

MOTOROLA

TESTING CERT # 2518.01

FCC ID: ABZ99FT4056
DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Government & Public Safety
EME Test Laboratory
8000 West Sunrise Blvd
Fort Lauderdale, FL. 33322

Date of Report: 3/11/08
Report Revision: C
Report ID: PC ll rpt_PR400 UHF2 Plain_Battery
 Rev C_080311_SR5977

Responsible Engineer: Veerapan Veeramani / PeiLoo Tey (EME Engineer)
Date's Tested: 2/14/08; 2/22/08
Manufacturer/Location: Motorola – Penang
Sector/Group/Div.: GTDG
Date submitted for test: 12/21/07
DUT Description: PR400 Piranha 438-470MHz 1-4W 16 Channels,
 w/no display, no keypad.
Test TX mode(s): CW
Max. Power output: 4.6 Watts
Nominal Power: 4.0 Watts
Tx Frequency Bands: 438 – 470 MHz
Signaling type: FM
Model(s) Tested: PMUE 1966A / AAH65RDC9AA2AN
Model(s) Certified: PMUE 1966A / AAH65RDC9AA2AN
Serial Number(s): 018TDQ1005
Classification: Occupational/Controlled
Rule Part(s): 90

Approved Accessories:

Antenna(s):
 NAE6522A (438-470MHz Heliflex 1/4 wave; -2.0dBi)

Battery(ies):
 NNTN4497C (Li Ion High Capacity battery)

Body worn accessory(ies):
 HLN6602A (Universal Chest Pack)

Audio/Data cable accessory(ies):
 HMN9030A (Remote Speaker Microphone)

Max. Calc. : 1-g Avg. SAR: 5.53 W/kg (Body); 10-g Avg. SAR: 3.98 W/kg (Body)
Max. Calc. : 1-g Avg. SAR: 5.12 W/kg (Face); 10-g Avg. SAR: 3.78 W/kg (Face)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements.
 This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004
 The results and statements contained in this report pertain only to the device(s) evaluated.

Signature on file – Deanna Zakharia
Deanna Zakharia G&PS EME Lab Senior Resource Manager,
Laboratory Director,
Approval Date: 3/11/08

Certification Date: 3/7/08
Certification No.: 080302AD

Part 1 of 2

1.0	Introduction and Overview.....	3
2.0	Referenced Standards and Guidelines.....	3
2.1	SAR Limits	4
3.0	Description of Device Under Test (DUT).....	4
4.0	Description of Test System	5
4.1	Description of Robotics/Probes/Readout Electronics.....	5
4.2	Description of Phantom(s).....	5
4.2.1	Flat Phantom.....	5
4.2.2	SAM Phantom	5
4.2.3	Elliptical Phantom.....	5
4.3	Description of Equivalent Tissues	6
5.0	Additional Test Equipment.....	6
6.0	SAR Measurement System Verification.....	7
6.1	Equivalent Tissue Test results	7
6.2	System Check Test results	7
7.0	DUT Test Strategy and Methodology	8
7.1	DUT Configuration(s)	8
7.2	Device Positioning Procedures	9
7.2.1	Body	9
7.2.2	Head	9
7.2.3	Face	9
8.0	Environmental Test Conditions	9
9.0	Test Results Summary	9
9.1	Highest SAR results calculation methodology	10
10.0	Conclusion.....	11

APPENDICES

A	Measurement Uncertainty	12
B	Probe Calibration Certificates	15

Part 2 of 2

C	Dipole Calibration Certificates.....
D	Test System Verification Scans.....
E	DUT Scans (Shortened Scans and Highest SAR configurations)
F	DUT Supplementary Data (e.g. Power Slump)
G	DUT Test Position Photos.....

Report Revision History

Date	Revision	Comments
10/10/02	O	Initial Prototype results.
2/21/03	A	Disclosure of Pilot results
9/23/03	B	Disclosure of new results from derivative models
3/11/08	C	PC II report for new offered battery kit NNTN4497C

1.0 Introduction and Overview

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the G&PS EME Test Lab for the model number PMUE1966A / AAH65RDC9AA2AN (No display or keypad), FCC ID: ABZ99FT4056. The results herein reflect PCII results of new offered battery kit # NNTN4497C results.

2.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1(2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-2005 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Radio communications (Electromagnetic Radiation - Human Exposure) Standard 2003
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9KHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

2.1 SAR Limits

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average - ANSI - (averaged over the whole body)	0.08	0.4
Spatial Peak - ANSI - (averaged over any 1-g of tissue)	1.60	8.0
Spatial Peak - ICNIRP/ANSI - (hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0
Localized SAR - ICNIRP - (Head and Trunk 10-g)	2.0	10.0

3.0 Description of Device Under Test (DUT)

FCC ID: ABZ99FT4056, operates using frequency modulation (FM) incorporating traditional simplex two-way radio transmission protocol. The radio model PMUE1966A / AAH65RDC9AA2AN (no display, no keypad) utilize removable antennas and are capable of transmitting in the 438-470 MHz band. The nominal output power is 4.0 Watts with maximum output powers of 4.6 Watts as defined by upper limit of the production line final test station. The intended operating positions are “at the face” with the DUT 1 to 2 inches from the mouth, and “at the body” by means of the offered body-worn accessories. Body-worn audio and PTT operation is accomplished by means of optional remote accessories that connect to the radio.

This device will be marketed to and used by employees solely for occupational operations, such as public safety agencies, e.g. police, fire and emergency medical. User training is the responsibility of the agencies, which can be expected to employ the usage instructions, safety information and operational cautions set forth in the user’s manual, instruction sessions or other means. Motorola also makes available to its customers training on the proper use of the two-way.

FCC ID: ABZ99FT4056 was evaluated with the applicable accessories listed on the cover page and demonstrated compliance with the new offered battery kit # NNTN4497C. Please reference the report on file dated 9/23/03 for information on other previously offered accessories.

Test Output Power

A table of the characteristic power slump versus time is provided in Appendix F.

4.0 Description of Test System

4.1 Descriptions of Robotics/probes/Readout Electronics

The laboratory utilizes a Dosimetric Assessment System (DASY4™) SAR measurement system Version 4.7 build 55 manufactured by Schmid & Partner Engineering AG (SPEAG™), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE3, and ET3DV6R E-Field probes. Please reference the SPEAG user manual and application notes for detailed probe, robot, and SAR computational procedures. Section 5.0 presents relevant test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

4.2 Description of Phantom(s)

4.2.1 Flat Phantom

Phantom ID	Phantom Material	Phantom Dimensions (cm)	Support structure opening dimensions (cm)	Support structure material	Loss Tangent (wood)
Flat	High Density Polyethylene (HDPE)	80x30x20x0.2	68.58x20.32	Wood	< 0.05

4.2.2 SAM Phantom

Not Applicable

4.2.3 Elliptical Phantom

Not Applicable

4.3 Description of Equivalent tissues

Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

Simulated Tissue Composition

% of listed ingredients	450MHz	
	Head	Body
Sugar	56	46.5
Diacetin	NA	NA
De ionized -Water	39.1	50.53
Salt	3.8	1.87
HEC	1.0	1.0
Bact.	0.1	0.1

Reference section 6.1 for target parameters

5.0 Additional Test Equipment

Equipment Type	Model Number	Serial Number	Calibration Due Date
Power Meter (Agilent)	E4419B	MY40330364	6/25/2008
Power Sensor (Agilent)	8482B	3318A07393	1/26/2009
Power Sensor (HP)	8482H	1926A01906	12/13/2008
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495593	2/14/2009
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495594	2/14/2009
Bi-Directional Coupler (NARDA)	3020A	40295	6/6/2008
Signal generator (Agilent)	E4438C	MY42082269	6/23/2008
AMP (Amplifier Research)	10WD1000	28782	CNR
Tissue Station			
Agilent PNA-L Network Analyzer	N5230A	MY45001092	5/22/2008
Dielectric Probe Kit (HP)	85070C	US99360076	CNR
Dipole			
Speag Dipole	D450V2	1001	5/25/2008
Speag Dipole	D450V2	1002	8/24/2008

6.0 SAR Measurement System Verification

The SAR measurements were conducted with probe model/serial number ET3DV6R/SN1545. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively. The table below summarizes the system performance check results normalized to 1W.

Dipole validation scans at the head from SPEAG are provided in APPENDIX D. The G&PS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the G&PS EME system performance validation are provided herein.

6.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 5.0.

Target versus Actual tissue parameters (2/14/08, 2/22/08)

FCC Body				
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m
450	56.7	56.4	0.94	0.93
454	56.7	56.4	0.94	0.93

IEEE/IEC Head				
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m
450	43.5	44.0	0.87	0.83
454	43.5	43.9-44.1	0.87	0.84-0.84

6.2 System Check Test Results

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. Result when normalized to 1W (mW/g)	Reference SAR @ 1W (mW/g)	Test Date(s)
1545	FCC Body	8/28/07	SPEAG D450V2 /1001	4.46 +/- 0.00	4.44 +/- 10%	2/14/08 1 test days
1545	IEEE / IEC Head	8/28/07	SPEAG D450V2 /1002	4.86 +/- 0.00	4.78 +/- 10%	2/22/08 1 test days

Note: See APPENDIX D for an explanation of the reference SAR targets stated above.
(System performance results reflects the median performance +/- 1/2 of the test date(s) performance ranges)

The DASY4™ system is operated per the instructions in the DASY4™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess EME SAR compliance was calibrated according to 17025 A2LA guidelines.

7.0 DUT Test Strategy and Methodology

7.1 DUT Configuration(s)

PTT operation using Frequency Modulation (FM) in CW transmission mode. The DUT's PTT switch is engaged and the radio is placed in the reported test positions presented in Appendix G.

Test Plan

All options and accessories listed on the cover page of this report were considered in order to develop the SAR test plan for this product. SAR measurements were performed using a flat phantom with the applicable simulated tissue to assess performance at the body and face using CW transmission mode.

Note that a coarse-to-cube approximation methodology was utilized to determine the worst-case SAR performance configuration for each applicable body location. The test configurations that produced the highest SAR results for each body position using the coarse-to-cube approximation methodology were assessed using the full DASY4™ coarse and 5x5x7 cube scans.

Assessments at the Body [\[Page 10 ; Table 1\]](#)

- Assessment of new offered battery kit # NNTN4497C at the body using the worst case configuration from previous report dated 9/23/03.
- Assessment across the respective frequency range using the test configuration from above.

Assessments at the Face [\[Page 10 ; Table 1\]](#)

- Assessment of new offered battery kit # NNTN4497C at the face using the worst case configuration from previous report dated 9/23/03.
- Assessment across the respective frequency range using the test configuration from above.

Shortened scan assessment at the Face [\[Page 10 ; Table 1\]](#)

- A “shortened” scan was performed using the offered battery that produced the highest SAR results overall at the face. Note that the shortened scan is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a cube scan only was performed. The shortened scan represents the cube scan performance results.

7.2 Device Positioning Procedures

Reference Appendix G for photos of the DUT tested positions.

7.2.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory.

7.2.2 Head

Not Applicable.

7.2.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

8.0 Environmental Test Conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/- 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was 15cm +/- 0.5cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

	Target	Measured
Ambient Temperature	20 - 25 °C	Range: 21.1-22.6°C Avg. 21.6°C
Relative Humidity	30 - 70 %	Range: 43.9-59.5 % Avg. 54.1%
Tissue Temperature	NA	Range: 19.9-21.3°C Avg. 20.44°C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

9.0 Test Results Summary

All SAR results obtained by the tests described in Section 7.1 are listed below. As noted in section 7.1, a coarse-to-cube approximation methodology, was utilized to ascertain the worst case test configuration for each body location per band. The worst case test configurations observed for each body location were assessed using the full DASY4™ coarse and 5x5x7 cube methodology and they are summarized in the worst case table below. The associated SAR plots are provided in APPENDIX E. Appendix E also presents shortened SAR cube scans to assess the validity of the

calculated results presented herein. Note: The results of the shortened cube scans presented in Appendix E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid.

Table1

Assessments of new offered battery NNTN4497C												
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
Assessment at the Body												
*JsT-Ab-080214-02 / 018TDQ1005	NAE6522A	438.000	NNTN4497 C	Against phantom	chest pack HLN6602A	HMN9030A	4.62	-0.892	9.57	6.98	5.88	4.29
Assessment of band edges												
JsT-Ab-080214-03 / 018TDQ1005	NAE6522A	454.000	NNTN4497 C	Against phantom	chest pack HLN6602A	HMN9030A	4.64	-0.741	4.37	3.18	2.59	1.89
JsT-Ab-080214-04 / 018TDQ1005	NAE6522A	470.000	NNTN4497 C	Against phantom	chest pack HLN6602A	HMN9030A	4.70	-0.518	2.66	1.94	1.50	1.89
Assessment at the Face												
*JsT-Face-080214-05 / 018TDQ1005	NAE6522A	438.000	NNTN4497 C	DUT front 2.5cm	None	None	4.68	-0.718	8.43	6.22	4.97	3.67
Assessment of band edges												
JsT-Face-080214-06 / 018TDQ1005	NAE6522A	454.000	NNTN4497 C	DUT front 2.5cm	None	None	4.68	-0.743	4.10	3.02	2.43	1.79
JsT-Face-080214-07 / 018TDQ1005	NAE6522A	470.000	NNTN4497 C	DUT front 2.5cm	None	None	4.69	-0.461	2.18	1.61	1.21	0.90
*Assessment with the worst case test configuration at the Body and Face using full DASY coarse and 5x5x7 cube scan measurements.												
(Full Scan) JsT-Ab-080214-09 / 018TDQ1005	NAE6522A	438.000	NNTN4497 C	Against phantom	chest pack HLN6602A	HMN9030A	4.69	-1.10	8.59	6.18	5.53	3.98
(Full Scan) JsT-Face-080214-08 / 018TDQ1005	NAE6522A	438.000	NNTN4497 C	DUT front 2.5cm	None	None	4.65	-0.900	7.85	5.77	4.83	3.55
(Shortened Scan) JsT-Face-080222-02 / 018TDQ1005	NAE6522A	438.000	NNTN4497 C	DUT front 2.5cm	None	None	4.67	-0.548	9.02	6.66	5.12	3.78

9.1 Highest SAR results calculation methodology

The calculated maximum 1-gram and 10-gram averaged SAR results reported herein for the full DASY™ coarse and 5x5x7 cube measurements are determined by scaling the measured SAR to account for power leveling variations and power slump. For this device the Maximum Calculated 1-gram and 10-gram averaged peak SAR is calculated using the following formula:

$$\text{Max. Calc. 1-g/10-g Avg. SAR} = ((\text{SAR meas.} / (10^{(\text{Pdrift}/10)})) * (\text{Pmax}/\text{Pint})) * \text{DC\%}$$

P_{max} = Maximum Power (W)

P_{int} = Initial Power (W)

Pdrift = DASY drift results (dB) - (for conservative results positive drifts are not accounted for)

SAR_{meas.} = Measured 1-g/10-g Avg. SAR (mW/g)

DC % = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation.

10.0 Conclusion

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for FCC ID: ABZ99FT4056 models PMUE1966A / AAH65RDC9AA2AN.

Max. Calc. : 1-g Avg. SAR: 5.53 W/kg (Body); 10-g Avg. SAR: 3.98 W/kg (Body)

Max. Calc. : 1-g Avg. SAR: 5.12 W/kg (Face); 10-g Avg. SAR: 3.78 W/kg (Face)

The previously reported results at the face 4.15 W/kg are hereby replaced with the results presented herein.
The previously reported results at the body 7.35 W/kg are maintained.

These test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of **8.0 mW/g** per the requirements of 47 CFR 2.1093(d).

APPENDIX A
Measurement Uncertainty

Uncertainty Budget for Device Under Test, for 30 MHz to 3 GHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i> = <i>f</i> (<i>d</i> , <i>k</i>)	<i>f</i>	<i>g</i>	<i>h</i> = <i>c x f/e</i>	<i>i</i> = <i>c x g/e</i>	<i>k</i>
Uncertainty Component	IEEE 1528 section	Tol. (\pm %)	Prob Dist	Div.	<i>c_i</i> (1 g)	<i>c_i</i> (10 g)	1 g <i>u_i</i> (\pm %)	10 g <i>u_i</i> (\pm %)	<i>v_i</i>
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				11	11	411
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				22	22	

FCD-0558 Rev 5

Uncertainty Budget for System Validation (dipole & flat phantom) for 30 MHz to 3 GHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i> = $f(d, k)$	<i>f</i>	<i>g</i>	<i>h</i> = $c x f / e$	<i>i</i> = $c x g / e$	<i>k</i>	
Uncertainty Component		IEEE 1528 section	Tol. ($\pm \%$)	Prob. Dist.	Div.	c_i (1 g)	c_i (10 g)	1 g u_i ($\pm \%$)	10 g u_i ($\pm \%$)	v_i
Measurement System										
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞	
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞	
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞	
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞	
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞	
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞	
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞	
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞	
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞	
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞	
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞	
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞	
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞	
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞	
Dipole										
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞	
Input Power and SAR Drift Measurement	8, E.6.2	5.0	R	1.73	1	1	2.9	2.9	∞	
Phantom and Tissue Parameters										
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞	
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞	
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞	
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞	
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞	
Combined Standard Uncertainty				RSS			9	9	99999	
Expanded Uncertainty (95% CONFIDENCE LEVEL)				$k=2$			18	17		

FCD-0558 Rev 5

Notes for Tables 1 and 2

- a) Column headings *a-k* are given for reference.
- b) Tol. - tolerance in influence quantity.
- c) Prob. Dist. – Probability distribution
- d) N, R - normal, rectangular probability distributions
- e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty
- f) c_i - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) u_i – SAR uncertainty
- h) v_i - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

APPENDIX B
Probe Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kaliibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Motorola CGISS

Certificate No: ET3-1545_Aug07

CALIBRATION CERTIFICATE

Object ET3DV6R - SN:1545

Calibration procedure(s) QA CAL-01.v6 and QA CAL-12.v5
Calibration procedure for dosimetric E-field probes

Calibration date: August 28, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: August 29, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- **NORM x,y,z** : Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- **NORM(f) x,y,z = NORM x,y,z * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- **DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- **ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM x,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- **Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- **Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6R

SN:1545

Manufactured:	October 16, 2000
Last calibrated:	September 21, 2006
Recalibrated:	August 28, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6R SN:1545

August 28, 2007

DASY - Parameters of Probe: ET3DV6R SN:1545**Sensitivity in Free Space^A**

NormX	2.03 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	2.23 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	1.85 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	96 mV
DCP Y	95 mV
DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

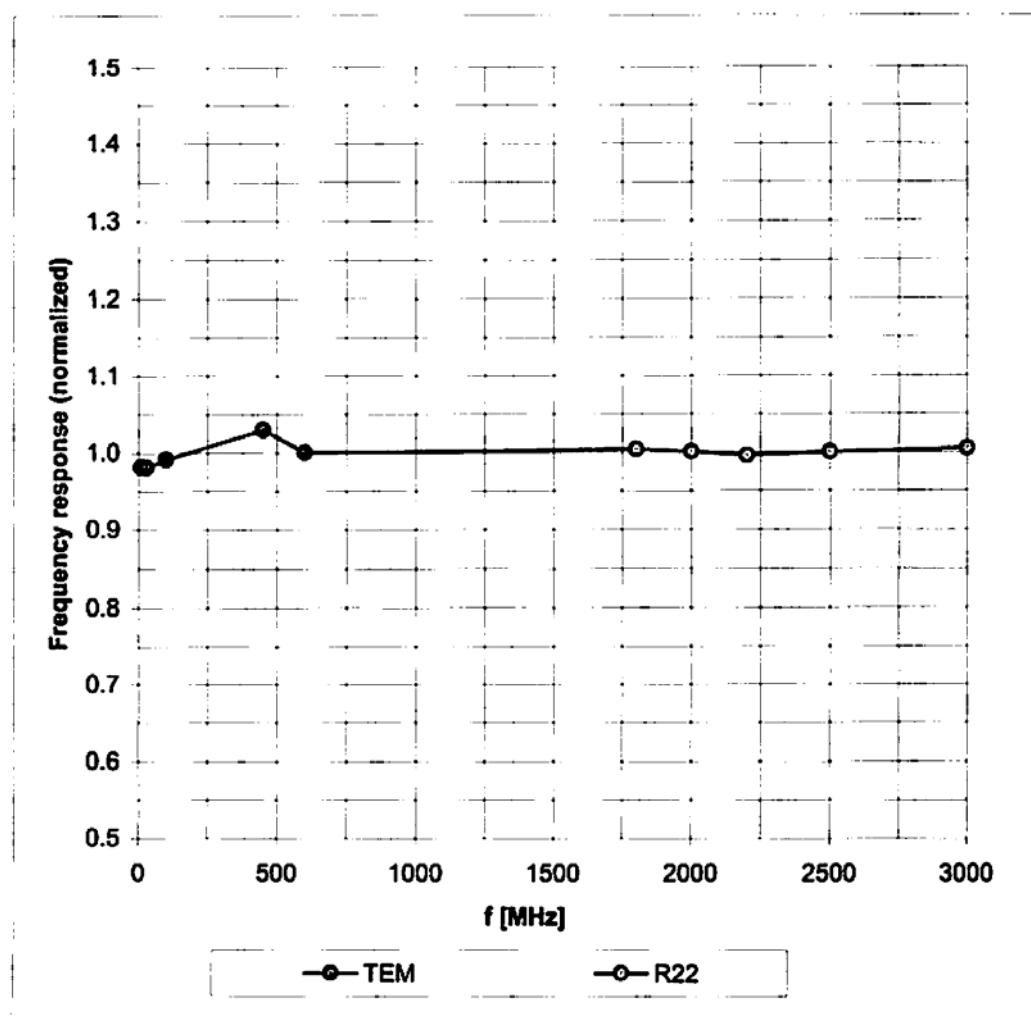
Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	5.8	2.6
SAR _{be} [%] With Correction Algorithm	0.1	0.1

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	13.6	9.1
SAR _{be} [%] With Correction Algorithm	0.8	0.1

Sensor OffsetProbe Tip to Sensor Center **2.7** mm

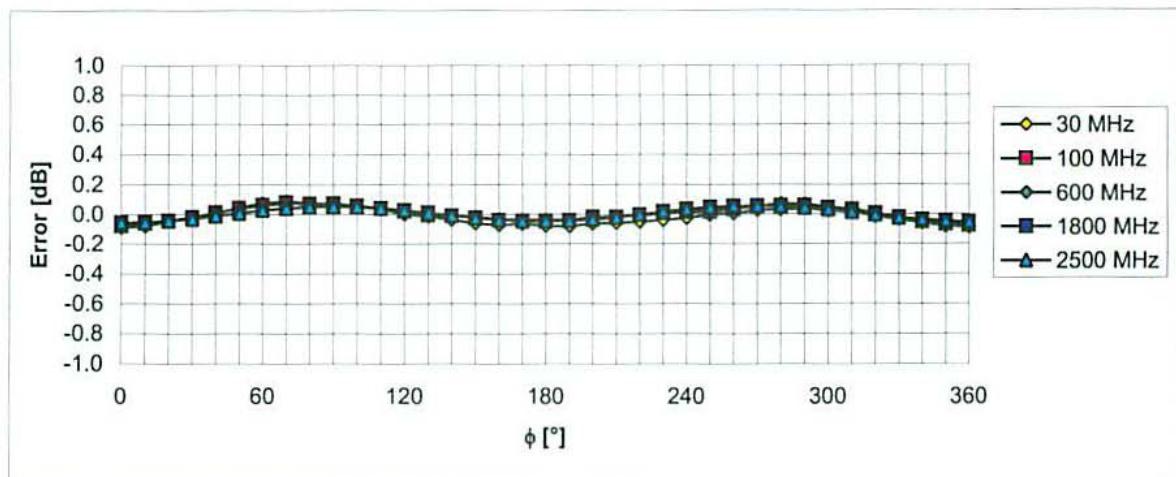
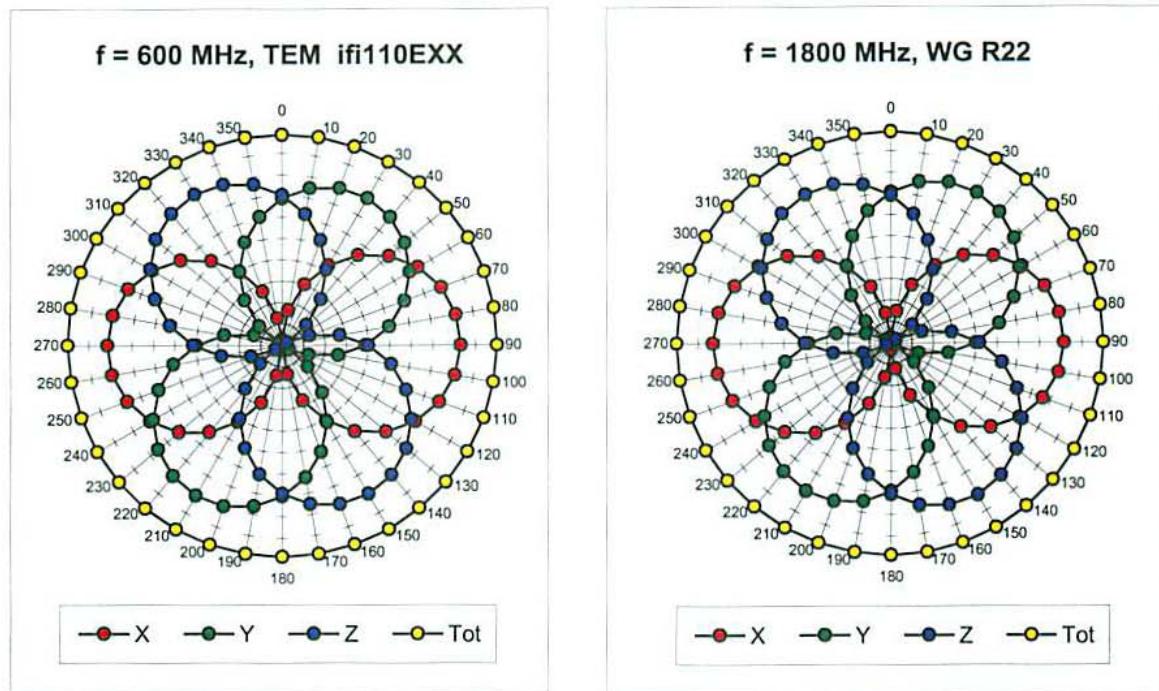
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.


^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).^B Numerical linearization parameter: uncertainty not required.

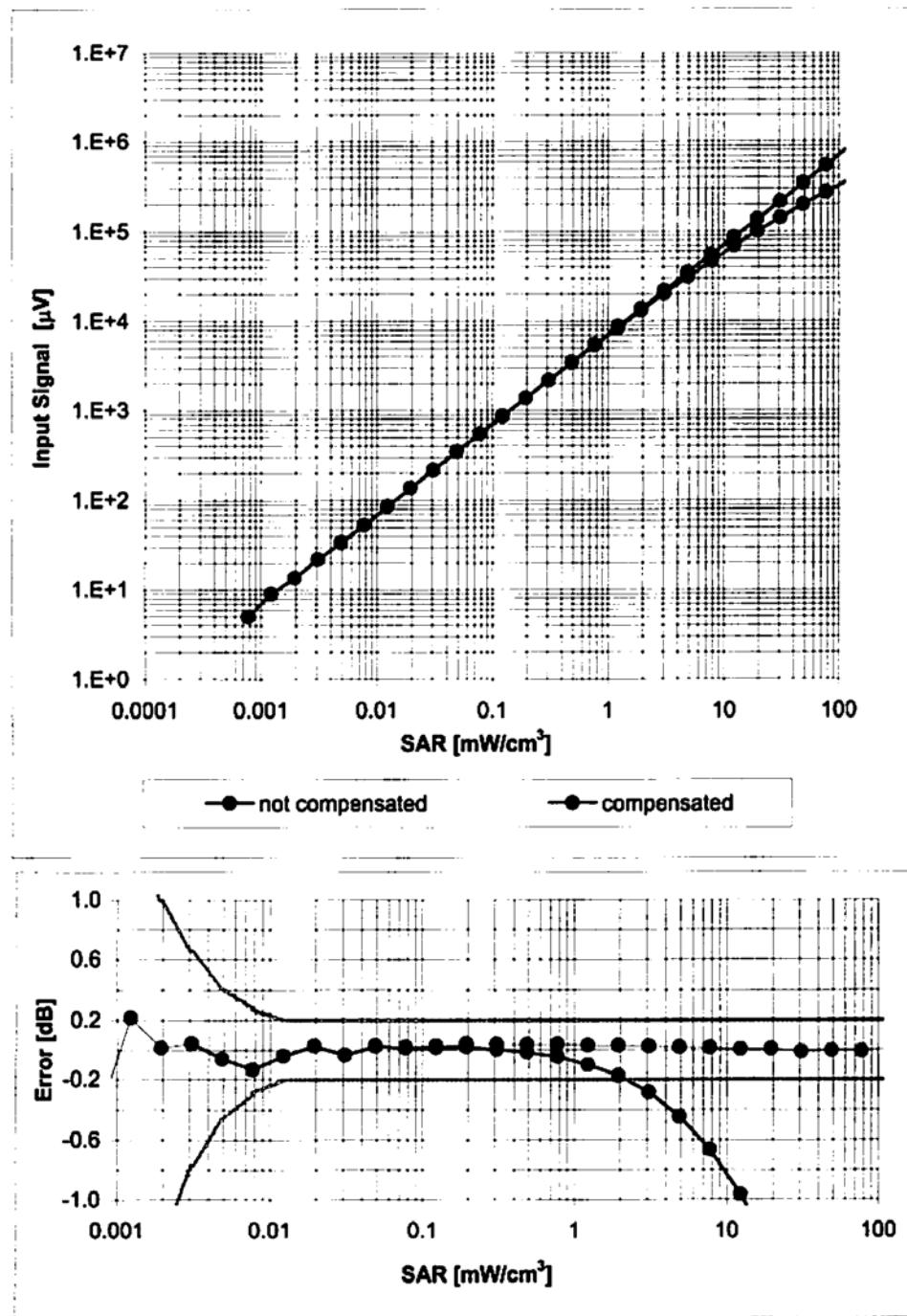
ET3DV6R SN:1545

August 28, 2007

Frequency Response of E-Field



(TEM-Cell:ifi110 EXX, Waveguide: R22)

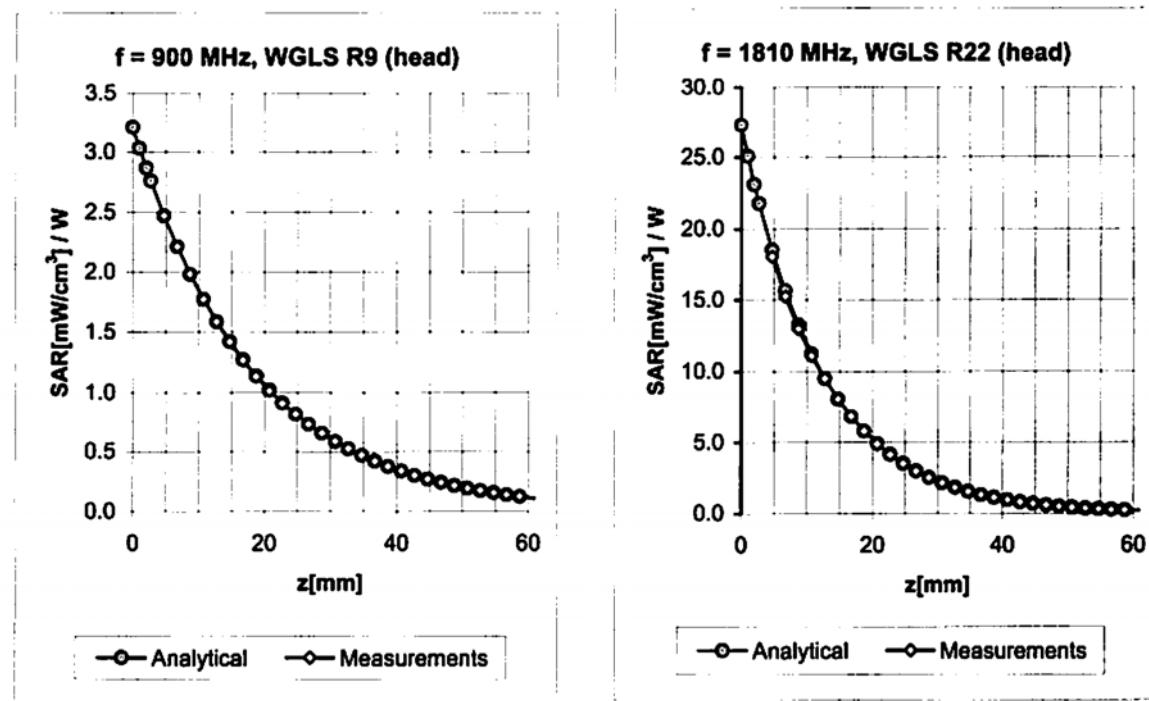
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)


ET3DV6R SN:1545

August 28, 2007

Receiving Pattern (ϕ), $\vartheta = 0^\circ$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

ET3DV6R SN:1545


August 28, 2007

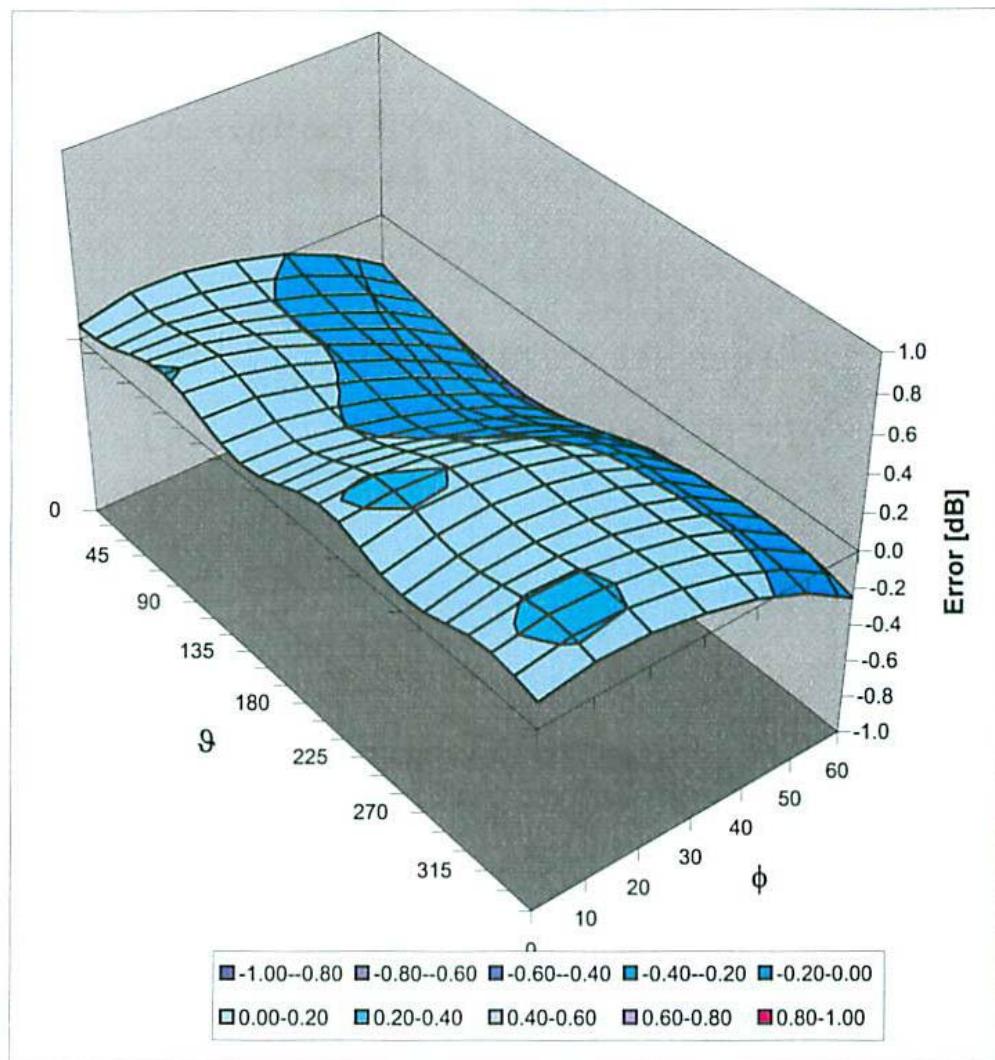
Dynamic Range $f(\text{SAR}_{\text{head}})$ (Waveguide R22, $f = 1800$ MHz)**Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)**

ET3DV6R SN:1545

August 28, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	$\pm 50 / \pm 100$	Head	$43.5 \pm 5\%$	$0.87 \pm 5\%$	0.38	1.92	6.66	$\pm 13.3\% \text{ (k=2)}$
900	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	0.36	2.48	6.15	$\pm 11.0\% \text{ (k=2)}$
1810	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.57	2.46	4.85	$\pm 11.0\% \text{ (k=2)}$
1950	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.62	2.40	4.67	$\pm 11.0\% \text{ (k=2)}$
2300	$\pm 50 / \pm 100$	Head	$39.4 \pm 5\%$	$1.71 \pm 5\%$	0.67	2.25	4.53	$\pm 11.8\% \text{ (k=2)}$
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.83	1.72	4.32	$\pm 11.8\% \text{ (k=2)}$
450	$\pm 50 / \pm 100$	Body	$56.7 \pm 5\%$	$0.94 \pm 5\%$	0.31	1.94	7.14	$\pm 13.3\% \text{ (k=2)}$
900	$\pm 50 / \pm 100$	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.39	2.54	5.68	$\pm 11.0\% \text{ (k=2)}$
1810	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.63	2.59	4.39	$\pm 11.0\% \text{ (k=2)}$
1950	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.81	2.17	4.17	$\pm 11.0\% \text{ (k=2)}$
2300	$\pm 50 / \pm 100$	Body	$52.8 \pm 5\%$	$1.85 \pm 5\%$	0.65	2.08	4.01	$\pm 11.8\% \text{ (k=2)}$
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.71	1.92	3.73	$\pm 11.8\% \text{ (k=2)}$


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6R SN:1545

August 28, 2007

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 9779
info@speag.com, http://www.speag.com

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ET3DV6R

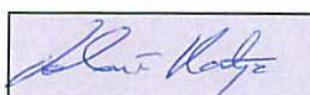
Serial Number:

1545

Place of Assessment:

Zurich

Date of Assessment:


August 31, 2007

Probe Calibration Date:

August 28, 2007

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland
 Phone +41 44 245 9700, Fax +41 44 245 9779
 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6R SN:1545Conversion factor (\pm standard deviation)

150 MHz	<i>ConvF</i>	$8.4 \pm 10\%$	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
250 MHz	<i>ConvF</i>	$7.6 \pm 10\%$	$\epsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue)
300 MHz	<i>ConvF</i>	$7.5 \pm 9\%$	$\epsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
750 MHz	<i>ConvF</i>	$6.4 \pm 7\%$	$\epsilon_r = 41.9$ $\sigma = 0.89 \text{ mho/m}$ (head tissue)
150 MHz	<i>ConvF</i>	$8.1 \pm 10\%$	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
250 MHz	<i>ConvF</i>	$7.6 \pm 10\%$	$\epsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue)
300 MHz	<i>ConvF</i>	$7.5 \pm 9\%$	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
750 MHz	<i>ConvF</i>	$6.2 \pm 7\%$	$\epsilon_r = 55.5$ $\sigma = 0.96 \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.