

MOTOROLA SOLUTIONS

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Enterprise Mobility Solutions EME Test Laboratory Motorola Solutions Malaysia Sdn Bhd (455657-H) Customer Solution Center Plot 2, Bayan Lepas Technoplex Industrial Park, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia.	Date of Report: 3/20/2012 Report Revision: B Report ID: SAR rpt_PMUD2627A_Rev.B 120320_SR9692
---	--

Responsible Engineer: Veeramani Veerapan (Senior EME Engineer)
Report Author: Veeramani Veerapan (Senior EME Engineer)
Date/s Tested: 7/16/11-8/01/11
Manufacturer/Location: Penang, Malaysia
Sector/Group/Div.: EMS
Date submitted for test: 6/28/11
DUT Description: 136-174 MHz, 5W, LKP
Test TX mode(s): CW (PTT)
Max. Power output: 6.0 W
Nominal Power: 5.0 W
Tx Frequency Bands: 136-174 MHz
Signaling type: FM
Model(s) Tested: PMUD2627A
Model(s) Certified: PMUD2627A
Serial Number(s): 867TMM0080, 867TMM0084
Classification: Occupational/Controlled
FCC ID: ABZ99FT3088; Rule part 90 (150.8-173.4 MHz)
IC: 109AB-99FT3088; (138-144; 148-149.9 and 150.05-174 MHz)

* Refer to section 15 of part 1 for highest SAR summary results.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Deanna Zakharia

**EMS EME Lab Senior Resource Manager,
Laboratory Director**

Approval Date: 3/20/2012**Certification Date:** 9/23/2011**Certification No.:** L1110915P

Part 1 of 2

1.0	Introduction	4
2.0	Abbreviations / Definitions	4
3.0	Referenced Standards and Guidelines.....	4
4.0	SAR Limits	5
5.0	SAR Result Scaling Methodology	6
6.0	Description of Device Under Test (DUT).....	6
7.0	Optional Accessories and Test Criteria.....	6
7.1	Antennas	6
7.2	Batteries	7
7.3	Body worn Accessories.....	7
7.4	Audio Accessories	8
8.0	Description of Test System	8
8.1	Descriptions of Robotics/Probes/Readout Electronics	9
8.2	Description of Phantom(s)	9
8.2.1	Dual Flat Phantom	9
8.2.2	SAM Phantom.....	9
8.2.3	Elliptical Phantom.....	9
8.3	Description of Simulated Tissue	9
9.0	Additional Test Equipment	10
10.0	SAR Measurement System Verification	11
10.1	Equivalent Tissue Test Results	11
10.2	System Check Test Results	14
11.0	Environmental Test Conditions	15
12.0	DUT Test Methodology	15
12.1	Measurements	15
12.2	DUT Configuration(s).....	15
12.3	DUT Positioning Procedures	15
12.3.1	Body	16
12.3.2	Head	16
12.3.3	Face	16
12.4	DUT Test Channels.....	16
12.5	DUT Test Plan	16
13.0	DUT Test Data.....	17
13.1	Assessments at the Body.....	17
13.2	Assessments at the Body with Body worn PMLN4651A	17
13.3	Assessments at the Body with Body worn PMLN7008A	19
13.4	Assessments at the Body with Body worn PMLN5863A	20
13.5	Assessments at the Body with Body worn PMLN5865A	22
13.6	Assessments at the Body with Body worn PMLN5869A	23
13.7	Assessments at the Body with Body worn PMLN5867A	25
13.8	Assessments at the Body with Body worn HLN6602A	26
13.9	Assessments at the Body with Body worn RLN4570A	28
13.10	Assessments at the Body with Body worn RLN4815A	29
13.11	Assessments of accessory PMLN5863A with carry strap NTN5243A	31

13.12	Assessments of accessory PMLN5865A with carry strap NTN5243A	32
13.13	Assessments of accessory PMLN589A with carry strap NTN5243A	34
13.14	Assessments of other audio accessories at the body	35
13.15	Assessments outside FCC Part 90 at the body	35
13.16	Assessments at the Face	37
13.17	Assessments of outside FCC Part 90 at the face	39
13.18	Shorten Scan Assessment	40
14.0	Simultaneous Transmission Exclusion	41
15.0	Conclusion	41

APPENDICES

A	Measurement Uncertainty	42
B	Probe Calibration Certificates	45
C	Dipole Calibration Certificates	59

Part 2 of 2

D	Test System Verification Scans	2
E	FCC Part 90 (150.8 – 173.4 MHz)	
	DUT Scans (Shortened Scan and Highest SAR configurations)	18
F	DUT scans - FCC Part 90 (150.8 – 173.4 MHz)	22
G	DUT Scans Outside Part 90 (136 – 174 MHz)	49
H	DUT Supplementary Data (Power Slump)	58
I	DUT Test Position Photos	59
J	DUT and Body worn Accessory Photos	60

Report Revision History

Date	Revision	Comments
8/18/11	O	Initial release
9/20/11	A	Revise FCC/IC ID
3/20/12	B	Changed in Section 7.2 “five” batteries to “four”

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for model number PMUD2627A.

2.0 Abbreviations / Definitions

CNR: Calibration Not Required
 EME: Electromagnetic Energy
 IFA: Inverted F antenna
 LKP: Limited Keypad
 DQPSK: Differential Quadrature Phase-Shift Keying
 GFSK: Gaussian Frequency Shift Keying
 GOB: Generic option board
 GPS: Global Positioning System
 CW: Continuous Wave
 DUT: Device Under Test
 DC: Duty Cycle
 FM: Frequency Modulation/Factory Mutual
 NA: Not Applicable
 PTT: Push to Talk
 RSM: Remote Speaker Microphone
 SAR: Specific Absorption Rate

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields”, OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95.1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation - Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).

* The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

TABLE 1

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average - ANSI - (averaged over the whole body)	0.08	0.4
Spatial Peak - ANSI - (averaged over any 1-g of tissue)	1.6	8.0
Spatial Peak – ICNIRP/ANSI - (hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0
Spatial Peak - ICNIRP - (Head and Trunk 10-g)	2.0	10.0

5.0 SAR Result Scaling Methodology:

The calculated 1-gram and 10-gram averaged SAR results indicated as “Max Calc. 1g-SAR” and “Max Calc.10g-SAR” in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX H. For this device the “Max Calc. 1g-SAR” and “Max Calc.10g-SAR” are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W)

P_int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If P_int > P_max, then P_max/P_int = 1.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target.

6.0 Description of Device Under Test (DUT):

This device operates using analog frequency modulation (FM) signaling incorporating traditional simplex two-way radio transmission protocol.

The model represented under this filing utilizes removable antennas (VHF) and capable of transmitting in the 136-174 MHz band respectively. The nominal VHF output power is 5.0 watts with maximum output power of 6.0 watts defined by upper limit of the production line final test station. The intended operating positions are “at the face” with the DUT at least 1 inch from the mouth, and “at the body” by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria:

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required. The following sections identify the test criteria and details for each accessory category.

7.1 Antennas:

There are six VHF antennas offered for this product. The table below lists their descriptions.

TABLE 2

Antenna Models	Description	*Tested
PMAD4116A	VHF helical (144-165MHz) 1/2 wave, -12dBi	Yes
PMAD4117A	VHF helical (136-155 MHz) 1/2 wave, -12dBi	Yes
PMAD4118A	VHF helical (152-174MHz) 1/2 wave, -12dBi	Yes
PMAD4119A	VHF stubby (136-148MHz) 1/4 wave, -9.5dBi	Yes
PMAD4120A	VHF stubby (146-160MHz) 1/4 wave, -9.5dBi	Yes
PMAD4121A	VHF stubby (160-174MHz) 1/4 wave, -9.5dBi	Yes

*Refer to Exhibit 7B for antenna separation distances. Note PMAD4119A bandwidth is outside FCC PT90

7.2 **Batteries:**

There are four batteries offered for this product. The table below lists the batteries, and battery description.

TABLE 3

Battery Models	Description	*Tested	Comments
PMNN4418A	IMPRES Li-Ion Non- FM, 2150mAh IP56	Yes	
PMNN4417A	Core Slim Li-Ion, 1500mAh IP56	Yes	
PMNN4416A	IMPRESS Li-Ion Slim, 1500mAh IP56	Yes	
PMNN4415A	Core NiMH, 1300mAh IP56	Yes	

*Refer to Exhibit 7B for antenna separation distances.

7.3 **Body worn Accessories:**

All body worn accessories were considered. The table below lists the body worn accessories, and body worn accessory descriptions.

TABLE 4

Body worn Models	Description	*Tested	Comments
PMLN4651A	2.0" belt clip	Yes	
PMLN7008A	2.5" belt clip	Yes	
PMLN5863A	Hard leather carry case w/ 3" fixed belt loop (LKP)	Yes	
PMLN5865A	Hard leather carry case w/ 3" swivel belt loop (LKP)	Yes	
PMLN5869A	Nylon carry case with 3" fixed belt loop (LKP)	Yes	
PMLN5867A	Hard leather carry case w/ 2.5" swivel belt loop (LKP)	Yes	
NTN5243A	Carrying strap	Yes	
HLN6602A	Chest pack	Yes	
RLN4570A	Break-a-way chest pack	Yes	
RLN4815A	Universal RadioPak utility case	Yes	
PMLN5610A	2.5" Replacement leather swivel belt loop	No	
PMLN5611A	3" Replacement leather swivel belt loop	No	
1505596Z02	Replacement strap for HLN6602A and RLN4570A	No	
4280384F89	RadioPak extension belt	No	
HLN9985B	Waterproof Bag	No	
RLN4295A	Small clip epaulet strap	No	
4200865599	1.75" Wide leather belt	No	

7.4 Audio Accessories:

All audio accessories were considered. The table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

TABLE 5

Audio Acc. Models	Description	*Tested	Comments
PMLN5727A	Earpiece In-Line Mic/PTT Swivel, MagOne	Yes	
PMLN5732A	Earset with Boom Microphone, MagOne	Yes	
AARLN4885B	Receive only Ear bud	Yes	
WADN4190B	Over the Ear Receiver for RSM	No	Similar to AARLN4885B
PMLN4620B	D-shell Rx-only earpiece(3.5MM)	No	Similar to AARLN4885B
RLN4941A	Receive only Earpiece w/translucent tube and ear tip for RSM	No	Similar to AARLN4885B
PMLN5731A	Heavy duty headset, noise cancelling with in-line PTT	Yes	
PMMN4071A	IMPRES Remote Speaker Microphone Large, Noise Cancelling with 3.5mm Jack	Yes	
PMMN4073A	IMPRES Remote Speaker Microphone Small, with 3.5mm Jack	Yes	
PMMN4075A	Remote Speaker Microphone Small, No Emergency, IP57	Yes	
PMMN4076A	Remote Speaker Microphone Small with 3.5mm Jack	Yes	
PMLN5724A	2-Wire Surveillance Kit, Black	Yes	
PMLN5726A	2-Wire Surveillance Kit, Beige	No	Similar to PMLN5724A
PMLN5733A	Earbud with In-Line Mic/PTT, MagOne	No	Similar to PMLN5727A

8.0 Description of Test System:

8.1 Descriptions of Robotics/Probes/Readout Electronics:

The laboratory utilizes a Dosimetric Assessment System (DASY5™) SAR measurement system Version 52.6.2.424 manufactured by Schmid & Partner Engineering AG (SPEAG™), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE3 and ES3DV3 E-field probe. The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

8.2.1 Dual Flat Phantom

Not Applicable

8.2.2 SAM Phantom

Not Applicable

8.2.3 Elliptical Phantom

TABLE 6

Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
ELI4 1103 ELI4 1028	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190	2mm +/- 0.2mm	Wood	< 0.05

8.3 Description of Simulated Tissue:

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE Std 1528 - 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". The simulated tissue used is also compliant to

that specified in IEC62209-1 (2005) and adopted by CENELEC as EN62209-1 (2006).

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in table 7 below for 300 MHz. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at 300, 136, 141, 144, 146, 148, 150.8, 152.5, 155, 157.9, 160, 165, 167, 173.4 MHz frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (by mass)

TABLE 7

% of listed ingredients	300MHz	
	Head	Body
Sugar	56.0	47.1
Diacetin	0	0
De ionized -Water	37.5	49.48
Salt	5.4	2.32
HEC	1.0	1.0
Bact.	0.1	0.1

Reference section 10.1 for target parameters

9.0 Additional Test Equipment:

The table below lists additional test equipment used during the SAR assessment.

TABLE 8

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Power Meter	E4418B	MY45100532	10/14/2010	10/14/2011
Power Sensor	8481B	MY41091170	10/14/2010	10/14/2011
Power Meter	E4418B	MY45101014	10/15/2010	10/15/2011
Power Sensor	8481B	SG41090248	11/18/2010	11/18/2011
Power Meter	E4419B	MY40330364	5/20/2011	5/20/2012
Power Sensor	8482B	3318A07546	5/19/2011	5/19/2012
Power Sensor	8482B	3318A07392	5/19/2011	5/19/2012
Signal Generator	E4438C	MY45091014	10/11/2010	10/11/2012
Amplifier	10W1000C	312858	CNR	CNR
NARDA Bi-Directional Coupler	3020A	41935	10/19/2010	10/19/2011

TABLE 8 (Continued)

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Temperature Recording Equipment				
Dickson Temp & RH Data Logger	TM320	6153216	6/1/2011	6/1/2012
Dickson Temp & RH Data Logger	TM320	07260127	11/16/2010	11/16/2011
Thermometer	HH806AU	080307	8/25/2010	8/25/2011
Therm. Probe	80PK-22	8765	9/3/2010	9/3/2011
Tissue Station				
Network Analyzer (HP)	E5071B	MY42403147	10/11/2010	10/11/2011
Dielectric Probe Kit (HP)	85070E	MY44300183	CNR	CNR
Dipole				
Speag Dipole	D300V3	1004	4/11/2011	4/11/2013

10.0 SAR Measurement System Verification:

The SAR measurements were conducted with probe model/serial number ES3DV3/SN3122. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

Dipole validation scans using head tissue equivalent medium are provided in APPENDIX D. The EMS EME lab validated the dipole to the applicable IEEE 1528-2003 system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the EMS EME system performance validation are provided herein.

10.1 Equivalent Tissue Test Results:

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The table below summarizes the measured tissue parameters used for the SAR assessment. Frequencies in blue are outside FCC Part 90.

TABLE 9

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
136	FCC Body	0.79 (0.75-0.83)	62.3 (59.2-65.4)	0.79	61.1	7/28/11
136	IEEE/ IEC Head	0.75 (0.71-0.79)	53.0 (50.4-55.7)	0.72	53.1	7/29/11
141	FCC Body	0.79 (0.75-0.83)	62.1 (59.0-65.2)	0.79	61.0	7/28/11
141	IEEE/ IEC Head	0.75 (0.71-0.79)	52.7 (50.1-55.3)	0.73	52.8	7/29/11
144	FCC Body	0.80 (0.76-0.84)	62.1 (59.0-65.2)	0.81 0.79	60.9 60.9	7/27/11 7/28/11
144	IEEE/ IEC Head	0.76 (0.72-0.80)	52.6 (50.0-55.2)	0.73	52.6	7/29/11
146	FCC Body	0.80 (0.76-0.84)	62.0 (58.9-65.1)	0.81 0.79	60.9 60.8	7/27/11 7/28/11
146	IEEE/ IEC Head	0.76 (0.72-0.80)	52.5 (49.9-55.1)	0.73	52.5	7/29/11
148	FCC Body	0.80 (0.76-0.84)	62.0 (58.9-65.1)	0.81 0.79	60.8 60.8	7/27/11 7/28/11
148	IEEE/ IEC Head	0.76 (0.72-0.80)	52.4 (49.8-55.0)	0.73	52.4	7/29/11
150.8	FCC Body	0.80 (0.76-0.84)	61.9 (58.8-65.0)	0.78 0.78 0.79 0.78 0.78 0.79 0.79 0.78 0.81	60.2 60.5 60.4 60.2 60.1 60.6 60.9 60.6 60.7	7/16/11 7/17/11 7/18/11 7/19/11 7/20/11 7/21/11 7/25/11 7/26/11 7/27/11
150.8	IEEE/ IEC Head	0.76 (0.72-0.80)	52.3 (49.6-55.9)	0.73	52.1	7/22/11
152.5	FCC Body	0.80 (0.76-0.84)	61.9 (58.8-64.9)	0.78 0.78 0.79 0.78 0.78 0.79 0.79 0.78	60.2 60.5 60.3 60.1 60.1 60.5 60.9 60.6	7/16/11 7/17/11 7/18/11 7/19/11 7/20/11 7/21/11 7/25/11 7/26/11
152.5	IEEE/ IEC Head	0.76 (0.72-0.80)	52.2 (49.6-54.8)	0.73	52.0	7/22/11

TABLE 9 (continue)

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
167	FCC Body	0.81 (0.77-0.85)	61.5 (58.4-64.6)	0.79	59.8	7/16/11
				0.79	60.0	7/17/11
				0.80	60.0	7/18/11
				0.79	59.7	7/19/11
				0.79	59.7	7/20/11
				0.79	60.2	7/21/11
				0.80	60.6	7/25/11
				0.79	60.3	7/26/11
				0.82	60.4	7/27/11
				0.79	59.9	8/01/11
167	IEEE/ IEC Head	0.77 (0.73-0.81)	51.5 (48.9-54.1)	0.75	51.2	7/22/11
300	FCC Body	0.92 (0.87-0.97)	58.2 (55.3-61.1)	0.88	56.9	7/16/11
				0.88	57.1	7/17/11
				0.88	57.1	7/18/11
				0.88	56.8	7/19/11
				0.88	56.8	7/20/11
				0.88	57.1	7/21/11
				0.88	56.8	7/22/11
				0.88	57.3	7/25/11
				0.88	57.2	7/26/11
				0.90	57.9	7/27/11
				0.89	57.3	7/28/11
				0.88	57.0	8/01/11
300	IEEE/ IEC Head	0.87 (0.83-0.91)	45.3 (43.0-47.6)	0.86	45.8	7/29/11

10.2 System Check Test Results:

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D explains how the targets were set and includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 10

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Reference SAR @ 1W (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
3122	FCC Body	SPEAG D300V3 /1004	2.70 +/- 10%	2.56	7/16/11
				2.79	7/17/11
				2.83	7/18/11
				2.83	7/19/11
				2.85	7/20/11
				2.83	7/21/11
				2.88	7/22/11
				2.85	7/25/11
				2.81	7/26/11
				2.79	7/27/11
				2.88	7/28/11
				2.79	8/01/11
3122	IEEE/ IEC Head	SPEAG D300V3 /1004	2.70 +/- 10%	2.89	7/29/11

Note: See APPENDIX D for an explanation of the reference SAR targets stated above.

11.0 Environmental Test Conditions:

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/- 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

TABLE 11

	Target	Measured
		Range: 21.2-23.1°C Avg. 22.2°C
Ambient Temperature	18 - 25 °C	Range: 44.1-55.1% Avg. 49.6%
Relative Humidity	30 - 70 %	Range: 20.2-21.7°C Avg. 20.9°C
Tissue Temperature	NA	

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using coarse and 5x5x7 zoom scan. Elliptical flat phantoms filled with applicable simulated tissue were used for body and face testing.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646 D01.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in APPENDIX I.

12.3.1 Body:

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessories as well as with and without the offered audio accessories as applicable.

12.3.2 Head:

Not applicable.

12.3.3 Face:

The DUT was positioned with its' front side separated 2.5cm from the phantom.

12.4 DUT Test Channels:

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * \text{roundup}[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

N_c = Number of channels

F_{high} = Upper channel

F_{low} = Lower channel

F_c = Center channel

12.5 DUT Test Plan:

The guidelines and requirements outlined in “SAR Test Reduction Considerations for Occupational PTT Radios” FCC KDB 643646 D01 dated 4/4/11 for head (face) and body were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. In some cases the initial power listed herein may exceed the reported maximum power due to software step size tuning limitations. However, the initial powers measured are not greater than the allowed 5% of the reported maximum power.

Note that test results that are outside the relevant FCC frequency allocations are presented herein in blue font. Tests outside Part 90 allocation were performed using the highest configuration from both body and face. The offered antenna PMAD4119A has bandwidth that is outside FCC Part 90 band.

13.0 DUT Test Data

13.1 Assessments at the Body:

The battery PMNN4416A was selected as the default battery to assess at the Body since it is the higher power among the thinnest batteries (refer to Exhibit 7B for the dimension of the battery). The conducted power measurement for all test channels within part 90 frequency range (150.8-173.4MHz) using the battery PMNN4416A is indicated in table 12. The channel with the highest conducted power will be identified as the default channel per KDB 643646 D01 SAR Test for PTT Radios v01r01. Highest SAR results from each table are bolded. SAR plots of the highest results are presented in appendix E-G.

Table 12

Test Freq (MHz)	Power (W)
150.8	6.05
152.5	6.07
155	6.04
157.9	6.02
160	6.02
165	6.02
167	6.03
173.4	6.00

13.2 Assessments at the Body with Body worn PMLN4651A:

Assessment of offered antennas with the default battery and body worn accessory PMLN4651A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for the highest output power channel.

Table 13

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN4651A	PMLN5727A	150.80	6.090	-0.439	2.763	1.612	1.53	0.89	Lee-AB-110716-02
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN4651A	PMLN5727A	150.80							
				152.50	6.120	-0.420	1.889	1.131	1.04	0.62	Lee-AB-110716-03
				155.00							

Table 13 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4118A (152-174MHz)	PMNN4416A	PMLN4651A	PMLN5727A	152.50	6.120	-0.443	2.070	1.221	1.15	0.68	Lee-AB-110716-04
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN4651A	PMLN5727A	150.80	6.090	-0.789	1.075	0.625	0.64	0.37	Lee-AB-110716-05
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN4651A	PMLN5727A	160.00							
				167.00	6.160	-1.310	2.384	1.402	1.61	0.95	Lee-AB-110716-07
				173.40							

Assessment of the worst case antenna from above with body worn accessory
 PMLN4651A with additional offered batteries per KDB 643646 D01 SAR Test for
 PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 14

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4121A (160-174MHz)	PMNN4417A	PMLN4651A	PMLN5727A	167.00	6.010	-0.831	2.122	1.172	1.28	0.71	Lee-AB-110716-08
	PMNN4418A				6.000	-1.070	1.388	0.838	0.89	0.54	CcC-AB-110717-02
	PMNN4415A				6.220	-1.140	1.951	1.142	1.27	0.74	CcC-AB-110717-03

13.3 Assessments at the Body with Body worn PMLN7008A:

Assessment of offered antennas with the default battery and body worn accessory PMLN7008A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 15

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN7008A	PMLN5727A	150.80	6.060	-0.407	2.522	1.421	1.38	0.78	CcC-AB-110717-04
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN7008A	PMLN5727A	150.80							
				152.50	6.120	-0.357	1.930	1.131	1.05	0.61	CcC-AB-110717-05
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	PMLN7008A	PMLN5727A	152.50	6.130	-0.443	2.040	1.191	1.13	0.66	CcC-AB-110717-06
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN7008A	PMLN5727A	150.80	6.060	-0.597	2.170	1.231	1.24	0.71	CcC-AB-110717-07
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN7008A	PMLN5727A	160.00							
				167.00	6.190	-1.780	1.700	1.052	1.28	0.79	CcC-AB-110717-08
				173.40							

Assessment of the worst case antenna from above with body worn accessory
 PMLN7008A with additional offered batteries per KDB 643646 D01 SAR Test for
 PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 16

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4417A	PMLN7008A	PMLN5727A	150.80	5.970	-0.358	2.592	1.512	1.41	0.83	CcC-AB-110717-09
	PMNN4418A				5.990	-0.460	2.120	1.201	1.18	0.67	CcC-AB-110717-10
	PMNN4415A				5.920	-0.441	2.496	1.421	1.40	0.80	PS-AB-110718-02

13.4 Assessments at the Body with Body worn PMLN5863A:

Assessment of offered antennas with the default battery and body worn accessory
 PMLN5863A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 17

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#	
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5863A	PMLN5727A	150.80	6.090	-0.528	1.443	0.910	0.81	0.51	PS-AB-110718-04	
					157.90							
					165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5863A	PMLN5727A	150.80								
					152.50	6.110	-0.460	1.243	0.786	0.69	0.44	PS-AB-110718-05
					155.00							

Table 17 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5863A	PMLN5727A	152.50	6.130	-0.633	1.063	0.675	0.61	0.39	PS-AB-110718-07
				157.90							
				167.00							
				165.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5863A	PMLN5727A	150.80	6.060	-0.527	1.133	0.713	0.64	0.40	PS-AB-110718-08
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5863A	PMLN5727A	160.00							
				167.00	6.180	-1.320	1.124	0.703	0.76	0.48	CcC-AB-110718-09
				173.40							

Assessment of the worst case antenna from above with body worn accessory
PMLN5863A with additional offered batteries per KDB 643646 D01 SAR Test for
PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4417A	PMLN5863A	PMLN5727A	150.80	5.980	-0.374	1.413	0.883	0.77	0.48	CcC-AB-110718-10
	PMNN4418A				5.950	-0.395	1.774	1.061	0.98	0.59	CcC-AB-110718-11
	PMNN4415A				6.040	-0.584	1.794	1.091	1.03	0.62	CcC-AB-110718-12

13.5 Assessments at the Body with Body worn PMLN5865A:

Assessment of offered antennas with the default battery and body worn accessory PMLN5865A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5865A	PMLN5727A	150.80	6.090	-0.496	0.457	0.359	0.26	0.20	CcC-AB-110718-13
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5865A	PMLN5727A	150.80							
				152.50	6.150	-0.488	0.577	0.456	0.32	0.26	CcC-AB-110718-14
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5865A	PMLN5727A	152.50	6.110	-0.578	0.276	0.213	0.16	0.12	CcC-AB-110718-15
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5865A	PMLN5727A	150.80	6.050	-0.435	0.379	0.293	0.21	0.16	CcC-AB-110718-16
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5865A	PMLN5727A	160.00							
				167.00	6.170	-0.786	0.494	0.386	0.30	0.23	CcC-AB-110718-17
				173.40							

Assessment of the worst case antenna from above with body worn accessory PMLN5865A with additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4117A (136-155MHz)	PMNN4417A	PMLN5865A	PMLN5727A	152.50	5.990	-0.274	0.153	0.118	0.08	0.06	CcC-AB-110718-18
	PMNN4418A				5.980	-0.382	0.394	0.306	0.22	0.17	PS-AB-110719-02
	PMNN4415A				5.910	-0.442	0.438	0.338	0.25	0.19	PS-AB-110719-04

13.6 Assessments at the Body with Body worn PMLN5869A:

Assessment of offered antennas with the default battery and body worn accessory PMLN5869A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5869A	PMLN5727A	150.80	6.010	-0.471	1.386	1.051	0.77	0.59	PS-AB-110719-05
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5869A	PMLN5727A	150.80							
				152.50	6.290	-0.453	1.045	0.799	0.58	0.44	PS-AB-110719-06
				155.0							

Table 21 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5869A	PMLN5727A	152.50	6.280	-0.399	1.266	0.962	0.69	0.53	PS-AB-110719-07
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5869A	PMLN5727A	150.80	6.070	-0.619	1.025	0.757	0.59	0.44	PS-AB-110719-08
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5869A	PMLN5727A	160.00							
				167.00	6.170	-1.640	1.418	1.072	1.03	0.78	CcC-AB-110719-10
				173.40							

Assessment of the worst case antenna from above with body worn accessory
PMLN5869A with additional offered batteries per KDB 643646 D01 SAR Test for
PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4121A (160-174MHz)	PMNN4417A	PMLN5869A	PMLN5727A	167.00	6.040	-1.100	1.408	1.062	0.91	0.68	CcC-AB-110719-11
	PMNN4418A				6.000	-0.922	0.979	0.740	0.61	0.46	CcC-AB-110719-12
	PMNN4415A				6.030	-1.590	0.793	0.600	0.57	0.43	CcC-AB-110719-13

13.7 Assessments at the Body with Body worn PMLN5867A:

Assessment of offered antennas with the default battery and body worn accessory PMLN5867A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 23

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5867A	PMLN5727A	150.80	6.050	-0.583	0.348	0.275	0.20	0.16	CcC-AB-110719-15
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5867A	PMLN5727A	150.80							
				152.50	6.090	-0.467	0.526	0.414	0.29	0.23	CcC-AB-110719-18
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5867A	PMLN5727A	152.50	6.060	-0.582	0.273	0.191	0.16	0.11	CcC-AB-110719-19
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5867A	PMLN5727A	150.80	6.040	-0.500	0.280	0.219	0.16	0.12	PS-AB-110720-03
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5867A	PMLN5727A	160.00							
				167.00	6.130	-0.989	0.349	0.273	0.22	0.17	PS-AB-110720-04
				173.40							

Assessment of the worst case antenna from above with body worn accessory PMLN5867A with additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 24

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4117A (136-155MHz)	PMNN4417A	PMLN5867A	PMLN5727A	152.50	5.990	-0.492	0.533	0.420	0.30	0.24	PS-AB-110720-05
	PMNN4418A				5.920	-0.388	0.362	0.246	0.20	0.14	PS-AB-110720-06
	PMNN4415A				5.920	-0.342	0.222	0.174	0.12	0.10	PS-AB-110720-07

13.8 Assessments at the Body with Body worn HLN6602A

Assessment of offered antennas with the default battery and body worn accessory HLN6602A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 25

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#	
PMAD4116A (144-165MHz)	PMNN4416A	HLN6602A	PMLN5727A	150.80	5.990	-0.597	2.200	1.652	1.26	0.95	PS-AB-110720-08	
					157.90							
					165.00							
PMAD4117A (136-155MHz)	PMNN4416A	HLN6602A	PMLN5727A	150.80								
					152.50	6.100	-0.453	0.777	0.589	0.43	0.33	CcC-AB-110720-09
					155.00							
PMAD4118A (152-174MHz)	PMNN4416A	HLN6602A	PMLN5727A	152.50	6.060	-0.536	2.221	1.672	1.26	0.95	CcC-AB-110720-10	
					157.90							
					165.00							
					167.00							
					173.40							

Table 25 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4120A (146-160MHz)	PMNN4416A	HLN6602A	PMLN5727A	150.80	6.030	-0.995	1.487	1.101	0.93	0.69	CcC-AB-110720-11
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	HLN6602A	PMLN5727A	160.00							
				167.00	6.140	-1.610	1.469	1.112	1.06	0.81	CcC-AB-110720-14
				173.40							

Assessment of the worst case antenna from above with body worn accessory HLN6602A with additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 26

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4417A	HLN6602A	PMLN5727A	150.80	5.990	-0.415	2.311	1.732	1.27	0.95	CcC-AB-110720-15
	PMNN4418A				5.920	-0.193	1.155	0.852	0.61	0.45	CcC-AB-110720-17
	PMNN4415A				5.990	-0.354	1.407	1.061	0.76	0.58	CcC-AB-110720-18

13.9 Assessments at the Body with Body worn RLN4570A:

Assessment of offered antennas with the default battery and body worn accessory RLN4570A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 27

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	RLN4570A	PMLN5727A	150.80	6.020	-0.487	2.296	1.731	1.28	0.97	PS-AB-110721-02
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	RLN4570A	PMLN5727A	150.80							
				152.50	6.060	-0.534	0.786	0.592	0.44	0.33	PS-AB-110721-03
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	RLN4570A	PMLN5727A	152.50	6.050	-0.515	2.768	2.081	1.56	1.17	PS-AB-110721-04
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	RLN4570A	PMLN5727A	150.80	6.060	-0.683	1.193	0.870	0.70	0.51	PS-AB-110721-05
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	RLN4570A	PMLN5727A	160.00							
				167.00	6.130	-1.220	1.418	1.052	0.94	0.70	PS-AB-110721-06
				173.40							

Assessment of the worst case antenna from above with body worn accessory
 RLN4570A with additional offered batteries per KDB 643646 D01 SAR Test for
 PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 28

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4118A (152-174MHz)	PMNN4417A	RLN4570A	PMLN5727A	152.50	6.000	-0.409	2.768	2.081	1.52	1.14	PS-AB-110721-07
	PMNN4418A				5.960	-0.488	2.026	1.501	1.14	0.85	PS-AB-110721-08
	PMNN4415A				5.930	-0.406	2.617	1.941	1.45	1.08	CcC-AB-110721-09

13.10 Assessments at the Body with Body worn RLN4815A:

Assessment of offered antennas with the default battery and body worn accessory
 RLN4815A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR
 Test Considerations for Body worn Accessories. Refer to table 12 for highest output
 power channel.

Table 29

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#	
PMAD4116A (144-165MHz)	PMNN4416A	RLN4815A	PMLN5727A	150.80	6.040	-0.478	1.073	0.785	0.60	0.44	CcC-AB-110721-10	
					157.90							
					165.00							
PMAD4117A (136-155MHz)	PMNN4416A	RLN4815A	PMLN5727A	150.80								
					152.50	6.100	-0.507	1.113	0.828	0.63	0.47	CcC-AB-110721-11
					155.00							

Table 29 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4118A (152-174MHz)	PMNN4416A	RLN4815A	PMLN5727A	152.50	6.090	-0.457	0.790	0.583	0.44	0.32	CcC-AB-110721-12
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	RLN4815A	PMLN5727A	150.80	6.000	-0.265	0.860	0.387	0.46	0.21	CcC-AB-110721-13
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	RLN4815A	PMLN5727A	160.00							
				167.00	6.200	-0.877	1.096	0.814	0.67	0.50	CcC-AB-110721-14
				173.40							

Assessment of the worst case antenna from above with body worn accessory
 RLN4815A with additional offered batteries per KDB 643646 D01 SAR Test for
 PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 30

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4121A (160-174MHz)	PMNN4417A	RLN4815A	PMLN5727A	167.00	6.030	-0.884	1.106	0.825	0.68	0.51	CcC-AB-110721-15
	PMNN4418A				5.950	-0.577	0.848	0.634	0.49	0.37	CcC-AB-110721-16
	PMNN4415A				6.000	-1.300	1.167	0.513	0.79	0.35	CcC-AB-110721-17

13.11 Assessments of accessory PMLN5863A with carry strap NTN5243A:

Assessment of offered antennas with the overall worst case audio cable configuration, default battery and body worn accessories PMLN5863A/NTN5243A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 31

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5863A /NTN5243A	PMLN5727A	150.80	6.010	-0.404	1.514	0.933	0.83	0.51	CcC-AB-110725-02
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5863A /NTN5243A	PMLN5727A	150.80							
				152.50	6.040	-0.588	1.043	0.660	0.60	0.38	PS-AB-110725-04
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5863A /NTN5243A	PMLN5727A	152.50	6.070	-0.288	1.113	0.692	0.59	0.37	PS-AB-110725-05
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5863A /NTN5243A	PMLN5727A	150.80	6.000	-0.827	0.979	0.610	0.59	0.37	PS-AB-110725-06
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5863A /NTN5243A	PMLN5727A	160.00							
				167.00	6.070	-1.390	1.187	0.740	0.82	0.51	CcC-AB-110726-08
				173.40							

Assessment of the worst case antenna from above with body worn accessory PMLN5863A/NTN5243A and the additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 32

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4417A	PMLN5863A /NTN5243A	PMLN5727A	150.80	5.950	-0.403	1.764	1.101	0.98	0.61	PS-AB-110725-08
	PMNN4418A				5.870	-0.540	1.524	0.915	0.88	0.53	PS-AB-110725-09
	PMNN4415A				5.930	-0.581	1.678	1.001	0.97	0.58	CcC-AB-110726-02

13.12 Assessments of accessory PMLN5865A with carry strap NTN5243A:

Assessment of offered antennas with the overall worst case audio cable configuration, default battery and body worn accessories PMLN5865A/NTN5243A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 33

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5865A /NTN5243A	PMLN5727A	150.80	6.020	-0.420	1.587	0.867	0.87	0.48	CcC-AB-110726-03
					157.90						
					165.00						
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5865A /NTN5243A	PMLN5727A	150.80							
					152.50	6.040	-0.484	1.045	0.581	0.58	0.32
					155.00						

Table 33 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5865A /NTN5243A	PMLN5727A	152.50	6.040	-0.379	1.004	0.555	0.55	0.30	CcC-AB-110726-05
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5865A /NTN5243A	PMLN5727A	150.80	5.980	-0.514	1.055	0.579	0.60	0.33	CcC-AB-110726-06
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5865A /NTN5243A	PMLN5727A	160.00							
				167.00	6.100	-1.540	1.157	0.637	0.82	0.45	CcC-AB-110726-07
				173.40							

Assessment of the worst case antenna from above with body worn accessory PMLN5865A/NTN5243A and the additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 34

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4418A	PMLN5865A /NTN5243A	PMLN5727A	150.80	5.880	-0.427	1.407	0.753	0.79	0.42	PS-AB-110726-10
	PMNN4417A				5.860	-0.369	1.607	0.872	0.90	0.49	PS-AB-110726-11
	PMNN4415A				5.930	-0.553	1.989	1.041	1.14	0.60	PS-AB-110726-12

13.13 Assessments of accessory PMLN5869A with carry strap NTN5243A:

Assessment of offered antennas with the overall worst case audio cable configuration, default battery and body worn accessories PMLN5869A/NTN5243A per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test
Considerations for Body worn Accessories. Refer to table 12 for highest output power channel.

Table 35

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN5869A /NTN5243A	PMLN5727A	150.80	6.040	-0.535	1.407	1.061	0.80	0.60	PS-AB-110726-14
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	PMLN5869A /NTN5243A	PMLN5727A	150.80							
				152.50	6.040	-0.501	1.055	0.801	0.59	0.45	PS-AB-110726-16
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	PMLN5869A /NTN5243A	PMLN5727A	152.50	6.070	-0.440	1.025	0.549	0.57	0.30	PS-AB-110726-17
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	PMLN5869A /NTN5243A	PMLN5727A	150.80	6.040	-0.773	0.636	0.471	0.38	0.28	CcC-AB-110727-02
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	PMLN5869A /NTN5243A	PMLN5727A	160.00							
				167.00	6.130	-1.56	1.25	.914	0.90	0.65	PS-AB-110727-12
				173.40							

Assessment of the worst case antenna from above with body worn accessory PMLN5869A/NTN5243A and the additional offered batteries per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Body SAR Test Considerations for Body worn Accessories.

Table 36

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4121A (160-174MHz)	PMNN4418A	PMLN5869A /NTN5243A	PMLN5727A	167.00	5.930	-1.300	1.010	0.750	0.69	0.51	CcC-AB-110727-07
	PMNN4417A				5.990	-1.580	1.310	0.963	0.94	0.69	PS-AB-110727-13
	PMNN4415A				5.750	-1.410	0.991	0.734	0.72	0.53	PS-AB-110727-10

13.14 Assessment of other audio accessories at the body :

Assessment per KDB 643646 D01 Body SAR Test Considerations for Audio Accessories without Built-in Antenna; Sec 1, A. when overall < 4.0 W/kg, SAR tests for that audio accessory is not necessary. This was applicable to all remaining accessories.

13.15 Assessments outside FCC Part 90 at the body:

Assessment using highest SAR configuration from Part 90 assessment above (Run # Lee-AB-110716-07) across the outside Part 90 band width of each antenna.

Table 37

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	PMLN4651A	PMLN5727A	144.00	5.910	-0.646	1.050	0.674	0.62	0.40	PS-AB-110727-17
				146.00	5.910	-0.569	2.530	1.460	1.46	0.84	PS-AB-110727-18
				148.00	5.930	-0.513	2.510	1.500	1.43	0.85	PS-AB-110727-19

Table 38

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4117A (136-155MHz)	PMNN4416A	PMLN4651A	PMLN5727A	136.00	5.950	-0.448	1.010	0.624	0.56	0.35	PS-AB-110728-02
				141.00	5.880	-0.432	2.832	1.620	1.60	0.91	PS-AB-110728-03
				144.00	5.880	-0.475	2.063	1.190	1.17	0.68	PS-AB-110728-04
				148.00	5.900	-0.447	1.974	1.140	1.11	0.64	PS-AB-110728-05

Table 39

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4120A (146-160MHz)	PMNN4416A	PMLN4651A	PMLN5727A	146.00	5.900	-0.462	1.933	1.090	1.09	0.62	PS-AB-110728-06
				148.00	5.880	-0.707	1.904	1.100	1.14	0.66	PS-AB-110728-07

Table 40

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4119A (136-148MHz)	PMNN4416A	PMLN4651A	PMLN5727A	136.00	5.850	-0.516	1.350	0.688	0.78	0.40	PS-AB-110728-08
				141.00	5.880	-1.190	2.252	1.280	1.51	0.86	PS-AB-110728-09
				148.00	5.920	-0.788	0.891	0.521	0.54	0.32	PS-AB-110728-10

13.16 Assessments at the Face:

The highest capacity battery PMNN4418A was selected as the default battery. The conducted power measurement for all test channels within Part 90 frequency range (150.8-173.4MHz) using battery PMNN4418A is listed in table 41. The channel with the highest conducted power was used as the default channel per KDB 643646 D01 SAR Test for PTT Radios v01r01. SAR plots of the highest results per table (bolded) are presented in appendices E-G.

Table 41

Test Freq (MHz)	Power (W)
150.8	5.95
152.5	5.97
155	5.90
157.9	5.87
160	5.86
165	5.86
167	5.88
173.4	5.88

Assessment of each of the offered antennas with the default battery per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Head SAR Test Considerations. Refer to table 41 for highest output power channel.

Table 42

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4116A (144-165MHz)	PMNN4416A	None	None	150.80	6.03	-0.541	1.338	1.020	0.76	0.58	PS-FACE-110722-04
				157.90							
				165.00							
PMAD4117A (136-155MHz)	PMNN4416A	None	None	150.80							
				152.50	6.04	-0.580	1.710	1.310	0.98	0.75	PS-FACE-110722-05
				155.00							
PMAD4118A (152-174MHz)	PMNN4416A	None	None	152.50	6.04	-0.309	0.870	0.661	0.47	0.35	PS-FACE-110722-06
				157.90							
				165.00							
				167.00							
				173.40							
PMAD4120A (146-160MHz)	PMNN4416A	None	None	150.80	6.02	-0.345	1.197	0.884	0.65	0.48	PS-FACE-110722-07
				155.00							
				160.00							
PMAD4121A (160-174MHz)	PMNN4416A	None	None	160.00							
				167.00	6.18	-0.615	1.929	1.440	1.11	0.83	CcC-FACE-110722-08
				173.40							

Assessment of additional offered batteries using the highest SAR antenna from face assessment above per KDB 643646 D01 SAR Test for PTT Radios v01r01 – Head SAR Test Considerations.

Table 43

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4121A (160-174MHz)	PMNN4417A	None	None	167.00	6.00	-0.468	1.899	1.410	1.06	0.79	CcC-FACE-110722-10
	PMNN4418A				5.95	-0.537	1.748	1.310	1.00	0.75	CcC-FACE-110722-09
	PMNN4415A				5.92	-0.837	1.627	1.220	1.00	0.75	CcC-FACE-110722-11

13.17 Assessment of outside FCC Part 90 at the face:

Assessment using highest SAR configuration from Part 90 assessment above (Run # CcC-FACE-11072-08) across the outside Part 90 band width of each antenna.

Table 44

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#	
PMAD4116A (144-165MHz)	PMNN4416A	None	None		144.00	5.86	-0.434	0.748	0.572	0.42	0.32	CcC-FACE-110729-02
					146.00	5.90	-0.574	1.196	0.917	0.69	0.53	CcC-FACE-110729-03
					148.00	5.88	-0.384	1.528	1.170	0.85	0.65	CcC-FACE-110729-04

Table 45

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#	
PMAD4117A (136-155MHz)	PMNN4416A	None	None		136.00	5.80	-0.576	0.720	0.555	0.43	0.33	CcC-FACE-110729-05
					141.00	5.83	-0.487	1.000	0.772	0.58	0.44	CcC-FACE-110729-06
					144.00	5.89	-0.716	1.929	1.480	1.16	0.89	CcC-FACE-110729-07
					148.00	5.90	-0.489	1.558	1.200	0.89	0.68	CcC-FACE-110729-08

Table 46

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4120A (146-160MHz)	PMNN4416A	None	None	146.00	5.89	0.0604	0.769	0.558	0.39	0.28	CcC-FACE-110729-09
				148.00	5.85	-0.286	1.236	0.912	0.68	0.50	PS-FACE-110729-10

Table 47

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4119A (136-148MHz)	PMNN4416A	None	None	136.00	5.81	-0.577	0.640	0.468	0.38	0.28	PS-FACE-110729-11
				141.00	5.85	0.139	1.567	1.150	0.80	0.59	PS-FACE-110729-12
				148.00	5.85	-1.190	0.971	0.710	0.65	0.48	PS-FACE-110729-13

13.18 Shorten Scan Assessment:

Short scan assessment: A “shortened” scan was performed to validate the SAR drift of the full DASY4™ coarse and 5x5x7 zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a 5x5x7 zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. Both SAR results from the table below are provided in APPENDIX E.

TABLE 48

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)	Run#
PMAD4121A	PMNN4416A	PMLN4651A	PMLN5727A	167.00	6.180	-0.903	2.696	1.633	1.66	1.01	CcC-AB-110801-09

14.0 Simultaneous Transmission Exclusion:
NA.

15.0 Conclusion:

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing: Model PMUD2627A.

Results for FCC Part 90 (150.8-173.4 MHz)

TABLE 49

Frequency Range (MHz)	Max Calc at Body (W/kg)		Max Calc at Face (W/kg)	
	1g-SAR	10g-SAR	1g-SAR	10g-SAR
150.8 – 173.4	1.66	1.01	1.11	0.83

Results for Industry Canada (138-144; 148-149.9 and 150.05-174 MHz)

TABLE 50

Frequency Range (MHz)	Max Calc at Body (W/kg)		Max Calc at Face (W/kg)	
	1g-SAR	10g-SAR	1g-SAR	10g-SAR
138 – 174	1.66	1.01	1.16	0.89

Results for entire band (136-174 MHz)

TABLE 53

Frequency Range (MHz)	Max Calc at Body (W/kg)		Max Calc at Face (W/kg)	
	1g-SAR	10g-SAR	1g-SAR	10g-SAR
136-174	1.66	1.01	1.16	0.89

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing.

The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

APPENDIX A

Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT test frequencies ranging from 100MHz to 800MHz and for Dipole test frequencies ranging from 300MHz to 800MHz. Therefore, the highest tolerance for the probe calibration uncertainty is indicated.

Table A1:
Uncertainty Budget for Device Under Test, for 100 MHz to 800 MHz

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e = f(d,k)</i>	<i>f</i>	<i>g</i>	<i>h = c x f / e</i>	<i>i = c x g / e</i>
Uncertainty Component	IEEE 1528 section	Tol. ($\pm \%$)	Prob Dist	Div.	c_i (1 g)	c_i (10 g)	1 g u_i ($\pm \%$)	10 g u_i ($\pm \%$)
Measurement System								
Probe Calibration	E.2.1	10.0	N	1.00	1	1	10.0	10.0
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0
Test sample Related								
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9
Phantom and Tissue Parameters								
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9
Combined Standard Uncertainty								
Expanded Uncertainty (95% CONFIDENCE LEVEL)								
			RSS				14	13
			<i>k</i> =2				27	27

FCD-0558 Uncertainty Budget Rev.8

Table A2:**Uncertainty Budget for System Validation (dipole & flat phantom) for 300 MHz to 800 MHz**

<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e = f(d,k)</i>	<i>f</i>	<i>g</i>	<i>h = c x f / e</i>	<i>i = c x g / e</i>
Uncertainty Component	IEEE 1528 section	Tol. (± %)	Prob. Dist.	Div.	<i>c_i</i> (1 g)	<i>c_i</i> (10 g)	1 g <i>u_i</i> (±%)	10 g <i>u_i</i> (±%)
Measurement System								
Probe Calibration	E.2.1	9.0	N	1.00	1	1	9.0	9.0
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0
Dipole								
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2
Input Power and SAR Drift Measurement	8, E.6.2	5.0	R	1.73	1	1	2.9	2.9
Phantom and Tissue Parameters								
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5
Combined Standard Uncertainty				RSS			11	11
Expanded Uncertainty (95% CONFIDENCE LEVEL)				<i>k</i> =2			22	22

FCD-0558 Uncertainty Budget Rev.8

Notes for Tables 1 and 2

- a) Column headings *a-k* are given for reference.
- b) Tol. - tolerance in influence quantity.
- c) Prob. Dist. – Probability distribution
- d) N, R - normal, rectangular probability distributions
- e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty
- f) *c_i* - sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) *u_i* – SAR uncertainty
- h) *v_i* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B
Probe Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Motorola MY (Precision)

Certificate No: ES3-3122_Apr11

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3122
Calibration procedure(s)	QA CAL-01.v7, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v3 Calibration procedure for dosimetric E-field probes
Calibration date:	April 14, 2011
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.	
Calibration Equipment used (M&TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41495277	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards		Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name Katja Pokovic	Function Technical Manager	Signature
Approved by:	Name Niels Kuster	Function Quality Manager	
Issued: April 14, 2011			

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
SCS Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z$ are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR : VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3122

Manufactured: July 11, 2006
Calibrated: April 14, 2011

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3122

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.36	1.24	1.44	$\pm 10.1\%$
DCP (mV) ^B	100.4	101.6	100.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	116.7	$\pm 1.9\%$
			Y	0.00	0.00	1.00	113.1	
			Z	0.00	0.00	1.00	127.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3122

Calibration Parameter Determined in Head Tissue Simulating Media

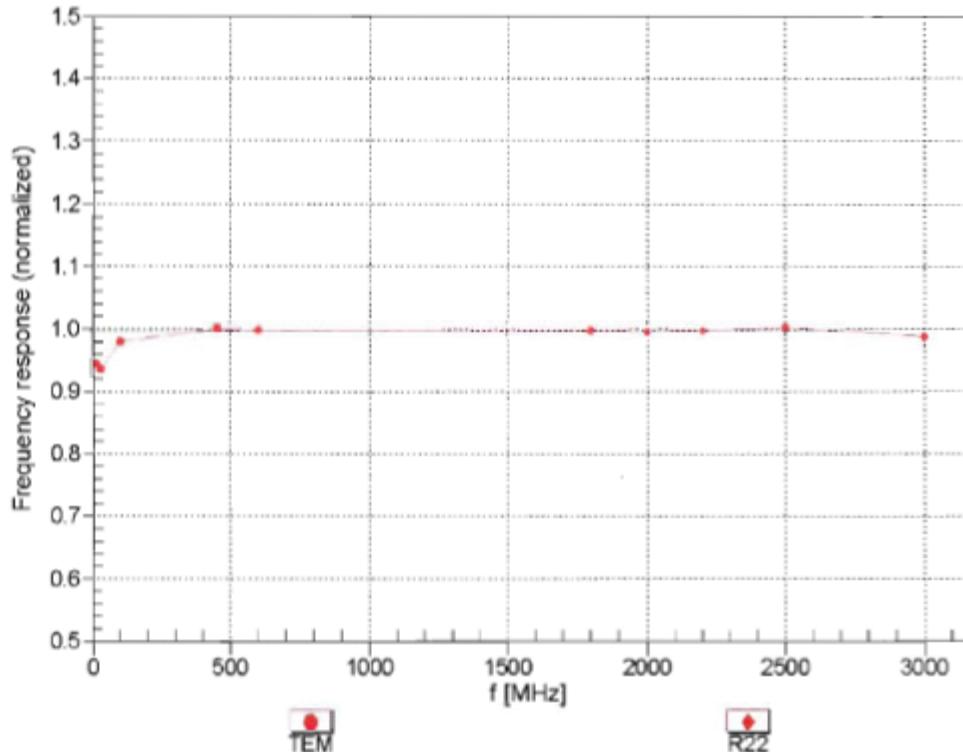
f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	6.79	6.79	6.79	0.25	1.05	± 13.4 %
450	43.5	0.87	6.43	6.43	6.43	0.15	1.74	± 13.4 %
750	41.9	0.89	6.24	6.24	6.24	0.99	1.12	± 12.0 %
900	41.5	0.97	5.94	5.94	5.94	0.99	1.11	± 12.0 %
1810	40.0	1.40	5.07	5.07	5.07	0.86	1.20	± 12.0 %
2300	39.5	1.67	4.71	4.71	4.71	0.74	1.33	± 12.0 %
2450	39.2	1.80	4.41	4.41	4.41	0.73	1.34	± 12.0 %
2600	39.0	1.96	4.28	4.28	4.28	0.72	1.38	± 12.0 %
3500	37.9	2.91	4.07	4.07	4.07	0.85	1.30	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV3- SN:3122

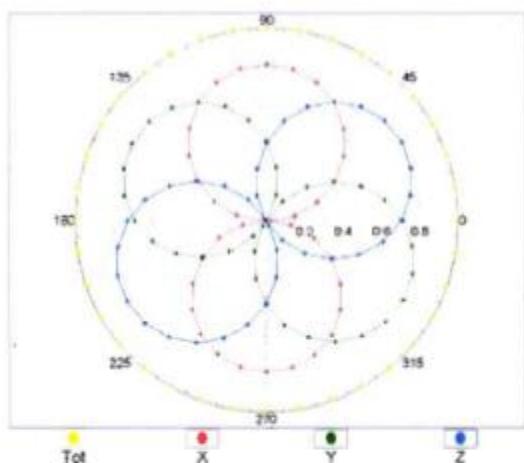
Calibration Parameter Determined in Body Tissue Simulating Media

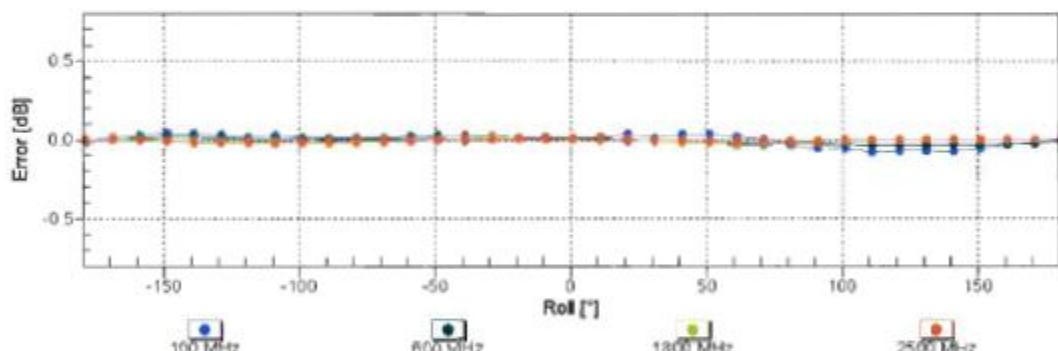
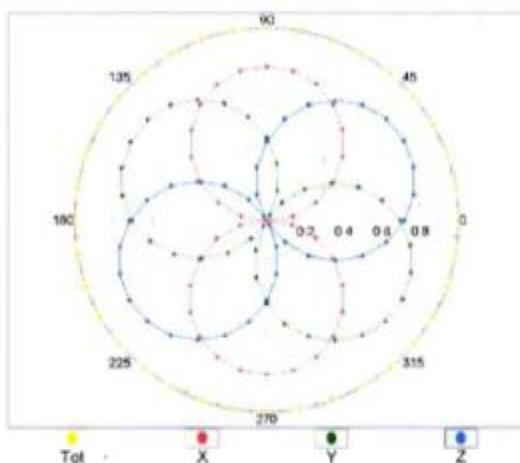

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	6.74	6.74	6.74	0.21	1.65	± 13.4 %
450	56.7	0.94	6.91	6.91	6.91	0.10	1.00	± 13.4 %
750	55.5	0.96	6.03	6.03	6.03	0.99	1.16	± 12.0 %
900	55.0	1.05	5.92	5.92	5.92	0.99	1.14	± 12.0 %
1810	53.3	1.52	4.80	4.80	4.80	0.86	1.23	± 12.0 %
2300	52.9	1.81	4.40	4.40	4.40	0.88	1.15	± 12.0 %
2450	52.7	1.95	4.15	4.15	4.15	0.98	1.03	± 12.0 %
2600	52.5	2.16	3.98	3.98	3.98	0.99	1.03	± 12.0 %
3500	51.3	3.31	3.46	3.46	3.46	0.85	1.37	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

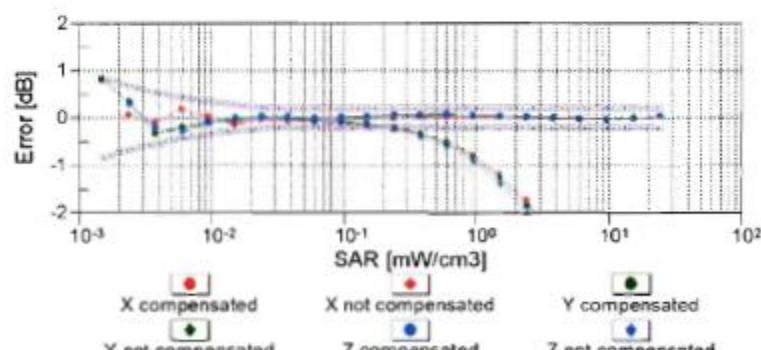
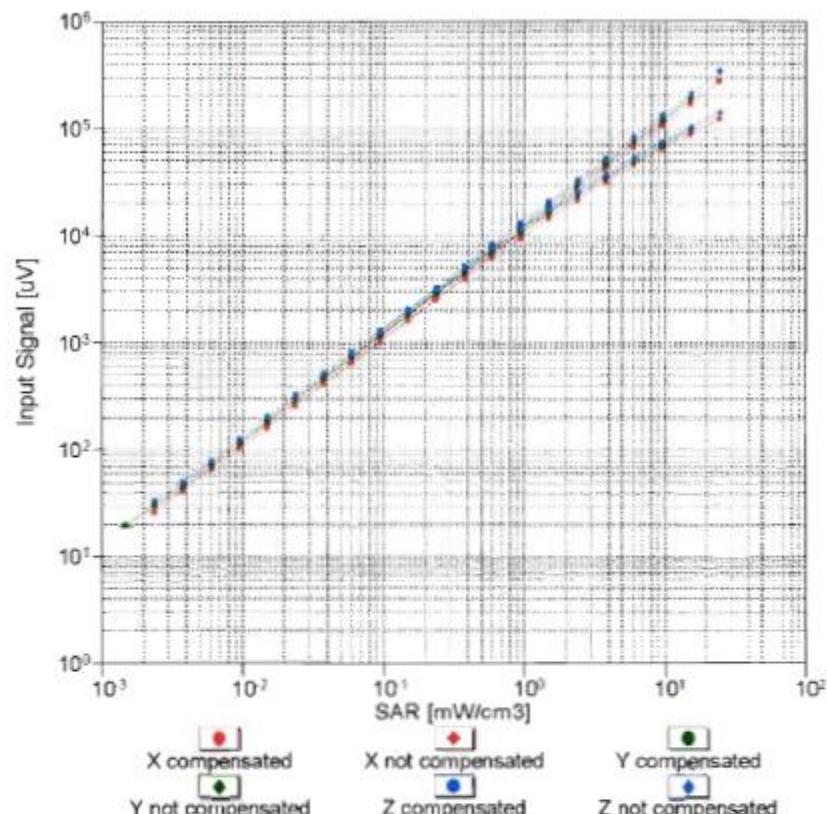
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

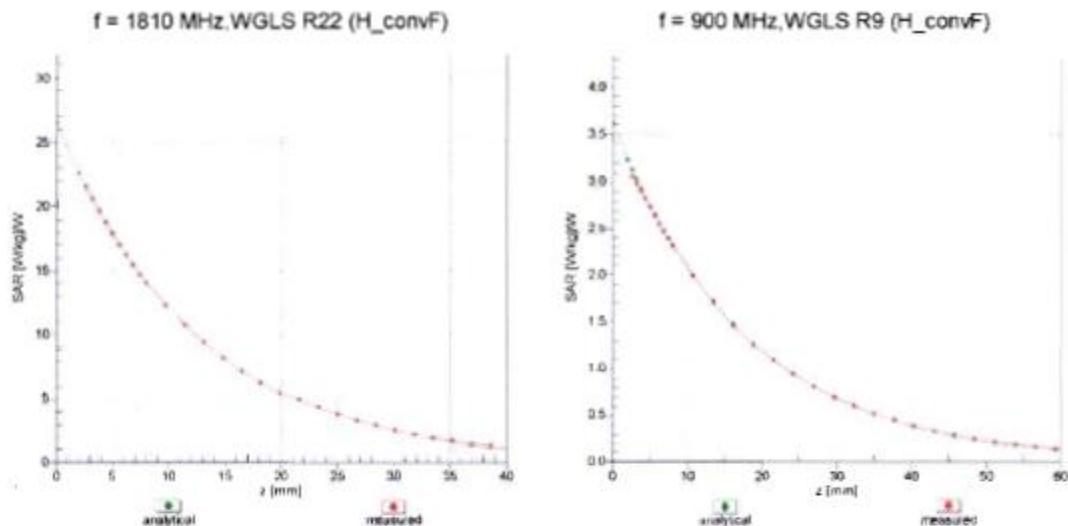
Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

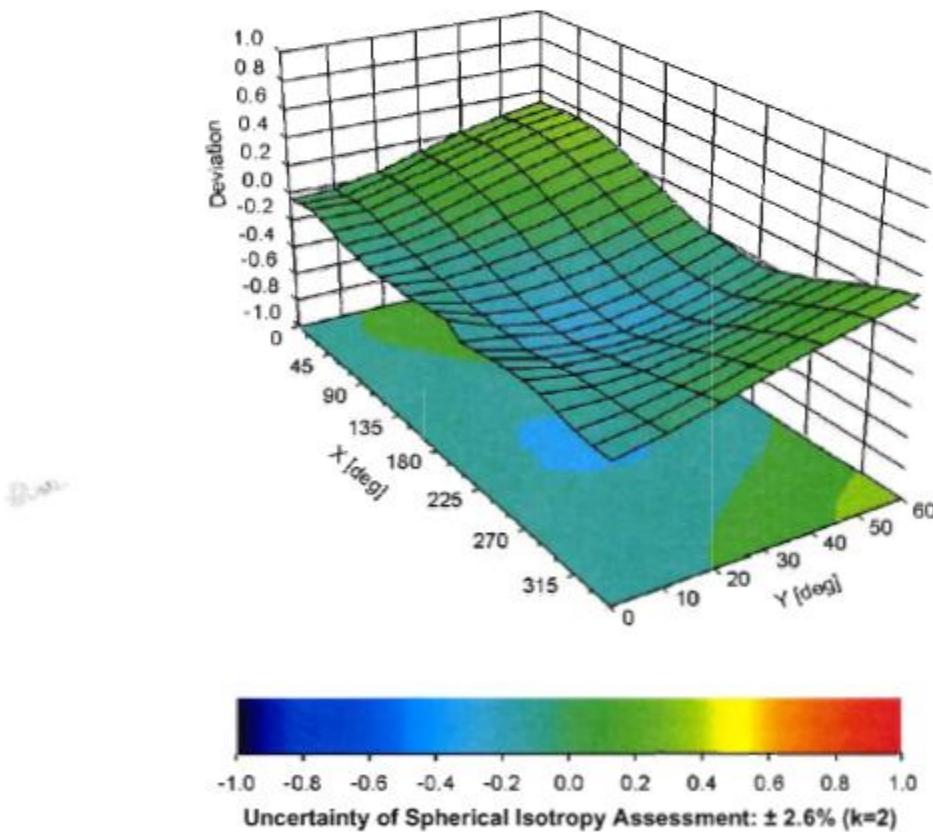



f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range f(SAR_{head})

(TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900 \text{ MHz}$

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3122

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Additional Conversion Factors for Dosimetric E-Field Probe

Type: **ES3DV3**

Serial Number: **3122**

Place of Assessment: **Zurich**

Date of Assessment: **April 18, 2011**

Probe Calibration Date: **April 14, 2011**

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV3 SN:3122

Conversion factor (\pm standard deviation)

150 MHz	ConvF	$8.1 \pm 10\%$	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
250 MHz	ConvF	$7.5 \pm 10\%$	$\epsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue)
150 MHz	ConvF	$7.8 \pm 10\%$	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
250 MHz	ConvF	$7.4 \pm 10\%$	$\epsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

APPENDIX C
Dipole Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **Motorola MY (Precision)**Certificate No: **D300V3-1004_Apr11**

CALIBRATION CERTIFICATE

Object **D300V3 - SN: 1004**
 Calibration procedure(s) **QA CAL-15.v5**
Calibration Procedure for dipole validation kits below 800 MHz
Calibration date: **April 11, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41495277	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.3 / 06327	29-Mar-11 (No. 217-01168)	Apr-12
Reference Probe ET3DV6	SN: 1507	30-Apr-10 (No. ET3-1507_Apr10)	Apr-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: April 13, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	45.3	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	45.4 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.15 mW / g
SAR normalized	normalized to 1W	2.89 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	2.92 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	0.76 mW / g
SAR normalized	normalized to 1W	1.91 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	1.93 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.8 Ω - 3.4 $j\Omega$
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.746 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 16, 2005

DASY5 Validation Report for Head TSL

Date/Time: 11.04.2011 12:29:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 300 MHz; Type: D300V3; Serial: D300V3 - SN:1004

Communication System: CW; Frequency: 300 MHz; Duty Cycle: 1:1

Medium: HSL300

Medium parameters used: $f = 300$ MHz; $\sigma = 0.86$ mho/m; $\epsilon_r = 45.4$; $\rho = 1000$ kg/m³

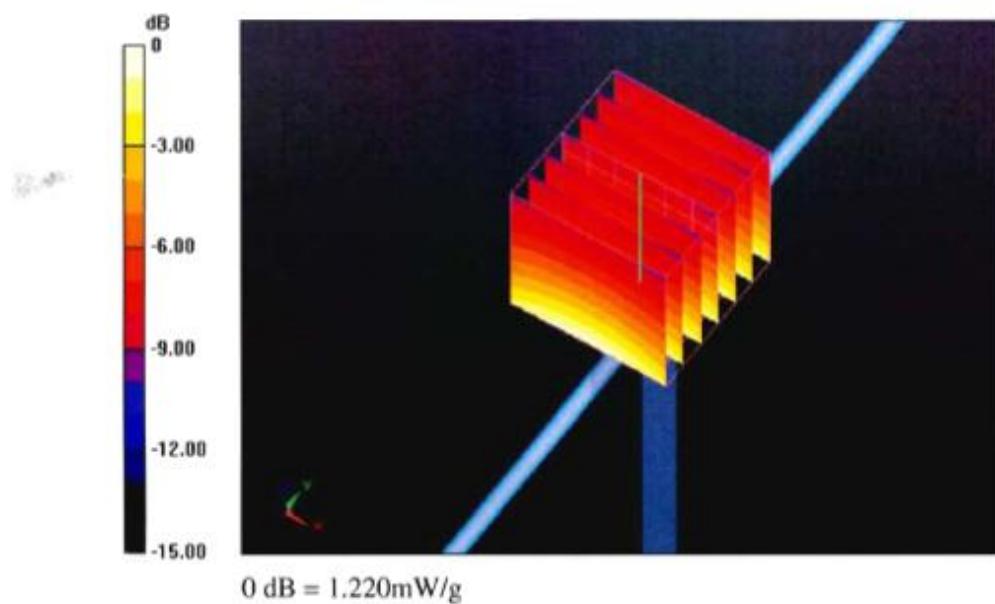
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

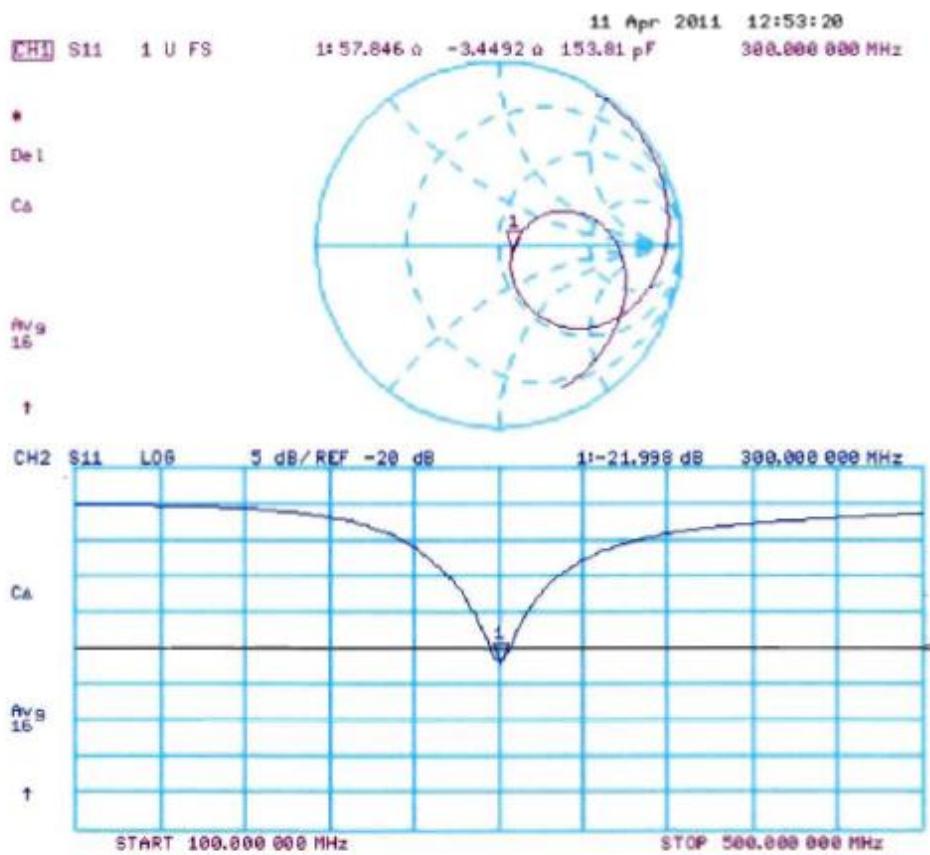
DASY5 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.39, 7.39, 7.39) Calibrated: 30.04.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 23.04.2010
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1002
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=398mW/d=15mm/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.394 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.921 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.760 mW/g

Maximum value of SAR (measured) = 1.222 mW/g

Impedance Measurement Plot for Head TSL

