

: 1 of 50 Page **Issued date** : June 30, 2011 FCC ID : AK8PRST1

# **SAR TEST REPORT**

Test Report No.: 31KE0212-SH-02-C

**Applicant** : Sony Corporation

**Type of Equipment Digital Book Reader** 

Model No. PRS-T1

**Test Standard** FCC 47CFR §2.1093,

Supplement C (Edition 01-01) to OET Bulletin 65

**Test Result** Complied

Maximum SAR(1g) Value **0.897 W/kg** (2462MHz, IEEE 802.11b(1Mbps, DBPSK/DSSS))

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above standards.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

Date of test:

Test engineer:

Engineer of WiSE Japan, UL Verification Service

Approved by:

Toyokazu Imamura

Leader of WiSE Japan, UL Verification Service



The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan. There is no testing item of "Non-accreditation".

: 2 of 50 Page Issued date : June 30, 2011 FCC ID : AK8PRST1

| CONTENTS                           |                                                 | PAGE   |
|------------------------------------|-------------------------------------------------|--------|
| SECTION 1:                         | Customer information                            | 3      |
| <b>SECTION 2:</b>                  | Equipment under test (E.U.T)                    | 3      |
| SECTION 3:                         | Test specification, procedures and results      |        |
| 3.1                                | Test specification.                             |        |
| 3.2                                | Exposure limit                                  | т<br>Д |
| 3.3                                | Procedure and result                            |        |
| 3.4                                | Test location                                   |        |
| 3.5                                | Confirmation before SAR testing                 | 5      |
| 3.6                                | Confirmation after SAR testing.                 |        |
| 3.7                                | Measurement procedure                           |        |
| 3.8                                | Test setup of EUT.                              |        |
| SECTION 4:                         | Operation of E.U.T. during testing              |        |
| 41                                 | Operating modes for SAR testing                 |        |
|                                    | • •                                             |        |
| SECTION 5:                         | Uncertainty assessment (SAR measurement)        |        |
| <b>SECTION 6:</b>                  | Confirmation before testing                     | 8      |
| 6.1                                | Assessment for the conducted power of EUT       | 8      |
| <b>SECTION 7:</b>                  | Measurement results                             | 9      |
| 7.1                                | SRA for the tablet device                       | 9      |
| <b>Contents of app APPENDIX 1:</b> | Photographs of test setup                       | 10     |
| Appendix 1-1                       | Photograph of Wireless LAN module and antenna   | 10     |
| Appendix 1-2                       | Outline of the EUT                              |        |
| Appendix 1-3                       | EUT and support equipment                       |        |
| Appendix 1-4                       | Photograph of test setup.                       |        |
| <b>APPENDIX 2:</b>                 | SAR Measurement data                            |        |
| Appendix 2-1                       | Evaluation procedure                            | 14     |
| Appendix 2-2                       | Measurement data                                | 15     |
| <b>APPENDIX 3:</b>                 | Test instruments                                | 23     |
| Appendix 3-1                       | Equipment used                                  |        |
| Appendix 3-2                       | Dosimetry assessment setup                      |        |
| Appendix 3-3                       | Configuration and peripherals                   | 24     |
| Appendix 3-4                       | System components                               | 25     |
| Appendix 3-5                       | Test system specification.                      | 26     |
| Appendix 3-6                       | Simulated tissues composition                   | 26     |
| Appendix 3-7                       | Simulated tissues parameter confirmation.       | 27     |
| Appendix 3-8                       | System check data                               | 27     |
| Appendix 3-9                       | System check measurement data.                  | 28     |
| Appendix 3-10                      | System check uncertainty                        | 29     |
| Appendix 3-11                      | Calibration certificate: Dipole (D2450V2)       | 30     |
| Appendix 3-12                      | Calibration certificate: E-Field Probe (EX3DV4) |        |
| Appendix 3-13                      | References                                      | 50     |

Page : 3 of 50 Issued date : June 30, 2011 FCC ID : AK8PRST1

# **SECTION 1:** Customer information

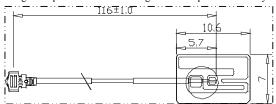
| Company Name     | Sony Corporation.                                                           |
|------------------|-----------------------------------------------------------------------------|
| Brand Name       | SONY                                                                        |
| Address          | Shinagawa INTERCITY C Tower, 2-15-3, Konan Minato-ku, Tokyo, Japan 108-6201 |
| Telephone Number | +81-3-5769-5222                                                             |
| Facsimile Number | +81-3-5769-5901                                                             |
| Contact Person   | Shinichi Maru                                                               |

# **SECTION 2:** Equipment under test (EUT)

### 2.1 Identification of EUT

| Type of Equipment      | Digital Book Reader                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------|
| Model Number           | PRS-T1                                                                                                                 |
| Serial Number          | 463                                                                                                                    |
| Condition of EUT       | Engineering prototype (*. Not for sale: This sample is equivalent to mass-produced items.)                             |
| Receipt Date of Sample | June 27, 2011 / *. No modification by the Lab.                                                                         |
| Country of Mass-       | Japan                                                                                                                  |
| Category Identified    | Portable devic and tablet device                                                                                       |
| Feature of EUT         | This EUT is a Digital Book Reader with built-in WLAN module (IEEE 802.11b/g/n(20HT)).                                  |
|                        | *. The EUT has built-in re-chargeable Li-ion battery. During SAR test, the EUT was operated with full-charged battery. |
| Accessory of EUT       | AC adaptor (for charging the rechargeable Li-ion battery)                                                              |

### [Battery used for SAR test]


| Type         | Built-in rechargeable Li-ion Battery |
|--------------|--------------------------------------|
| Model name   | LIS1476MHPPC(SY6)                    |
| Rating       | DC4.2V/3.6Wh                         |
| Manufacturer | SONY                                 |

# 2.2 Product Description (Wireless LAN module)

| Equipment type              | Transceiver                                                                         |
|-----------------------------|-------------------------------------------------------------------------------------|
| Frequency of operation      | 2412-2462MHz                                                                        |
| Channel spacing / Bandwidth | 5MHz/20MHz                                                                          |
| ITU code                    | G1D(11b), D1D(11g,11n)                                                              |
| Type of modulation          | DSSS(11b), OFDM(11g,11n)                                                            |
| Q'ty of Antenna             | 1 pc.                                                                               |
| Antenna type / Model name   | Type: PIFA (Planar Inverted F Antenna) / Model: SOYW-084C                           |
| Antenna connector type      | RF module side: U.FL connector compatible/ antenna side: soldered                   |
| Antenna gain (peak)         | 1.07 dBi (2412MHz), 2.06 dBi (Max., 2436MHz), 1.25 dBi (2.472MHz) *.with cable loss |
| Transmit power              | *. refers to section 6 in this report.                                              |
| Power supply                | DC 3.3V, DC1.8V (*.with constant voltage circuit.)                                  |
| Operation temperature range | +5 to +35 deg.C                                                                     |

\*. The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

\*. Antenna outline [unit: mm];



Page : 4 of 50 Issued date : June 30, 2011 FCC ID : AK8PRST1

### **SECTION 3:** Test specification, procedures and results

### 3.1 Requirements for compliance testing defined by the FCC / Test specification

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

- 1. Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).
- IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

#### **Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01):**

Supplement C (Edition 01-01) - Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

OET Bulletin 65 (Edition 97-01) - Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

#### **IEEE Std. 1528-2003:**

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Supplement C

In additions;

KDB 447498 D01(v04)(Nov.13, 2009): Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 248227 (rev.1.2)(May 29, 2007): SAR Measurement Procedures for 802.11a/b/g Transmitters

KDB 616217 (v01) (Nov.13, 2009): SAR Evaluation Considerations for Laptop/Notebook/Notebook and Tablet Computers

#### 3.2 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

| (-)                             | (                                |                                   |
|---------------------------------|----------------------------------|-----------------------------------|
| Whole-Body                      | Partial-Body                     | Hands, Wrists, Feet and Ankles    |
| (averaged over the entire body) | (averaged over any 1g of tissue) | (averaged over any 10g of tissue) |
| 0.4                             | 8.0                              | 20.0                              |

(B) Limits for General population/Uncontrolled Exposure (W/kg)

| Whole-Body (averaged over the entire body) | Partial-Body<br>(averaged over any 1g of tissue) | Hands, Wrists, Feet and Ankles<br>(averaged over any 10g of tissue) |  |
|--------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|--|
| 0.08                                       | 1.6                                              | 4.0                                                                 |  |

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

#### The limit applied in this test report is;

General population / Uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

#### 3.3 Procedures and Results

| Item     | Item Test Procedure Lin       |                     | Exclusion | Remarks               | Result        |
|----------|-------------------------------|---------------------|-----------|-----------------------|---------------|
| Human    | FCC                           | SAR(1g): 1.6 W/kg   | none      | SAR measurement       | Complied (*1) |
| exposure | OET Bulletin 65, Supplement C | (FCC 47CFR §2.1093) | none      | SAIX III CASCITETICII | Compiled (*1) |

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. Other than above, no addition, deviation nor exclusion has been made from standards \*1. The worst SAR(1g) of each frequency band was as follows:

0.897 W/kg (2462MHz, IEEE 802.11b, (1Mbps, DBPSK/DSSS))

The SAR(1g) was <1.2W/kg for all configuration. Therefore according to the KDB447498 D01, this EUT was approved for used in a single platform.

#### 3.4 Test Location

No.7 shielded room  $(2.76(Width) \times 3.76m(Depth) \times 2.4m(Height))$  for SAR testing.

#### UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

 Page
 : 5 of 50

 Issued date
 : June 30, 2011

 FCC ID
 : AK8PRST1

#### 3.5 Confirmation before SAR testing

### 3.5.1 Correlation of Output Power between EMC and SAR tests

It was checked that the antenna port power was correlated within  $0\sim+5\%$  (FCC requirements). The result is shown in Section 6.

- \*. Output power at SAR test: SAR power was measured before SAR testing (serial number: 493).

  The antenna terminal conducted output power was measured by the calibrated power sensor and power meter (65MHz measurement bandwidth).

  The average and the peak power of 11b, 11g and 11n(20HT) mode were measured at default channel.
- \*. Output power at EMC radio test: EMC power was measured during EMC testing. (serial number: 497). For the EMC test, the antenna terminal conducted peak output power was measured at 11b, 11g and 11n(20HT) mode. In addition, for the SAR test reference, the average power of 11b, 11g and 11n(20HT) modes were measured at specified condition.

#### 3.5.2 Average power for SAR tests

#### Step.1 Data rate check

The average power related with the data rate was measured on one of the channel for 802.11b, 11g and 11n(20HT) modes.

| 11b        | 11b                 |            | 11g                 |              | 11n(20            | HT)        |
|------------|---------------------|------------|---------------------|--------------|-------------------|------------|
| Modulation | Data rate<br>[Mbps] | Modulation | Data rate<br>[Mbps] | MCS<br>Index | Spatial<br>Stream | Modulation |
| DBPSK/DSSS | 1                   | BPSK/OFDM  | 6                   | MCS0         | 1                 | BPSK/OFDM  |
| DQPSK/DSSS | 2                   | BPSK/OFDM  | 9                   | MCS1         | 1                 | QPSK/OFDM  |
| CCK/DSSS   | 5.5                 | QPSK/OFDM  | 12                  | MCS2         | 1                 | QPSK/OFDM  |
| CCK/DSSS   | 11                  | QPSK/OFDM  | 18                  | MCS3         | 1                 | 16QAM/OFDM |
|            |                     | 16QAM/OFDM | 24                  | MCS4         | 1                 | 16QAM/OFDM |
|            |                     | 16QAM/OFDM | 36                  | MCS5         | 1                 | 64QAM/OFDM |
|            |                     | 64QAM/OFDM | 48                  | MCS6         | 1                 | 64QAM/OFDM |
|            |                     | 64QAM/OFDM | 54                  | MCS7         | 1                 | 64QAM/OFDM |

#### Step.2 Decision of SAR test channel

For the SAR test reference, the average power was measured on default channels of 802.11b, 11g and 11n(20HT).

| Mode       | GHz   | Channel | "Default Tes | st Channel" |
|------------|-------|---------|--------------|-------------|
|            |       |         | FCC 1        | 5.247       |
|            |       |         | 802.11b      | 802.11g     |
|            | 2.412 | 1#      | <b>√</b>     | Δ           |
| 802.11 b/g | 2.437 | 6       | <b>V</b>     | Δ           |
|            | 2.462 | 11#     | V            | Δ           |

 $<sup>\</sup>sqrt{\text{= "default test channels" in KDB248227.}}$ 

- \* = Possible 802.11a channels with maximum average output > the "default test channels"
- $\Delta$  = Possible 802.11g channels with maximum average output  $\frac{1}{4}$  dB  $\geq$  the "default test channels"

#### 3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within  $\pm 5\%$  in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY4 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position. The result is shown in APPENDIX 2.

\*. DASY4 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m])

Limit of power drift[W] =  $\pm 5\%$ 

Power drift limit (X) [dB] =  $10\log(P_{drift}) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.21dB$ 

from E-filed relations with power.

S=E×H=E<sup>2</sup>/ $\eta$ =P/(4× $\pi$ ×r<sup>2</sup>) ( $\eta$ : Space impedance)  $\rightarrow$  P=(E<sup>2</sup>×4× $\pi$ ×r<sup>2</sup>)/ $\eta$ 

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P\_drift)=10log(E\_drift)^2=20log(E\_drift)

From the above mentioned, the calculated power drift of DASY4 system must be the less than  $\pm 0.21 dB$ .

<sup>#.</sup> Any output power was reduced for channel 1 and 11 to meet restricted band requirements. Therefore channel 1 and 11 was selected for the default channels and SAR test was applied.

 Page
 : 6 of 50

 Issued date
 : June 30, 2011

 FCC ID
 : AK8PRST1

### 3.7 Measurement procedure

|   | Step 1 | Worst position search. (at lowest data rate, at maximum average power channel) |  |
|---|--------|--------------------------------------------------------------------------------|--|
| ſ | Step 2 | Change the channels.                                                           |  |
| Ī | Step 3 | Change separation distance.                                                    |  |

<sup>\*.</sup> During SAR test, the radiated power is always monitored by Spectrum Analyzer.

#### 3.8 Test setup of EUT

Antenna-to-user separation distance and SAR test condition:

| #  | Setup                     | Explanation / Propriety of the application of SAR test                                                      |  |  |
|----|---------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| 77 | Tablet-held:              | 7.2mm from Wi-Fi antenna-to-user. SAR test was applied.                                                     |  |  |
| 1  |                           |                                                                                                             |  |  |
| Ĺ  | Rear-touch                | The rear surface of EUT was touched to the Flat phantom.                                                    |  |  |
| 2  | Tablet edges;             | 90mm from Wi-Fi antenna-to-user. No need SAR testing due to the distance between antenna and this edge of   |  |  |
|    | Primary landscape-touch   | the EUT is bigger than 5cm referred as the KDB447498/KDB 616217.                                            |  |  |
| 3  | Tablet edges;             | 9mm from Wi-Fi antenna-to-user. SAR test was applied.                                                       |  |  |
| 3  | Secondary landscape-touch | The secondary landscape edge surface of EUT was touched to the Flat phantom.                                |  |  |
| 1  | Tablet edges;             | Approx. 162mm from Wi-Fi antenna-to-user. No need SAR testing due to the distance between antenna and       |  |  |
| -  | Primary portrait-touch    | this edge of the EUT is bigger than 5cm referred as the KDB447498/KDB 616217.                               |  |  |
| _  | Tablet edges;             | 2.8mm from Wi-Fi antenna-to-user. SAR test was applied.                                                     |  |  |
| 3  | Secondary portrait-touch  | The secondary portrait edge surface of EUT was touched to the Flat phantom.                                 |  |  |
|    | Tablet-held;              | 1.2mm from Wi-Fi antenna-to-user. This surface exists in the possibility of coming in contact with the body |  |  |
| 6  | 1)Front-touch             | when this EUT is maintained. Therefore, SAR test was applied.                                               |  |  |
| 0  | 2)Front 5mm gap           | 1)Front-touch: The front surface of EUT was touched to the Flat phantom.                                    |  |  |
|    | *. Front: LCD side        | 2) Front 5mm gap: The distance between front surface of EUT and the Flat phantom was 5mm with air gap.      |  |  |
|    | Tablet-held;              | Approx2mm from Wi-Fi antenna-to-user. This surface exists in the possibility of coming in contact with the  |  |  |
| 7  | Top-rear-touch            | body when this EUT is maintained. Therefore, SAR test was applied.                                          |  |  |
|    |                           | The top-rear section of EUT was touched to the Flat phantom.                                                |  |  |

<sup>\*.</sup> The EUT has two fixed display orientation with one in portrait and one in landscape.

### **SECTION 4: Operation of EUT during testing**

### 4.1 Operating modes for SAR testing

This EUT has IEEE.802.11b, 11g and 11n(20HT) continuous transmitting modes.

For the SAR test, the 802.11b (DSSS) mode with lowest data rate (1Mbps, DBPSK) was only operated.

- \*. According to KDB248227; SAR is not required for 802.11g and 11n(HT20) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.
- \*. According to KDB248227; SAR is not required for higher data rate when the maximum average output power is less than 1/4 dB higher than the lowest data rate.

Operation mode : IEEE 802.11b

Frequency (Channel) : 2412MHz(1ch-low), 2437MHz(6ch-middle), 2462MHz(11ch-high)

Data rate/Modulation : 1Mbps / DBPSK/DSSS

Crest factor : 1.0 (\*. The duty cycle that is measured is shown in section 6.)

Controlled software : Wi-Fi Test mode

For the setting of continuous Tx operation, the EUT was connected with the host PC via USB cable. By using the soft setting screen (the example of the screen is shown in the next page), the full Tx power that the customer had set beforehand was transmitted at the selected

frequency, and at the selected data rate.

In accordance with KDB447498, SAR test is required the rear side of EUT and the antenna side located within 5cm of the tablet edge closet to the user for the applicable display orientation. (#1, #2, #4 in the above the table.)

However, SAR test was applied all surfaces near the antenna, because this included most conservative exposure condition and this was the customer's request.

Page : 7 of 50 Issued date : June 30, 2011 FCC ID : AK8PRST1

```
| COMOTISEDENDED | Terr | Terr
```

# **SECTION 5:** Uncertainty Assessment (SAR measurement)

| Uncontainty of SAD measurement system                            | Under   | 3GHz    |
|------------------------------------------------------------------|---------|---------|
| Uncertainty of SAR measurement system                            | 1g SAR  | 10g SAR |
| combined measurement uncertainty of the measurement system (k=1) | ±11.7%  | ±11.4%  |
| expanded uncertainty (k=2)                                       | ± 23.3% | ± 22.8% |

|    | Error Description                               | Uncertainty<br>Value | Probability distribution | Divisor    | ci<br>(1g) | ci<br>(10g) | ui<br>(1g)         | ui<br>(10g)        | Vi, veff |
|----|-------------------------------------------------|----------------------|--------------------------|------------|------------|-------------|--------------------|--------------------|----------|
| Α  | Measurement System                              |                      |                          |            |            |             | (std. uncertainty) | (std. uncertainty) |          |
| 1  | Probe calibration                               | ±5.9 %               | Normal                   | 1          | 1          | 1           | ±5.9 %             | ±5.9 %             | œ        |
| 2  | Axial isotropy                                  | ±4.7 %               | Rectangular              | √3         | 0.7        | 0.7         | ±1.9 %             | ±1.9 %             | oc       |
| 3  | Hemispherical isotropy (*flat phantom, <5°)     | ±2.6 %               | Rectangular              | √3         | 0.7        | 0.7         | ±1.1 %             | ±1.1 %             | œ        |
| 4  | Boundary effects                                | ±1.0 %               | Rectangular              | √3         | 1          | 1           | ±0.6 %             | ±0.6 %             | œ        |
| 5  |                                                 | ±4.7 %               | Rectangular              | √3         | 1          | 1           | ±2.7 %             | ±2.7 %             | × ×      |
| 6  | System detection limit                          | ±1.0 %               | Rectangular              | √3         | 1          | 1           | ±0.6 %             | ±0.6 %             | $\infty$ |
| 7  | System readout electronics                      | ±0.3 %               | Normal                   | 1          | 1          | 1           | ±0.3 %             | ±0.3 %             | œ        |
| 8  | Response time                                   | ±0.8 %               | Rectangular              | $\sqrt{3}$ | 1          | 1           | ±0.5 %             | ±0.5 %             | œ        |
| 9  | Integration time                                | ±2.6 %               | Rectangular              | $\sqrt{3}$ | 1          | 1           | ±1.5 %             | ±1.5 %             | $\infty$ |
| 10 | RF ambient – noise                              | ±3.0 %               | Rectangular              | √3         | 1          | 1           | ±1.7%              | ±1.7 %             | × ×      |
| 11 | RF ambient – reflections                        | ±3.0 %               | Rectangular              | $\sqrt{3}$ | 1          | 1           | ±1.7 %             | ±1.7 %             | œ        |
| 12 | Probe positioner mechanical tolerance           | ±0.4 %               | Rectangular              | √3         | 1          | 1           | ±0.2 %             | ±0.2 %             | œ        |
| 13 | Probe positioning with respect to phantom shell | ±2.9 %               | Rectangular              | $\sqrt{3}$ | 1          | 1           | ±1.7 %             | ±1.7 %             | $\infty$ |
| 14 | Max.SAR evaluation                              | ±1.0 %               | Rectangular              | √3         | 1          | 1           | ±0.6 %             | ±0.6 %             | $\infty$ |
| В  | Test Sample Related                             |                      |                          |            |            |             |                    |                    |          |
| 15 | Device positioning                              | ±5.0 %               | Normal                   | 1          | 1          | 1           | ±5.0 %             | ±5.0 %             | 5        |
| 16 | Device holder uncertainty                       | ±5.0 %               | Normal                   | 1          | 1          | 1           | ±5.0 %             | ±5.0 %             | 5        |
| 17 | Power drift                                     | ±5.0 %               | Rectangular              | $\sqrt{3}$ | 1          | 1           | ±2.9 %             | ±2.9 %             | œ        |
| C  | Phantom and Setup                               |                      |                          |            |            |             |                    |                    |          |
| 18 | Phantom uncertainty                             | ±4.0 %               | Rectangular              | √3         | 1          | 1           | ±2.3 %             | ±2.3 %             | × ×      |
| 19 | Liquid conductivity (target)                    | ±5.0 %               | Rectangular              | √3         | 0.64       | 0.43        | ±1.8 %             | ±1.2 %             | × ×      |
| 20 | Liquid conductivity (meas.)                     | ±2.9 %               | Normal                   | 1          | 0.64       | 0.43        | ±1.9 %             | ±1.2 %             | 3        |
| 21 | Liquid permittivity (target)                    | ±5.0 %               | Rectangular              | $\sqrt{3}$ | 0.6        | 0.49        | ±1.7%              | ±1.4 %             | œ        |
| 22 | Liquid permittivity (meas.)                     | ±2.9 %               | Normal                   | 1          | 0.6        | 0.49        | ±1.7%              | ±1.4 %             | 3        |
|    | Combined Standard Uncertainty                   |                      |                          |            |            |             | ±11.7 %            | ±11.4 %            | 59       |
|    | Expanded Uncertainty (k=2)                      |                      |                          |            |            |             | ±23.3 %            | ±22.8 %            |          |

<sup>\*</sup> This measurement uncertainty budget is suggested by IEEE 1528 and determined by Schmid & Partner Engineering AG (DASY4 Uncertainty Budget). [6]

 Page
 : 8 of 50

 Issued date
 : June 30, 2011

 FCC ID
 : AK8PRST1

## **SECTION 6:** Confirmation before testing

# 6.1 Assessment for the conducted power of EUT / Correction of the power at EMC test and at SAR test

6.1.1 Worst data rate & worst channel determination (SAR serial number: 463), vs. power at EMC test (EMC serial number: 467)

|     |           |        |        |          |          |        |           |         | _          |            |          |          |           |        |             |            | ∠ (sar-r          | 'adio): US | X < 0.210 | 18     |
|-----|-----------|--------|--------|----------|----------|--------|-----------|---------|------------|------------|----------|----------|-----------|--------|-------------|------------|-------------------|------------|-----------|--------|
| Out | put power | 1      | Tx     | mode:    |          |        | 11b       |         |            |            |          |          |           | *.PAR  | =Peak(dB)=A | ve(dB)[dB] | Power at EMC test |            |           |        |
| Ch. | Freq.     | D/R    | Ant.   | Max.Ave. | Modul    | lation | P/M R     | Reading | Cable Loss | Attenuator | Po       | wer Read | ling Resu | ılts   | ⊿worst      | PAR        | Ave.              | ⊿(sar-     | Pk        | ⊿(sar- |
| Gn. | [MHz]     | [Mbps] | No.    | pwr.:o   | Modu     | ation  | Ave.[dBm] | Pk[dB]  | [dB]       | [dB]       | Ave[dBm] | Pk[dBm]  | Ave[mW]   | Pk[mW] | ave.[dB]    | [dB]       | [dB]              | emc)       | [dB]      | emc)   |
| 1   | 2412      | 1      | single |          | DBPSK    | DSSS   | 2.46      | 5.03    | 0.50       | 10.02      | 12.98    | 15.55    | 19.86     | 35.89  | -0.81       | 2.57       |                   |            |           |        |
| 6   | 2437      | 1      | single |          | DBPSK    | DSSS   | 2.91      | 5.46    | 0.50       | 10.02      | 13.43    | 15.98    | 22.03     | 39.63  | -0.36       | 2.55       |                   |            |           |        |
| 11  | 2462      | - 1    | single | 0        | DBPSK    | DSSS   | 3.27      | 5.89    | 0.50       | 10.02      | 13.79    | 16.41    | 23.93     | 43.75  | 0.00        | 2.62       |                   |            |           |        |
|     |           |        |        |          |          |        |           |         |            |            |          |          |           |        | ⊿low rate   |            |                   | ⊿ave       |           | ⊿pk    |
| 6   | 2437      | 1      | single | (o)      | DBPSK    | DSSS   | 2.91      | 5.46    | 0.50       | 10.02      | 13.43    | 15.98    | 22.03     | 39.63  | 0.00        | 2.55       | 13.32             | 0.11       | 15.94     | 0.04   |
| 6   | 2437      | 2      | single |          | DQPSK    | DSSS   | 2.88      | 5.52    | 0.50       | 10.02      | 13.40    | 16.04    | 21.88     | 40.18  | -0.03       | 2.64       | 13.35             | 0.05       | 15.98     | 0.06   |
| 6   | 2437      | 5.5    | single |          | OOK/PBOO | DSSS   | 2.89      | 5.50    | 0.50       | 10.02      | 13.41    | 16.02    | 21.93     | 39.99  | -0.02       | 2.61       | 13.37             | 0.04       | 16.00     | 0.02   |
| 6   | 2437      | -11    | single |          | OOK/PBOO | DSSS   | 2.81      | 5.54    | 0.50       | 10.02      | 13.33    | 16.06    | 21.53     | 40.36  | -0.10       | 2.73       | 13.30             | 0.03       | 16.05     | 0.01   |

<sup>\*.</sup> The average antenna terminal conducted power of lowest data rate was worst. Therefore, each channel was measured at lowest data rate.

|       |          |        |        |          |             |        |           |         |            |            |          |          |           |        |            |            | ⊿(sar¬ | radio): 0< | x <0.21c | dΒ     |
|-------|----------|--------|--------|----------|-------------|--------|-----------|---------|------------|------------|----------|----------|-----------|--------|------------|------------|--------|------------|----------|--------|
| Outpu | ut power | 1      | Tx     | mode:    |             |        | 11g       |         |            |            |          |          |           | *.PAR= | Peak(dB)-A | ve(dB)[dB] | Po     | ower at    | EMC te   | est    |
| Ch.   | Freq.    | D/R    | Ant.   | Max.Ave. | Modul       | lation | P/M R     | Reading | Cable Loss | Attenuator | Po       | wer Read | ling Resu | lts    | ⊿worst     | PAR        | Ave.   | ⊿(sar-     | Pk       | ⊿(sar- |
| Gn.   | [MHz]    | [Mbps] | No.    | pwr.:o   | Modul       | lation | Ave.[dBm] | Pk[dB]  | [dB]       | [dB]       | Ave[dBm] | Pk[dBm]  | Ave[mW]   | Pk[mW] | ave.[dB]   | [dB]       | [dB]   | emc)       | [dB]     | emc)   |
| 1     | 2412     | 6      | single |          | BPSK        | DSSS   | -2.62     | 7.20    | 0.50       | 10.02      | 7.90     | 17.72    | 6.17      | 59.16  | -1.18      | 9.82       | 7.79   | 0.11       | 17.54    | 0.18   |
| 6     | 2437     | 6      | single |          | <b>BPSK</b> | DSSS   | -1.94     | 7.75    | 0.50       | 10.02      | 8.58     | 18.27    | 7.21      | 67.14  | -0.50      | 9.69       | 8.47   | 0.11       | 18.27    | 0.00   |
| - 11  | 2462     | 6      | single | 0        | <b>BPSK</b> | DSSS   | -1.44     | 8.16    | 0.50       | 10.02      | 9.08     | 18.68    | 8.09      | 73.79  | 0.00       | 9.60       | 9.04   | 0.04       | 18.63    | 0.05   |
|       |          |        |        |          |             |        |           |         |            |            |          |          |           |        | ⊿low rate  |            |        | ⊿ave       |          | ⊿pk    |
| 6     | 2437     | 6      | single | (o)      | <b>BPSK</b> | OFDM   | -1.94     | 7.75    | 0.50       | 10.02      | 8.58     | 18.27    | 7.21      | 67.14  | 0.00       | 9.69       | 8.47   | 0.11       | 18.27    | 0.00   |
| 6     | 2437     | 9      | single |          | <b>BPSK</b> | OFDM   | -1.96     | 7.47    | 0.50       | 10.02      | 8.56     | 17.99    | 7.18      | 62.95  | -0.02      | 9.43       | 8.55   | 0.01       | 17.94    | 0.05   |
| 6     | 2437     | 12     | single |          | QPSK        | OFDM   | -2.02     | 7.88    | 0.50       | 10.02      | 8.50     | 18.40    | 7.08      | 69.18  | -0.08      | 9.90       | 8.50   | 0.00       | 18.22    | 0.18   |
| 6     | 2437     | 18     | single |          | QPSK        | OFDM   | -2.01     | 7.21    | 0.50       | 10.02      | 8.51     | 17.73    | 7.10      | 59.29  | -0.07      | 9.22       | 8.51   | 0.00       | 17.54    | 0.19   |
| 6     | 2437     | 24     | single |          | 16QAM       | OFDM   | -2.41     | 7.88    | 0.50       | 10.02      | 8.11     | 18.40    | 6.47      | 69.18  | -0.47      | 10.29      | 8.01   | 0.10       | 18.24    | 0.16   |
| 6     | 2437     | 36     | single |          | 16QAM       | OFDM   | -2.47     | 7.71    | 0.50       | 10.02      | 8.05     | 18.23    | 6.38      | 66.53  | -0.53      | 10.18      | 7.90   | 0.15       | 18.17    | 0.06   |
| 6     | 2437     | 48     | single |          | 64QAM       | OFDM   | -2.65     | 7.40    | 0.50       | 10.02      | 7.87     | 17.92    | 6.12      | 61.94  | -0.71      | 10.05      | 7.68   | 0.19       | 17.92    | 0.00   |
| 6     | 2437     | 54     | single |          | 64QAM       | OFDM   | -2.69     | 7.40    | 0.50       | 10.02      | 7.83     | 17.92    | 6.07      | 61.94  | -0.75      | 10.09      | 7.63   | 0.20       | 17.91    | 0.01   |

<sup>\*.</sup> The average antenna terminal conducted power of lowest data rate was worst. Therefore, each channel was measured at lowest data rate.

|       |          |        |        |          |             |       |           |         |            |            |          |          |           |        |            |            | ⊿(sar¬r | radio): 0< | x <0.21c | iB     |
|-------|----------|--------|--------|----------|-------------|-------|-----------|---------|------------|------------|----------|----------|-----------|--------|------------|------------|---------|------------|----------|--------|
| Outpu | ıt power | 1      | Tx     | mode:    |             | -11n  | (20HT)    |         |            |            |          |          |           | *.PAR  | Peak(dB)-A | ve(dB)[dB] | Po      | ower at    | EMC te   | st     |
| Ch.   | Freq.    | D/R    | Ant.   | Max.Ave. | Modul       | -41   | P/M R     | leading | Cable Loss | Attenuator | Po       | wer Read | ling Resu | lts    | ⊿worst     | PAR        | Ave.    | ⊿(sar-     | Pk       | ⊿(sar- |
| Cn.   | [MHz]    | [Mbps] | No.    | pwr.:o   | Modul       | ation | Ave.[dBm] | Pk[dB]  | [dB]       | [dB]       | Ave[dBm] | Pk[dBm]  | Ave[mW]   | Pk[mW] | ave.[dB]   | [dB]       | [dB]    | emc)       | [dB]     | emc)   |
| 1     | 2412     | MCS0   | single |          | BPSK        | DSSS  | -3.41     | 6.31    | 0.50       | 10.02      | 7.11     | 16.83    | 5.14      | 48.19  | -1.38      | 9.72       |         |            |          |        |
| 6     | 2437     | MCS0   | single |          | BPSK        | DSSS  | -2.78     | 6.78    | 0.50       | 10.02      | 7.74     | 17.30    | 5.94      | 53.70  | -0.75      | 9.56       |         |            |          |        |
| - 11  | 2462     | MCS0   | single | 0        | BPSK        | DSSS  | -2.03     | 7.51    | 0.50       | 10.02      | 8.49     | 18.03    | 7.06      | 63.53  | 0.00       | 9.54       |         |            |          |        |
|       |          |        |        |          |             |       |           |         |            |            |          |          |           |        | ⊿low rate  |            |         | ⊿ave       |          | ⊿pk    |
| 6     | 2437     | MCS0   | single | (o)      | <b>BPSK</b> | OFDM  | -2.78     | 6.78    | 0.50       | 10.02      | 7.74     | 17.30    | 5.94      | 53.70  | 0.00       | 9.56       | 7.74    | 0.00       | 17.28    | 0.02   |
| 6     | 2437     | MCS1   | single |          | QPSK        | OFDM  | -2.97     | 6.34    | 0.50       | 10.02      | 7.55     | 16.86    | 5.69      | 48.53  | -0.19      | 9.31       | 7.37    | 0.18       | 16.68    | 0.18   |
| 6     | 2437     | MCS2   | single |          | QPSK        | OFDM  | -3.22     | 6.58    | 0.50       | 10.02      | 7.30     | 17.10    | 5.37      | 51.29  | -0.44      | 9.80       | 7.12    | 0.18       | 17.02    | 0.08   |
| 6     | 2437     | MCS3   | single |          | 16QAM       | OFDM  | -3.04     | 7.24    | 0.50       | 10.02      | 7.48     | 17.76    | 5.60      | 59.70  | -0.26      | 10.28      | 7.33    | 0.15       | 17.76    | 0.00   |
| 6     | 2437     | MCS4   | single |          | 16QAM       | OFDM  | -3.98     | 5.76    | 0.50       | 10.02      | 6.54     | 16.28    | 4.51      | 42.46  | -1.20      | 9.74       | 6.36    | 0.18       | 16.16    | 0.12   |
| 6     | 2437     | MCS5   | single |          | 64QAM       | OFDM  | -4.09     | 6.48    | 0.50       | 10.02      | 6.43     | 17.00    | 4.40      | 50.12  | -1.31      | 10.57      | 6.25    | 0.18       | 16.98    | 0.02   |
| 6     | 2437     | MCS6   | single |          | 64QAM       | OFDM  | -4.10     | 6.91    | 0.50       | 10.02      | 6.42     | 17.43    | 4.39      | 55.34  | -1.32      | 11.01      | 6.26    | 0.16       | 17.33    | 0.10   |
| 6     | 2437     | MCS7   | single |          | 64QAM       | OFDM  | -4.14     | 6.02    | 0.50       | 10.02      | 6.38     | 16.54    | 4.35      | 45.08  | -1.36      | 10.16      | 6.20    | 0.18       | 16.39    | 0.15   |

<sup>\*.</sup> The average antenna terminal conducted power of lowest data rate was worst. Therefore, each channel was measured at lowest data rate.

\*. Calculating formula: Results = ["P/M Reading"] + ["Cbl.loss" (Cable loss)] + ["4tt.loss" (Attenuator)] / A red figure indicates it is the maximum value in the condition.

\*. The difference between the SAR reference power and the power of EMC test was not less than 0dB and not higher than 0.21dB.

#### 6.1.2 Duty cycle (Crest factor)

|         |           | _         |         |         | _    | ~        |
|---------|-----------|-----------|---------|---------|------|----------|
| Mode    | Data rate | Frequency | On time | 1 cycle | Duty | Crest    |
| IVIOUC  | Data late | [MHz]     | [ms]    | [ms]    | [%]  | factor   |
|         | 1Mbps     | 2437      | 2.01    | 2.022   | 99.6 | 1 (1.01) |
| 802.11b | 2Mbps     | 2437      | 1.097   | 1.115   | 99.5 | 1 (1.02) |
| 002.110 | 5.5Mbps   | 2437      | 0.5236  | 0.5315  | 98.6 | 1 (1.02) |
|         | 11Mbps    | 2437      | 0.3581  | 0.3661  | 97.1 | 1 (1.02) |
|         | 6Mbps     | 2437      | 1.428   | 1.456   | 98.1 | 1 (1.02) |
|         | 9Mbps     | 2437      | 0.954   | 0.982   | 97.1 | 1 (1.03) |
|         | 12Mbps    | 2437      | 0.7172  | 0.7465  | 96.1 | 1 (1.04) |
| 802.11g | 18Mbps    | 2437      | 0.4885  | 0.5123  | 95.4 | 1 (1.05) |
| 802.11g | 24Mbps    | 2437      | 0.3675  | 0.39    | 94.2 | 1 (1.06) |
|         | 36Mbps    | 2437      | 0.2568  | 0.2776  | 92.5 | 1 (1.08) |
|         | 48Mbps    | 2437      | 0.1955  | 0.2159  | 90.6 | 1 (1.10) |
|         | 54Mbps    | 2437      | 0.1791  | 0.2     | 89.6 | 1 (1.12) |

| Mode    | Data rate | Frequency | On time | 1 cycle | Duty | Crest   |
|---------|-----------|-----------|---------|---------|------|---------|
| WICCC   | Data late | [MHz]     | [ms]    | [ms]    | [%]  | factor  |
|         | MCS0      | 2437      | 2.292   | 2.318   | 98.9 | 1(1.01) |
|         | MCS1      | 2437      | 0.9804  | 1.011   | 97.0 | 1(1.03) |
|         | MCS2      | 2437      | 0.6656  | 0.696   | 95.6 | 1(1.05) |
| 802.11n | MCS3      | 2437      | 0.5077  | 0.5395  | 94.1 | 1(1.06) |
| (20HT)  | MCS4      | 2437      | 0.3488  | 0.3816  | 91.4 | 1(1.09) |
|         | MCS5      | 2437      | 0.2713  | 0.3027  | 89.6 | 1(1.12) |
|         | MCS6      | 2442      | 0.2476  | 0.2799  | 88.5 | 1(1.13) |
|         | MCS7      | 2442      | 0.2278  | 0.2607  | 87.4 | 1(1.14) |
|         |           |           |         |         |      |         |

<sup>\*.</sup> Date tested: June 27, 2011 / Measured by: Hiroshi Naka / Place: preparation room of No. 7 shielded room. (24 deg C / 54 %RH)

The difference between the SAR reference power and the power of EMC test was not less than 0dB and not higher than 0.21dB. SAR reference; Date tested: June 27, 2011 / Measured by: Hiroshi Naka / Place: preparation room of No. 7 shielded room. (24 deg C / 54 %RH) EMC test; Date tested: June 23, 2011 / Measured by: Makoto Hosaka / This reference is described in the test report of 31KE0212–SH-02-B.

<sup>\*.</sup> Calculating formula:  $Duty[\%] = \{(On time)/(1 cycle)\} \times 100, Crest factor[-]= 1/\{(On time)/(1 cycle)\}\}$ 

Page : 9 of 50 Issued date : June 30, 2011 FCC ID : AK8PRST1

# **SECTION 7: Measurement results**

# 7.1 SAR for the tablet device

Measurement date : June 27, 2011 Measurement by : Hiroshi Naka

[Liquid measurement (Body)]

| Used Target | Target Body Tissue        |       |                          | Measured Body Tis | sue        |      | Enviro   | nment    | _                               |  |  |
|-------------|---------------------------|-------|--------------------------|-------------------|------------|------|----------|----------|---------------------------------|--|--|
| Frequency   | Permittivity Conductivity |       | Permittivity Conductivit |                   | Temp. Dept |      | Temp.    | Humidity | Measured Date                   |  |  |
| [MHz]       | [-]                       | [S/m] | (er) [-]                 | (σ) [S/m]         | [deg.C.]   | [mm] | [deg.C.] | [%RH]    |                                 |  |  |
| 2450        | 52.7                      | 1.95  | 50.28 (-4.6%)            | 1.969 (+1.0%)     | 24.1       | 158  | 24       | 55       | June 27, 2011, before SAR test. |  |  |

<sup>\*.</sup> The target value is a parameter defined in OET65 Supplement C.

[SAR measurement results (Body)]

|      |         |          |                                      |                | SAR measuren                 | nent result      | s              |               |                |         |                                  |
|------|---------|----------|--------------------------------------|----------------|------------------------------|------------------|----------------|---------------|----------------|---------|----------------------------------|
| ]    | Freque  | псу      | Modulation<br>/ Data rate [Mhas]     | E              | EUT setup condition          | ıs               | Liquid<br>[deg | temp.<br>g.C] | Power<br>drift | SAR(1g) | Remarks                          |
| Mode | Ch.     | [MHz]    | / Data rate [Mbps]<br>/ crest factor | Antenna<br>no# | Position                     | Distance<br>[mm] | Before         | After         | [dB]           | [W/kg]  | Kemarks                          |
|      | Step 1: | Worst po | sition search                        |                |                              |                  |                |               |                |         |                                  |
|      | 11      | 2462     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Front-touch                  | 0                | 23.6           | 23.5          | -0.196         | 0.897   | →Worst SAR.<br>(→Worst position) |
|      | 11      | 2462     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Top-rear-touch               | 0                | 23.4           | 23.4          | 0.20           | 0.629   |                                  |
|      | 11      | 2462     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Rear-touch                   | 0                | 23.3           | 23.3          | 0.086          | 0.529   | -                                |
|      | 11      | 2462     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Secondary<br>landscape-touch | 0                | 23.3           | 23.3          | 0.20           | 0.333   | -                                |
| 11b  | 11      | 2462     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Secondary<br>portrait-touch  | 0                | 23.3           | 23.3          | 0.106          | 0.203   | -                                |
|      | Step 2: | Change t | he channels                          |                |                              |                  |                |               |                |         |                                  |
|      | 1       | 2412     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Front-touch                  | 0                | 23.5           | 23.4          | -0.147         | 0.620   | -                                |
|      | 6       | 2437     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Front-touch                  | 0                | 23.4           | 23.4          | -0.20          | 0.888   | -                                |
|      | Step 3: | Change s | eparation distance                   |                |                              |                  |                |               |                |         |                                  |
|      | 11      | 2462     | DBPSK&DSSS/1Mbps/1.0                 | (single)       | Front 5mm gap                | 5                | 23.3           | 23.3          | 0.20           | 0.363   | -                                |

<sup>\*.</sup> According to KDB248227; SAR is not required for 802.11g and 11n(HT20) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

# Notes:

\*. During test, the EUT was operated with full-charged battery and without all signal interface cables.

\*. Calibration frequency of the SAR measurement probe (and used conversion factors)

| SAR test frequency[MHz] | Probe calibration frequency [MHz] | Validity [MHz]                      | Used conversion factor | Uncertainty |
|-------------------------|-----------------------------------|-------------------------------------|------------------------|-------------|
| 2412                    | 2450                              | -38MHz, within ±50 of cal.frequency | 7.34                   | ±12.0%      |
| 2450                    | 2450                              | -                                   | 7.34                   | ±12.0%      |
| 2472                    | 2450                              | +22MHz within +50 of cal frequency  | 7.34                   | +12.0%      |

<sup>\*.</sup> The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.