

EMC TEST REPORT

Report No. : EME-061250

Model No. : C120

Issued Date : Dec. 12, 2006

**Applicant : Clarity, a division of Plantronics
4289 Bonny Oaks Drive, Suit 106, Chattanooga TN37406**

**Test By : Intertek Testing Services Taiwan Ltd.
No. 11, Ko-Tze-Nan Chia-Tung Li, Shiang-Shan District,
Hsinchu, Taiwan**

This test report consists of 18 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Kevin Chen

Reviewed By

Jerry Liu

Table of Contents

Summary of Tests	3
1. General information.....	4
1.1 Identification of the EUT.....	4
1.2 Additional information about the EUT	4
1.3 Peripherals equipment	5
2. Test specifications.....	6
2.1 Test standard	6
2.2 Operation mode	6
2.3 Test equipment.....	7
3. Conducted emission test FCC 15.207	8
3.1 Operating environment.....	8
3.2 Test setup & procedure	8
3.3 Emission limit.....	8
3.4 Conducted emission data FCC 15.207	9
4. Radiated emission test FCC 15.223.....	11
4.1 Operating environment.....	11
4.2 Test setup & procedure	11
4.3 Radiated emission limit	12
4.3.1 Emission bandwidth of fundamental bandwidth	12
4.3.2 General radiated emission limit.....	15
4.3.3 Radiated emission test data FCC 15.223	16
4.3.3.1 Measurement results: Frequency range of 30-1000 MHz, E-field	16
4.3.3.2 Measurement results: Frequency range of 0.009-30 MHz, H-field.....	17
4.3.3.3 Calculated measurements results radiated field strength, H-Field	18

Summary of Tests**TV Listener -Model: C120**
FCC ID: ACEC120

Test	Reference	Results
Conducted Emission of AC Power	15.207	Pass
Radiated Emission test	15.223, 15.209	Pass

1. General information

1.1 Identification of the EUT

Manufacturer : Clarity, a division of Plantronics
Product : TV Listener
Model No. : C120
FCC ID. : ACEC120
Frequency Range : 2.3MHz & 2.8MHz
Channel Number : 2 channels
Frequency of each channel : 2.3MHz & 2.8MHz
Type of Modulation : FM
Power Supply : 100-240Vac, 50/60Hz with adapter
(Model: DSA-5P-12FUS 120030)
Power Cord : N/A
Sample Received : Oct. 24, 2006
Test Date(s) : Nov. 01, 2006 ~ Dec. 12, 2006

1.2 Additional information about the EUT

The EUT is a TV Listener, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

1.3 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.	FCC ID
Telephone	TENTEL	K-903S	0514000940	FCC DoC Approved
Telephone	TENTEL	K-903S	0514000477	FCC DoC Approved
Micphone	N/A	N/A	N/A	FCC DoC Approved
Exchange Board	Teltone	250-00193-07	94948	FCC DoC Approved

2. Test specifications

2.1 Test standard

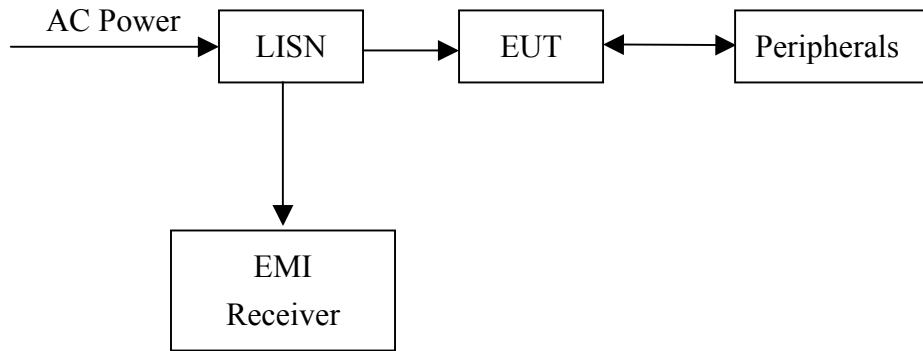
The EUT was performed according to the procedures in FCC Part 15 Subpart C Section 15.223.

2.2 Operation mode

The EUT was operated in continuously transmitting mode.

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/27/2007
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	08/06/2007
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	11/12/2007
Loop Antenna	RolfHeine	20Hz~30MHz	LA-285	EC357	05/29/2007
Bilog Antenna	SCHWARZBECK	25MHz~1.7GHz	VULB 9160	EC368	05/07/2009
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	02/13/2007
Controller	HDGmbH	N/A	HD 100	EP317-1	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP317-2	N/A
Turn Table	HDGmbH	N/A	DS 420S	EP317-3	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/15/2007


Note: The above equipments are within the valid calibration period.

3. Conducted emission test FCC 15.207

3.1 Operating environment

Temperature: 25 °C
 Relative Humidity: 55 %
 Atmospheric Pressure: 1023 hPa

3.2 Test setup & procedure

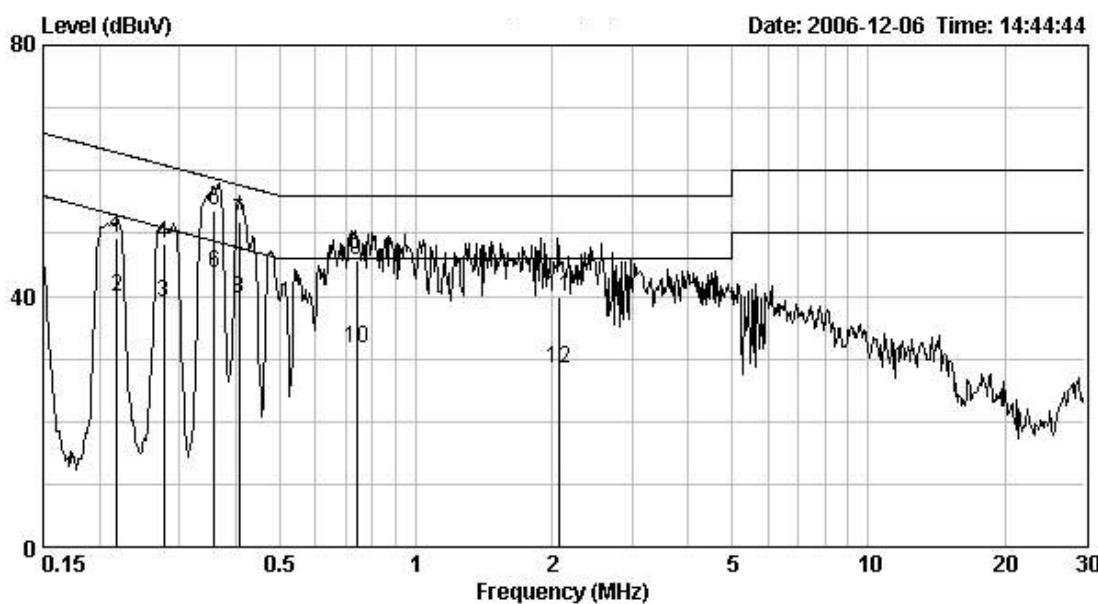
The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/1992 on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

3.3 Emission limit

Freq. (MHz)	Maximum RF Line Voltage			
	Class A (dB μ V)		Class B (dB μ V)	
	Q.P.	Ave.	Q.P.	Ave.
0.15~0.50	79	66	66~56	56~46
0.50~5.00	73	60	56	46
5.00~30.0	73	60	60	50

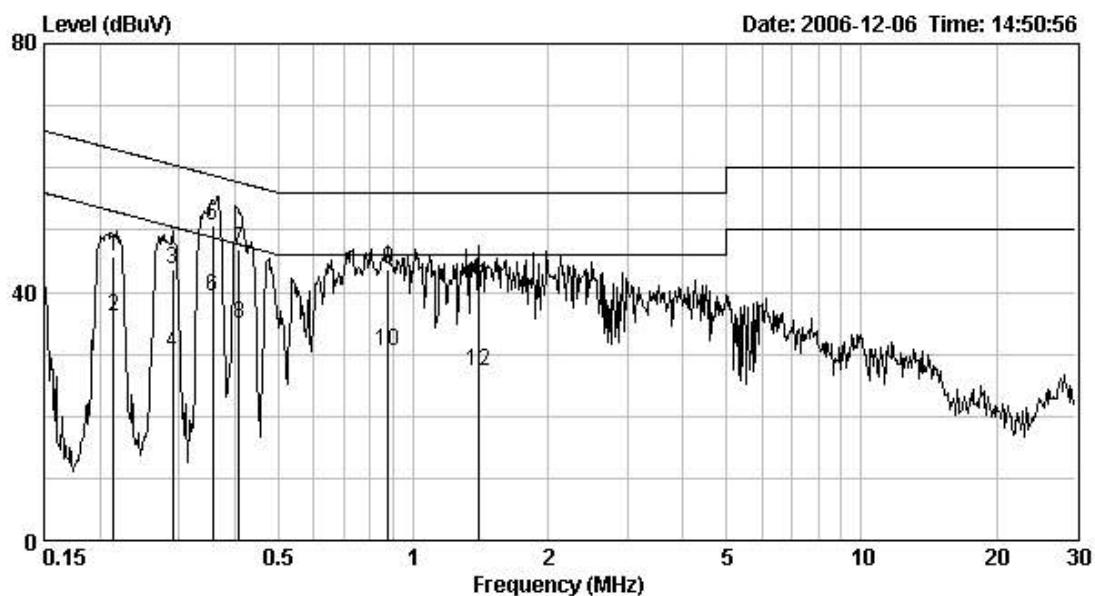

3.4 Conducted emission data FCC 15.207

Phase : Line
 EUT : C120
 Test Condition : Normal operating mode

Frequency (MHz)	Corr. Factor (dB)	Level Qp (dBuV)	Limit Qp (dBuV)	Level AV (dBuV)	Limit AV (dBuV)	Margin (dB)	
-----	-----	-----	-----	-----	-----	Qp	Av
0.218	0.10	49.23	62.89	39.81	52.89	-13.66	-13.08
0.277	0.10	48.29	60.90	38.83	50.90	-12.61	-12.07
0.359	0.10	53.52	58.75	43.72	48.75	-5.23	-5.03
0.406	0.10	52.00	57.73	39.44	47.73	-5.73	-8.29
0.738	0.10	45.60	56.00	31.58	46.00	-10.40	-14.42
2.064	0.10	39.86	56.00	28.39	46.00	-16.14	-17.61

Remark:

1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)

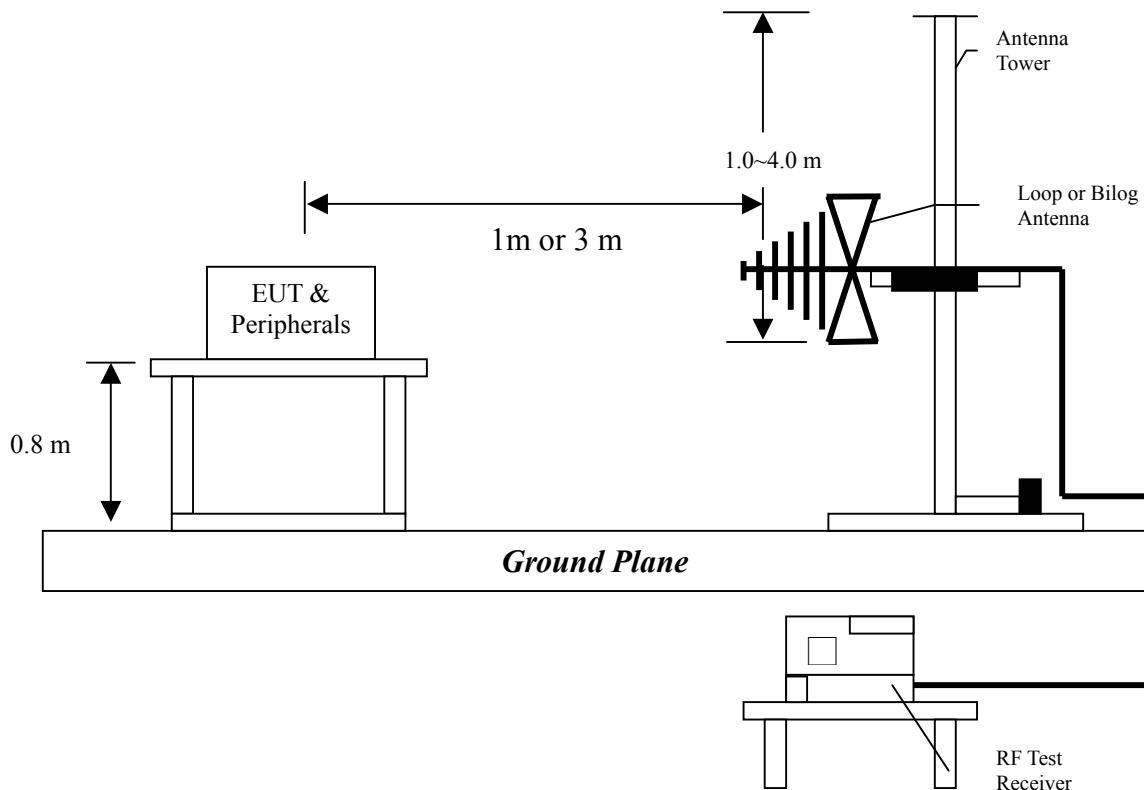


Phase : Neutral
EUT : C120
Test Condition : Normal operating mode

Frequency (MHz)	Corr. Factor (dB)	Level Qp (dBuV)	Limit Qp (dBuV)	Level AV (dBuV)	Limit AV (dBuV)	Margin (dB)	
-----	-----	-----	-----	-----	-----	Qp	AV
0.214	0.10	45.77	63.04	35.96	53.04	-17.27	-17.08
0.291	0.10	43.75	60.51	30.17	50.51	-16.76	-20.34
0.358	0.10	50.77	58.78	39.27	48.78	-8.01	-9.51
0.409	0.10	46.77	57.66	34.96	47.66	-10.89	-12.70
0.880	0.10	43.70	56.00	30.40	46.00	-12.30	-15.60
1.396	0.10	41.22	56.00	27.21	46.00	-14.78	-18.79

Remark:

1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)



4. Radiated emission test FCC 15.223

4.1 Operating environment

Temperature: 18 °C
Relative Humidity: 65 %
Atmospheric Pressure 1023 hPa

4.2 Test setup & procedure

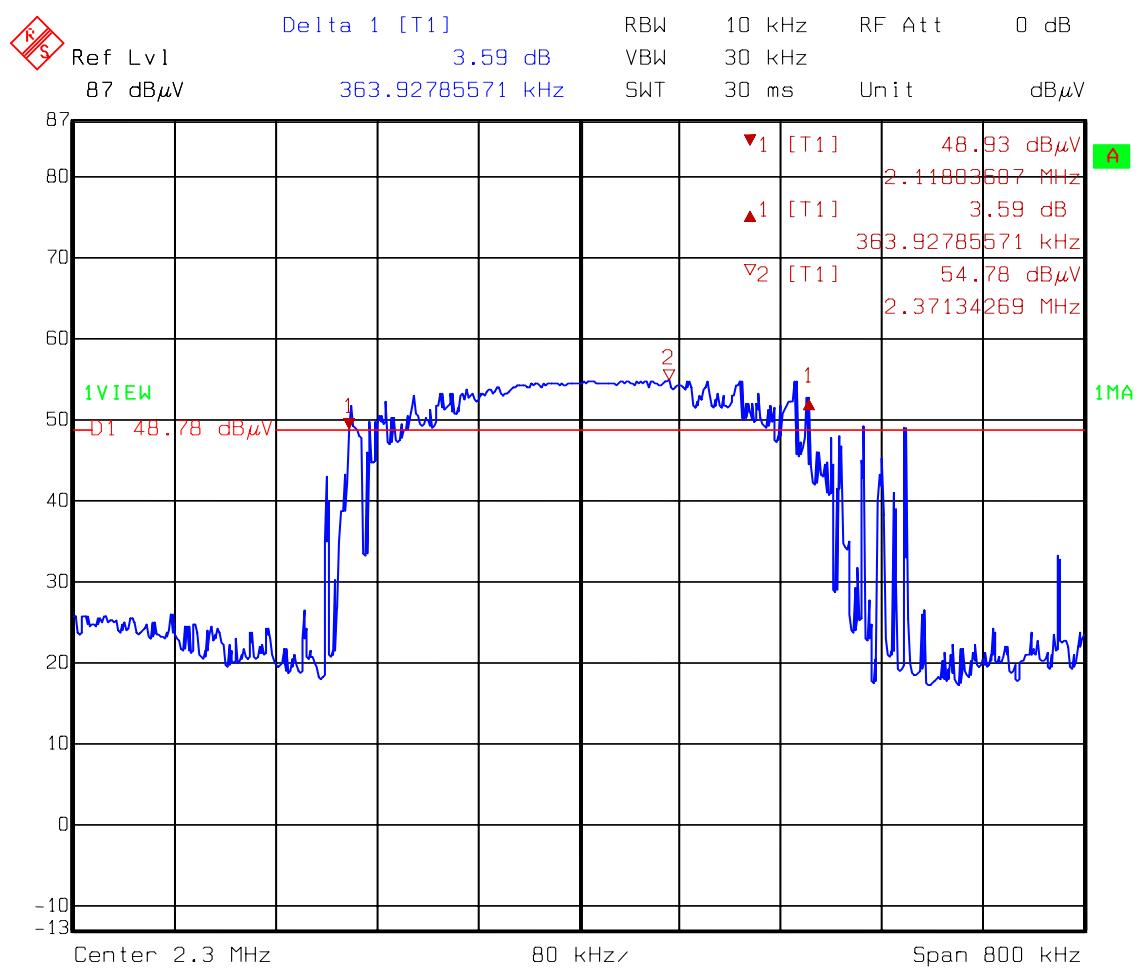
The test methodology used is based on the requirements of 47 CFR Part 15, sections 15.207, 15.205, 15.209.

The test methods, which have been used, are based on ANSI C63.4: 2003.

Radiated emission tests above 30 MHz were performed at a measurement distance of 3 meters.

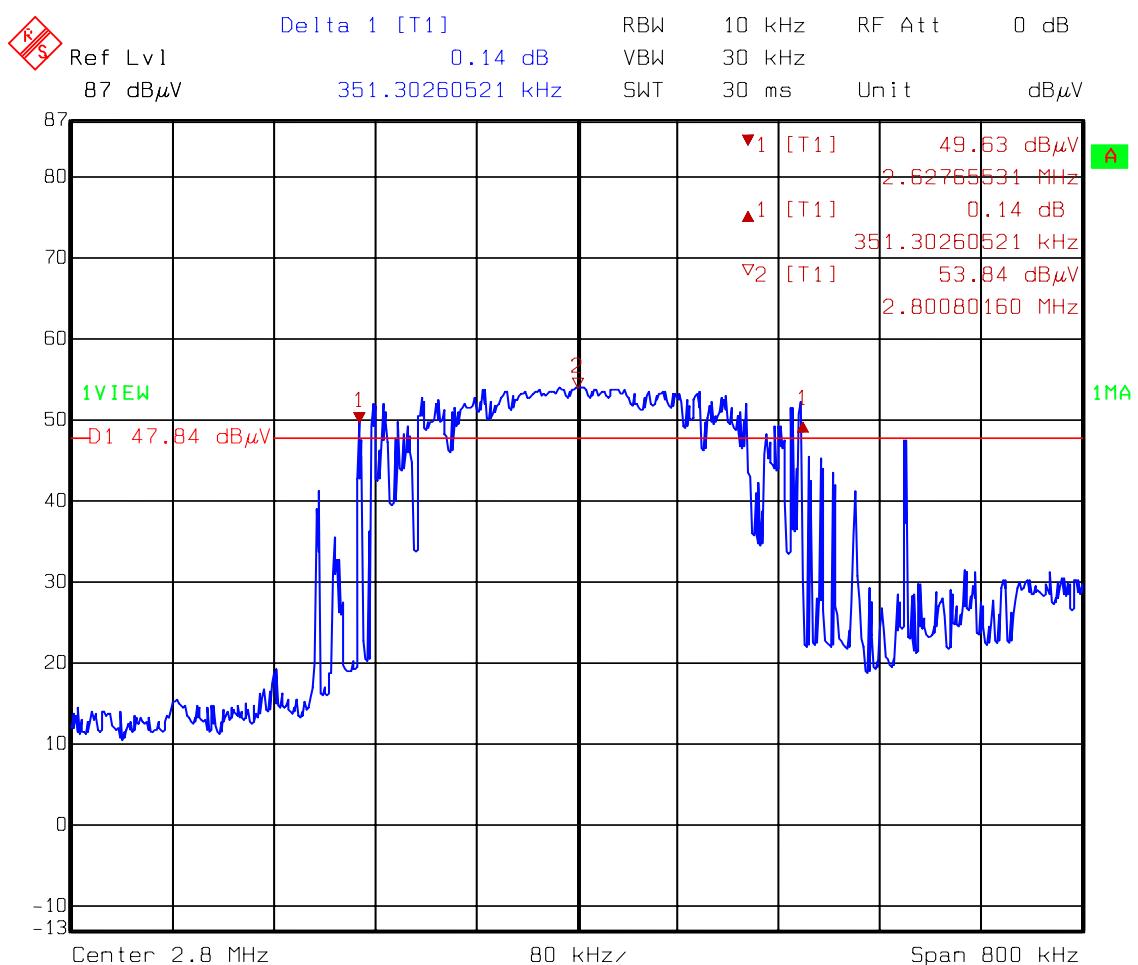
Below 30 MHz the radiated emission tests were carried out at measurement distances of 1 and 3 meters. The test results regarding the radiated emission tests on frequencies below 30 MHz have been extrapolated in order to determine the field strength of the measured values at measurement distances of 30 meters (as required by 47 CFR Part 15).

4.3 Radiated emission limit


The field strength of any emission within the band 1.705-10.0 MHz shall not exceed 100 microvolts/meter at a distance of 30 meters. However, if the bandwidth of the emission is less than 10% of the center frequency, the field strength shall not exceed 15 microvolts/meter or (the bandwidth of the device in kHz) divided by (the center frequency of the device in MHz) microvolts/meter at a distance of 30 meters, whichever is the higher level. For the purposes of this Section, bandwidth is determined at the points 6 dB down from the modulated carrier. The emission limits in this paragraph are based on measurement instrumentation employing an average detector. The provisions in Section 15.35(b) for limiting peak emissions apply.

4.3.1 Emission bandwidth of fundamental bandwidth

Frequency (MHz)	Bandwidth (kHz)	10% of the center frequency (kHz)
2.3	363.9279	230
2.8	351.3026	280


Please see the plot below.

6 dB bandwidth of 2.3MHz

Comment A: 2.3MHz_6dB Bandwidth
Date: 12.DEC.2006 10:38:49

6 dB bandwidth of 2.8MHz

4.3.2 General radiated emission limit

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency MHz	15.209 Limits (dB μ V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

1. In the above table, the tighter limit applies at the band edges.
2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty ($k=2$) of radiated emission measurement is ± 3.078 dB.

4.3.3 Radiated emission test data FCC 15.223**4.3.3.1 Measurement results: Frequency range of 30-1000 MHz, E-field**

EUT : C120

Test Condition : Normal operaing mode

Antenna Polariz. (V/H)	Freq. (MHz)	Receiver Detector	Corr. Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
V	74.620	QP	10.39	16.11	26.50	40.00	-13.50
V	99.840	QP	7.38	20.47	27.84	43.50	-15.66
V	119.240	QP	8.19	23.58	31.77	43.50	-11.73
V	132.820	QP	11.39	15.47	26.86	43.50	-16.64
V	247.280	QP	12.22	13.04	25.25	46.00	-20.75
V	338.460	QP	14.98	10.99	25.97	46.00	-20.03
H	119.240	QP	10.54	11.76	22.29	43.50	-21.21
H	132.820	QP	12.32	11.25	23.57	43.50	-19.93
H	253.100	QP	12.64	10.28	22.92	46.00	-23.08
H	332.640	QP	14.40	11.13	25.52	46.00	-20.48
H	891.360	QP	24.62	4.87	29.48	46.00	-16.52
H	914.640	QP	24.59	5.62	30.20	46.00	-15.80

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss
2. Corrected Level = Reading + Corr. Factor

4.3.3.2 Measurement results: Frequency range of 0.009-30 MHz, H-field

EUT : C120
Test Condition : Normal operaing mode

Frequency	Measuement results dBuV Quasi-Peak		Antenna Factor	Cable loss	Measurement reaults dBuV/m Quasi-peak (calculated)	Limites Part 15.209 & 223 dBuV/m
MHz	1m	3m	dB	dB	30m	
2.3	53.51	29.10	19.61	0.50	22.46	40
2.8	53.17	n.a.	19.61	0.50	-	40
5.107	48.38	n.a.	19.61	0.50	-	30
4.11	34.75	n.a.	19.61	0.50	-	30
4.612	34.07	n.a.	19.61	0.50	-	30
5.604	33.56	n.a.	19.68	0.50	-	30
6.1012	33.49	n.a.	19.68	0.50	-	30
6.9172	37.32	n.a.	19.67	0.50	-	30
7.414	33.66	n.a.	19.67	0.50	-	30
7.908	33.11	n.a.	19.67	0.50	-	30
8.407	34.31	n.a.	19.67	0.50	-	30
9.7	30.76	n.a.	19.71	0.50	-	30
10.7	27.78	n.a.	19.71	0.50	-	30

4.3.3.3 Calculated measurements results radiated field strength, H-Field

Calculated measurements results radiated field strength, H-Field

General Formula:

ds = short distance; Hs is field strength at short distance

dl = long distance; Hl is field strength at long distance

$$(ds/dl)n = Hl/Hs \dots\dots [eq1]$$

$$n \log(ds/dl) = \log(Hl/Hs) \quad \text{or} \quad n = \log(Hl/Hs) / \log(ds/dl)$$

Calculation of n, for measured field strengths

$$Hs = 53.51 \text{ dB}\mu\text{V} + 0.5 \text{ dB} + 19.61 \text{ dB/m} = 73.62 \text{ dB}\mu\text{V/m} = 4797.33 \text{ dB}\mu\text{V/m}$$

$$Hl = 29.1 \text{ dB}\mu\text{V} + 0.5 \text{ dB} + 19.61 \text{ dB/m} = 49.21 \text{ dB}\mu\text{V/m} = 288.74 \text{ dB}\mu\text{V/m}$$

$$n = \log(288.74/4797.33) / \log(1/3)$$

$$n = 2.558$$

Calculated field strength at new distance, from the 3 meter value:

Hs now becomes Hs = 228.74 $\mu\text{V/m}$ and ds=3

Assume dl =10

Now from [eq1] Hl becomes:

$$Hl = Hs * (dl/ds) - n$$

$$\text{So } Hl = 228.74 * (10/3) - 2.558 = 13.27 \text{ uV/m or } 22.46 \text{ dBuV/m}$$