

TEST REPORT

Report No. SST2504E0539

Applicant: ShenZhen SenHang Electronics CO, Ltd

Address of Applicant: Tangdong Gongyeyuan Building A-6A, Hangcheng Dadao,

Xixiang Subdistrict, Baoan District, Shenzhen City, China

Product Name: MELODY GO

Trade Mark: Springvoice

Standard(s): FCC CFR Title 47 Part 15 Subpart E Section 15.247

ANSI C63.10-2020

FCC ID: 2BOM2-SH004

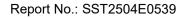
Test Report Form No: SST-RD-7.5-02-E01(A/0)

Date of sample receipt: 2025/3/31

Date of Test: 2025/4/1 - 2025/4/24

Date of report issued: 2025/4/25

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.


Prepared by:

Reviewed by:

Approved by:

Seven Promise ** ** CERTIFICATE**

^{*}The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Version	Description	Date of Issue
V1.0	Original	2025/4/25

2 Contents

		Pa	age
1	cov	ER PAGE	1
2	CON	TENTS	3
3	TES	T SUMMARY	4
4	MEA	SUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE(S)	
	5.4	TEST FACILITY	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	Additional Instructions	
	5.7	ANTENNA INFORMATION	
	5.8	OTHERS	7
6	TEC	HNICAL REQUIREMENT AND MEASUREMENT DATA	
	6.1	GENERALLY REQUIREMENT	8
	6.2	DUTY CYCLE	9
	6.3	CONDUCTED PEAK OUTPUT POWER	10
	6.4	CHANNEL BANDWIDTH	11
	6.5	POWER SPECTRAL DENSITY	12
	6.6	CONDUCTED EMISSION	13
	6.7	RADIATED SPURIOUS EMISSION	14
	6.8	CONDUCTED EMISSIONS	_
7	TES	T SETUP PHOTO	21
8	EUT	CONSTRUCTIONAL DETAILS	21
Α	NNEX A	TEST INSTRUMENTS LIST	22

3 Test Summary

Test items	Basics standards	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Notes:

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)		
Output Power, Conducted	0.54		
Power Spectral Density, Conducted	1.2	28	
Spurious Emissions, Conducted	1.2	28	
Dadiated Emissions (<1CUz)	9KHz~30MHz	2.6	
Radiated Emissions(<1GHz)	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.14		
Conducted Emissions AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.6	64	

Tel: (86)-0769-26622875

^{1:} NA =Not Applicable

^{2:} Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance

^{3:} Additions, Deviations and Exclusions from Standards: None.

5 General Information

5.1 Client Information

Applicant: ShenZhen SenHang Electronics CO,.Ltd

Address of applicant: Tangdong Gongyeyuan Building A-6A, Hangcheng Dadao,

Xixiang Subdistrict, Baoan District, Shenzhen City, China

Manufacturer: Same as applicant

Address of Same as applicant

Factory: Dongguan Fengyu Plastic Technology Co., LTD

Address of Factory: Room 201, Building 1, No. 801, Zhen'an Middle Road, Chang'an

Town, Dongguan City, China

5.2 General Description of EUT

Product Name:	MELODY GO			
Model No.:	Enjoyplay V1.0			
Test sample(s) ID:	2503270401			
Sample(s) Status:	Continuously transmitter			
S/N:	1			
Hardware Version:	1			
Software Version:	1			
Operation Frequency:	2402MHz~2480MHz			
Channel Numbers:	40			
Channel Separation:	2MHz			
Modulation Type:	GFSK			
Antenna Gain:	Refer to section 5.7 for details			
Power rating:	DC 3.7V, 1500mAh			

5.3 Test mode(s)

Mode 1:	continuously transmitting
Mode 2:	
Mode 3:	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see above marked

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified,	IC Registration Lab
or accredited by these organizations:	CAB Identifier No. CN0154
these organizations.	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at:	Address
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong,
	China

5.5 Description of Support Units

Device Type	Brand	Model	Series No.	Note
Notebook PC	HP	ZHAN 66P		

5.6 Additional Instructions

Test Software	FCC_assist_1.0.2.2-696X
Power level setup	Default

5.7 Antenna Information

Α	nt	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)	Note
,	1	1	/	PCB	1.9	BT

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

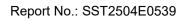
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Technical Requirement and Measurement Data

Generally requirement

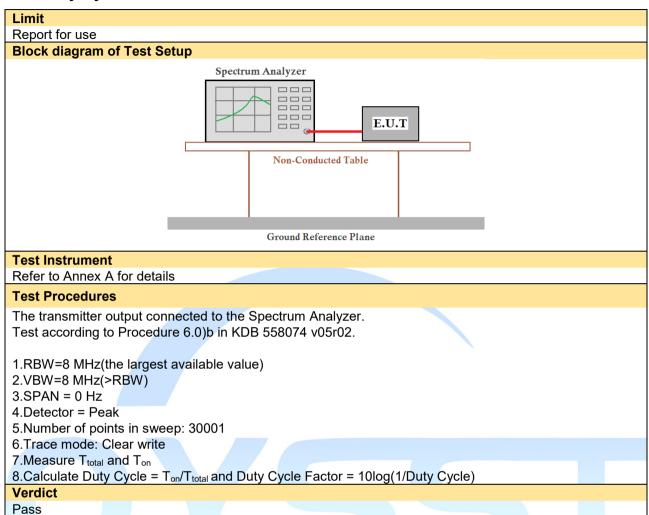
15.203 requirement:

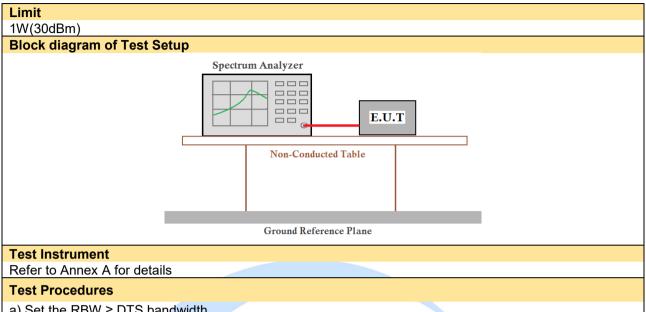
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(c) (1)(i) requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

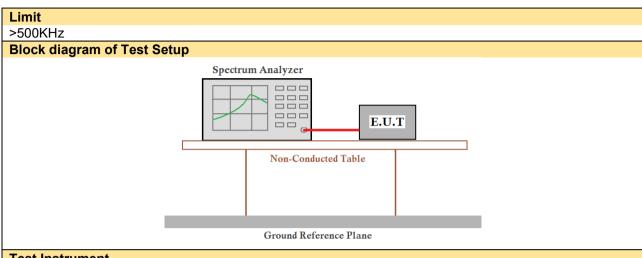

Reference to the appendix II for details


6.2 Duty Cycle

Measurement Data: The detailed test data see Appendix

6.3 Conducted Peak Output Power

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ [3 × RBW].
- c) Set span ≥ [3 × RBW].
- d) Sweep time = No faster than coupled (auto) time.
- e) Detector = peak.
- f) Trace mode = max-hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.


Verdict

Pass

Measurement Data: The detailed test data see Appendix

6.4 Channel Bandwidth

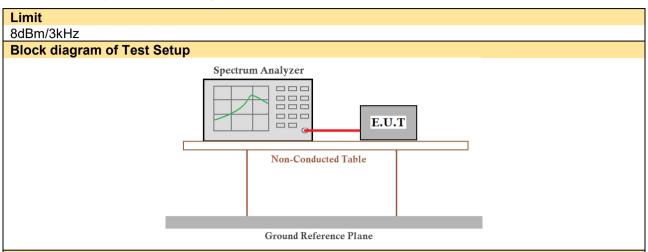
Test Instrument

Refer to Annex A for details

Test Procedures

The steps for the first option are as follows:

- a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- b) Set the VBW ≥ [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max-hold.
- e) Sweep = No faster than coupled (auto) time.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.


Verdict

Pass

Measurement Data: The detailed test data see Appendix

6.5 Power Spectral Density

Test Instrument

Refer to Annex A for details

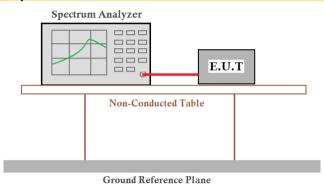
Test Procedures

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span >1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW ≥ [3 × RBW].
- e) Detector = peak.
- f) Sweep time = No faster than coupled (auto) time.
- g) Trace mode = max-hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

Verdict

Pass

Measurement Data: The detailed test data see Appendix



6.6 Conducted Emission

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Block diagram of Test Setup

Test Instrument

Refer to Annex A for details

Test Procedures

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = No faster than coupled (auto) time.
- g) Trace mode = max-hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Establish an emission level by using the following procedure:

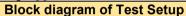
a) Set the center frequency and span to encompass frequency range to be measured. Note that the frequency range might need to be divided into multiple frequency ranges to retain frequencyresolution.

NOTE—the number of points can also be increased for large spans to retain frequency resolution

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = No faster than coupled (auto) time.
- f) Trace mode = max-hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

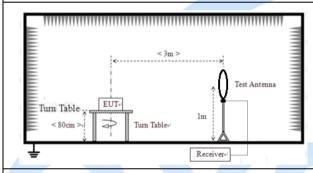
Verdict

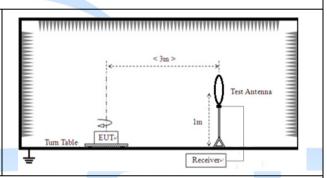
Pass


Measurement Data: The detailed test data see Appendix

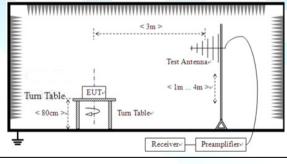
6.7 Radiated Spurious Emission

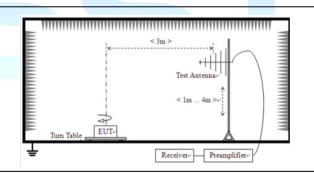
imit							
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					
30-88	100 **	3					
88-216	150 **	3					
216-960	200 **	3					
Above 960	500	3					

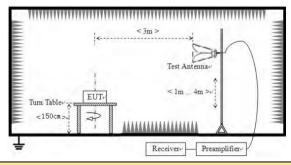

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

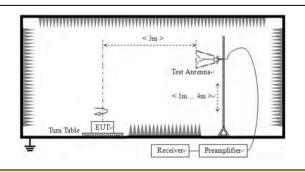


⊠For table-top equipment


☐For floor standing equipment


For radiated emissions from 9kHz to 30MHz



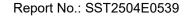

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Refer to Annex A for details

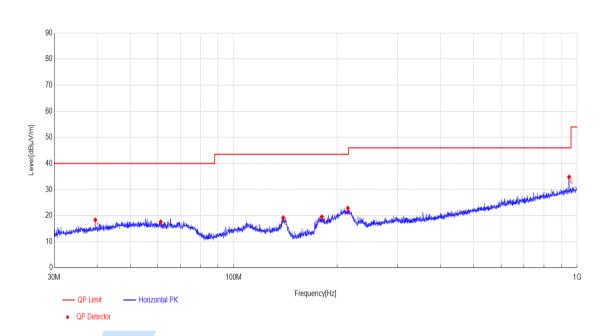
Test Procedures

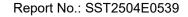
Test applies to KDB558074 D01 15.247 Meas Guidance v05r02 & C63.10


Verdict

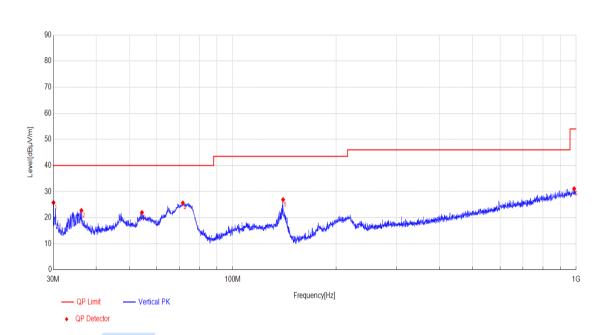
Pass

Note1: The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.


Note2: For those undesirable emission (in the Restricted Bands and out-of-band spurious) above 1GHz, According to KDB 558074 and ANSI C63.10 subclause 11, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance.



Test Result(30M~1GHz)							
Test mode	Mode 1	Polarity	Horizontal				
Test voltage	AC 120V/60Hz	Temp. /Hum.	25 °C/60%				


	NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]			Polarity	Verdict
7	1	39.5383	12.86	18.35	40.00	21.65	Horizontal	PASS
	2	61.2816	13.10	17.63	40.00	22.37	Horizontal	PASS
١	3	139.3078	8.97	19.21	43.50	24.29	Horizontal	PASS
	4	180.5678	11.05	19.56	43.50	23.94	Horizontal	PASS
	5	214.9733	12.58	22.87	43.50	20.63	Horizontal	PASS
	6	947.9423	25.55	34.83	46.00	11.17	Horizontal	PASS

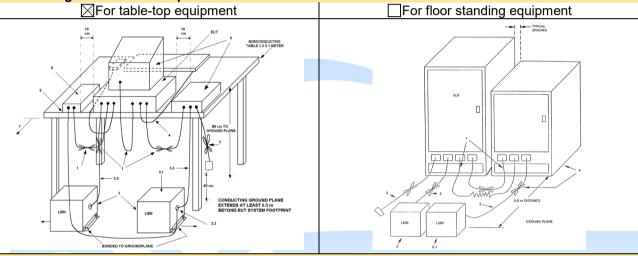
Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss - Preamplifier Factor Only the worst case report(BLE 2480MHz)

Test Result(30M~1GHz)							
Test mode	Mode 1	Polarity	Vertical				
Test voltage	AC 120V/60Hz	Temp. /Hum.	25 °C/60%				

N	IO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict
	1	30.0526	10.77	25.74	40.00	14.26	Vertical	PASS
	2	36.2523	12.13	22.73	40.00	17.27	Vertical	PASS
	3	54.3958	13.95	21.97	40.00	18.03	Vertical	PASS
	4	71.565	9.88	25.62	40.00	14.38	Vertical	PASS
	5	140.1651	8.95	26.90	43.50	16.60	Vertical	PASS
	6	986.9397	25.95	31.07	54.00	22.93	Vertical	PASS

Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss - Preamplifier Factor Only the worst case report(BLE 2480MHz)

6.8 Conducted Emissions


Limit

Frequency (MHz)	Quasi-peak	Average
0.15~0.50	66 to 56*	56 to 46*
0.50~5.0	56	46
5.0~30	60	50

^{*}Decreases with the logarithm of the frequency.

If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out

Block diagram of Test Setup

Test Instrument

Refer to Annex A for details

Test Procedures

The measurement was performed in a shield room.

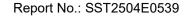
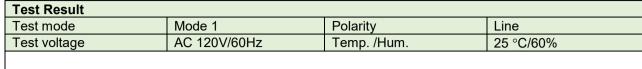
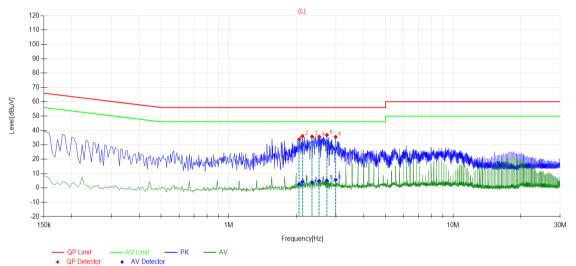
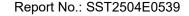

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.

Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

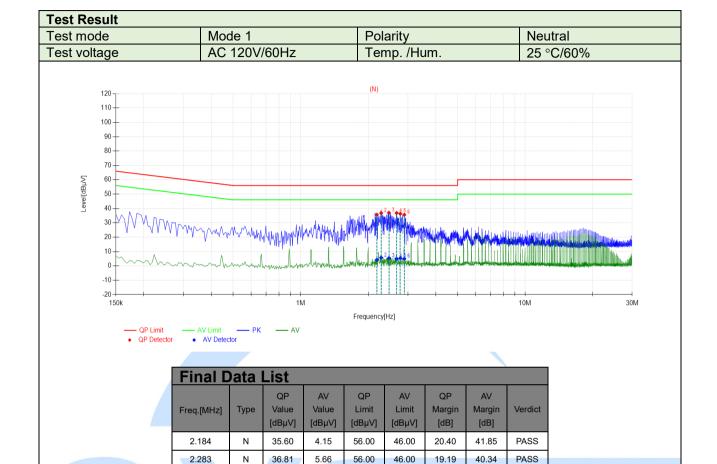

The bandwidth of the test receiver is set at 9 kHz.


Verdict

Pass



ì	Final Data List									
	Freq.[MHz]	Туре	QP Value [dBµV]	AV Value [dBµV]	QP Limit [dBµV]	ΑV Limit [dBμV]	QP Margin [dB]	AV Margin [dB]	Verdict	
	2.058	L	33.77	2.54	56.00	46.00	22.23	43.46	PASS	
	2.13	L	36.00	4.21	56.00	46.00	20.00	41.79	PASS	
	2.3505	L	35.74	3.93	56.00	46.00	20.26	42.07	PASS	
	2.5305	L	35.63	4.75	56.00	46.00	20.37	41.25	PASS	
	2.7375	L	36.82	5.14	56.00	46.00	19.18	40.86	PASS	
	2.994	L	35.52	5.66	56.00	46.00	20.48	40.34	PASS	


Note: Final Level =Receiver Read level + Factor

Factor= LISN Factor + Cable Loss

Only the worst case report(BLE 2480MHz)

56.00

56.00

56.00

5.33

4.93

5.29

46.00

46.00

46.00

19.05

19.17

19.65

20.43

40.67

41.07

40.71

41.06

PASS

PASS

PASS

PASS

2.895 N 35.57 4.94 56.00 46.00

Note: Final Level = Receiver Read level + Factor

Ν

Ν

Ν

36.95

36.83

36.35

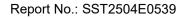
2.472

2.6745

2.778

Factor = LISN Factor + Cable Loss

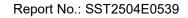
Only the worst case report(BLE 2480MHz)



Test Setup Photo
Reference to the appendix I for details.

EUT Constructional Details

Reference to the appendix II for details.



Annex A --Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date		
3m Semi- Anechoic Chamber	BOST	966	1	3 years	2023.01.07		
Control Room	BOST	333	1	3 years	2023.01.07		
Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2025.04.19		
Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2025.04.19		
EMI Test Receiver	R&S	ESU8	100372	1 year	2025.04.17		
Amplifier (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2025.04.17		
Spectrum Analyzer	keysight	N9020A	MY51280659	1 year	2025.04.17		
Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2025.04.18		
Broadband Horn Antenna(40G)	Schwarzbeck	BBHA9170	01306	1 year	2025.04.19		
Spectrum analyzer	R&S	FSV40-N	101791	1 year	2025.04.17		
Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60B 044	1 year	2025.04.18		
5W 6dB attenuator	1	DC-6GHz	1	Internal calibration	1		
Thermohygrometer	KTJ	TA218A	879030	1 year	2025.04.21		
EMI Test Software	Tonscend	TS+	V5.0	1	/		

	Conducted Emission								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date				
Shielding Room	BOST	854	1	3 year	2023.01.07				
EMI Test Receiver	R&S	ESR3	103057	1 year	2025.04.17				
LISN	R&S	ENV 216	102832	1 year	2025.04.17				
ISN	Schwarzbeck	NTFM 8158	00347	1 year	2025.04.17				
ISN	Schwarzbeck	CAT3 8158	00279	1 year	2025.04.17				
ISN	Schwarzbeck	CAT5 8158	00524	1 year	2025.04.17				
Sensor probe	TCTEST	CSP 9160A	81837	1 year	2025.04.17				
High impedance capacitive voltage probe	Schwarzbeck	CVP 9222C	00221	1 year	2025.04.22				
Voltage probe	Schwarzbeck	TK 9420	01304	1 year	2025.04.17				
Antenna port test assembly	1	DC-3GHz	1	Internal calibration	1				
Thermohygrometer	KTJ	TA218A	879036	1 year	2025.04.21				
EMI Test Software	Tonscend	TS+	V4.0	1	/				

	RF conducted								
Test Equipment	Manufacturer	Serial No.	Cal. cycle	Cal.Date					
Shielding Room	BOST	543	1	3 year	2023.01.07				
Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2025.04.17				
Analog signal source	Agilent	N5181A	MY48180054	1 year	2025.04.17				
Vector signal source	keysight	N5172B	MY57281610	1 year	2025.04.17				
Thermohygrometer	KTJ	TA218A	879032	1 year	2025.04.21				
Spectrum analyzer	R&S	FSV40-N	1	1 year	2025.04.17				
Power meter 1	TST	TST V2	1	1 year	2025.04.17				
Test Software	TST PASS	TST PASS	V2.0	1	1				
Temperature and humidity chamber	Guangdong fenghe	FH-TH-1000	FH24032017	1 year	2024.04.26				

