the middle of a device transmission band should be within ±5% of the parameters specified at that target frequency. It is verified by using the dielectric probe and the network analyzer.

Tissue Verification Results:

Ambient Conditions: 21°C 58% Test Date: July 20, 2004						
Liquid				Measured	Deviation [0/]	T ::4 [0/]
Medium	Temp. [°C]	Parameters	Parameters Target	Wieasured	Deviation [%]	Limit [%]
II4 1000MII-		€r	40.00	38.14	-4.65	± 5
Head 1900MHz	21.0	σ	1.40	1.432	+2.29	± 5
Ambient Conditions: 22°C 58% Test Date: July 26, 2004						ıly 26, 2004
H4 1000MH-	22.0	€r	40.00	38.20	-4.50	± 5
Head 1900MHz		σ	1.40	1.409	+0.64	± 5
Ambient Conditions: 21°C 52% Test Date: July 27, 2004						
M1- 1000MII-	01.0	€r	53.30	53.74	+0.83	± 5
Muscle 1900MHz	Muscle 1900MHz 21.0	σ	1.52	1.566	+3.03	± 5

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 21 of 23

: September 2, 2004

SAR MEASUREMENT DATA

Head Configuration Results:

Modulation Ty Left Head Posi	•	ity Cycle: 12	.2 %, Crest Fa Depth of Liqu			Test	Date: July 26,	2004	
EUT Set-up Configuration		Frequency		Power [dBm]		Limit	SAR (1g)	Tissue	
EUT Position	Antenna	Channel	MHz	Start	End	[mW/g]	[mW/g]	Temp. [°C]	
Cheek/Touch	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.56 29.49 29.25	29.53 29.45 29.20	1.6	0.540 0.618 0.546	22.0 22.0 22.0	
Ear/Tilt	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.56 29.49 29.25	29.53 29.45 29.20	1.6	0.155 0.179 0.160	21.6 21.9 21.8	
Bluetooth 00ch	(2402.00MH	z) ON				•		I	
Cheek/Touch	Fixed	0661	1880.00	29.49	29.45	1.6	0.608	21.5	
Bluetooth 39ch	ı (2441.00MH	z) ON							
Cheek/Touch	Fixed	0661	1880.00	29.49	29.45	1.6	0.618	21.8	
Bluetooth 78ch	(2480.00MH	z) ON							
Cheek/Touch	Fixed	0661	1880.00	29.49	29.45	1.6	0.606	21.9	
Right Head Po	sition	Depth of Liquid: 15.0 cm				Test Date: July 20, 2004			
Cheek/Touch	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.56 29.49 29.25	29.53 29.45 29.20	1.6	0.476 0.594 0.565	21.0 21.0 21.0	
Ear/Tilt	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.56 29.49 29.25	29.53 29.45 29.20	1.6	0.158 0.192 0.157	21.0 21.0 21.0	

Note 1) Power Measured : ● - Conducted ○ - ERP ○ - EIRP 2) Please refer to Appendix for the result presentation in plot format.

Tester: Yasuhisa Sakai

Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 22 of 23

: September 2, 2004

SAR MEASUREMENT DATA

Body-worn Configuration Results:

Modulation T Flat Position	ype: GSM (Du	ıty Cycle: 12	2.2 %, Crest Fa Depth of Liqu			Test	Date: July 27,	2004
EUT Set-up Configuration		Frequency		Power [dBm]		Limit	SAR (1g)	Liquid
Separation	Antenna	Channel	MHz	Start	End	[mW/g]	[mW/g]	Temp. [°C]
1.5 cm	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.56 29.49 29.25	29.53 29.45 29.20	1.6	0.129 0.146 0.125	21.0 21.0 21.0
Bluetooth 00c	h (2402.00MH	z) ON						
1.5 cm	Fixed	0661	1880.00	29.49	29.45	1.6	0.138	20.9
Bluetooth 39c	h (2441.00MH	z) ON						
1.5 cm	Fixed	0661	1880.00	29.49	29.45	1.6	0.137	20.9
Bluetooth 78c	h (2480.00MH	z) ON						I
1.5 cm	Fixed	0661	1880.00	29.49	29.45	1.6	0.134	20.9
Modulation Type: GSM+GPRS (Duty Cycle: 24.3 %, Crest Factor: 4.1) Flat Position Depth of Liquid: 15.0 cm Test Date: July 27, 2004								
1.5 cm	Fixed	0512 0661 0810	1850.20 1880.00 1909.80	29.52 29.45 29.20	29.42 29.31 29.07	1.6	0.258 0.282 0.237	21.0 21.0 21.0

Note 1) Power Measured : ● - Conducted ○ - ERP

 \bigcirc - ERP \bigcirc - EIRP

2) Please refer to Appendix for the result presentation in plot format.

Tester: Yasuhisa Sakai

: CFR 47 FCC Rules Part 2 : September 2, 2004 JQA Application No. : KL80040152R Regulation Issue Date

Model No. : GX25

FCC ID : APYHRO00036

Page 23 of 23

APPENDIX

Exhibit	Content	No. of page(s)	
1	System Validation Plots	3	
2	SAR Test Plots	25	
3	Dosimetric E-Field Probe - ET3DV6, S/N: 1678	8	
4	System Validation Dipole - D1800V2, S/N: 2d038	9	
5	Transmitted Duty Cycle Plots	2	