

FCC Part 15C Test Report FCC ID: 2BO44-G28

Report No.: DLE-250814037R

Applicant: Shenzhen Shanyun Audio Technology Co., Ltd.

Address: Nanshan District E-commerce InnovationService Base, Room A603, Building G. Shekou

United Industrial Vilage, Nanshan District, Shenzhen. Guangdong, China

Manufacturer: Shenzhen Shanyun Audio Technology Co., Ltd.

Address: Nanshan District E-commerce InnovationService Base, Room A603, Building G. Shekou

United Industrial Vilage, Nanshan District, Shenzhen. Guangdong, China

Product Name: smart watch

Trade Mark: N/A

G28

P16, P17, P19, P20, P22, P25, P26, P27, P28, P29, P30, P31, P32, P33, P36, P39,

GT5pro

Date of Receipt: Aug. 14, 2025

Test Date: Aug. 14, 2025 - Aug. 23, 2025

Date of Report: Aug. 23, 2025

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1

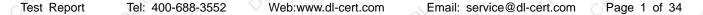
sesting Technology

Address: Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen,

China

Applicable FCC PART 15 C 15.247
Standards: ANSI C63.10:2013

Test Result: Pass


Report Number: DLE-250814037R

Prepared (Test Engineer): Alisa Song

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

	Table of Contents	Page
1	. SUMMARY OF TEST RESULTS	4
	1.1 MEASUREMENT UNCERTAINTY	4
2	. GENERAL INFORMATION	5
	2.1 GENERAL DESCRIPTION OF EUT	5
	2.2 DESCRIPTION OF TEST MODES	۸ 6
	2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TES	STED 6
	2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	7
	2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	7
	2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	8
3	. EMC EMISSION TEST	9
	3.1 CONDUCTED EMISSION MEASUREMENT	ු _ර ි 9
	3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	9
	3.1.2 TEST PROCEDURE 3.1.3 DEVIATION FROM TEST STANDARD	9
	3.1.4 TEST SETUP	10
	3.1.5 EUT OPERATING CONDITIONS	10
	3.1.6 TEST RESULTS	11
	3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS	13 13
	3.2.2 TEST PROCEDURE	13
	3.2.3 DEVIATION FROM TEST STANDARD	14
	3.2.4 TEST SETUP	14
	3.2.5 EUT OPERATING CONDITIONS 3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	15 16
	3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	17
	3.2.8 TEST RESULTS (1GHZ~25GHZ)	21
	3.3 RADIATED BAND EMISSION MEASUREMENT	23
	3.3.1 TEST REQUIREMENT: 3.3.2 TEST PROCEDURE	23
	3.3.3 DEVIATION FROM TEST STANDARD	23
	3.3.4 TEST SETUP	24
	3.3.5 EUT OPERATING CONDITIONS	24
4	. PEAK OUTPUT POWER	27
	4.1 APPLIED PROCEDURES / LIMIT	27
	4.1.1 TEST PROCEDURE 4.1.2 DEVIATION FROM STANDARD	27 27
	4.1.3 TEST SETUP	27

Shenzhen DL Testing	Technology Co., Ltd.	Report No.: DLE-250814037R

Table of Contents	Page	
4.1.4 EUT OPERATION CONDITIONS 4.1.5 TEST RESULTS	27 28	
5 . POWER SPECTRAL DENSITY TEST	30	
5.1 APPLIED PROCEDURES / LIMIT 5.1.1 TEST PROCEDURE 5.1.2 DEVIATION FROM STANDARD 5.1.3 TEST SETUP 5.1.4 EUT OPERATION CONDITIONS 5.1.5 TEST RESULTS	30 30 30 30 30 30 30	
6 . 6DB BANDWIDTH TEST	32	
6.1 APPLIED PROCEDURES / LIMIT 6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP 6.1.4 EUT OPERATION CONDITIONS 6.1.5 TEST RESULTS	32 32 32 32 32 32 32	
7. ANTENNA REQUIREMENT	34	
7.1 STANDARD REQUIREMENT 7.2 EUT ANTENNA	34 34	
8 . TEST SEUUP PHOTO	34	
9 FUT PHOTO	34	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 3 of 3

1.. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS	eř. O	
15.247(c)	Radiated Spurious Emission	PASS	COX	
15.205	Band Edge Emission	PASS	Dr. Coy	
15.247(b)	Peak Output Power	PASS	0,	
15.247(a)(2)	6dB Bandwidth	PASS	. 💛	
15.247(e)	Power Spectral Density	PASS	Cor	
15.203	Antenna Requirement	PASS	CON	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Test lab: Shenzhen DL Testing Technology Co., Ltd.

101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1

Address: Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen,

China

FCC Test Firm Registration Number: 854456

Designation Number: CN1307 IC Registered No.: 27485

CAB ID.: CN0118

1.1. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$ providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±2.56dB
2	RF power,conducted	±0.42dB
3	Spurious emissions,conducted	±2.76dB
4	All emissions,radiated(<1G)	±3.65dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%
8	6dB Bandwidth	±0.2MHz
9 ×	Power Spectral Density	±0.3dBm

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 4 of 34

2.. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Product Name:	smart watch
Trade Mark:	N/A
Model Number:	G28 Z68, Z69, T2pro, Watch4pro, z2plus, HW22, Z60, Z59, GT2PRO, GT3PRO, L13, L15, L16, L17, L19, L20, L22, L25, L26, L27, L28, L29, L30, L31, L32, L33, L36, L39, GT5pro
Model Difference	All models are same as the samples except model name, appearance color and watch strap(color, material, shape), they have the same structure and circuit.
Operation Frequency:	2402~2480MHz
Channel numbers:	40 Channels
Channel separation:	1MHz
Modulation technology:	GFSK_Ø
Antenna Type:	Internal Antenna
Antenna gain:	-1.17dBi
Power supply:	DC 3.7V from battery DC 5V from adapter

Note:

- 1.For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. The EUT's all information provided by client.

2. Channel Lis

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	O 16	2434	30	2462
03	2408	17,5	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	933 x	2468
. 06	2414	20	2442	34 Ø	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	≥ 23	2448	37	2476
10 👌	2422	24	2450	38	2478
110	2424	25	2452	39	2480
12	2426	26	2454		O
13	2428	27	2456	O	

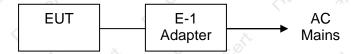
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 5 of 34

2.2. DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Report No.: DLE-250814037R

Pretest Mode	Modulation	Channel
Mode 1	, O' Cell	CH00
Mode 2	GFSK	CH19
Mode 3		CH39


Note: (1) The measurements are performed at the highest, middle, lowest available channels.

(2) For the two items of conducted disturbance at the power supply end and space radiation below 1GHz,

(2) For the two items of conducted disturbance at the power supply end and space radiation below 1GHz all modes have undergone pre-tests. The report only shows the worst test results of mode 3.

2.3. BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Power Line Conducted Emission Test

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 6 of 34

2.4. DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: DLE-250814037R

Ò	Item	Equipment	Model/Type No.	Series No.	Note
<i>></i>	E-1	Adapter	HW-0501000E	N/A	Adapter (Provide by test lab): Manufacturer: HAIWEI Model: HW-0501000E I/P: AC 100-240V 50/60Hz O/P: DC 5V 1A
	e		Or Car		k Or Car
/	- 0		Or Cox		x Or cert

Item	Shielded Type	Ferrite Core	Length	Note
0	Coll	01:	- git	

Note:

(1) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

2.5. TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

Test software Version	ware Version Test program: bt_tool_v1.1.2		
Frequency	2402 MHz	2440MHz	2480 MHz
Power Setting of Softwave	10	× 10	ر [©] 10

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 7 of 34

2.6. EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1000	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 01, 2024	Oct. 31, 2025
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 01, 2024	Oct. 31, 2025
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 02, 2024	Nov. 01, 2025
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 02, 2024	Nov. 01, 2025
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 01, 2024	Oct. 31, 2025
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 01, 2024	Oct. 31, 2025
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 01, 2024	Oct. 31, 2025
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 01, 2024	Oct. 31, 2025
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 01, 2024	Oct. 31, 2025
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 01, 2024	Oct. 31, 2025
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 01, 2024	Oct. 31, 2025
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 01, 2024	Oct. 31, 2025
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 01, 2024	Oct. 31, 2025
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 01, 2024	Oct. 31, 2025
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 01, 2024	Oct. 31, 2025
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 01, 2024	Oct. 31, 2025

Conduction Test equipment

	Condi	action rest equipmen					
	Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	_. 1	843 Shielded Room	ChengYu	843 Room	843	Nov. 05, 2023	Nov. 04, 2026
S	2	EMI Receiver	R&S	S ESR	101421	Nov. 01, 2024	Oct. 31, 2025
	3	LISN	R&S	ENV216	102417	Nov. 01, 2024	Oct. 31, 2025
	4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 01, 2024	Oct. 31, 2025

Other

Item	Name	Manufacturer	Model	Software version		
1	EMC Conduction Test System	IC Conduction Test System FALA		EMC-CON 3A1.1		
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2		
3	RF test system	MAIWEI	MTS8310	2.0.0.0		
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 8 of 34

3.. EMC EMISSION TEST

3.1. CONDUCTED EMISSION MEASUREMENT

3.1.1. POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

Report No.: DLE-250814037R

EDEOLIENOV (MILL)	Limit (dE	Cton doud		
FREQUENCY (MHz)	Quasi-peak	Average	Standard	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	5.0 -30.0 60.00 50.00		FCC	

Note:

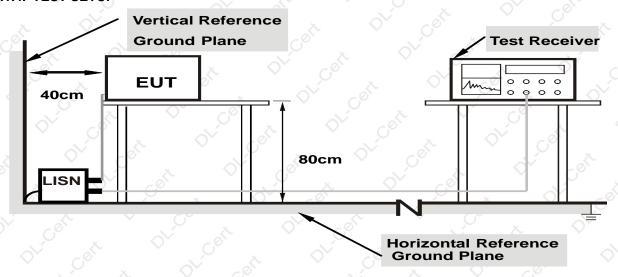
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2. TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos


3.1.3. DEVIATION FROM TEST STANDARD

No deviation

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 9 of 34

3.1.4. TEST SETUP

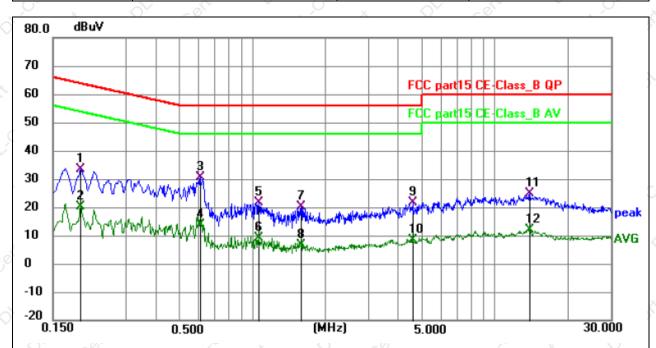
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: DLE-250814037R

3.1.5. EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

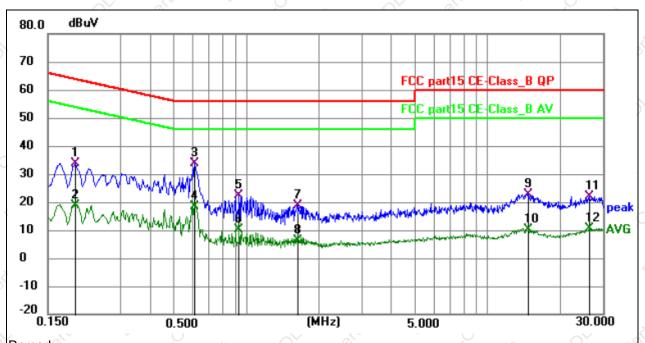
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 10 of 34

3.1.6. TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L 🛇 💍
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 3

Remark:

Margin = Limit - Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1949	23.18	10.08	33.26	63.83	-30.57	QP	Р		
2	0.1949	9.95	10.08	20.03	53.83	-33.80	AVG	Р		
3 *	0.6090	20.48	10.13	30.61	56.00	-25.39	QP	Р		
4	0.6090	3.51	10.13	13.64	46.00	-32.36	AVG	Р		
5	1.0680	11.63	10.04	21.67	56.00	-34.33	QP	Р		
6	1.0680	-0.78	10.04	9.26	46.00	-36.74	AVG	Р		
7	1.5855	10.17	10.06	20.23	56.00	-35.77	QP	Р		
8	1.5855	-3.39	10.06	6.67	46.00	-39.33	AVG	Р		
9	4.5870	11.13	10.31	21.44	56.00	-34.56	QP	Р		
10	4.5870	-1.80	10.31	8.51	46.00	-37.49	AVG	Р		
11	13.8750	13.37	11.58	24.95	60.00	-35.05	QP	Р		
12	13.8750	0.29	11.58	11.87	50.00	-38.13	AVG	Р		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 11 of 34

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N OV COL
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 3

Report No.: DLE-250814037R

Remark:

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
0.1949	23.58	10.16	33.74	63.83	-30.09	QP	Р	
0.1949	8.69	10.16	18.85	53.83	-34.98	AVG	Р	
0.6090	23.48	10.16	33.64	56.00	-22.36	QP	Р	
0.6090	8.38	10.16	18.54	46.00	-27.46	AVG	Р	
0.9285	12.18	10.09	22.27	56.00	-33.73	QP	Р	
0.9285	-0.01	10.09	10.08	46.00	-35.92	AVG	Р	
1.6350	8.68	10.07	18.75	56.00	-37.25	QP	Р	
1.6350	-3.94	10.07	6.13	46.00	-39.87	AVG	Р	
14.7975	11.24	11.57	22.81	60.00	-37.19	QP	Р	
14.7975	-1.30	11.57	10.27	50.00	-39.73	AVG	Р	
26.4750	9.13	12.74	21.87	60.00	-38.13	QP	Р	
26.4750	-2.22	12.74	10.52	50.00	-39.48	AVG	Р	
	(MHz) 0.1949 0.1949 0.6090 0.6090 0.9285 0.9285 1.6350 14.7975 14.7975 26.4750	(MHz) (dBuV) 0.1949 23.58 0.1949 8.69 0.6090 23.48 0.6090 8.38 0.9285 12.18 0.9285 -0.01 1.6350 8.68 1.6350 -3.94 14.7975 11.24 14.7975 -1.30 26.4750 9.13	(MHz) (dBuV) (dB) 0.1949 23.58 10.16 0.1949 8.69 10.16 0.6090 23.48 10.16 0.6090 8.38 10.16 0.9285 12.18 10.09 0.9285 -0.01 10.09 1.6350 8.68 10.07 1.6350 -3.94 10.07 14.7975 11.24 11.57 14.7975 -1.30 11.57 26.4750 9.13 12.74	(MHz) (dBuV) (dB) (dBuV) 0.1949 23.58 10.16 33.74 0.1949 8.69 10.16 18.85 0.6090 23.48 10.16 33.64 0.6090 8.38 10.16 18.54 0.9285 12.18 10.09 22.27 0.9285 -0.01 10.09 10.08 1.6350 8.68 10.07 18.75 1.6350 -3.94 10.07 6.13 14.7975 11.24 11.57 22.81 14.7975 -1.30 11.57 10.27 26.4750 9.13 12.74 21.87	(MHz) (dBuV) (dB) (dBuV) (dBuV) 0.1949 23.58 10.16 33.74 63.83 0.1949 8.69 10.16 18.85 53.83 0.6090 23.48 10.16 33.64 56.00 0.6090 8.38 10.16 18.54 46.00 0.9285 12.18 10.09 22.27 56.00 0.9285 -0.01 10.09 10.08 46.00 1.6350 8.68 10.07 18.75 56.00 1.6350 -3.94 10.07 6.13 46.00 14.7975 11.24 11.57 22.81 60.00 14.7975 -1.30 11.57 10.27 50.00 26.4750 9.13 12.74 21.87 60.00	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) 0.1949 23.58 10.16 33.74 63.83 -30.09 0.1949 8.69 10.16 18.85 53.83 -34.98 0.6090 23.48 10.16 33.64 56.00 -22.36 0.6090 8.38 10.16 18.54 46.00 -27.46 0.9285 12.18 10.09 22.27 56.00 -33.73 0.9285 -0.01 10.09 10.08 46.00 -35.92 1.6350 8.68 10.07 18.75 56.00 -37.25 1.6350 -3.94 10.07 6.13 46.00 -39.87 14.7975 11.24 11.57 22.81 60.00 -37.19 14.7975 -1.30 11.57 10.27 50.00 -39.73 26.4750 9.13 12.74 21.87 60.00 -38.13	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) Detector 0.1949 23.58 10.16 33.74 63.83 -30.09 QP 0.1949 8.69 10.16 18.85 53.83 -34.98 AVG 0.6090 23.48 10.16 33.64 56.00 -22.36 QP 0.6090 8.38 10.16 18.54 46.00 -27.46 AVG 0.9285 12.18 10.09 22.27 56.00 -33.73 QP 0.9285 -0.01 10.09 10.08 46.00 -35.92 AVG 1.6350 8.68 10.07 18.75 56.00 -37.25 QP 1.6350 -3.94 10.07 6.13 46.00 -39.87 AVG 14.7975 11.24 11.57 22.81 60.00 -37.19 QP 14.7975 -1.30 11.57 10.27 50.00 -39.73 AVG 26.4750 9.13 <td< td=""><td>(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) Detector P/F 0.1949 23.58 10.16 33.74 63.83 -30.09 QP P 0.1949 8.69 10.16 18.85 53.83 -34.98 AVG P 0.6090 23.48 10.16 33.64 56.00 -22.36 QP P 0.6090 8.38 10.16 18.54 46.00 -27.46 AVG P 0.9285 12.18 10.09 22.27 56.00 -33.73 QP P 0.9285 -0.01 10.09 10.08 46.00 -35.92 AVG P 1.6350 8.68 10.07 18.75 56.00 -37.25 QP P 14.7975 11.24 11.57 22.81 60.00 -37.19 QP P 14.7975 -1.30 11.57 10.27 50.00 -39.73 AVG P 26.4750 9.13 12.</td></td<>	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) Detector P/F 0.1949 23.58 10.16 33.74 63.83 -30.09 QP P 0.1949 8.69 10.16 18.85 53.83 -34.98 AVG P 0.6090 23.48 10.16 33.64 56.00 -22.36 QP P 0.6090 8.38 10.16 18.54 46.00 -27.46 AVG P 0.9285 12.18 10.09 22.27 56.00 -33.73 QP P 0.9285 -0.01 10.09 10.08 46.00 -35.92 AVG P 1.6350 8.68 10.07 18.75 56.00 -37.25 QP P 14.7975 11.24 11.57 22.81 60.00 -37.19 QP P 14.7975 -1.30 11.57 10.27 50.00 -39.73 AVG P 26.4750 9.13 12.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 12 of 34

3.2. RADIATED EMISSION MEASUREMENT

3.2.1. RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Measurement Distance		
(micorvolts/meter)	(meters)		
2400/F(KHz)	300		
24000/F(KHz)	30		
30	30		
100	3		
150	3 7		
200	3		
500	3		
	(micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
FREQUENCT (MITZ)	PEAK	AVERAGE			
Above 1000	74	54 🔎			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto C
Start Frequency	1000 MHz
Stop Frequency	25GHz
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

	Receiver Parameter	Setting				
0	Attenuation	Auto				
	Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
	Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
J. O.	Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 13 of 34

3.2.2. TEST PROCEDURE

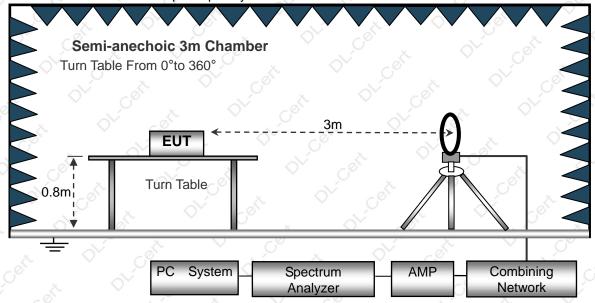
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel

Note:

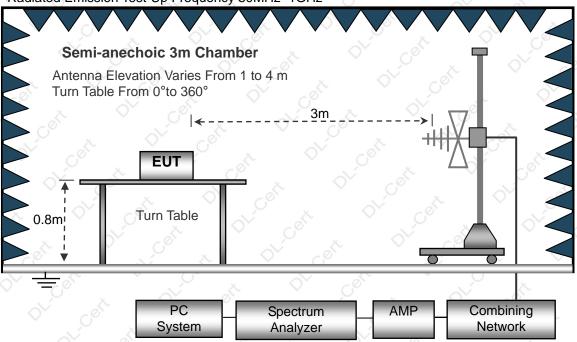

The horizontal and vertical polarities of the antenna were tested, and a pre-test was conducted on the EUT placement as three orthogonal axes X,Y,Z. The worst display of the test results was the Y-axis. The worst case emissions were reported.

3.2.3. DEVIATION FROM TEST STANDARD

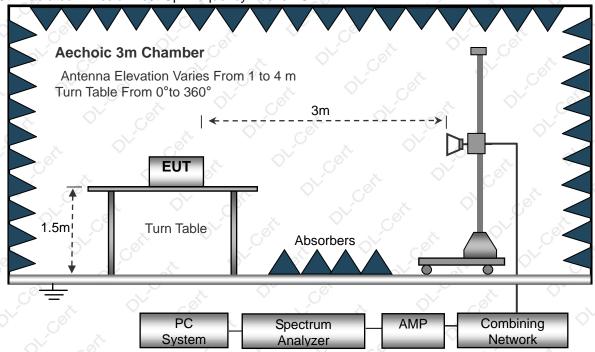
No deviation

3.2.4. TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 14 of 34



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Shenzhen DL Testing Technology Co., Ltd.

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5. EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 15 of 34

3.2.6. TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	20℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 3	Polarization :	<u>.</u>

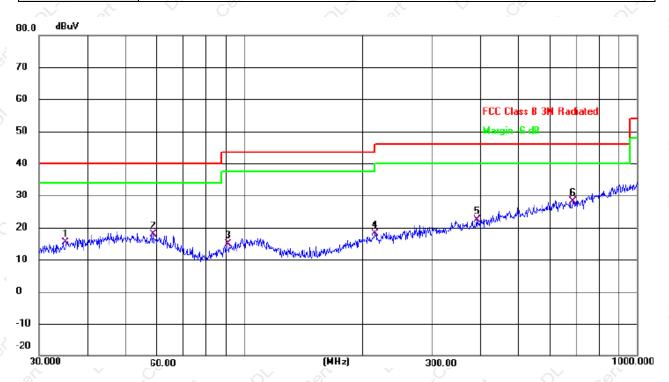
Report No.: DLE-250814037R

Freq.	Reading Limit		Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
÷ ÷	3	, Q	Contraction of the contraction o	PASS
- OV	CS	×	0 Ook	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 16 of 34

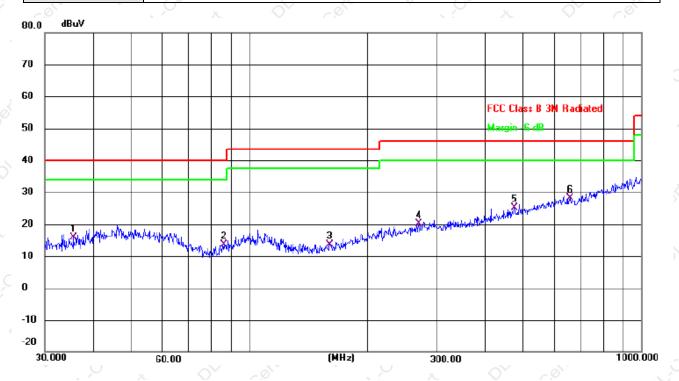
3.2.7. TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

Temperature:	26℃	Relative Humidity:	54%	COL
Pressure:	1010 hPa	Polarization :	Horizontal	ovi ext
Test Voltage :	AC 120V/60Hz	X OV	C.O.	, jo
Test Mode :	Mode 3(Silicone watch strap)	O®	N' art	O Co

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
-		MHz	dBuV	dB	dBuV	dB	dB	Detector
	1	35.1278	24.88	-9.53	15.35	40.00	-24.65	QP
-	2	58.6126	25.47	-7.63	17.84	40.00	-22.16	QP
_	3	91.1746	25.85	-11.00	14.85	43.50	-28.65	QP
	4	215.2678	26.29	-8.20	18.09	43.50	-25.41	QP
< -	5	390.7226	26.66	-4.36	22.30	46.00	-23.70	QP
	6 *	684.7454	26.47	1.67	28.14	46.00	-17.86	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;


Level = Reading Level + Correct Factor; Margin = Limit – Level;

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 17 of 34

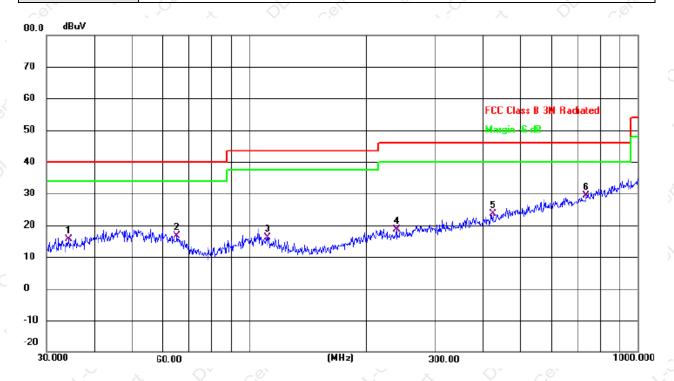
Temperature:	26℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	O, Co,	
Test Mode :	Mode 3(Silicone watch strap)	* 0 6	

Report No.: DLE-250814037R

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
_		MHz	dBuV	dB	dBuV	dB	dB	Detector
	1	35.6240	25.34	-9.44	15.90	40.00	-24.10	QP
_	2	85.8984	25.34	-11.74	13.60	40.00	-26.40	QP
	3	160.3456	25.57	-11.87	13.70	43.50	-29.80	QP
_	4	270.3748	26.67	-6.52	20.15	46.00	-25.85	QP
_	5	473.8347	26.87	-1.76	25.11	46.00	-20.89	QP
	6 *	658.8362	26.29	1.75	28.04	46.00	-17.96	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;


Level = Reading Level + Correct Factor; Margin = Limit – Level;

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 18 of 34

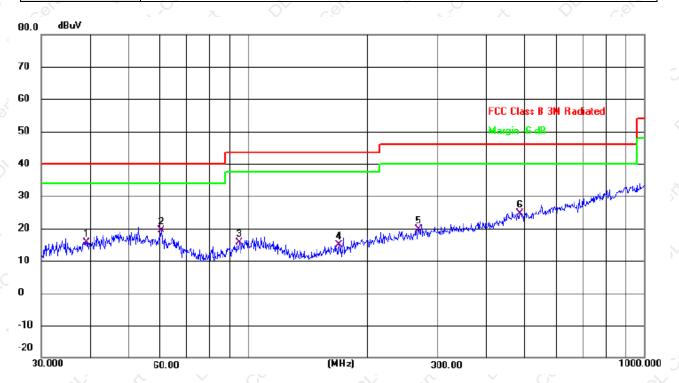
Temperature:	26℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	O, Co,	
Test Mode :	Mode 3(Metal watch strap)	× 0 ^V 50	

Report No.: DLE-250814037R

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dB	dB	Detector
1	34.2760	25.11	-9.50	15.61	40.00	-24.39	QP
2	65.1145	25.58	-9.03	16.55	40.00	-23.45	QP
3	111.3468	25.12	-9.03	16.09	43.50	-27.41	QP
4	239.1473	26.36	-7.66	18.70	46.00	-27.30	QP
5	423.5403	26.72	-3.19	23.53	46.00	-22.47	QP
6 *	737.0714	26.34	2.93	29.27	46.00	-16.73	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;


Level = Reading Level + Correct Factor; Margin = Limit – Level;

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 19 of 34

Temperature:	26℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	O, Co,	
Test Mode :	Mode 3(Metal watch strap)	× OY	× × × ×

Report No.: DLE-250814037R

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dB	dB	Detector
1	39.0245	23.79	-8.24	15.55	40.00	-24.45	QP
2 *	60.2801	27.10	-7.79	19.31	40.00	-20.69	QP
3	94.7601	25.78	-10.13	15.65	43.50	-27.85	QP
4	169.5990	26.34	-11.54	14.80	43.50	-28.70	QP
5	269.4284	26.21	-6.52	19.69	46.00	-26.31	QP
6	485.6093	26.18	-1.51	24.67	46.00	-21.33	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Limit – Level;

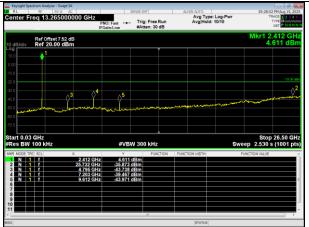
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 20 of 34

3.2.8. TEST RESULTS (1GHZ~25GHZ)

		o l	, ,	-		-01	, , , , , , , , , , , , , , , , , , ,	9	bu .
Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(11/4)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Турс
\ <u></u>	×.	O. G			requency:2		- CO		-0
V	4804.00	67.68	50.65	6.88	31.29	55.2	74	-18.8	PK
V	4804.00	55.13	50.65	6.88	31.29	42.65	54	-11.35	AV
V	7236.00	66.58	49.98	7.16	36.63	60.39	74	-13.61	PK
V	7236.00	46.52	49.98	7.16	36.63	40.33	54	-13.67	AV
V	16087.00	48.41	51.53	11.34	41.52	49.74	74	-24.26	PK
OH	4804.00	66.36	50.65	6.88	31.29	53.88	74	-20.12	PK
H	4804.00	55.24	50.65	6.88	31.29	42.76	54	-11.24	AV
H	7236.00	69.85	49.98	7.16	36.63	63.66	74	-10.34	PK
Н	7236.00	45.53	49.98	7.16	36.63	39.34	54	-14.66	AV
Н <	16087.00	48.24	51.53	11.34	41.52	49.57	74	-24.43	PK
		a K	ор	eration f	requency:2	2440		Co	
V	4880.00	67.59	50.67	6.89	31.38	55.19	74	-18.81	PK
V	4880.00	55.52	50.67	6.89	31.38	43.12	54	-10.88	AV
V	7311.00	69.81	50.02	7.24	36.63	63.66	74	-10.34	PK
V	7311.00	46.66	50.02	7.24	36.63	40.51	54	-13.49	AV
V	16087.00	48.38	51.53	11.34	41.52	49.71	74	-24.29	PK
Н	4880.00	66.52	50.67	6.89	31.38	54.12	74	-19.88	PK
Н	4880.00	55.69	50.67	6.89	31.38	43.29	54	-10.71	AV
Н	7311.00	69.24	50.02	7.24	36.63	63.09	74	-10.91	_× PK
H	7311.00	47.68	50.02	7.24	36.63	41.53	54	-12.47	- AV
Н	16087.00	48.57	51.53	11.34	41.52	49.9	74	-24.1	PK
, ,	Х.	0	op	eration f	requency:2	2480	CO		1,0
V	4960.00	67.63	50.67	6.89	31.38	55.23	74	-18.77	PK C
V <	4960.00	55.74	50.67	6.89	31.38	43.34	54	-10.66	AV
V	7386.00	69.85	50.02	7.24	36.63	63.7	74	-10.3	PK
V	7386.00	46.21	50.02	7.24	36.63	40.06	54	-13.94	AV
V×	16087.00	48.66	51.53	11.34	41.52	49.99	74	-24.01	PK
B	4960.00	66.58	50.67	6.89	31.38	54.18	74	-19.82	PK
ΥН	4960.00	55.21	50.67	6.89	31.38	42.81	54	-11.19	AV Ø
Н	7386.00	69.63	50.02	7.24	36.63	63.48	74	-10.52	PK
Н	7386.00	47.58	50.02	7.24	36.63	41.43	54	-12.57	AV
Н	16087.00	48.25	51.53	11.34	41.52	49.58	74	-24.42	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

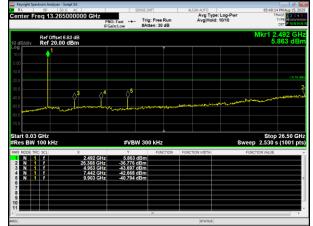

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 21 of 34

For Conducted

Test channel: | Stronger Species | Sept | S

Lowest channel

Report No.: DLE-250814037R


Middle channel

Test channel:

Highest channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 22 of 34

Report No.: DLE-250814037R

3.3 RADIATED BAND EMISSION MEASUREMENT 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/n	n) (at 3M)
FREQUENCT (MIDZ)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

3.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note

The horizontal and vertical polarities of the antenna were tested, and a pre-test was conducted on the EUT placement as three orthogonal axes X,Y,Z. The worst display of the test results was the Y-axis. The worst case emissions were reported.

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 23 of 34

3.3.4 TEST SETUP

Aechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0°to 360°

Turn Table

Absorbers

3.3.5 EUT OPERATING CONDITIONS

PC

System

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Spectrum

Analyzer

AMP

Combining

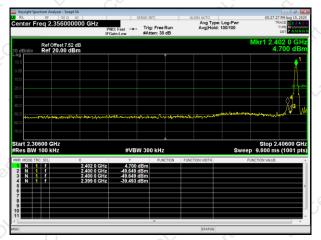
Network

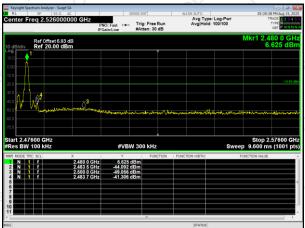
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 24 of 34

3.3.6 TEST RESULT

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(11, 1)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	1960
60			д ор	eration f	requency:	2402	X	O.	CO.
V	2390.00	77.35	52.11	2.68	27.32	55.24	74	-18.76	PK 💍
V	2390.00	65.51	52.11	2.68	27.32	43.4	54	-10.6	AV
V	2400.00	76.48	52.13	2.52	27.46	54.33	74	-19.67	PK
V	2400.00	64.86	52.13	2.52	27.46	42.71	54	-11.29	AV
H.	2390.00	76.41	52.11	2.68	27.32	54.3	74	-19.7	PK
ÇН	2390.00	65.68	52.11	2.68	27.32	43.57	54	-10.43	AV
Н	2400.00	76.21	52.13	2.52	27.46	54.06	74	-19.94	PK
H	2400.00	65.41	52.13	2.52	27.46	43.26	54	-10.74	O AV

Report No.: DLE-250814037R


Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
3.	. 💛	Co.	ор	eration f	requency:2	2480)	N	2,1
V	2483.50	77.43	52.23	2.86	27.44	55.5	74	-18.5	PK
V	2483.50	65.98	52.23	2.86	27.44	44.05	54	-9.95	AV
V	2500.00	76.66	52.26	2.88	27.49	54.77	74	-19.23	PK
V	2500.00	65.44	52.26	2.88	27.49	43.55	54	-10.45	AV
Н	2483.50	76.81	52.23	2.86	27.44	54.88	74	-19.12	PK
_H _	2483.50	66.26	52.23	2.86	27.44	44.33	54	-9.67	Ø AV
H	2500.00	78.41	52.26	2.88	27.49	56.52	74	-17.48	PK
H	2500.00	67.68	52.26	2.88	27.49	45.79	54	-8.21	AV


Remark:

- Emission Level = Meter Reading + Factor, Margin= Emission Level Limit
 If peak below the average limit, the average emission was no test.
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 25 of 34 Test Report

For Conducted

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 26 of 34

4.. PEAK OUTPUT POWER

4.1. APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247 (b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

Report No.: DLE-250814037R

4.1.1. TEST PROCEDURE

The testing follows Subclause 11.9.1.1 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Set the RBW ≧DTS bandwidth.

Set VBW=3*RBW.

Set the span ≧3*RBW

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level.

4.1.2. DEVIATION FROM STANDARD

No deviation.

4.1.3. TEST SETUP

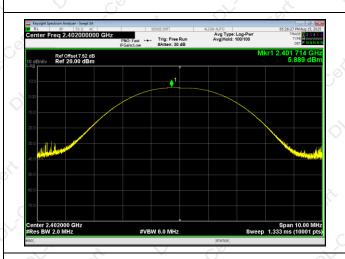
EUT	SPECTRUM
	ANALYZER

4.1.4. EUT OPERATION CONDITIONS

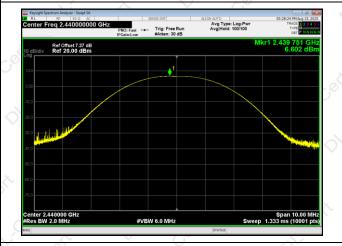
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 27 of 34

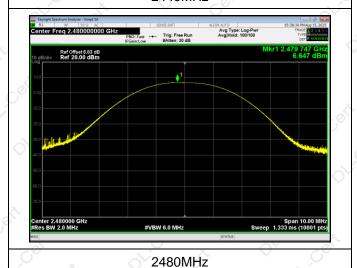
4.1.5. TEST RESULTS


Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V

Report No.: DLE-250814037R


0.5		, ,
Test Channel	Peak Output Power (dBm)	LIMIT (dBm)
Low	5.889	30.00
Middle	6.602	30.00
High	6.647	30.00

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 28 of 34



2402MHz

2440MHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 34

5.. POWER SPECTRAL DENSITY TEST

5.1. APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS	

Report No.: DLE-250814037R

Spectrum Parameters	Setting
Attenuation	X O O Auto X O O
Span Frequency	= the frequency band of operation
€ RB	RBW ≥ 3kHz
VB	VBW ≥ 3RBW
Detector	Peak
Trace	Max Hold Max Hold
Sweep Time	Auto

5.1.1. TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

5.1.2. DEVIATION FROM STANDARD

No deviation.

5.1.3. TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4. EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5. TEST RESULTS

Test Channel	Result(dBm) 3kHz	Limit(dBm) 3kHz	Result
Low	-10.187	Ø 2 € E	PASS
Middle	-9.529	8	PASS
High	-9.465	8	PASS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 30 of 34



2402MHz

2440MHz

Tel: 400-688-3552 Email: service@dl-cert.com Page 31 of 34 Test Report Web:www.dl-cert.com

6.. 6DB BANDWIDTH TEST

6.1. APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range(MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

Report No.: DLE-250814037R

6.1.1. TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

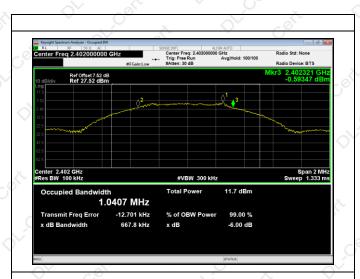
6.1.2. DEVIATION FROM STANDARD

No deviation.

6.1.3. TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

6.1.4. EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5. TEST RESULTS

Test Channel	6dB Bandwidth (MHz)	Limit (MHz)	Result
Low	0.668	0.5	Pass
Middle	0.687	0.5	Pass
High	0.653	0.5	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 32 of 34



2402MHz

2440MHz

Page 33 of 34 Test Report Tel: 400-688-3552 Email: service@dl-cert.com Web:www.dl-cert.com

7.. ANTENNA REQUIREMENT

7.1. STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: DLE-250814037R

7.2. EUT ANTENNA

The EUT antenna is Internal Antenna, It comply with the standard requirement.

8.. TEST SEUUP PHOTO

Reference to the appendix I for details.

9.. EUT PHOTO

Reference to the appendix II for details.

*** END OF REPORT ***

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 34 of 34