

EXHIBIT 7**Measurement Procedure & Test Equipment Used**

Except where otherwise stated, all measurements are made following the Electronic Industries Association (EIA) Minimum Standard for Portable/Personal Land Mobile Communications FM or PM Equipment 25-1000 MHz-(EIA/TIA-603-D).

This exhibit presents a brief summary of how the measurements were made, the required limits, and the test equipment used.

The following procedures are presented with this application.

1. Test Equipment List	<u> X </u>
2. RF Power Output Data	<u> X </u>
3. Audio Frequency Response	<u> X </u>
4. Audio Low Pass Filter Response	<u> X </u>
5. Modulation Limiting	<u> X </u>
6. Occupied Bandwidth	<u> X </u>
7. Conducted Spurious Emissions	<u> X </u>
8. Radiated Spurious Emissions	<u> X </u>
9. Frequency Stability (Volt/Temp)	<u> X </u>
10. Transient Frequency Behavior	<u> X </u>
11. Adjacent Channel Power	<u> </u>
12. 1559-1610MHz Emission (GNSS)	<u> </u>

Test Equipment List**Measurement Equipment List – Pursuant to FCC Rules 2.947 (d)**

No.	List of equipment	Description	Calibration Due Date
1	Computer	HP EliteBook 8540w, Windows XP Professional	NA
2	Spectrum Analyzer	Agilent E44404B, 9kHz - 6.7 GHz	22-Aug-2014
3	Dynamic Signal Analyzer	Agilent 35670A	6-June-2014
4	FSG Spectrum Analyzer	Rohde & Schwarz 9kHz -13.6kHz	9-Dec-2014
5	RF Signal Generator	Agilent E4420B, 250kHz - 2GHz	18-May-2014
6	Modulation Analyzer	HP 8901B	7-Jun-2014
7	Audio Analyzer	HP 8903B	30-Apr-2014
8	Power Meter	Agilent E4416A	16-Aug-2014
9	Power Sensor	Agilent E9301B	12-Aug-2014
10	Oscilloscope	Agilent Infiniium 54831 DMSO	22-Aug-2014
11	Multimeter	HP 34401A	7-Jan-2014
12	DC Power Supply	HP 6623A	12-Jan-2014
13	Directional Coupler	HP 778D, Dual Directional Coupler	NA
14	Temperature Chamber	Espec SH-241	12-Nov-2013
15	30 dB attenuator	Aeroflex/Weinschel, model 23-30-34, 10W	NA
16	High Pass Filter	Mini-Circuit NHP -800+	NA
17	50 Ohms terminating load	MCE/Weinschel 1429-4	NA
18	Motorola test box	RLN4460	NA
19	Function generator	Hewlett Packard 3312A	16-Aug-2014

Table 1: List of equipment used

Test Name	FCC Rules Part (47 CFR)	IC Rules
RF Power Output Data	2.1046(a), 2.1033(c)(6), 2.1033(c)(7) and 2.1033(c)(8) 90.541, 90.542(a)(7), 90.545(b)(4) (700MHz)	RSS-Gen Sec 4.8, RSS-119 Sec 5.4.1
TX Audio Frequency Response	2.1047 and 2.1033(c)(13)	-
TX Audio Low Pass Filter Response	2.1047	-
Modulation Limiting	2.1047	-
Occupied Bandwidth	2.1049, 90.210 90.691 (800MHz)	RSS GEN Sec 4.6 RSS 119 Sec 5.5
TX Conducted Spurious Emissions	2.1051, 90.210	RSS GEN Sec 6.2 RSS 119
TX Radiated Spurious Emissions	2.1053, 90.210	RSS GEN Sec 4.9 RSS 119 Sec 4.2, 5.8
Frequency Stability (Temp / Supply Voltage)	2.1055, 90.213, 90.539 (700MHz)	RSS GEN Sec 4.7 RSS 119 Sec 5.3
Transient Frequency Behavior	90.214	RSS 119 Sec 5.9
Adjacent Channel Power	90.543 (a) (700MHz)	RSS 119 Sec 4.3, 5.8.9
1559-1610MHz Emissions (GNSS)	90.543 (a) (700MHz)	-

Table 2: List of FCC and IC reference

EXHIBIT 7A - RF Output Power

Conducted power is measured in accordance with TIA/EIA-603D section 2.2.1.2. The transmitter under test is connected to Agilent E4416A Power Meter using the forward port of 30dB attenuator and Agilent power sensor. Appropriate calibration offsets, derived from a traceable RF attenuator, which has been precision characterized by an outside testing laboratory, are entered into the wattmeter to calibrate for the use of the coupler.

The transmitter is operated under normal conditions at the specified nominal DC input voltage. The DC supply path to the final stage only (or to the RF power amplifier module, if the final stage only is not accessible) is interrupted to allow insertion of a DC ammeter in series with the DC supply. The DC voltage drop of the ammeter is negligible. A DC voltmeter is used to measure the DC voltage applied to the final stage. The DC input power to the final stage (in watts) is computed as the product of the DC current (in amperes) times the DC voltage (in volts). This measurement is performed at the lowest, the middle, and the highest operating frequencies of the operating bandwidth of the equipment.

The calibration of the power meter, power sensor and attenuator pads is verified on an annual basis. Other power measurement systems that may be used are correlated with this calibrated reference system before measurements are performed, and calibration factors are adjusted as necessary to obtain precise correlation.

EXHIBIT 7B - Transmit Audio Frequency Response

The transmitter output is monitored with an HP8901B modulation analyzer, whose FM demodulator output is fed to an HP8903B audio analyzer. De-emphasis or filtering within the test equipment is not used. An audio oscillator signal, derived from the HP8903B Audio Analyzer, is connected to the microphone audio input of the transmitter. At a frequency of 1 kHz, the level is adjusted to obtain 20% of full system deviation, to ensure that limiting does not occur at any frequency in the range of 300 Hz – 3000 Hz. A constant input level is then maintained and the oscillator frequency is varied between the ranges of 100 Hz to 5000 Hz. The frequency response is plotted, using a reference of 0 dB at 1 kHz.

EXHIBIT 7C - Transmit Audio Post Limiter Low Pass Filter Response

The audio oscillator portion of an HP8903B audio analyzer is connected to the input of the post limiter low pass filter. The oscillator is adjusted, at 1000 Hz and level 16 dB greater than that required to produce standard test modulation. The output of the low pass filter is measured with an Agilent 35670A dynamic signal analyzer. The response is swept between the limits of 1000 Hz - 30000 Hz. Oscillator level is chosen to be as high as possible and that will not cause limiting at any frequency, and maintaining a constant input level versus frequency.

EXHIBIT 7D – Modulation Limiting Characteristic

An audio oscillator is connected to the microphone audio input. The transmitter output is monitored with an HP8901B modulation analyzer. The flat frequency response FM demodulator output of the HP8901B is fed to an HP8903B audio analyzer. The 20 kHz low pass filter of the modulation analyzer is used to reduce the level of residual high frequency noise. The oscillator level is adjusted, at 1 kHz, to obtain 60% of full system deviation. The oscillator level is then varied over a range of +/-20dB in 5 dB increments, and the resulting deviation is plotted. This measurement is repeated at 300 Hz and 3 kHz. The above procedure is performed three times, for conditions with Tone Private Line, Digital Private Line, and Carrier Squelch Mode (without sub-audible signaling).

EXHIBIT 7E - Occupied Bandwidth**Procedure for Occupied Bandwidth Measurement for Voice Transmission**

The transmitter is connected, via a suitable attenuator, to the Agilent E44410A PSA Series Spectrum Analyzer. The spectrum analyzer settings for the reference calibration are in accordance with 47 CFR 90.210 (d) (4). The

unmodulated carrier's emission spectrum is captured on the spectrum analyzer and then used to establish a 0 dB reference plot for exhibits.

The HP 8903B audio source is connected to the microphone audio input of the transmitter. The audio source frequency is set to 2500 Hz and the amplitude is adjusted to a level 16 dB above that required to produce 50% of full system deviation at the frequency of maximum response of the audio modulation circuit, in accordance with 47 CFR Part 2.1049(c)(1). The spectrum analyzer settings are adjusted in accordance with 47 CFR 90.210(d)(4) and the analyzer is swept to record the resultant emission levels using the appropriate emission mask.

This measurement is repeated with Tone Private Line (TPL) sub-audible signaling and audio by adding a 250.3 Hz TPL tone at 15% full system deviation with the previously defined 2500 Hz tone. The amplitude of the modulating signal is adjusted so that the total deviation, which includes the TPL deviation, is the full system deviation. An additional measurement is made with Digital Private Line (DPL) sub-audible signaling and audio by adding a DPL code 131 at 15% full system deviation with the previously defined 2500 Hz tone. The amplitude of the modulating signal is adjusted so that the total deviation, which includes the DPL deviation, is the full system deviation.

Procedure for Occupied Bandwidth Measurement for 2000/3000 Hz FSK Data

The transmitter is connected, via a suitable attenuator, to the Agilent E44410A PSA Series Spectrum Analyzer. The spectrum analyzer settings for the reference calibration are in accordance with 47 CFR 90.210 (d) (4). The unmodulated carrier's emission spectrum is captured on the spectrum analyzer and then used to establish a 0 dB reference plot for exhibits.

The audio function generator is connected to the flat (non-pre-emphasized) transmit audio input of the radio under test. A second function generator producing a square wave output at a frequency of 1200 Hz is connected to the voltage control input of the first generator. The first generator is set to produce a sine wave signal at a center frequency of 2500 Hz and the amplitude of the square wave from the second generator is adjusted so that the frequency of the first generator is varied \pm 500 Hz. The resulting output of the first generator is an AFSK sine wave signal that shifts between two discrete frequencies, 2000 Hz and 3000 Hz, at a rate of 1200 Hz. The amplitude of the first generator, which modulates the transmitter, is adjusted for full system deviation. The spectrum analyzer settings are adjusted in accordance with 47 CFR 90.210 (d) (4) and the analyzer is swept to record the resultant emission levels using the appropriate emission mask.

This measurement is repeated with Tone Private Line (TPL) sub-audible signaling and 2000/3000 Hz FSK data by adding a 250.3 Hz TPL tone at 15% full system deviation with the previously defined data signal. The amplitude of the modulating signal is adjusted so that the total deviation, which includes the TPL deviation, is the full system deviation. An additional measurement is made with Digital Private Line (DPL) sub-audible signaling and 2000/3000 Hz FSK data by adding a DPL code 131 at 15% full system deviation with the previously defined 2500 Hz tone. The amplitude of the modulating signal is adjusted so that the total deviation, which includes the DPL deviation, is the full system deviation.

Procedure for Occupied Bandwidth Measurement for DTMF

The transmitter is connected, via a suitable attenuator, to the Agilent PSA E44410A Series Spectrum Analyzer. The spectrum analyzer settings for the reference calibration are in accordance with 47 CFR 90.210 (d) (4). The unmodulated carrier's emission spectrum is captured on the spectrum analyzer and then used to establish a 0 dB reference plot for exhibits.

The transmitter is keyed up and the "#" key pressed to generate the worst-case DTMF tones (941 Hz and 1633 Hz). The spectrum analyzer settings are adjusted in accordance with 47 CFR 90.210 (d) (4) and the analyzer is swept to record the resultant emission levels using the appropriate emission mask.

This measurement is repeated with Tone Private Line (TPL) sub-audible signaling and

DTMF by adding a 250.3 Hz TPL tone at 15% full system deviation with the previously defined DTMF signal. An additional measurement is made with Digital Private Line (DPL) sub-audible signaling and DTMF by adding a DPL code 131 at 15% full system deviation with the previously defined DTMF signal.

Procedure for Occupied Bandwidth Measurement for 4-Level FSK Data

The transmitter is connected, via a suitable attenuator, to the Agilent PSA E44410A Series Spectrum Analyzer. The spectrum analyzer settings for the reference calibration are in accordance with 47 CFR 90.210 (d) (4). The unmodulated carrier's emission spectrum is captured on the spectrum analyzer and then used to establish a 0 dB reference plot for exhibits.

The radio is placed in test mode such that it transmits a 511-bit pseudo-random bit sequence based on ITU-T O.153 in the 2:1 TDMA protocol's payload, which is in accordance to 47 CFR 2.1049 (h). The spectrum analyzer settings are adjusted in accordance with 47 CFR 90.210 (d) (4) and the analyzer is swept to record the resultant emission levels using the appropriate emission mask.

FCC Limits for 12.5 kHz Channel: 47 CFR 90.210 (d)

For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1. On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : 0 dB.
2. On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: at least $7.27^*(f_d - 2.88 \text{ kHz})$ dB.
3. On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: at least $50 + 10^*\log(P)$ dB or 70 dB (whichever is the lesser attenuation).

Note: The occupied bandwidth plot exhibits cover a ± 100 kHz frequency range that is centered on the assigned frequency. The radiated and conducted spurious emissions exhibits cover emissions at frequency offsets greater than ± 100 kHz.

EXHIBIT 7F - Conducted Spurious Emissions

The output of the transmitter is connected, via a suitable attenuator, to the input of an Agilent PSA E44410A Series Spectrum Analyzer. This data is measured at the upper and lower frequency limits of the frequency range. If transmit power is adjusted, the measurement is repeated at various power levels including minimum and maximum.

EXHIBIT 7G - Radiated Spurious Emissions

Transmitter radiated spurious emissions were measured by Advanced Compliance Solutions Lab. Measurements were made at an approved open field test site constructed in accordance with Appendix B, FCC/OST 55 (1982), and were performed in accordance with the Code of Federal Regulations, Title 47, Part 2, paragraph 2.1053. The data is plotted as "Radiated Spurious Emissions" on the graphs comprising EXHIBIT 6F. The specification limit corresponding to a level of $43 \text{ dB} + 10\log(P_{\text{out}})$ for 25 kHz Channel Spacing and $50 \text{ dB} + 10\log(P_{\text{out}})$ for 12.5 kHz Channel Spacing below the fundamental carrier power of the transmitter as indicated on each graph for reference.

EXHIBIT 7H – Frequency Stability vs. Temperature and vs. Voltage

Frequency Stability vs. Temperature data is measured in accordance with FCC Rules Part 2.1055 (a) (1). A HP8901B modulation analyzer is used to measure the frequency of the signal transmitted by the radio by way of a 20dB attenuator.. The radio is placed in a SH 241 Temperature and Humidity Chamber, and the frequency is measured as the temperature is incremented from -30 to +60 degrees C in 10 degrees increments.

Frequency Stability versus Voltage data is measured in accordance with FCC Rules Part 2.1055 (d). A HP8901B modulation analyzer is used to measure the frequency of the signal transmitted by the radio by way of a 20dB attenuator. The supply voltage of the radio is swept +30% and -23% of 7.5Vdc.

EXHIBIT 7I – Transient Frequency Behavior

This data measured in accordance with FCC Rules. Applicable method of measurement and definition can be found in Section 2.2.19 of the TIA/EIA 603D. Specifically, the triggering level was set in the following manner.

The output of the radio is connected to an HP8901B modulation analyzer by way of a directional coupler, 30dB attenuator, and 2:1 combining network. This output is first measured with an Agilent E4416A power meter and then the power meter is replaced by the HP8901B modulation analyzer, and the RF output of an Agilent E4420B signal generator is connected to the second port of the combining network at a level of 30dB less than the output level of the radio measured after the attenuator. The RF output of the Agilent E4424B signal generator is modulated with a 1 kHz tone and deviation of 12.5 kHz or 25 kHz depending on the channel spacing. The modulation output of the HP8901B modulation analyzer is connected to a digital storage oscilloscope, Agilent Infiniium 54831DMSO. The signal generator is turned on first, and then the radio keyed or de-keyed depending on the particular test. The oscilloscope is triggered by way of a RF peak detector that detects the RF output of the radio by way of the directional coupler.

The picture of the oscilloscope display is stored on a floppy disk and transferred to a computer. The key up attack time plot shows the 1 kHz from the RF signal generator signal from the modulation output of the HP8901B modulation analyzer, and when the radio is keyed, the output signal from the radio captures the receiver of the HP8901B modulation analyzer, resulting in the carrier only signal. The de-key decay time plots show the unmodulated signal from the radio and when the radio is de-keyed, the 1 kHz from the RF signal generator signal captures the receiver of the HP8901B modulation analyzer, resulting in the 1 kHz signal shown in the plots.