

塑料和聚合物部件	○	○	○	○	○	×
○:	表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006 标准规定的限量要求以下。					
×:	表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006 标准规定的限量要求。					

10.3 RF EXPOSURE SEPARATION DISTANCES

To protect from overexposure to RF energy, install Canopy radios so as to provide and maintain the minimum separation distances from all persons shown in [Table 13](#).

Table 13: Exposure separation distances

Module Type	Separation Distance from Persons
Canopy Module (FSK or OFDM)	At least 20 cm (approx 8 in)
Canopy Module with Reflector Dish	At least 1.5 m (approx 5 ft)
Canopy Module with LENS	At least 50 cm (approx 20 in)
900 MHz, integrated or connectorized antenna	At least 80 cm (32 in)
Indoor 900 MHz SM	At least 10 cm (4 in)

The following section and its [Table 14](#) provide details and discussion of the associated calculations.

10.3.1 Details of Exposure Separation Distances Calculations and Power Compliance Margins

Limits and guidelines for RF exposure come from:

- US FCC limits for the general population. See the FCC web site at <http://www.fcc.gov>, and the policies, guidelines, and requirements in Part 1 of Title 47 of the Code of Federal Regulations, as well as the guidelines and suggestions for evaluating compliance in FCC OET Bulletin 65.
- Health Canada limits for the general population. See the Health Canada web site at <http://www.hc-sc.gc.ca/rpb> and Safety Code 6.
- ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines for the general public. See the ICNIRP web site at <http://www.icnirp.de/> and *Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields*.

The applicable power density exposure limits from the documents referenced above are

- 10 W/m² for RF energy in the 5.7/5.8-GHz frequency bands.

Peak power density in the far field of a radio frequency point source is calculated as follows:

$$S = \frac{P \cdot G}{4 \pi d^2}$$

where
 S = power density in W/m^2
 P = RMS transmit power capability of the radio, in W
 G = total Tx gain as a factor, converted from dB
 d = distance from point source, in m

Rearranging terms to solve for distance yields

$$d = \sqrt{\frac{P \cdot G}{4 \pi S}}$$

Table 14 shows calculated minimum separation distances d , recommended distances and resulting power compliance margins for each frequency band and antenna combination.

Table 14: Calculated exposure distances and power compliance margins

Band	Antenna	Variable			d (calculated)	Recom-mended Separation Distance	Power Compliance Margin
		P	G	S			
900 MHz FSK	integrated	0.25 W (24 dBm)	15.8 (12 dB)	6 W/m^2	23 cm	80 cm (32 in)	12
	external Yagi	0.063 W (18 dBm)	50.1 (17 dB)	6 W/m^2	20 cm	80 cm (32 in)	15
	external flat panel	0.39 W (26 dBm)	10.0 (10 dB)	6 W/m^2	23 cm	80 cm (32 in)	12
	indoor, integrated	Simulation model used to estimate Specific Absorption Rate (SAR) levels				10 cm (4 in)	2
2.4 GHz FSK	integrated	0.34 W (25 dBm)	6.3 (8 dB)	10 W/m^2	13 cm	20 cm (8 in)	2.3
	integrated plus reflector	0.34 W (25 dBm)	79.4 (19 dB)	10 W/m^2	46 cm	1.5 m (5 ft)	10
5.2 GHz FSK	integrated	0.2 W (23 dBm)	5.0 (7 dB)	10 W/m^2	9 cm	20 cm (8 in)	5
	integrated plus reflector	0.0032 W (5 dBm)	316 (25 dB)	10 W/m^2	9 cm	1.5 m (5 ft)	279
	integrated plus LENS	0.025 W (14 dBm)	40 (16 dB)	10 W/m^2	9 cm	50 cm (12 in)	31
5.4 GHz FSK	integrated	0.2 W (23 dBm)	5.0 (7 dB)	10 W/m^2	9 cm	20 cm (8 in)	5
	integrated plus reflector	0.0032 W (5 dBm)	316 (25 dB)	10 W/m^2	9 cm	1.5 m (5 ft)	279
	integrated plus LENS	0.020 W (13 dBm)	50 (17 dB)	10 W/m^2	9 cm	50 cm (12 in)	31

5.7 GHz FSK	Integrated	0.2 W (23 dBm)	5.0 (7 dB)	10 W/m ²	9 cm	20 cm (8 in)	5
	integrated plus reflector	0.2 W (23 dBm)	316 (25 dB)	10 W/m ²	71 cm	1.5 m (5 ft)	4.5
	integrated plus LENS	0.2 W (23 dBm)	50 (17 dB)	1 W/m ²	28 cm	50 cm (20 in)	3.13
5.4 GHz OFDM	integrated SM, PMP 400, PTP 200	0.01 W (10 dBm)	50 (17 dB)	10 W/m ²	6 cm	20 cm (8 in)	10
	Integrated SM, PMP 430	0.079 W (19 dBm)	10 (10 dB)	10 W/m ²	8 cm	20 cm (8 in)	6.4
	connectorized AP, 18 dBi	0.02 W (13 dBm)	50 (17 dB)	10 W/m ²	9 cm	20 cm (8 in)	5
5.8 GHz OFDM	integrated SM	0.079 W (19 dBm)	10 (10 dB)	10 W/m ²	8 cm	20 cm (8 in)	6.4
	connectorized AP, 17 dBi	0.079 W (19 dBm)	40 (16 dB)	10 W/m ²	16 cm	80 cm (32 in)	25.6
4.9 GHz OFDM	Integrated, 17 dBi	0.063 W (18 dBm)	40 (16 dB)	10 W/m ²	14 cm	20 cm (8 in)	2
	connectorized, 18 dBi	0.063 W (18 dBm)	40 (16 dB)	10 W/m ²	14 cm	20 cm (8 in)	2

The Recommended Separation Distance is chosen to give significant compliance margin in all cases. It is also chosen so that a given item (bare module, reflector, or LENS) always has the same distance, regardless of frequency band, to simplify remembering and following exposure distances in the field.

These are conservative distances:

- They are along the beam direction (the direction of greatest energy). Exposure to the sides and back of the module is significantly less.
- They meet sustained exposure limits for the general population (not just short-term occupational exposure limits), with considerable margin.
- In the reflector cases, the calculated compliance distance d is greatly overestimated because the far-field equation models the reflector as a point source and neglects the physical dimension of the reflector.