

MOTOROLA SOLUTIONS	 TESTING CERT # 2518.01
DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2	
Motorola Solutions Inc. EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322	Date of Report: 02/08/2013 Report Revision: O Report ID: SR11114_PMUD3254A Rev O 130208
<p>Responsible Engineer: Veeramani Veerapan (Sr.EME Engineer)</p> <p>Report Author: Veeramani Veerapan (Sr.EME Engineer)</p> <p>Date/s Tested: 01/08/13-02/07/13</p> <p>Manufacturer/Location: Motorola, Penang</p> <p>Sector/Group/Div.: EMS</p> <p>Date submitted for test: 12/20/12</p> <p>DUT Description: Full keypad with GPS & GOB 136 - 174MHz, 5W</p> <p>Test TX mode(s): CW (PTT)</p> <p>Max. Power output: 6.0 W</p> <p>Nominal Power: 5.0 W</p> <p>Tx Frequency Bands: 136 – 174 MHz</p> <p>Signaling type: FM</p> <p>Model(s) Tested: PMUD3254A</p> <p>Model(s) Certified: PMUD3254A</p> <p>Serial Number(s): 627TNX0395</p> <p>Classification: Occupational/Controlled</p> <p>FCC ID: ABZ99FT3093; Rule Part 90 (150.8-173.4 MHz) Results outside FCC bands are not applicable for FCC compliance demonstration.</p> <p>IC: 109AB-99FT3093; (138-144; 148-149.9 and 150.05-174 MHz)</p>	
* Refer to section 15 of part 1 for highest SAR summary results.	
<p>The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.</p> <p>The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.</p>	
<p>Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.</p> <p>I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.</p>	
 Deanna Zakharia EMS EME Lab Senior Resource Manager, Laboratory Director	Certification Date: 2/8/2013 Certification No.: L11030201
Approval Date: 2/8/2013	

Part 1 of 2

1.0	Introduction.....	4
2.0	Abbreviations / Definitions.....	4
3.0	Referenced Standards and Guidelines	4
4.0	SAR Limits	5
5.0	SAR Result Scaling Methodology	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	6
7.1	Antennas	7
7.2	Battery.....	7
7.3	Body worn Accessories	7
7.4	Audio Accessories	7
8.0	Description of Test System.....	8
8.1	Descriptions of Robotics/Probes/Readout Electronics	8
8.2	Description of Phantom(s)	9
8.3	Description of Simulated Tissue.....	9
9.0	Additional Test Equipment.....	10
10.0	SAR Measurement System Verification.....	10
10.1	Equivalent Tissue Test Results	10
10.2	System Check Test Results.....	11
11.0	Environmental Test Conditions	12
12.0	DUT Test Methodology.....	12
12.1	Measurements	12
12.2	DUT Configuration(s)	12
12.3	DUT Positioning Procedures	12
12.3.1	Body.....	12
12.3.2	Head.....	13
12.3.3	Face.....	13
12.4	DUT Test Channels	13
12.5	DUT Test Plan	13
13.0	DUT Test Data.....	13
13.1	Assessments at the Body	13
	Assessments at the Body with Body worn PMLN6086A	14
	Assessments at the Body with Body worn PMLN6097A	14
	Assessments at the Body with Body worn PMLN6099A	15
	Assessment at the Body with other audio accessories.....	15
	Assessment outside FCC Part 90 at the body.....	15
13.2	Assessments at the Face	16
	Assessment outside FCC Part 90 at the face.....	17
13.3	Shortened Scan Assessment	17
14.0	Simultaneous Transmission Exclusion	18
15.0	Conclusion	18

APPENDICES

A	Measurement Uncertainty	19
B	Probe Calibration Certificates.....	22
C	Dipole Calibration Certificates	36

Part 2 of 2**APPENDICES**

D	Test System Check Scans	2
E	Worst Case for Band 150.8 – 173.4 MHz	
	DUT Scans (Shortened Scan and Highest SAR configurations)	8
F	DUT Scans - FCC Part 90 (150.8-173.4 MHz) per KDB 643646	12
G	DUT Scans – Outside FCC Part 90 (136-174 MHz)	18
H	DUT Supplementary Data (Power Slump)	21
I	DUT Test Position Photos	22
J	DUT, Body worn and audio accessories Photos.....	23

Report Revision History

Date	Revision	Comments
02/08/2013	O	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for model number PMUD3254A.

2.0 Abbreviations / Definitions

CNR: Calibration Not Required
EME: Electromagnetic Energy
CW: Continuous Wave
DUT: Device Under Test
DC: Duty Cycle
FM: Frequency Modulation/Factory Mutual
NA: Not Applicable
PTT: Push to Talk
RSM: Remote Speaker Microphone
SAR: Specific Absorption Rate
RF: Radio Frequency
FKP: Full Keypad

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields”, OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005

- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
 - Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
 - Australian Communications Authority Radio communications (Electromagnetic Radiation - Human Exposure) Standard (2003)
 - ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
 - IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- (*) The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

TABLE 1

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average - ANSI - (averaged over the whole body)	0.08	0.4
Spatial Peak - ANSI - (averaged over any 1-g of tissue)	1.6	8.0
Spatial Peak - ICNIRP/ANSI - (hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0
Spatial Peak - ICNIRP - (Head and Trunk 10-g)	2.0	10.0

5.0 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as “Max Calc. 1g-SAR” and “Max Calc.10g-SAR” in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX H. For this device the “Max Calc. 1g-SAR” and “Max Calc.10g-SAR” are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W)

P_int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If P_int > P_max, then P_max/P_int = 1.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

6.0 Description of Device Under Test (DUT)

This device operates using analog frequency modulation (FM) signaling incorporating traditional simplex two-way radio transmission protocol.

The model represented under this filing utilizes removable antennas and capable of transmitting in the 136-174 MHz band respectively. The nominal output power is 5.0 watts with maximum output power of 6.0 watts defined by upper limit of the production line final test station. The intended operating positions are “at the face” with the DUT at least 1 inch from the mouth, and “at the body” by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in “SAR Test Reduction Considerations for Occupational PTT Radios” FCC KDB 643646 D01 dated 4/4/11 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are three VHF antennas offered for this product. The table below lists their descriptions.

TABLE 2

Antenna Models	Description	Selected for test	Tested
*PMAD4067C	GPS Helical, 136-147MHz, 5/8 wave, -6 dBi	Yes	Yes
PMAD4068C	GPS Helical, 147-160MHz, 5/8 wave, -6 dBi	Yes	Yes
PMAD4069C	GPS Helical, 160-174MHz, 5/8 wave, -6 dBi	Yes	Yes

*Bandwidth is outside FCC Part 90

7.2 Battery

There is one battery offered for this product. The table below lists its description.

TABLE 3

Battery Models	Description	Selected for test	Tested	Comments
NNTN8386A	MOTOTRBO CSA IMPRES Li-Ion	Yes	Yes	

7.3 Body worn Accessories

All body worn accessories were considered. The table below lists the body worn accessories, and body worn accessory descriptions.

TABLE 4

Body worn Models	Description	Selected for test	Tested	Comments
PMLN6086A	Belt Clip For 2.5-Inch Belt Width	Yes	Yes	
PMLN6097A	Hard Leather Carry Case 2.5-Inch SWL FKP	Yes	Yes	
PMLN6099A	Soft Leather Carry Case 2.5-Inch SWL FKP	Yes	Yes	
PMLN5610A	2.5-Inch Replacement Swivel Belt Loop	No	No	Replacement kit

7.4 Audio Accessories

All audio accessories were considered. The table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

TABLE 5

Audio Acc. Models	Description	Selected for test	Tested	Comments
PMMN4050A	IMPRES Noise Canceling RSM with audio jack	Yes	No	
PMMN4067B	IMPRES ATEX CSA RSM	Yes	Yes	
PMLN5275C	Behind the Head Heavy Duty Headset	Yes	No	
NNTN8380A	Standard Hardhat Mount Headset, 26 NRR	Yes	No	
NNTN8379A	Standard Hardhat Mount Headset, 24 NRR	No	No	By similarity to NNTN8380A
RMN4054B	Rx Only Headset	Yes	No	Intended to test with PMMN4050A
RLN4941A	Rx Only Earpiece	Yes	No	Intended to test with PMMN4050A
NNTN8378A	CSA PTT Adapter	Yes	No	Intended to test with NNTN8380A

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

TABLE 6

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.1.838	DAE4	ES3DV3 (E-Field)

The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

TABLE 7

Phantom type	Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Dual Flat	NA	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190	2mm +/- 0.2mm	Wood	< 0.05
SAM	NA					
Elliptical	OVAL 1018 OVAL 1109					

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in table 8 below for 300 MHz. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (by mass)

TABLE 8

Reference Standards	% of listed ingredients	300MHz	
		Head	Body
FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 91-01) IEEE 1528-2003 IEC62209-1 (2005) CENELEC – EN62209-1 (2006)	Sugar	56.0	47.1
	Diacetin	NA	NA
	De ionized – Water	37.5	49.48
	Salt	5.4	2.32
	HEC	1.0	1.0
	Bact.	0.1	0.1

Reference section 10.1 for target parameters

9.0 Additional Test Equipment

The table below lists additional test equipment used during the SAR assessment.

TABLE 9

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Power Meter (Agilent)	E4419B	MY45103725	3/30/2012	3/30/2013
Power Meter (Agilent)	E4418B	GB40206553	3/30/2012	3/30/2013
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50280001	8/3/2012	8/3/2013
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50290001	8/3/2012	8/3/2013
Power Sensor (Agilent)	8482B	3318A06773	5/7/2012	5/7/2013
Bi-Directional Coupler (NARDA)	3020A	40296	2/9/2012	2/9/2014
Signal Generator (Agilent)	E4428C	MY47381119	6/24/2011	6/24/2013
AMP (Amplifier Research)	10WD1000	28782	CNR*	CNR*
Dickson Temperature Recorder	TM325	12121144	5/18/2012	5/18/2013
Omega Digital Thermometer with J Type TC Probe	HH202A	18800	2/22/2012	2/22/2013
Omega Digital Thermometer with J Type TC Probe	HH202A	18801	5/23/2012	5/23/2013
Omega Digital Thermometer with J Type TC Probe	HH202A	18812	6/25/2012	6/25/2013
Omega Digital Thermometer with J Type TC Probe	HH200A	20857	10/25/2012	10/25/2013
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/4/2012	6/4/2013
Dielectric Probe Kit (HP)	85070C	US99360076	CNR*	CNR*
Speag Probe	ES3DV3	3163	4/25/2012	4/25/2013
Speag Dipole	D300V3	1015	7/7/2011	7/7/2013

*Calibration is not required by the OEM. The dielectric probe kit is used in conjunction with a calibrated network analyzer. The dielectric probe kit is calibrated for short, open, and load using the calibrated network analyzer. A saline solution is routinely measured as an additional check point.

10.0 SAR Measurement System Verification

The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

10.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the

applicable equipment indicated in section 9.0. The table below summarizes the measured tissue parameters used for the SAR assessment.

TABLE 10

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
136	FCC Body	0.79 (0.75-0.83)	62.25 (59.14-65.36)	0.77	62.90	01/18/13
	IEEE / IEC Head	0.75 (0.71-0.79)	52.95 (50.30-55.60)	0.74	54.30	01/17/13
142	FCC Body	0.79 (0.75-0.83)	62.10 (59.00-65.20)	0.77	62.70	01/18/13
	IEEE / IEC Head	0.75 (0.71-0.79)	52.67 (50.04-55.30)	0.75	53.80	01/17/13
147	FCC Body	0.80 (0.76-0.84)	61.98 (58.88-65.08)	0.77	62.50	01/18/13
	IEEE / IEC Head	0.76 (0.72-0.80)	52.44 (49.82-55.06)	0.75	53.40	01/17/13
149	FCC Body	0.80 (0.76-0.84)	61.92 (58.82-65.02)	0.77	62.40	01/18/13
	IEEE / IEC Head	0.76 (0.72-0.80)	52.35 (49.73-54.97)	0.75	53.20	01/17/13
160	FCC Body	0.81 (0.77-0.85)	61.65 (58.57-64.73)	0.83	63.60	01/17/13
				0.78	62.00	01/18/13
				0.79	60.6	02/07/13
	IEEE / IEC Head	0.77 (0.73-0.81)	51.83 (49.24-54.42)	0.78	52.50	01/08/13
300	FCC Body	0.92 (0.87-0.97)	58.20 (55.30-61.10)	0.90	57.2	01/17/13
				0.91	57.0	01/18/13
				0.88	56.6	02/07/13
	IEEE / IEC Head	0.87 (0.83-0.91)	45.30 (43.00-47.60)	0.90	45.1	01/08/13
				0.89	44.3	01/17/13

10.2 System Check Test Results

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 11

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Reference SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
3163	FCC Body	SPEAG D300V3 / 1015	2.94 +/- 10%	0.72	2.87	01/17/13
				0.71	2.86	01/18/13
				0.71	2.85	02/07/13
	IEEE / IEC Head	SPEAG D300V3 / 1015	2.91 +/- 10%	0.69	2.77	01/08/13
				0.70	2.78	01/17/13

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/- 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

TABLE 12

	Target	Measured
Ambient Temperature	18 – 25 °C	Range: 21.1 – 22.0°C Avg. 21.4 °C
Relative Humidity	30 – 70 %	Range: 45.7 – 57.7 % Avg. 51.2 %
Tissue Temperature	NA	Range: 19.9-20.6°C Avg. 20.3°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Elliptical flat phantoms filled with applicable simulated tissue were used for body and face testing.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646 D01.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in APPENDIX I.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

N_c = Number of channels

f_{high} = Upper channel

f_{low} = Lower channel

f_c = Center channel

12.5 DUT Test Plan

The guidelines and requirements outlined in “SAR Test Reduction Considerations for Occupational PTT Radios” FCC KDB 643646 D01 dated 4/4/11 for head (face) and body were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in 100% CW mode and then 50% duty cycle was applied to the final results. In some cases the initial power listed herein may exceed the reported maximum power due to software step size tuning limitations. However, the initial powers measured are not greater than the allowed 5% of the reported maximum power.

13.0 DUT Test Data

13.1 Assessments at the Body

The battery NNTN8386A was selected as the default battery for assessments at the Body since it is the only battery offered (refers to Exhibit 7B for the dimension of the battery). The conducted power measurement for all test channels within Part 90 frequency range (150.8-173.4 MHz) using the default battery NNTN8386A is indicated in Table 13. The channel with the highest conducted power will be identified as the default channel per KDB 643646 D01 SAR Test for PTT Radios v01r01. SAR plots of the highest results per table (bolded) are presented in APPENDICES E-G.

TABLE 13

Test Freq (MHz)	Power (W)
150.8	5.75
155.4	5.71
160.0	5.80
167.0	5.76
173.4	5.79

Assessments at the Body with Body worn PMLN6086A

Assessment of the offered antennas with the default battery and body worn PMLN6086A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to Table 13 for highest output power channel.

TABLE 14

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4068C	NNTN8386A	PMLN6086A	PMMN4067B RSM	150.800							
				155.400							
				160.000	5.99	-0.200	0.848	0.424	0.44	0.22	JsT-Ab-130117-09
PMAD4069C	NNTN8386A	PMLN6086A	PMMN4067B RSM	160.000	5.99	-0.77	5.67	2.69	3.39	1.61	ErC-Ab-130207-03
				167.000							
				173.400							

Assessments at the Body with Body worn PMLN6097A

Assessment of the offered antennas with the default battery and body worn PMLN6097A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to Table 13 for highest output power channel.

TABLE 15

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4068C	NNTN8386A	PMLN6097A	PMMN4067B RSM	150.800							
				155.400							
				160.000	5.98	-0.040	0.018	0.014	0.01	0.01	JsT-Ab-130117-11
PMAD4069C	NNTN8386A	PMLN6097A	PMMN4067B RSM	160.000	5.96	-0.130	0.053	0.041	0.03	0.02	CM-Ab-130117-12
				167.000							
				173.400							

Assessments at the Body with Body worn PMLN6099A

Assessment of the offered antennas with the default battery and body worn PMLN6099A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to Table 13 for highest output power channel.

TABLE 16

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4068C	NNTN8386A	PMLN6099A	PMMN4067B RSM	150.800							
				155.400							
				160.000	5.97	-0.200	0.355	0.185	0.19	0.10	CM-Ab-130117-13
PMAD4069C	NNTN8386A	PMLN6099A	PMMN4067B RSM	160.000	5.96	-0.280	0.822	0.424	0.44	0.23	CM-Ab-130117-14
				167.000							
				173.400							

Assessment at the Body with other audio accessories

Assessment per “KDB 643646 D01 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall < 4.0 W/kg, SAR tested for that audio accessory is not necessary.” This was applicable to all remaining accessories.

Assessment outside FCC Part 90 at the Body

Assessment using highest SAR configuration from Part 90 assessment above Run# Jst-Ab-130117-10, Table 14) across the offered antennas (if applicable).

TABLE 17

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4067C	NNTN8386A	PMLN6086A	PMMN4067B RSM	136.000	5.85	-0.580	1.350	0.684	0.79	0.40	Jst-Ab-130118-02
				142.000	5.94	-0.530	0.737	0.404	0.42	0.23	Jst-Ab-130118-03
				147.000	5.96	-0.460	0.102	0.067	0.06	0.04	Jst-Ab-130118-05
PMAD4068C	NNTN8386A	PMLN6086A	PMMN4067B RSM	147.000	5.99	-0.690	2.280	1.340	1.34	0.79	Jst-Ab-130118-07
				149.000	5.94	-0.660	1.010	0.637	0.59	0.37	Jst-Ab-130118-08

13.2 Assessments at the Face

The battery NNTN8386A was selected as the default battery for assessments at the Face since it is the only battery offered (refers to Exhibit 7B for the dimension of the battery). The conducted power measurement for all test channels within Part 90 frequency range (150.8-173.4 MHz) using the default battery NNTN8386A is indicated in Table 18. The channel with the highest conducted power will be identified as the default channel per KDB 643646 D01 SAR Test for PTT Radios v01r01. SAR plots of the highest results per table (bolded) are presented in APPENDICES E-G.

TABLE 18

Test Freq (MHz)	Power (W)
150.8	5.75
155.4	5.71
160.0	5.80
167.0	5.76
173.4	5.79

Assessment of the offered antennas with the default battery NNTN8386A, front of DUT facing phantom per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Head SAR Test Considerations. Refer to Table 18 for highest output power channel.

TABLE 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4068C	NNTN8386A	NONE	NONE	150.800							
				155.400							
				160.000	5.99	-0.470	0.783	0.606	0.44	0.34	JsT-Face-130108-02
PMAD4069C	NNTN8386A	NONE	NONE	160.000	5.98	-0.440	1.620	1.250	0.90	0.69	JsT-Face-130108-03
				167.000							
				173.400							

Assessment outside FCC Part 90 at the Face

Assessment using highest SAR configuration from Part 90 assessment above Run# Jst-Face-130108-03, Table 19) across the offered antennas (if applicable).

TABLE 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4067C	NNTN8386A	NONE	NONE	136.000	5.90	-0.680	1.270	0.989	0.76	0.59	JsT-Face-130117-03
				142.000	5.97	-0.720	1.230	0.957	0.73	0.57	JsT-Face-130117-04
				147.000	5.97	-0.460	0.475	0.368	0.27	0.21	JsT-Face-130117-07
PMAD4068C	NNTN8386A	NONE	NONE	147.000	5.99	-0.140	1.040	0.808	0.54	0.42	JsT-Face-130117-06
				149.000	5.97	-0.100	1.640	1.270	0.84	0.65	JsT-Face-130117-08

13.3 Shortened Scan Assessment

A “shortened” scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5™ coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the table below is provided in APPENDIX E.

TABLE 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4069C	NNTN8386A	PMLN6086A	PMMN4067B RSM	160.000	5.95	-0.44	5.3	2.49	2.96	1.39	ErC-Ab-130207-05

14.0 Simultaneous Transmission Exclusion

NA.

15.0 Conclusion

Based on the test guidelines from KDB 643646, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:
Model PMUD3254A.

TABLE 22

Designator	Frequency band (MHz)	Max Calc at Body (mW/g)		Max Calc at Face (mW/g)	
		1g-SAR	10g-SAR	1g-SAR	10g-SAR
Overall	136-174	3.39	1.61	0.90	0.69
FCC	150.8-173.4	3.39	1.61	0.90	0.69
Industry Canada	138-174	3.39	1.61	0.90	0.69

All results are scaled to the maximum output power

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

APPENDIX A

Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT test frequencies ranging from 100MHz to 300MHz and for Dipole test frequencies ranging from 300MHz to 550MHz. Therefore, the highest tolerance for the probe calibration uncertainty is indicated.

Table 1**Uncertainty Budget for Device Under Test, for 100 MHz to 300 MHz**

<i>a</i>	<i>b</i> IEEE 1528 section	<i>c</i> Tol. (\pm %)	<i>d</i> Prob Dist	<i>e</i> = $f(d, k)$	<i>f</i> <i>c_i</i> (1 g)	<i>g</i> <i>c_i</i> (10 g)	<i>h</i> = <i>cxf/e</i> 1 g <i>u_i</i> (\pm %)	<i>i</i> = <i>cxg/e</i> 10 g <i>u_i</i> (\pm %)	<i>k</i> <i>v_i</i>
Uncertainty Component									
Measurement System									
Probe Calibration	E.2.1	10.0	N	1.00	1	1	10.0	10.0	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				14	13	965
Expanded Uncertainty (95% CONFIDENCE LEVEL)				<i>k</i> =2			27	27	

FCD-0558 Uncertainty Budget Rev.8

Table 2

Uncertainty Budget for System Verification (dipole & flat phantom) for 300 MHz to 550 MHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e = f(d, k)</i>	<i>f</i>	<i>g</i>	<i>h = c x f / e</i>	<i>i = c x g / e</i>	<i>k</i>
Uncertainty Component	IEEE 1528 section	Tol. ($\pm \%$)	Prob. Dist.		<i>c_i</i> (1 g)	<i>c_i</i> (10 g)	1 g	10 g	
				Div.			<i>u_i</i> ($\pm \%$)	<i>u_i</i> ($\pm \%$)	<i>v_i</i>
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				19	19	

FCD-0558 Uncertainty Budget Rev.8.1

Notes for Tables 1 and 2

- Column headings *a-k* are given for reference.
- Tol. - tolerance in influence quantity.
- Prob. Dist. – Probability distribution
- N, R - normal, rectangular probability distributions
- Div. - divisor used to translate tolerance into normally distributed standard uncertainty
- c_i* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- u_i* – SAR uncertainty
- v_i* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B
Probe Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Motorola EME

Certificate No: ES3-3163_Apr12

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3163

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,
QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date: April 25, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 25, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E^2 -field uncertainty inside TSL (see below $ConvF$).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of $ConvF$.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z$: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for $ConvF$. A frequency dependent $ConvF$ is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ES3DV3 – SN:3163

April 25, 2012

Probe ES3DV3

SN:3163

Manufactured: October 8, 2007
Calibrated: April 25, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3163

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.31	1.13	1.04	$\pm 10.1\%$
DCP (mV) ^B	101.8	101.0	102.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	160.8	$\pm 3.0\%$
			Y	0.00	0.00	1.00	149.8	
			Z	0.00	0.00	1.00	149.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3163

April 25, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3163

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	7.37	7.37	7.37	0.24	1.02	± 13.4 %
450	43.5	0.87	6.71	6.71	6.71	0.16	1.81	± 13.4 %
750	41.9	0.89	6.30	6.30	6.30	0.39	1.61	± 12.0 %
900	41.5	0.97	6.00	6.00	6.00	0.26	2.12	± 12.0 %
1810	40.0	1.40	5.28	5.28	5.28	0.51	1.65	± 12.0 %
1950	40.0	1.40	4.98	4.98	4.98	0.43	1.58	± 12.0 %
2300	39.5	1.67	4.75	4.75	4.75	0.62	1.42	± 12.0 %
2450	39.2	1.80	4.44	4.44	4.44	0.80	1.22	± 12.0 %
2600	39.0	1.96	4.27	4.27	4.27	0.80	1.24	± 12.0 %
3500	37.9	2.91	3.91	3.91	3.91	1.00	1.32	± 13.1 %
3700	37.7	3.12	3.73	3.73	3.73	1.00	1.25	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

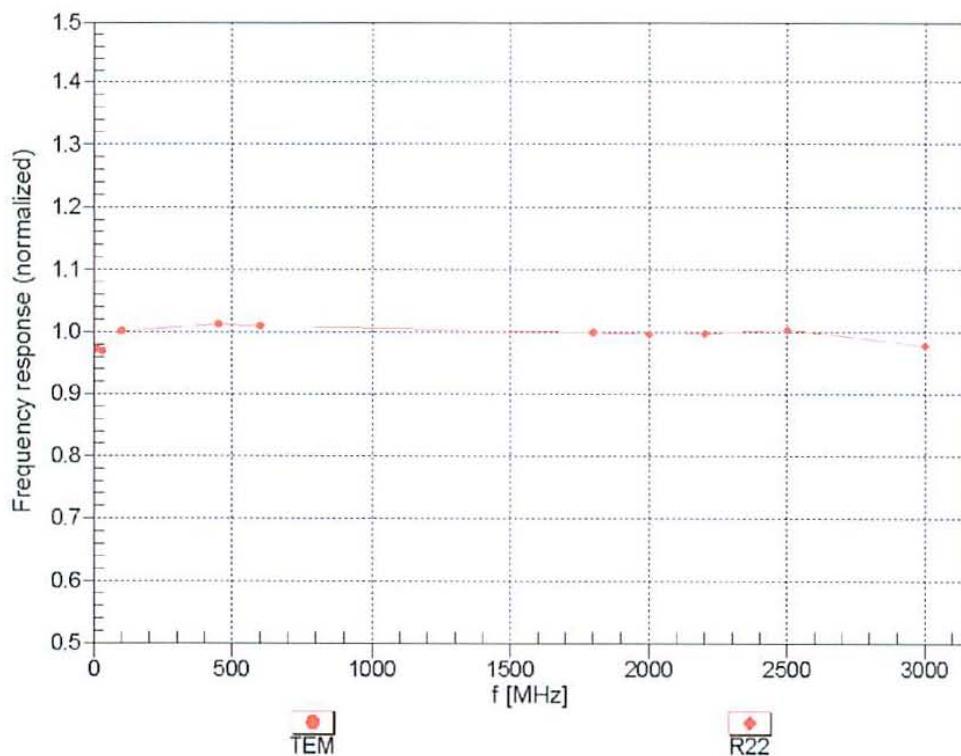
^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3163

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	6.78	6.78	6.78	0.22	1.78	± 13.4 %
450	56.7	0.94	6.97	6.97	6.97	0.08	1.00	± 13.4 %
750	55.5	0.96	6.16	6.16	6.16	0.25	2.12	± 12.0 %
900	55.0	1.05	6.02	6.02	6.02	0.34	1.77	± 12.0 %
1810	53.3	1.52	4.71	4.71	4.71	0.58	1.60	± 12.0 %
1950	53.3	1.52	4.64	4.64	4.64	0.47	1.88	± 12.0 %
2300	52.9	1.81	4.25	4.25	4.25	0.80	1.29	± 12.0 %
2450	52.7	1.95	4.05	4.05	4.05	0.70	1.19	± 12.0 %
2600	52.5	2.16	3.88	3.88	3.88	0.69	1.01	± 12.0 %
3500	51.3	3.31	3.36	3.36	3.36	0.85	1.58	± 13.1 %
3700	51.0	3.55	3.23	3.23	3.23	0.58	2.05	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

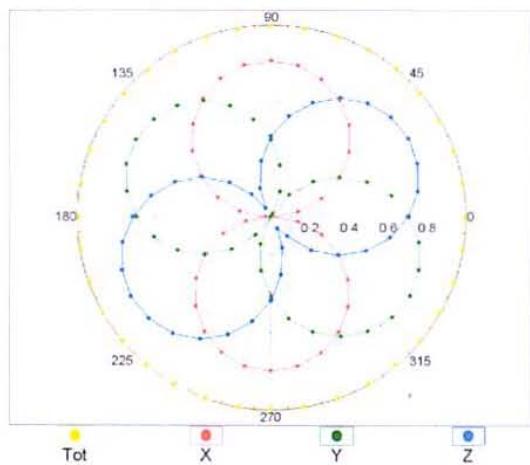

^f At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3– SN:3163

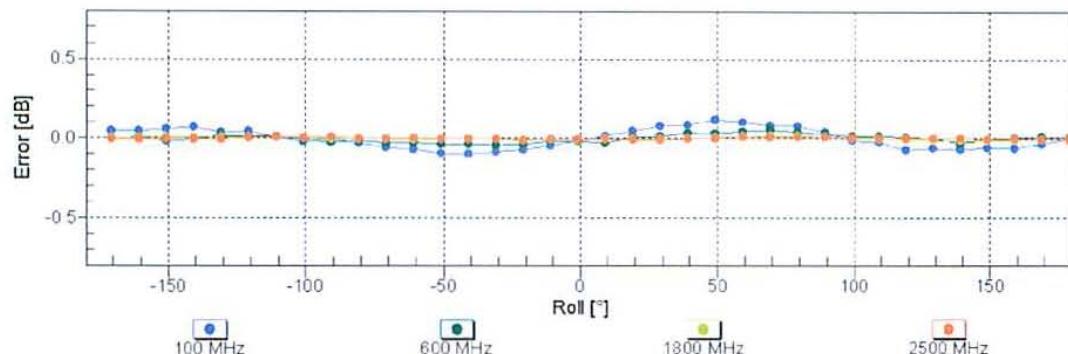
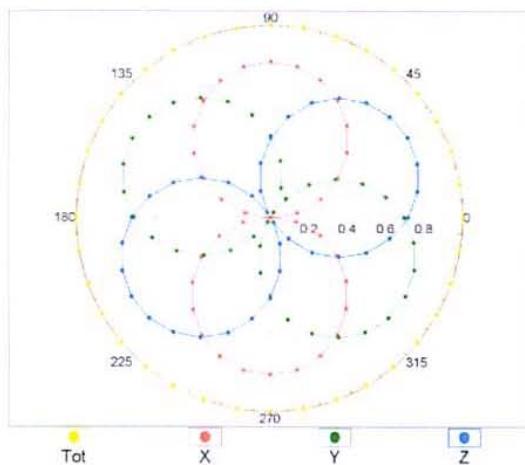
April 25, 2012

Frequency Response of E-Field

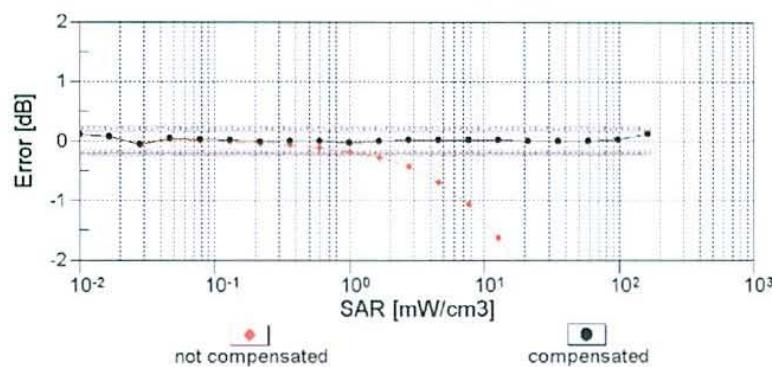
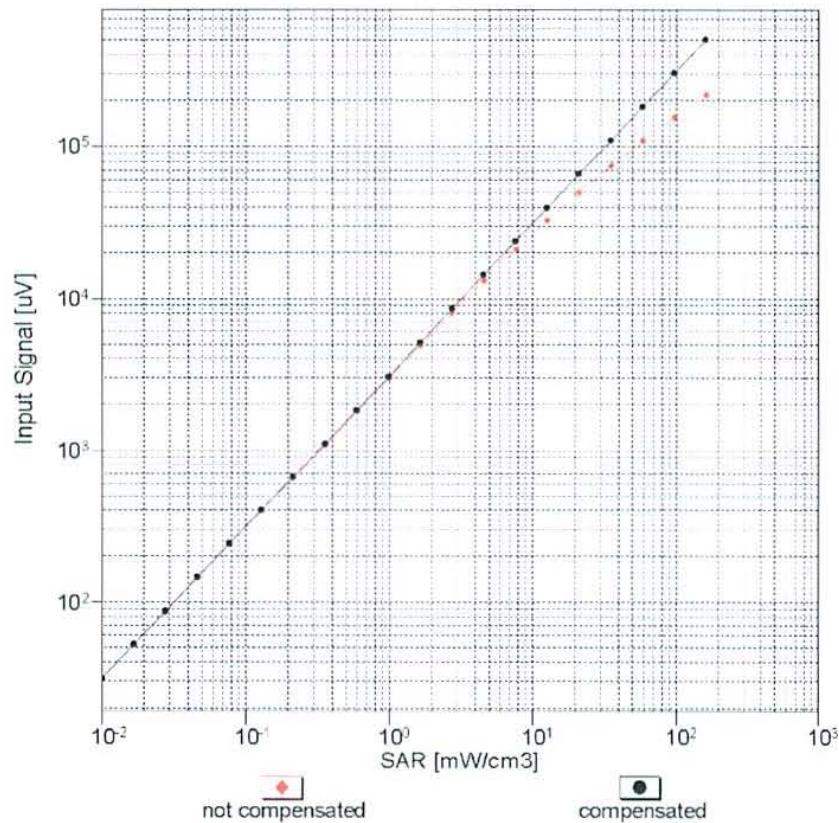
(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

ES3DV3– SN:3163



April 25, 2012

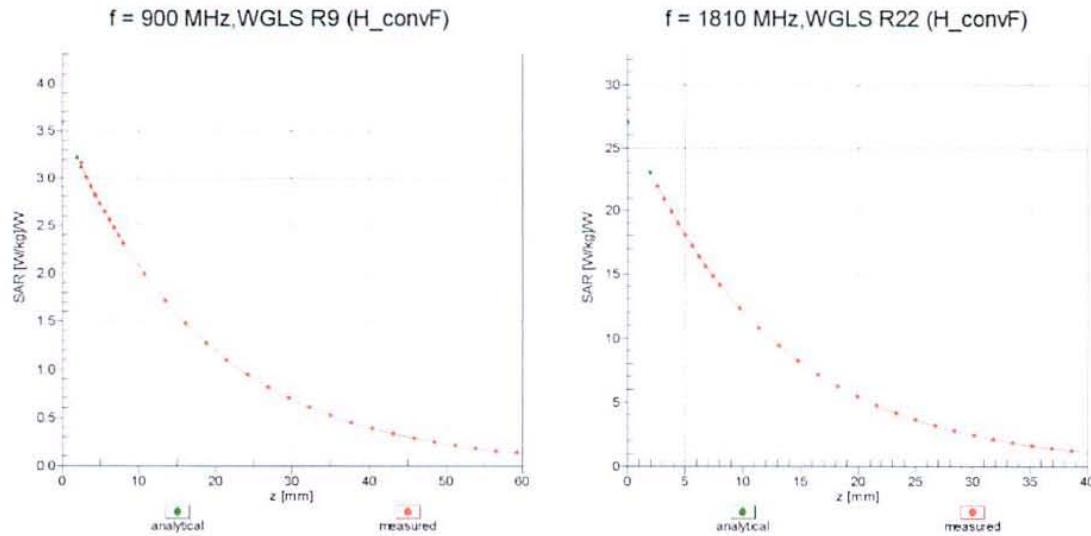
Receiving Pattern (ϕ), $\theta = 0^\circ$



f=600 MHz, TEM

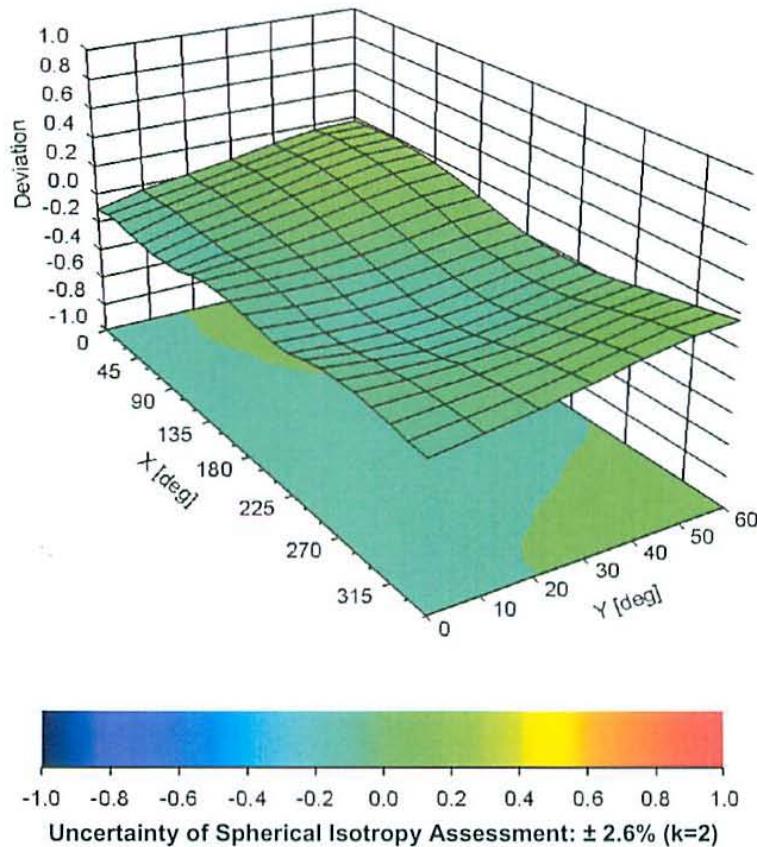
f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)


ES3DV3– SN:3163

April 25, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , 9), $f = 900 \text{ MHz}$

ES3DV3– SN:3163

April 25, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3163

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-170.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 9779
info@speag.com, http://www.speag.com

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ES3DV3

Serial Number:

3163

Place of Assessment:

Zurich

Date of Assessment:

April 26, 2012

Probe Calibration Date:

April 25, 2012

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450, 900 MHz or 1810 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV3 SN:3163

Conversion factor (\pm standard deviation)

150 ± 50 MHz

ConvF $8.2 \pm 10\%$

$\epsilon_r = 52.3 \pm 5\%$
 $\sigma = 0.76 \pm 5\%$ mho/m

(head tissue)

150 ± 50 MHz

ConvF $7.9 \pm 10\%$

$\epsilon_r = 61.9 \pm 5\%$
 $\sigma = 0.80 \pm 5\%$ mho/m

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

APPENDIX C
Dipole Calibration Certificates

Calibration Laboratory of
 Schmid & Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 S Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Motorola EME

Certificate No: D300V3-1015_Jul11/2

CALIBRATION CERTIFICATE (Replacement of No:D300V2-1015_Jul11)

Object	D300V3 - SN: 1015		
Calibration procedure(s)	QA CAL-15.v6 Calibration procedure for dipole validation kits below 700 MHz		
Calibration date:	July 07, 2011		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.3 / 06327	29-Mar-11 (No. 217-01168)	Apr-12
Reference Probe ET3DV6	SN: 1507	29-Apr-11 (No. ET3-1507_Apr11)	Apr-12
DAE4	SN: 654	03-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	
Issued: March 5, 2012			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	45.3	0.87 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	44.8 \pm 6 %	0.88 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	2.91 mW /g \pm 18.1 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	0.769 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	1.91 mW /g \pm 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	58.2	0.92 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	58.1 \pm 6 %	0.91 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.94 mW / g \pm 18.1 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	0.791 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.00 mW / g \pm 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω - 6.8 $j\Omega$
Return Loss	- 22.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.6 Ω - 9.1 $j\Omega$
Return Loss	- 20.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.746 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 30, 2010

DASY5 Validation Report for Head TSL

Date: 07.07.2011

Test Laboratory: SPEAG

DUT: Dipole 300 MHz; Type: D300V3; Serial: D300V3 - SN:1015

Communication System: CW; Frequency: 300 MHz

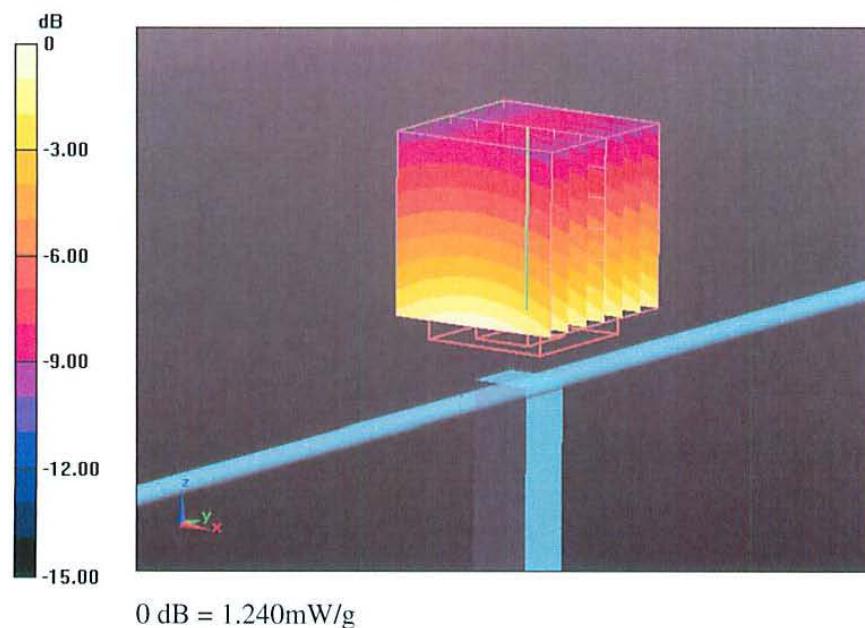
Medium parameters used: $f = 300$ MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 44.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

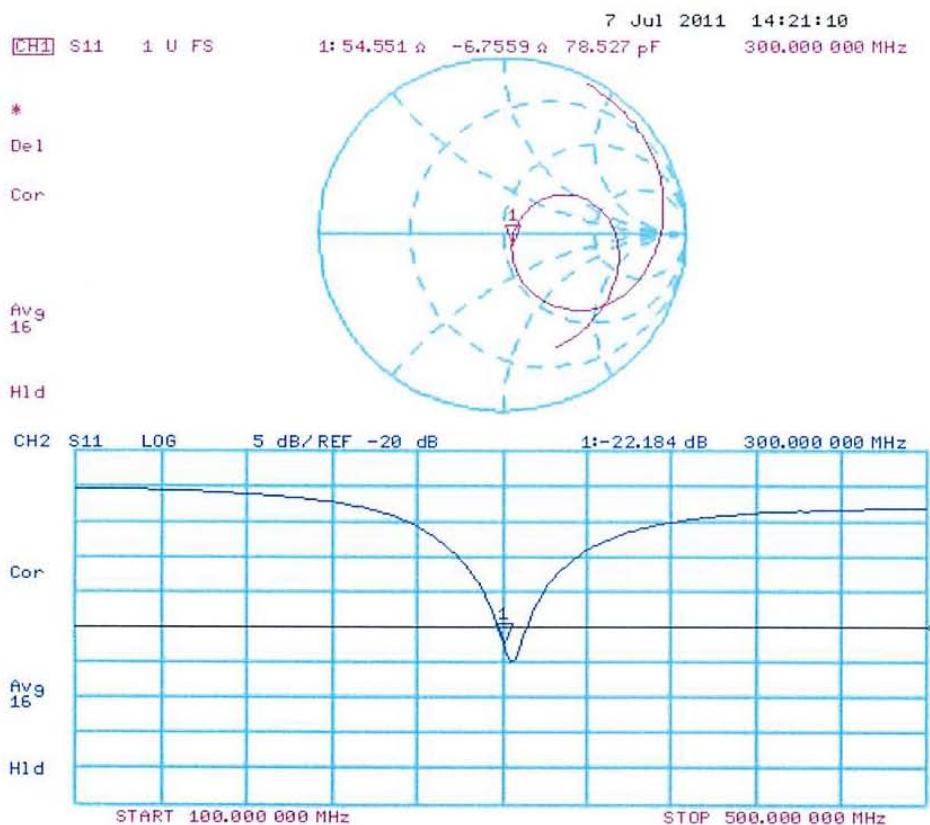
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.39, 7.39, 7.39); Calibrated: 29.04. 2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 03.05.2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)


Head/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.178 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 1.954 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.769 mW/g

Maximum value of SAR (measured) = 1.239 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.07.2011

Test Laboratory: SPEAG

DUT: Dipole 300 MHz; Type: D300V2; Serial: D300V2 - SN:1015

Communication System: CW; Frequency: 300 MHz

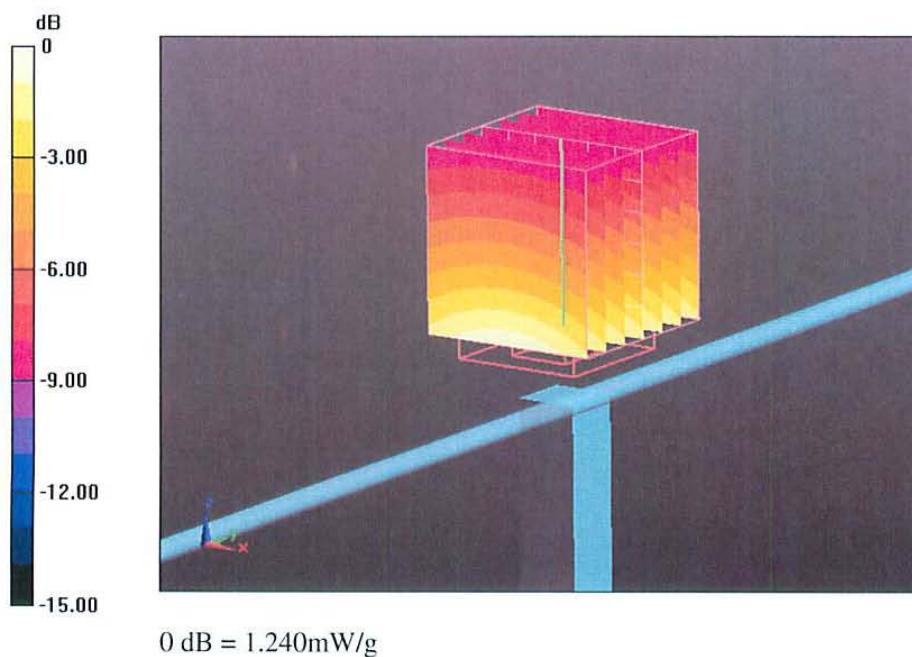
Medium parameters used: $f = 300$ MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 58.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

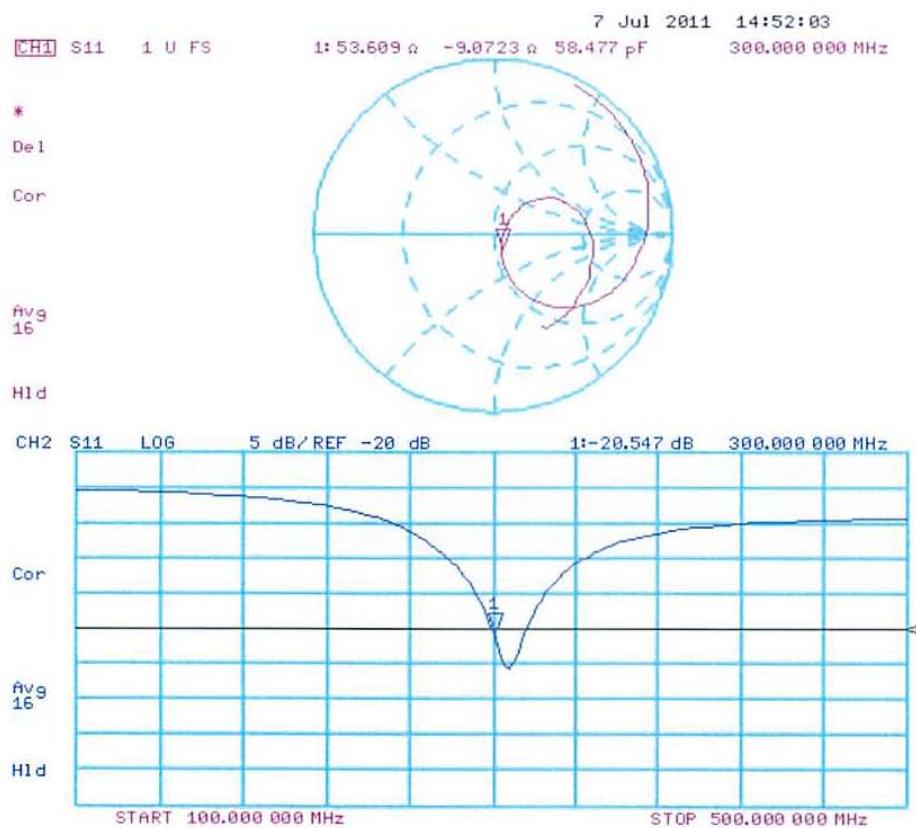
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(6.88, 6.88, 6.88); Calibrated: 29.04. 2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 03.05.2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)


Body/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.275 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.753 W/kg

SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.791 mW/g

Maximum value of SAR (measured) = 1.239 mW/g

Impedance Measurement Plot for Body TSL

