

Report No.: FR3D2001H

: 03

FCC RADIO TEST REPORT

FCC ID : A4RGGH2X

Equipment : Phone

Model Name: GGH2X, GC15S

Applicant : Google LLC

1600 Amphitheatre Parkway, Mountain View, CA 94043 USA

Standard : FCC Part 15 Subpart E §15.407

The product was received on Feb. 05, 2024 and testing was performed from Feb. 14, 2024 to Jun. 06, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Table of Contents

Report No.: FR3D2001H

His	tory o	f this test reportf	3
Sur	nmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	
	1.2	Modification of EUT	
	1.3	Testing Location	7
	1.4	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency and Channel	
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	13
	2.4	Support Unit used in test configuration and system	14
	2.5	EUT Operation Test Setup	14
	2.6	Measurement Results Explanation Example	15
3	Test	Result	16
	3.1	26dB & 99% Occupied Bandwidth Measurement	16
	3.2	Fundamental Maximum EIRP Measurement	20
	3.3	Fundamental Power Spectral Density Measurement	21
	3.4	In-Band Emissions (Channel Mask)	
	3.5	Unwanted Emissions Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4	List c	f Measuring Equipment	85
5	Meas	urement Uncertainty	87
Apı	pendix	A. Conducted Test Results	
Apı	pendix	B. AC Conducted Emission Test Result	
Apı	pendix	c C. Radiated Spurious Emission	
Apı	pendix	D. Radiated Spurious Emission Plots	
Apı	pendix	c E. Duty Cycle Plots	

TEL: 886-3-327-0868 Page Number : 2 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

Report Template No.: BU5-FR15EWLAC MA Version 2.4

Appendix F. Setup Photographs

History of this test report

Report No.: FR3D2001H

Report No.	Version	Description	Issue Date
FR3D2001H	01	Initial issue of report	May 10, 2024
FR3D2001H	02	Revise antenna gain, section 2, section 3.4.5, Appendix C and Appendix D This report is an updated version, replacing the report issued on May 10, 2024.	May 27, 2024
FR3D2001H	03	Revise section 3.1.5, section 3.4.5 and Appendix A This report is an updated version, replacing the report issued on May 27, 2024.	Jun. 06, 2024

TEL: 886-3-327-0868 Page Number : 3 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

Summary of Test Result

Report No.: FR3D2001H

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(a)(10)	26dB Emission Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)(7)	Fundamental Maximum EIRP	Pass	-
3.3	15.407(a)(7)	Fundamental Power Spectral Density	Pass	-
3.4	15.407(b)(6)	In-Band Emissions (Channel Mask)	Pass	-
-	15.407(d)(6)	Contention Based Protocol	Not Required	Dual Client Standard Client
-	15.407 KDB 987594 D02 Section II. K.	Dual Client Test	Not Required	Dual Client EIRP < 24dBm
3.6	15.407(b)	Pass	1.69 dB under the limit at 5908.52 MHz	
3.7	15.207	AC Conducted Emission	Pass	5.48 dB under the limit at 0.18 MHz
3.7	15.203 15.407(a)	Antenna Requirement	Pass	-

Not required means after assessing, test items are not necessary to ca

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall
 bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into
 account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

- The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.
- The GGH2X and GC15S are 100% identical in Hardware / Software to each other, and only have different model names for marketing segmentation. The test sample are all model GGH2X.

Reviewed by: William Chen Report Producer: Clio Lo

TEL: 886-3-327-0868 Page Number : 4 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

Report No.: FR3D2001H

General Specs

GSM/WCDMA/LTE/5G NR, Bluetooth, BLE, BLE channel sounding, Thread, Wi-Fi 802.11be, UWB, NFC, WPC Rx, NTN and GNSS

Antenna Type

WLAN:

<Ant. 3>: IFA Antenna <Ant. 4>: ILA Antenna

EUT Information List					
S/N	Performed Test Item				
41251FDKD0009F	RF Conducted Measurement				
41251FDKD0007Y	Radiated Spurious Emission				
41251FDKD0007K	Conducted Emission				

Antenna information (Open Mode)						
5925 MHz ~ 6425 MHz	Peak Gain (dBi)	Ant. 3: -6.60				
3323 WHIZ ~ 0423 WHIZ	r eak Gairr (dbi)	Ant. 4: -3.40				
6525 MHz ~ 6875 MHz	Book Coin (dBi)	Ant. 3: -9.30				
6323 WINZ ~ 6673 WINZ	Peak Gain (dBi)	Ant. 4: -2.90				

Antenna information (Close Mode)					
5925 MHz ~ 6425 MHz	Peak Gain (dBi)	Ant. 3: -7.60 Ant. 4: -3.40			
6525 MHz ~ 6875 MHz	Peak Gain (dBi)	Ant. 3: -9.60 Ant. 4: -5.20			

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

TEL: 886-3-327-0868 Page Number : 5 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

1.1.1 Antenna Directional Gain

<For CDD Mode>

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)ii)

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

G_{ANT} is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation.

$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

Report No.: FR3D2001H

where

Each antenna is driven by no more than one spatial stream;

 $N_{\rm SS}$ = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

As minimum N_{SS}=1 is supported by EUT, the formula can be simplified as:

Directional gain =
$$10*log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi$$

Where G1, G2....GN denote single antenna gain.

The directional gain "DG" is calculated as following table.

			DG	DG
			for	for
	Ant 3	Ant 4	Power	PSD
	(dBi)	(dBi)	(dBi)	(dBi)
5925 MHz ~ 6425 MHz	-6.60	-3.40	-3.40	-1.84
6525 MHz ~ 6875 MHz	-9.30	-2.90	-2.90	-2.51

Calculation example:

If a device has two antenna, G_{ANT4} = -6.60dBi; G_{ANT3} = -3.40dBi

Directional gain of power measurement = max(-6.60, -3.40) + 0 = -3.40 dBi

Directional gain of PSD derived from formula which is

10 x log { { [10^ (-6.60 dBi / 20) + 10^ (-3.40 dBi / 20)] ^ 2 } / 2 }

= -1.84 dBi

Note: The antenna gain is from both open mode and close mode with highest number.

TEL: 886-3-327-0868 Page Number : 6 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
rest one No.	TH05-HY, CO07-HY, 03CH16-HY

Report No.: FR3D2001H

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v02r01
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-0868 Page Number : 7 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT (open and close) and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape) and accessory (Adapter or Earphone), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z Plane with Adapter open mode as worst plane.

Report No.: FR3D2001H

: 03

Report Version

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

BW 20M	Channel	1	5	9	13	17	21	25	29	
DVV ZUIVI	Freq. (MHz)	5955	5975	5995	6015	6035	6055	6075	6095	
BW 40M	Channel 3		1	11		19		7		
DVV 4UIVI	Freq. (MHz)	59	65	6005		6045		6085		
BW 80M	Channel		7	7		23				
DAA OOIAI	Freq. (MHz)		59	85		6065				
BW 160M	Channel	15								
DAA LOOM	Freq. (MHz)	6025								

BW 20M	Channel	33	37	41	45	49	53	57	61
DVV ZUIVI	Freq. (MHz)	6115	6135	6155	6175	6195	6215	6235	6255
BW 40M	Channel	3	35		43		51		9
DVV 40IVI	Freq. (MHz)	61	25	6165		6205		6245	
BW 80M	Channel		3	9		55			
DAA OOIAI	Freq. (MHz)		61	45		6225			
BW 160M	Channel	47							
DVV TOOIVI	Freq. (MHz)				61	85			

TEL: 886-3-327-0868 Page Number : 8 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

BW 20M	Channel	65	69	73	77	81	85	89	93	
DVV ZUIVI	Freq. (MHz)	6275	6295	6315	6335	6355	6375	6395	6415	
BW 40M	Channel	6	7	75 83		9	91			
DVV 4UIVI	Freq. (MHz)	62	85	6	325	63	65	6405		
DW OOM	Channel		7	1		87				
BW 80M	Freq. (MHz)		6305 6385							
DW 460M	Channel		79							
DAN LOOINI	Freq. (MHz)				63	345				
	Channel		117		1	21		125		
BW 20M	Freq. (MHz)		6535			555		6575		
	Channel		0000			T		23		
BW 40M	Freq. (MHz)									
	Channel		- 6565							
BW 80M	Freq. (MHz)									
								ı	ı	
BW 20M	Channel	129	133	137	141	145	149	153	157	
	Freq. (MHz)	6595	6615	6635	6655	6675	6695	6715	6735	
BW 40M	Channel		31		139	147		155		
	Freq. (MHz)	6605			645	66		25		
BW 80M	Channel			35		151				
	Freq. (MHz)		66	25		6705				
BW 160M	Channel	143								
	Freq. (MHz)	6665								
	Channel	161	16	65	169	173	17	77	181	
BW 20M	Freq. (MHz)	6755	67	75	6795	6815	68	35	6855	
DW 40M	Channel		163		1	71		179		
BW 40M	Freq. (MHz)		6765		68	305		6845		
DW cost	Channel		10	67			1	-		
BW 80M	Freq. (MHz)		67	'85				-		
DW 40011	Channel					-				
BW 160M	Freq. (MHz)					-				

TEL: 886-3-327-0868 Page Number : 9 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 03

Report No. : FR3D2001H

2.2 Test Mode

This device supports WiFi 802.11be 20MHz bandwidth for 2.4GHz and 160MHz bandwidth for both 5GHz and 6GHz.

Report No.: FR3D2001H

This device supports 26/52/106/242/484/996 single tone RU modes for 802.11ax/be modes and the 242/484/996-tone RU modes are covered by 20/40/80MHz channels.

This device supports MRU 52T+26T/106T+26T (small RU) and punctured modes (large RU) for 802.11be mode.

The PSD of partial RU/MRU modes are reduced to be smaller than full RU according to TCB workshop interim guidance Oct. 2022 for WiFi 7 device.

The 802.11ax/be modes are investigated among full RU, single RU and MRU modes for emission spot check and the 11ax modes are covered by 11be modes.

The PSD and power of partial RU and MRU are less than full RU configurations so the full RU is chosen as main test configuration.

The power for 802.11ax mode is smaller than 802.11be mode, so all other conducted and radiated test is covered by 802.11be mode.

The final test modes include the worst data rates for each modulation shown in the table below.

MIMO Mode

Specification	MCS index /Data Rate				
802.11a	6 Mbps				
802.11ax HE20 (Covered by EHT20)	MCS0				
802.11ax HE40 (Covered by EHT40)	MCS0				
802.11ax HE80 (Covered by EHT80)	MCS0				
802.11ax HE160 (Covered by EHT160)	MCS0				
802.11be EHT20	MCS0				
802.11be EHT40	MCS0				
802.11be EHT80	MCS0				
802.11be EHT160	MCS0				

TEL: 886-3-327-0868 Page Number : 10 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Index of MRU and puncture mode mapping

Report No.: FR3D2001H

Small MRU

MRU	26T	52T	106	Т
FOT OCT		70		72
52T+26T	-	71		
1067.367	8	32		
106T+26T				83

Large MRU

484+242-tone MRU				
2 1 4 3				
80MHz puncture 20				
8	4	2	1	

(High Frequency) ----- (Low Frequency)

	484+242-tone MRU					
2 1 4 3 6 5 8 7						
	160MHz puncture 20					
128 64 32 16 8 4 2 1				1		

(High Frequency) ----- (Low Frequency)

996+484-tone MRU				
2 1 4 3				
160MHz puncture 40				
192 48 12 3				

(High Frequency) ----- (Low Frequency)

Note: The RF waveform is identical for large MRU and puncture modes.

TEL: 886-3-327-0868 Page Number : 11 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Test Cases

AC Conducted Emission

Mode 1: WLAN (6GHz) Link + USB Cable 1 (Charging from AC Adapter)

Report No.: FR3D2001H

: 03

Remark:

- 1. For Radiated Test Cases, the tests were performed with USB Cable 1.
- 2. During the preliminary test, both charging modes (Adapter mode and WPC Rx mode) were verified. It is determined that the adaptor mode is the worst case for official test.

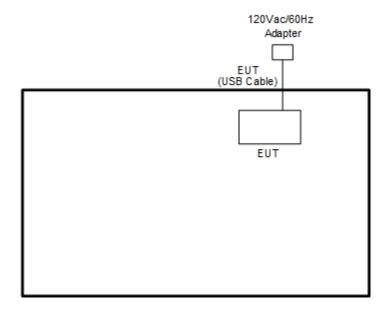
Ch. #		UNII-5 (5925-6425 MHz)	UNII-7 (6525-6875 MHz)
		802.11a	802.11a
L	Low	001	117
M	Middle	049	149
Н	High	093	181

	Ch. #	UNII-5 (5925-6425 MHz) 802.11be EHT20	UNII-7 (6525-6875 MHz) 802.11be EHT20
L	Low	001	117
M	Middle	049	149
Н	High	093	181

	UNII-5 Ch. # (5925-6425 MHz) 802.11be EHT40		UNII-7 (6525-6875 MHz) 802.11be EHT40
L	Low	003	123
M	Middle	051	147
Н	High	091	179

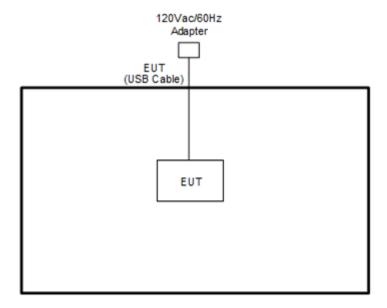
	UNII-5 Ch. # (5925-6425 MHz) 802.11be EHT80		UNII-7 (6525-6875 MHz) 802.11be EHT80
L	Low	007	135
М	Middle	055	151
Н	High	087	167

TEL: 886-3-327-0868 Page Number : 12 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024


UNII-5 Ch. # (5925-6425 MHz) 802.11be EHT160		(5925-6425 MHz)	UNII-7 (6525-6875 MHz) 802.11be EHT160
L	Low	015	00211130 2111 100
М	Middle	047	143
Н	High	079	

Report No.: FR3D2001H

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

TEL: 886-3-327-0868 Page Number : 13 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

<WLAN Tx Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	Chicony	G9BR1	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "WLAN_DUT_Control_GUI_11-29-23" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-0868 Page Number : 14 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Report Template No.: BU5-FR15EWL AC MA Version 2.4 Report Version

: 03

Report No.: FR3D2001H

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR3D2001H

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 15 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Report Version

: 03

3 Test Result

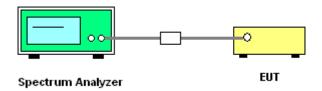
3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Limit of 26dB & 99% Occupied Bandwidth

<FCC 14-30 CFR 15.407>

(a)(10) The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.

Report No.: FR3D2001H

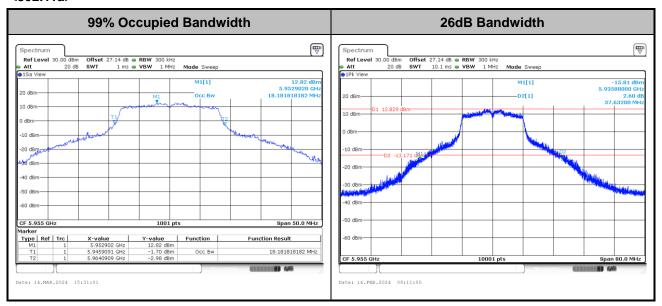

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \geq 3 * RBW.
- 8. Measure and record the results in the test report.

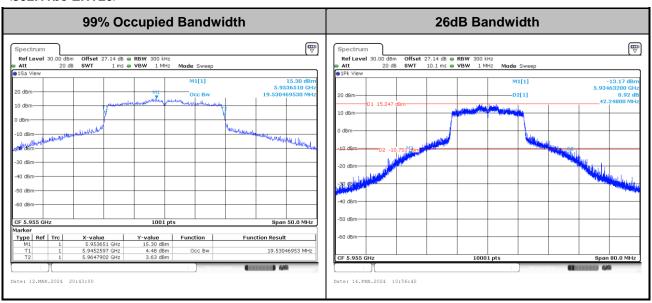
3.1.4 Test Setup


3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

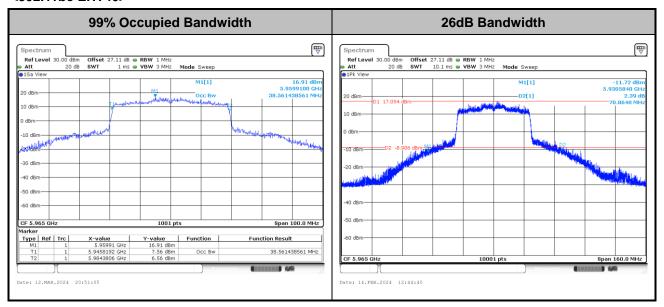
TEL: 886-3-327-0868 Page Number : 16 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

MIMO < Ant. 3+4>


<802.11a>

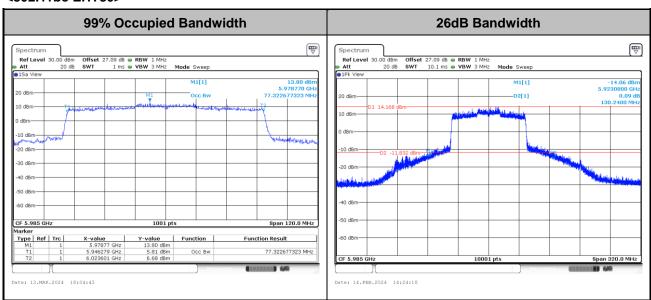
Report No.: FR3D2001H

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11be EHT20>

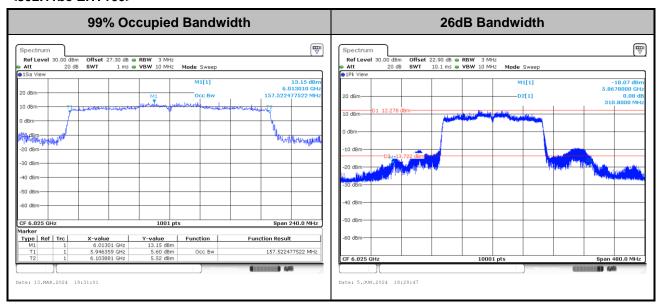
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 17 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024


<802.11be EHT40>

Report No.: FR3D2001H

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11be EHT80>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 18 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

<802.11be EHT160>

Report No.: FR3D2001H

: 03

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 19 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

3.2 Fundamental Maximum EIRP Measurement

3.2.1 Limit of Fundamental Maximum EIRP

<FCC 14-30 CFR 15.407>

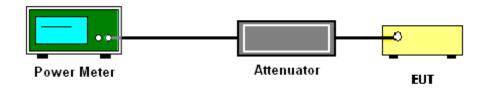
(a)(7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access

Report No.: FR3D2001H

point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.2.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Fundamental Maximum EIRP

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 20 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

3.3 Fundamental Power Spectral Density Measurement

3.3.1 Limit of Fundamental Power Spectral Density

<FCC 14-30 CFR 15.407>

(a)(7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1-megahertz band.

Report No.: FR3D2001H

3.3.2 Measuring Instruments

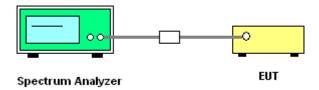
Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

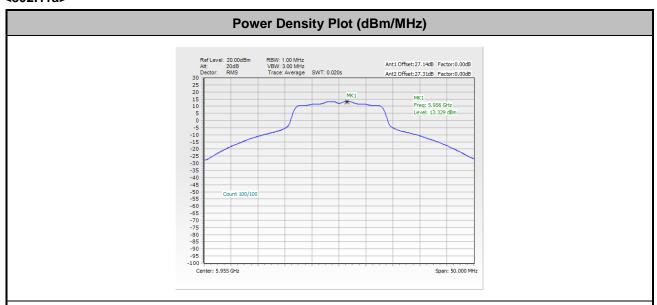

- · Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points; the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

TEL: 886-3-327-0868 Page Number : 21 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

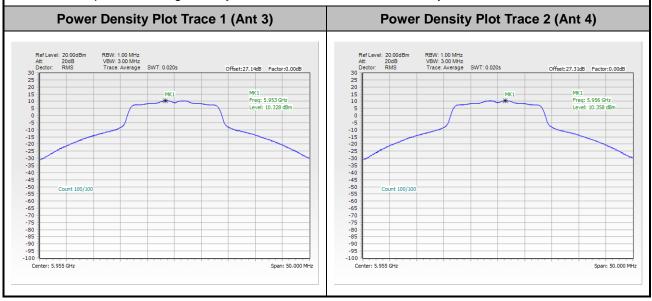
3.3.4 Test Setup


Report No.: FR3D2001H

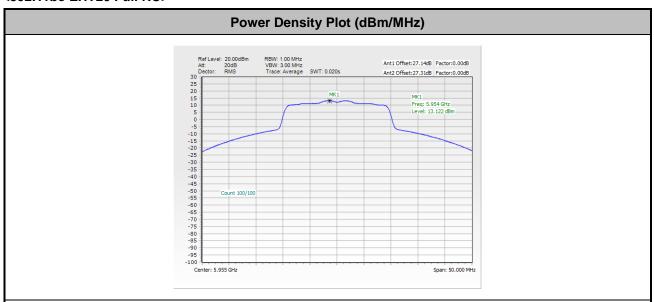
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 22 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

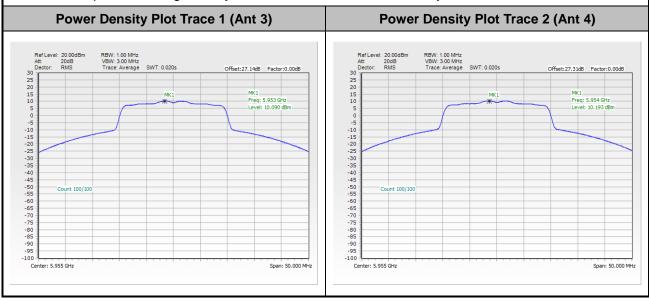

<802.11a>

Report No.: FR3D2001H

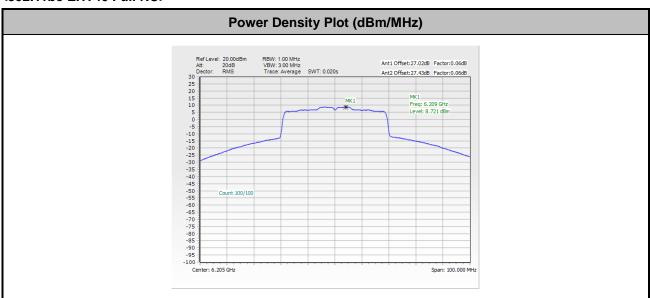

Note:

- EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain 1.
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

: 23 of 87 TEL: 886-3-327-0868 Page Number FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

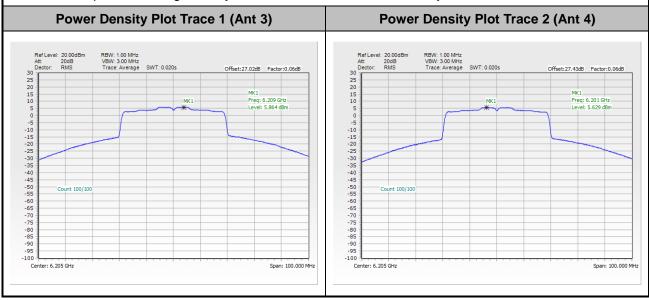

<802.11be EHT20 Full RU>

Report No.: FR3D2001H

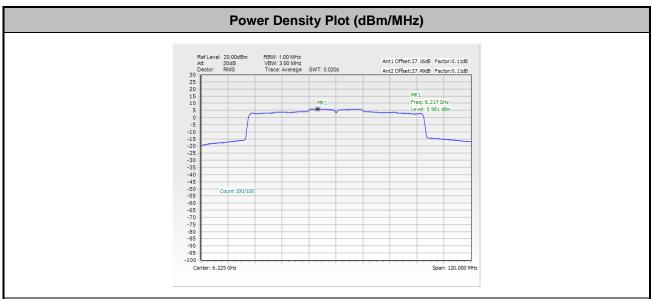

Note:

- EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain 1.
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 24 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

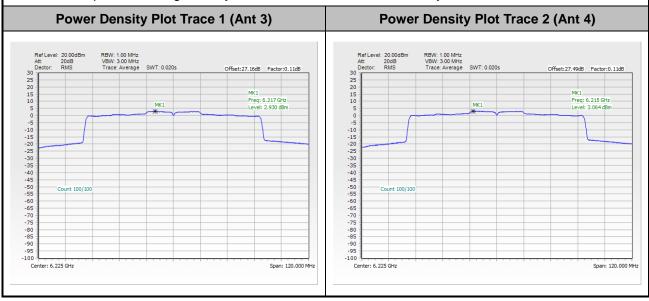

<802.11be EHT40 Full RU>

Report No.: FR3D2001H

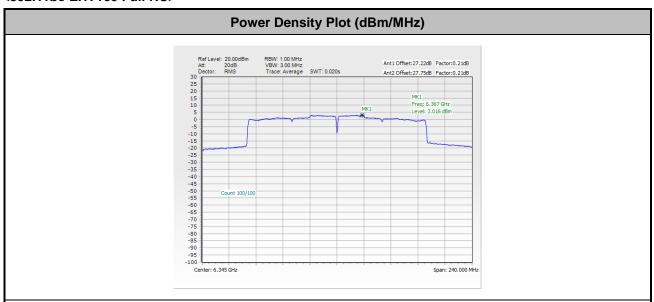

Note:

- EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain 1.
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 25 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

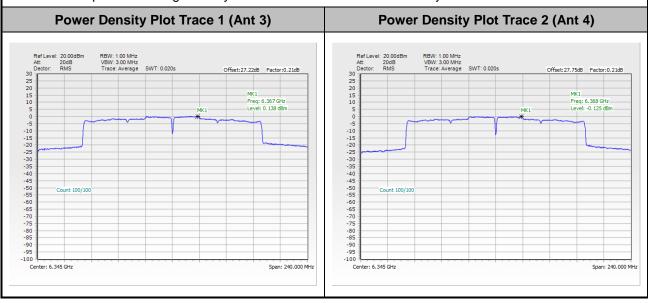

<802.11be EHT80 Full RU>

Report No.: FR3D2001H


Note:

- EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain 1.
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 26 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03


<802.11be EHT160 Full RU>

Report No.: FR3D2001H

Note:

- EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain 1.
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 27 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

3.4 In-Band Emissions (Channel Mask)

3.4.1 Limit of Unwanted Emissions

<FCC 14-30 CFR 15.407>

(a)(6) For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

Report No.: FR3D2001H

3.4.2 Measuring Instruments

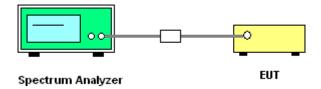
Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 28 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

3.4.3 Test Procedures

The testing follows FCC KDB 987594 D02 U-NII 6GHz EMC Measurement v01.

Section J) In-Band Emissions.


 Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth

Report No.: FR3D2001H

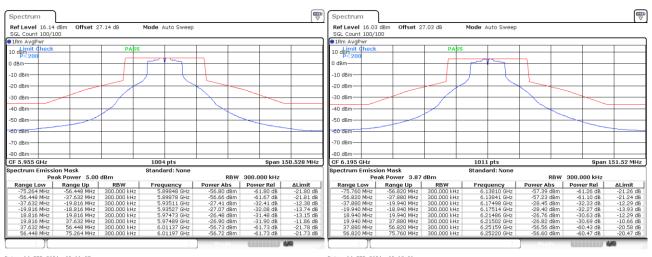
: 03

- 2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW ≥ 3 X RBW
 - d) Number of points in sweep ≥ [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
- 3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge.
 - b. Suppressed by 28 dB at one channel bandwidth from the channel center.
 - c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 4. Adjust the span to encompass the entire mask as necessary.
- 5. Clear trace.
- 6. Trace average at least 100 traces in power averaging (rms) mode.
- Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

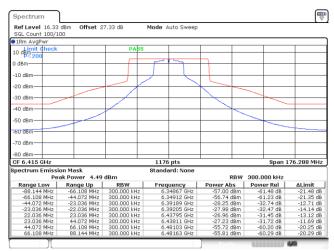
3.4.4 Test Setup

TEL: 886-3-327-0868 Page Number : 29 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

3.4.5 Test Result


MIMO <Ant. 3+4(3)>

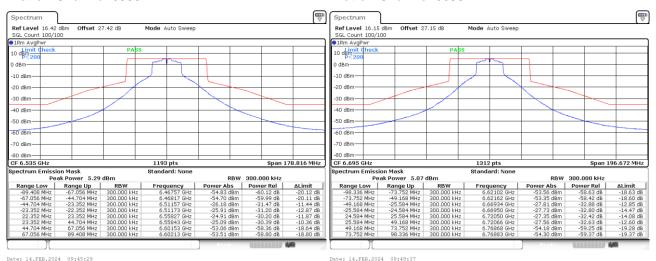
EUT Mode 802.11a


Plot on Channel 5955 MHz

Plot on Channel 6195 MHz

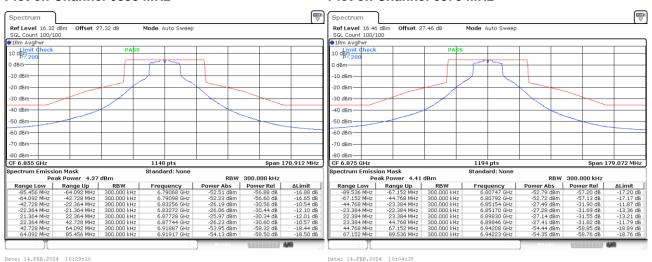
Report No.: FR3D2001H

Plot on Channel 6415 MHz


Date: 14.FEB.2024 09:25:48

TEL: 886-3-327-0868 Page Number : 30 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

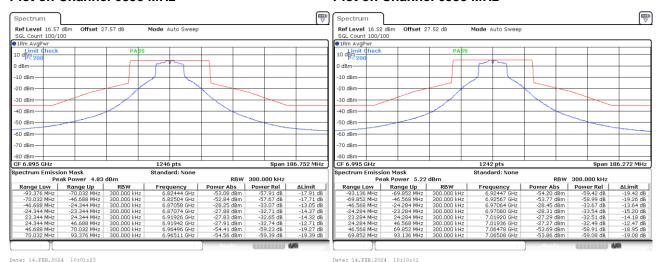
Plot on Channel 6535 MHz


Plot on Channel 6695 MHz

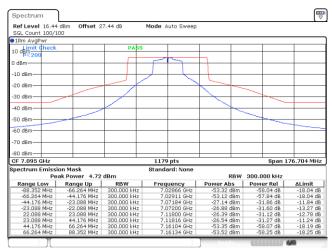
Report No.: FR3D2001H

Plot on Channel 6855 MHz

Plot on Channel 6875 MHz



TEL: 886-3-327-0868 Page Number : 31 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

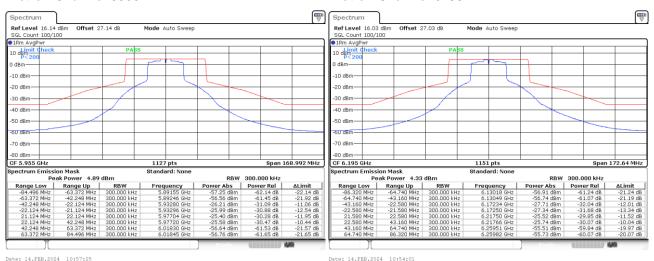

Plot on Channel 6895 MHz

Plot on Channel 6995 MHz

Report No.: FR3D2001H

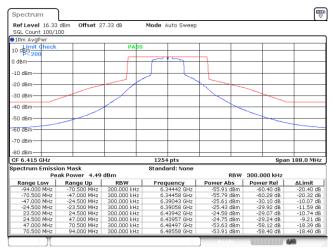
Plot on Channel 7095 MHz

Date: 14.FEB.2024 10:17:31


TEL: 886-3-327-0868 Page Number : 32 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 : 03

802.11be EHT20 Full RU **EUT Mode**

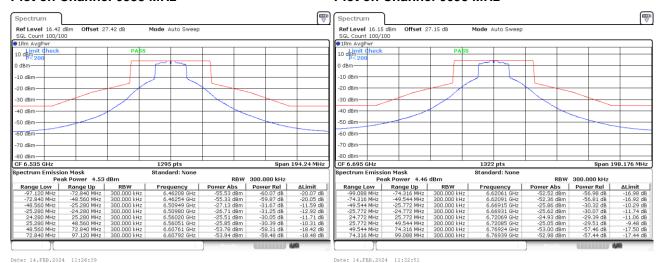
Plot on Channel 5955 MHz


Plot on Channel 6195 MHz

Report No.: FR3D2001H

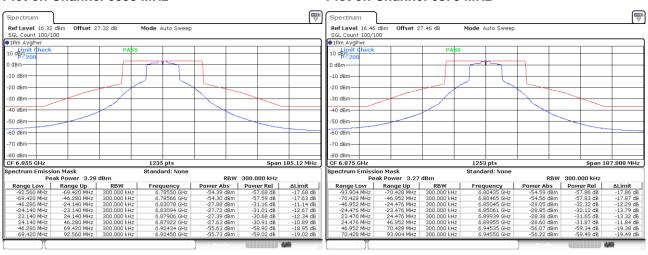
Date: 14.FEB.2024 10:54:01

Plot on Channel 6415 MHz


Date: 14.FEB.2024 11:03:16

TEL: 886-3-327-0868 Page Number : 33 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 : 03

Plot on Channel 6535 MHz


Plot on Channel 6695 MHz

Report No.: FR3D2001H

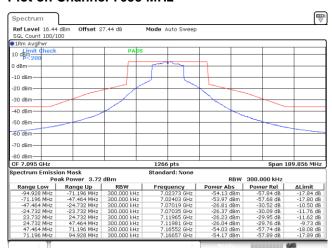
Plot on Channel 6855 MHz

Plot on Channel 6875 MHz

Date: 14.FEB.2024 11:39:30 Date: 14.FEB.2024 11:45:11


 TEL: 886-3-327-0868
 Page Number : 34 of 87

 FAX: 886-3-327-0855
 Issue Date : Jun. 06, 2024

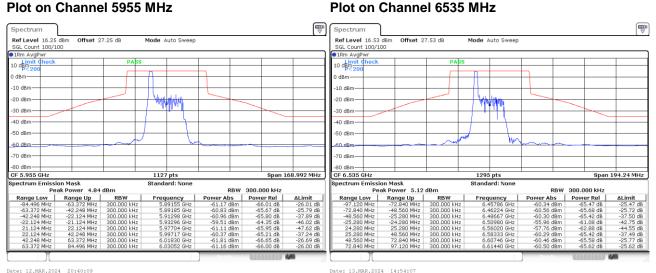

Plot on Channel 6895 MHz

Plot on Channel 6995 MHz

Report No.: FR3D2001H

Plot on Channel 7095 MHz

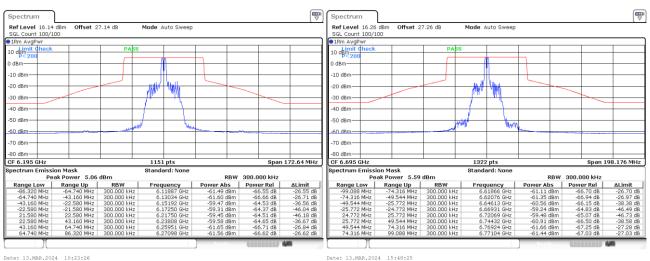
Date: 14.FEB.2024 12:30:10


TEL: 886-3-327-0868 Page Number : 35 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 : 03

802.11be EHT20 26RU0

EUT Mode

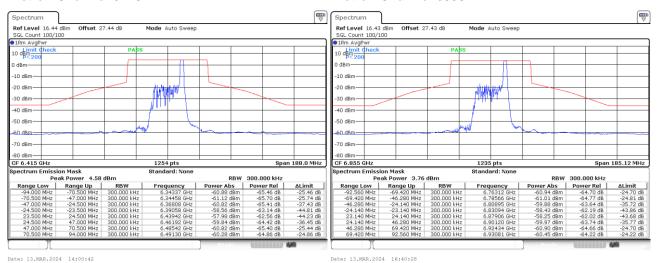
Plot on Channel 6535 MHz


Report No.: FR3D2001H

EUT Mode 802.11be EHT20 26RU4

Plot on Channel 6195 MHz

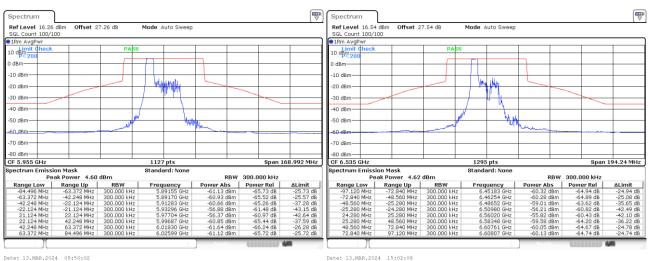
Plot on Channel 6695 MHz


TEL: 886-3-327-0868 Page Number : 36 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

EUT Mode 802.11be EHT20 26RU8

Plot on Channel 6415 MHz

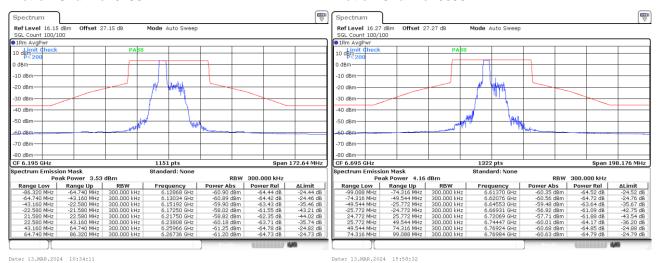
Plot on Channel 6855 MHz


Report No.: FR3D2001H

EUT Mode 802.11be EHT20 52RU37

Plot on Channel 5955 MHz

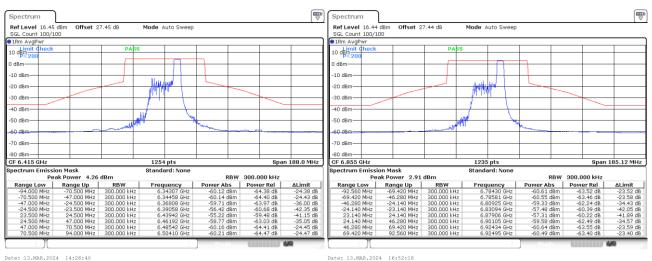
Plot on Channel 6535 MHz


TEL: 886-3-327-0868 Page Number : 37 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

EUT Mode 802.11be EHT20 52RU38

Plot on Channel 6195 MHz

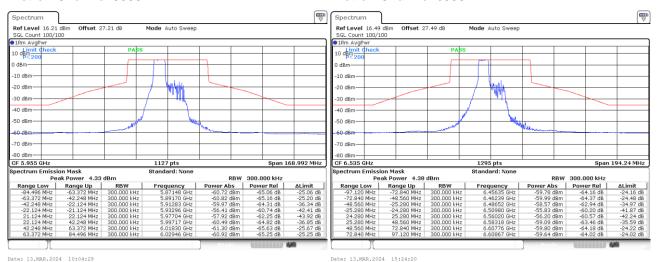
Plot on Channel 6695 MHz


Report No.: FR3D2001H

EUT Mode 802.11be EHT20 52RU40

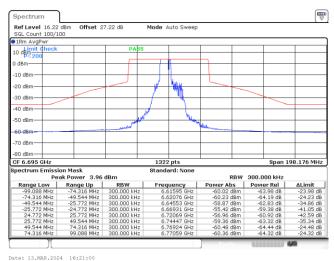
Plot on Channel 6415 MHz

Plot on Channel 6855 MHz


TEL: 886-3-327-0868 Page Number : 38 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

EUT Mode 802.11be EHT20 52T+26T70

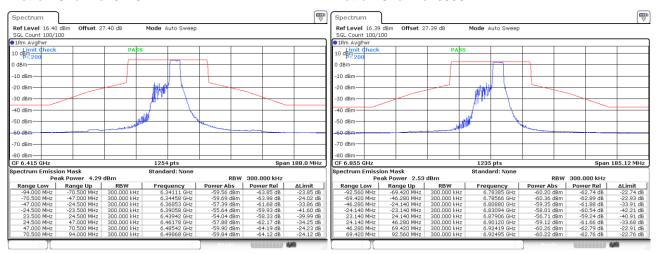
Plot on Channel 5955 MHz


Plot on Channel 6535 MHz

Report No.: FR3D2001H

EUT Mode 802.11be EHT20 52T+26T71

Plot on Channel 6695 MHz


TEL: 886-3-327-0868 Page Number : 39 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

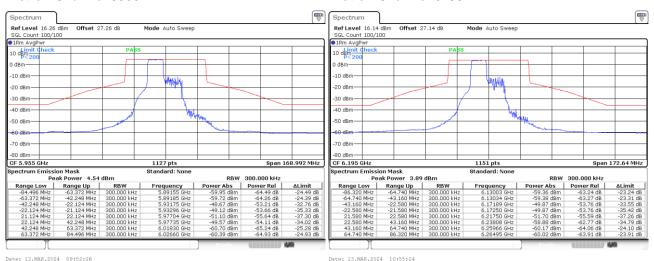
EUT Mode 802.11be EHT20 52T+26T72

Plot on Channel 6415 MHz

Plot on Channel 6855 MHz

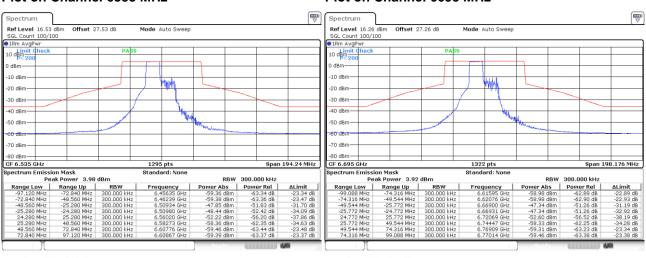
Report No.: FR3D2001H

Date: 13.MAR.2024 14:37:08 Date: 13.MAR.2024 17:58:05


TEL: 886-3-327-0868 Page Number : 40 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 : 03

EUT Mode	802.11be EHT20 106RU53
----------	------------------------

Plot on Channel 5955 MHz

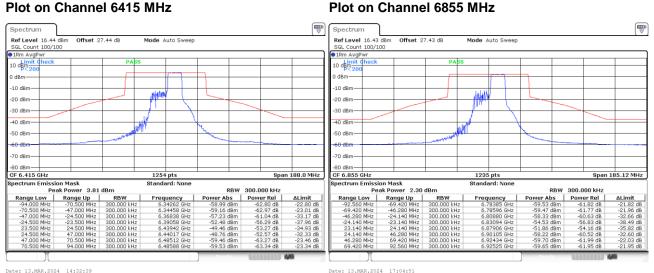

Plot on Channel 6195 MHz

Report No.: FR3D2001H

Plot on Channel 6535 MHz

Plot on Channel 6695 MHz

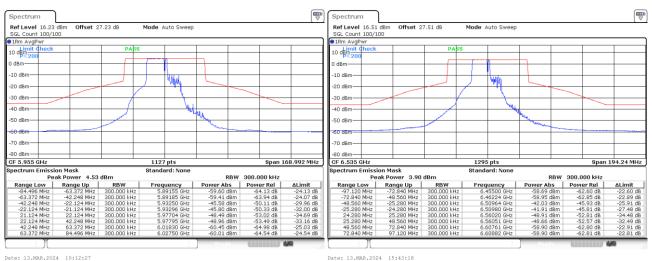
Date: 13.MAR.2024 15:16:48 Date: 13.MAR.2024 16:11:39


TEL: 886-3-327-0868 Page Number : 41 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024 Report Version : 03

802.11be EHT20 106RU54

EUT Mode

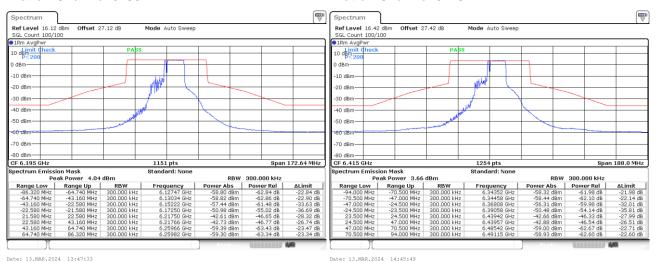
Plot on Channel 6855 MHz


Report No.: FR3D2001H

EUT Mode 802.11be EHT20 106T+26T82

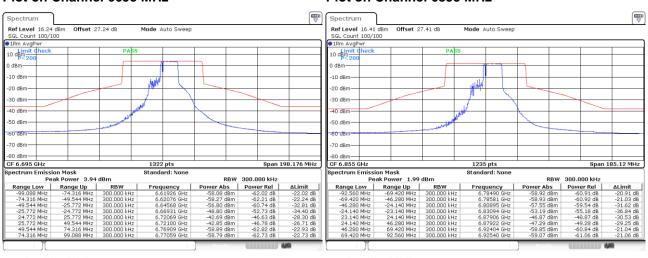
Plot on Channel 5955 MHz

Plot on Channel 6535 MHz


TEL: 886-3-327-0868 Page Number : 42 of 87 FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

EUT Mode 802.11be EHT20 106T+26T83

Plot on Channel 6195 MHz


Plot on Channel 6415 MHz

Report No.: FR3D2001H

Plot on Channel 6695 MHz

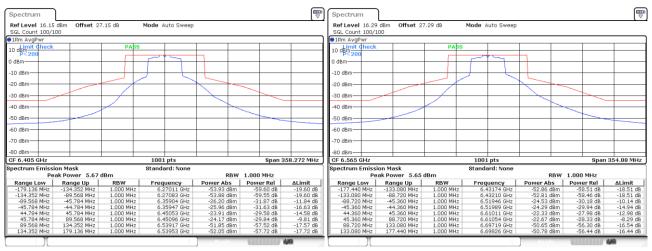
Plot on Channel 6855 MHz

Date: 13.MAR.2024 16:29:25 Date: 13.MAR.2024 17:53:20

 TEL: 886-3-327-0868
 Page Number : 43 of 87

 FAX: 886-3-327-0855
 Issue Date : Jun. 06, 2024

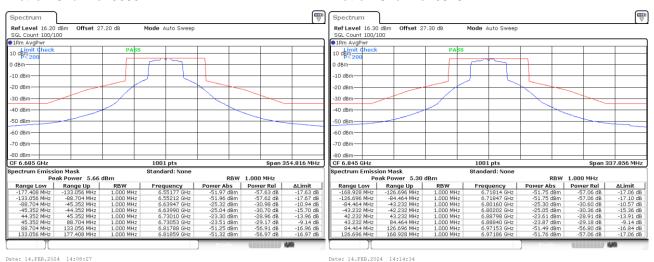
Plot on Channel 5965 MHz


Plot on Channel 6205 MHz

Report No.: FR3D2001H

Plot on Channel 6405 MHz

Plot on Channel 6565 MHz


Date: 14.FEB.2024 13:52:21 Date: 14.FEB.2024 13:59:22

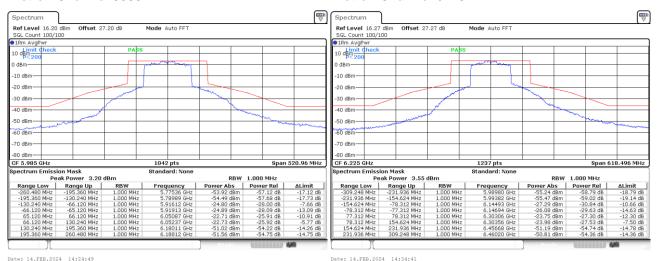
TEL: 886-3-327-0868 Page Number : 44 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Plot on Channel 6685 MHz

Plot on Channel 6845 MHz

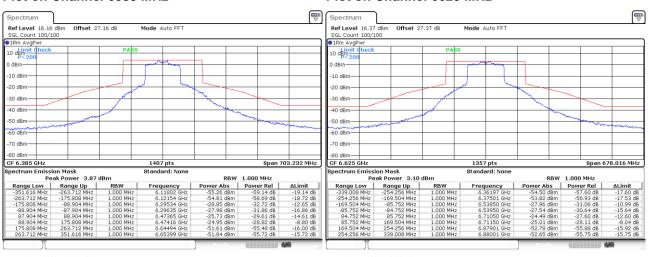
Report No.: FR3D2001H

 TEL: 886-3-327-0868
 Page Number
 : 45 of 87


 FAX: 886-3-327-0855
 Issue Date
 : Jun. 06, 2024

EUT Mode 802.11be EHT80 Full RU

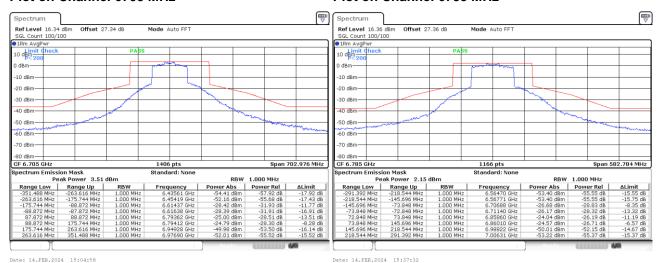
Plot on Channel 5985 MHz


Plot on Channel 6225 MHz

Report No.: FR3D2001H

Plot on Channel 6385 MHz

Plot on Channel 6625 MHz


Date: 14.FEB.2024 14:39:17 Date: 14.FEB.2024 15:00:43

TEL: 886-3-327-0868 Page Number : 46 of 87
FAX: 886-3-327-0855 Issue Date : Jun. 06, 2024

Plot on Channel 6705 MHz

Plot on Channel 6785 MHz

Report No.: FR3D2001H

 TEL: 886-3-327-0868
 Page Number
 : 47 of 87

 FAX: 886-3-327-0855
 Issue Date
 : Jun. 06, 2024