ENGINEERING STATEMENT

For Type Certification of

Radio Shack; a Division of Tandy Corporation

Model No: 21-1860 FCC ID: AAO2101860

I am an Electronics Engineer, a principal in the firm of Hyak Laboratories, Inc., Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission.

Hyak Laboratories, Inc. has been authorized by Radio Shack; a Division of Tandy Corporation, to make type certification measurements on the 21-1860 transceiver. These tests made by me or under my supervision in our Springfield laboratory.

Test data and documentation required by the FCC for type certification are included in this report. The data verifies that the above mentioned transceiver meets FCC requirements type certification is requested.

Rowland S. Johnson

Dated: November 28, 2000

A. INTRODUCTION

The following data are submitted in connection with this request for type certification of the 21-1860 transceiver in

accordance with Part 2, Subpart J of the FCC Rules.

The 21-1860 is a mobile, UHF, frequency modulated transceiver intended for 12.5 kHz channel family radio service applications in the 462.5625-467.7125 MHz band. It operates from a 6 Vdc supply. Output power rating is 0.5 watts ERP.

- B. GENERAL INFORMATION REQUIRED FOR TYPE CERTIFICATION (Paragraph 2.983 of the Rules)
 - 1. Name of applicant: Radio Shack, a Div. of Tandy Corp.
 - 2. Identification of equipment: FCC ID: AAO2101860
 - a. The equipment identification label is a separate exhibit.
 - b. Photographs of the equipment are included as a separate exhibit.
 - 3. Quantity production is planned.
 - 4. Technical description:
 - a. 11k0F3E emission
 - b. Frequency range: 462.5625 467.7125 MHz.
 - c. Operating power of transmitter is fixed at the factory 0.5 W ERP.
 - d. Maximum power permitted is 0.5 watts, and the 21-1860 fully complied with that power limitation.
 - e. The dc voltage and dc currents at final amplifier:

Collector voltage: 5.9 Vdc Collector current: 0.17 mA

- f. Function of each active semiconductor device: See Appendix 1.
- g. Complete circuit diagram is submitted as a separate exhibit.
- h. A draft instruction book is submitted as a separate exhibit.
- i. The transmitter tune-up procedure is included as a separate exhibit.

2

- B. GENERAL INFORMATION REQUIRED FOR TYPE CERTIFICATION (continued)
 - j. A description of circuits for stabilizing frequency is included in the Theory of Operation.
 - k. A description of circuits and devices employed for suppression of spurious radiation and for limiting modulation is included in the Theory of Operation.
 - 1. Not applicable.

- 5. Data for 2.985 through 2.997 follow this section.
- C. <u>RF Power Output</u> (Paragraph 2.985(a) of the Rules)

The 21-1860 has a permanently attached built in antenna without provisions for a coaxial connector.

Therefore RF power output was determined by substitution.

TABLE 1

Operating Freq., MHz Power watts into a dipole antenna

462.5625 0.47

D. MODULATION CHARACTERISTICS

- 1. A curve showing frequency response of the transmitter is shown in Figure 1. Reference level was audio signal output from a Boonton 8220 modulation meter with one kHz deviation. Audio output was measured with a Audio Precision System One integrated test system.
- 2. Modulation limiting curves are shown in Figure 2, using a Boonton 8220 modulation meter. Signal level was established with a Audio Precision System One integrated test system. The curves show compliance with paragraphs 2.987(b).

3

D. MODULATION CHARACTERISTICS (continued)

- 3. Figure 3 is a graph of the post-limiter low pass filter which provides a roll-off of 60Logf/3 dB where f is audio frequency in kHz. Measurements were made following EIA RS-152B with an Audio Precision System One integrated test system on the Boonton 8220 modulation meter audio output.
- 4. Occupied Bandwidth (Paragraphs 2.989(c) of the Rules)

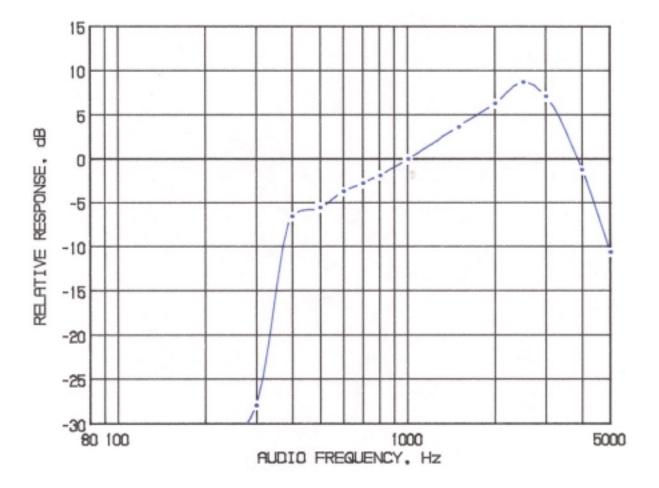
Figure 4 is a plot of the sideband envelope of the

transmitter output taken with a Tektronix 494P spectrum analyzer. Modulation corresponded to conditions of 2.989(c)(1) and consisted of 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50% modulation at 2836 Hz, the frequency of maximum response. Measured modulation under these conditions was $1.7~\mathrm{kHz}$.

The plots are within FCC limits. The horizontal scale (frequency) is $10~\rm kHz$ per division and the vertical scale (amplitude) is a logarithmic presentation equal to $10~\rm dB$ per division. Unmodulated carrier reference is $0~\rm dBm$.

E. SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS (Paragraph 2.991 of the Rules)

The 21-1860 has a permanently attached antenna. There is no connector for an external antenna. Therefore, no antenna terminal conducted measurements were made.

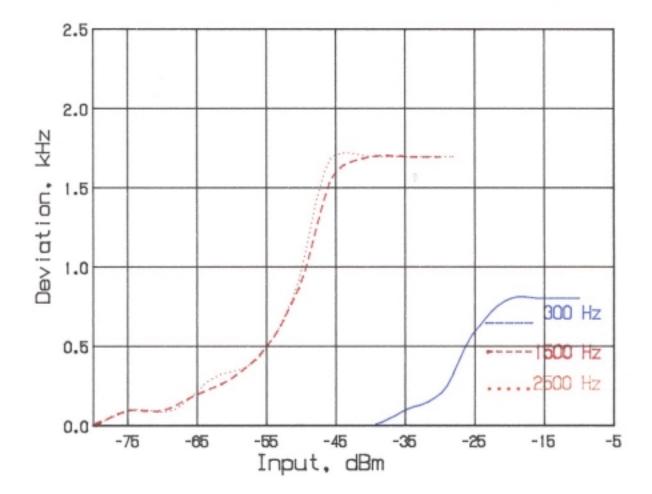

F. DESCRIPTION OF RADIATED SPURIOUS MEASUREMENT FACILITIES

A description of the Hyak Laboratories' radiation test facility is a matter of record with the FCC. The facility was accepted for radiation measurements from 25 to 1000 MHz on October 1, 1976 and is currently listed as an accepted site.

4

FIGURE 1

MODULATION FREQUENCY RESPONSE



MODULATION FREQUENCY RESPONSE FCC ID: AAO2101860

FIGURE 1

5

FIGURE 2
AUDIO LIMITER CHARACTERISTICS

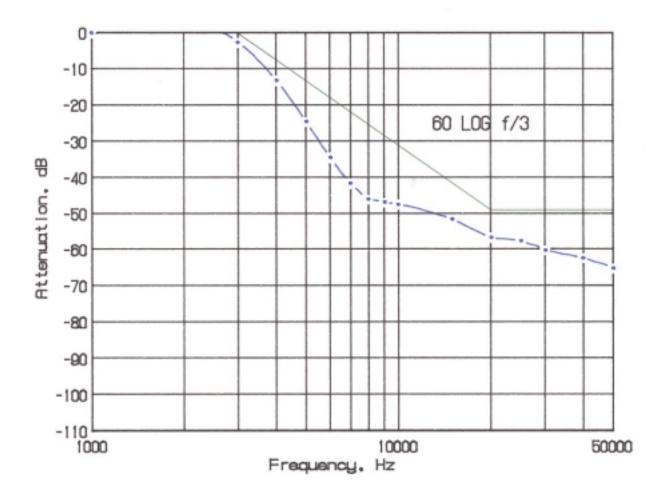
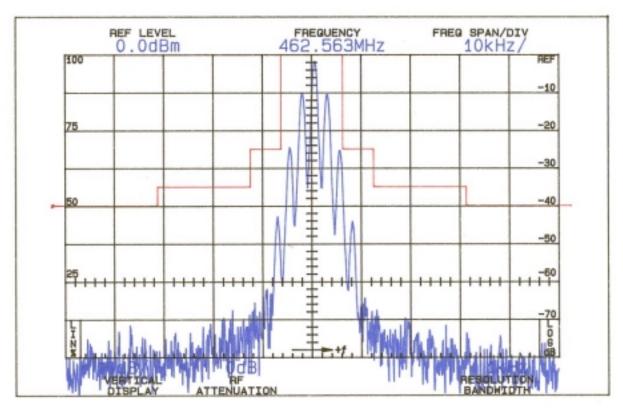

AUDIO LIMITER CHARACTERISTICS FCC ID: AAO2101860

FIGURE 2

6

FIGURE 3

AUDIO LOW PASS FILTER RESPONSE


AUDIO LOW PASS FILTER RESPONSE

FCC ID: AAO2101860

FIGURE 3

7 FIGURE 4

OCCUPIED BANDWIDTH

ATTENUATION IN dB BELOW
MEAN OUTPUT POWER
Required

On any frequency more than 50% up to and including 100% of the authorized bandwidth, 12.5 kHz (6.25-12.5 kHz)

25

On any frequency more than 100%, up to and including 250% of the authorized bandwidth (12.5-31.25 kHz)

35

On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth (over 31.25 kHz)

43+10 LogP = 40(P = 0.47W)

OCCUPIED BANDWIDTH FCC ID: AAO2101860

FIGURE 4

8

G. FIELD STRENGTH MEASUREMENTS OF SPURIOUS RADIATION

Field intensity measurements of radiated spurious emissions from the Radio Shack 21-1860 were made with a Tektronix 494P spectrum analyzer using Singer DM-105 dipoles for the measurements to 1 GHz, and EMCO 3115 Horn to 4.8 GHz.

The transmitter was located in an open field 3 meters from the test antenna. Supply voltage was a power supply with a terminal voltage under load of 6 Vdc.

The transmitter and test antennae were arranged to maximize pickup. Both vertical and horizontal test antenna polarization were employed.

The measurement system was capable of detecting signals 100 dB or more below the reference level. Measurements were made by substitution from the lowest frequency generated within the unit (21.7 MHz), to 10 times operating frequency. Data are shown in Table 3.

9

TABLE 3

TRANSMITTER CABINET RADIATED SPURIOUS

462.5625 MHz, 6 Vdc, 0.47 watts

Emission	dB Below
Frequency	Carrier
<u>MHz</u>	<u>Reference</u> ¹
462.563	0
925.125	61V
2312.819	60Н

Required: 43+10 Log(P) = 40

Worst-case polarization, H-Horizontal, V-Vertical.

All other spurious from 21.7 MHz to the tenth harmonic were 20 dB or more below FCC limit.

10

Measurement of frequency stability versus temperature was made at temperatures from -20°C to $+50^{\circ}\text{C}$. At each temperature, the unit was exposed to test chamber ambient a minimum of 60 minutes after indicated chamber temperature ambient had stabilized to within $\pm 2^{\circ}$ of the desired test temperature. Following the 1 hour soak at each temperature, the unit was turned on, keyed and frequency measured within 2 minutes. Test temperature was sequenced in the order shown in Table 4, starting with -20°C .

A Thermotron S1.2 temperature chamber was used. Temperature

monitored with a Keithley 871 digital thermometer. transmitter output stage was terminated in a dummy load. Primary supply was 6 Vdc. Frequency was measured with a HP 5385A frequency counter connected to the transmitter through a attenuator. Measurements were made at 462.5625 MHz.

TABLE 4 FREQUENCY STABILITY AS A FUNCTION OF TEMPERATURE

462.5625 MHz, 6 Vdc, 0.47W

Temperature, °C	Output Frequency, M	Hz p.p.m.
-20.4	462.561910	-1.3
- 9.6	462.562538	0.1
0.3	462.562732	0.5
10.1	462.562685	0.4
20.3	462.562646	0.3
29.9	462.562859	0.8
40.2	462.562837	0.7
49.8	462.563026	1.1
Maximum frequency eri	462.561910 462.562500	
	000590 MH	Iz

FCC Rule 95.627(b) specifies .00025% (2.5 p.p.m.) or a maximum of \pm 0.001156 MHz, which corresponds to:

High Limit	462.563656	MHz
Low Limit	462.561344	MHz

11

I. FREOUENCY STABILITY AS A FUNCTION OF SUPPLY VOLTAGE (Paragraph 2.995(d)(2) of the Rules)

Oscillator frequency as a function of power supply voltage was measured with a HP 5385A frequency counter as voltage was varied from ±15% above the nominal 6 Vdc rating. A Fluke 197 digital voltmeter was used to measure supply voltage at transmitter primary input terminals. Measurements were made at 20°C ambient.

TABLE 5

FREQUENCY STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

462.5625 MHz, 6 Vdc Nominal; 0.47W

Supply_	<u>Voltage</u>	Output_Frequency,_MHz	p.p.m.
6.9	115%	462.562580	0.2
6.6	110%	462.562621	0.3
6.3	105%	462.562639	0.3
6.0	100%	462.562646	0.3
5.7	95%	462.562658	0.3
5.4	90%	462.562672	0.4
5.1	85%	462.562685	0.4
4.8*	80%	462.562697	0.4
Maximu	m frequency error	: 462.562697	
		462.562500	
		+ 000197 MHz	

+ .000197 MHz

FCC Rule 95.627(b) specifies .00025% (2.5 p.p.m.) or a maximum of ± 0.001156 MHz, corresponding to:

High Limit	462.563656	\mathtt{MHz}
Low Limit	462.561344	MHz

12

APPENDIX 1

FUNCTION OF DEVICES 21-1860

Reference	<u>Type</u>	Function
Q106	NE5500179	Final Amplifier
Q108	2SC3356	Buffer
Q109	2SC4226	Driver

^{*}MFR rated battery end-point.

Q112	2SC4226	Buffer
Q110	2SC4226	VCO
IC101	MC3361	2nd-IF AMP/Detector
IC102	M64082	PLL
IC103	NJM3403	Mike Amp/Limiter/L.P Filter
IC104	MC14001	Ring OSC
IC105	LM324	300Hz High Pass Filter
IC106	NJM2070	Audio Amplifier
IC2	LM324	300Hz HP Filter
IC3	LM324	300Hz LP Filter
IC4	AT93C46SI	Memory
IC6	TK1135BM	Supply Power
IC7	UPD78F9405	MCU

FUNCTION OF DEVICES FCC ID: AAO2101860

APPENDIX 1