

Test Report

Report No. : MTi241226008-03E1

Date of issue : 2025-04-25

Applicant : Changsha Diversitone Technology Co., Ltd.

Product : Modeling Amplifier

Model(s) : DAM-10, DAM-xxxx, x: capital letter or number,

could be omitted

FCC ID : 2BNJ2DAM-10

Shenzhen Microtest Co., Ltd.

Report No.: MTi241226008-03E1

Table of contents

		Table of contents	
'n	Gene	ral Description	4
	1.1 1.2	Description of the EUT	4 4
	1.3 1.4	Environmental Conditions Description of support units	6 6
2	1.5	Measurement uncertainty mary of Test Result	
2 3	Test	Facilities and accreditations	8
	3.1	Test laboratory	
4 5	List of Evalu	of test equipmentuation Results (Evaluation)	13
	5.1	Antenna requirement	13
6	Radio	o Spectrum Matter Test Results (RF)	14
	6.1	Conducted Emission at AC power line	14
	6.2	20dB Bandwidth	17
	6.3	Maximum Conducted Output Power	
	6.4	Channel Separation	21
	6.5	Number of Hopping Frequencies	23
	6.6	Dwell Time	25
	6.7	RF conducted spurious emissions and band edge measurement	
	6.8	Band edge emissions (Radiated)	29
À.	6.9	Radiated emissions (below 1GHz)	32
	6.10	Radiated emissions (above 1GHz)	
		phs of the test setup	
Pno Ani	otogra	phs of the EUTc A: 20dB Emission Bandwidth	42 11
		RE: Maximum conducted output power	
Ap	pendix	C: Carrier frequency separation	54
		D: Time of occupancy	
		E: Number of hopping channels	
Ap	penaix nandix	x F: Band edge measurements x G: Conducted Spurious Emission	607
	cro		

Report No.: MTi241226008-03E1

Test Result Certific	cation				
Applicant	Changsha	Diversitone Technology Co., Ltd	d.		
Applicant Address	Applicant Address #1903, Building 1, No.20 Qingshan Road, Yuelu District, Hunan Province, China.				
Manufacturer	Changsha	Hotone Audio Co., LTD			
Manufacturer Address		No. 20, Qingshan Road, Dongt ent Zone, Changsha, Hunan Pro			
Product description	on				
Product name	Modeling A	mplifier			
Trademark	Divitone				
Model name	DAM-10				
Series Model(s)	DAM-xxxx, x: capital letter or number, could be omitted				
Standards	47 CFR Part 15.247				
Test Method	KDB 55807 ANSI C63.	74 D01 15.247 Meas Guidance 10-2013	v05r02		
Testing Informatio	n				
Date of test	2025-02-20 to 2025-04-23				
Test result	Pass	4			
Prepared I	ру:	Yanice.Xie	Yanice Xie		
Reviewed	by:	David Lee	Yanice Xie Dowid. Lee Lewis lian		
Approved	by:	Lewis Lian	lewis lian		

Report No.: MTi241226008-03E1

1 General Description

1.1 Description of the EUT

mitted
except the model
NCT OFF.
rest
: COL
Miles
/

1.2 Description of test modes

No.	Emission test modes	
Mode1	TX-GFSK	
Mode2	TX-π/4-DQPSK	·ost
Mode3	TX-8DPSK	CLO/C

1.2.1 Operation channel list

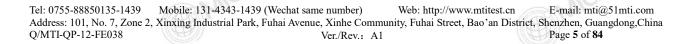
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
110	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465

Report No.: MTi241226008-03E1

4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
117	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Operation Band: 2400-2483.5 MHz


Dandwidth	Lowest Channel	Middle Channel	Highest Channel
Bandwidth	(LCH)	(MCH)	(HCH)
(MHz)	(MHz)	(MHz)	(MHz)
:: (1	2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: MV FrequencyTool v0.3.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	2	2	2
π/4-DQPSK	2	2	2
8DPSK	2	2	2

Report No.: MTi241226008-03E1

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C	
Humidity:	20% RH ~ 75% RH	
Atmospheric pressure:	98 kPa ~ 101 kPa	

1.4 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
1	1	1	NACIO		
Support cable list					
Description	Length (m)	From	То		
i COLI	1	/	/		

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: MTi241226008-03E1

Mhicrotest

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	20dB Bandwidth	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d)	Pass
9	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
		Otes	

Report No.: MTi241226008-03E1

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093
	Microtest

Report No.: MTi241226008-03E1

ļ	List of test equipm					
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
ri C	COL	Conducted Emiss	ion at AC power	line		
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03- 20	2025-03- 19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03- 21	2025-03- 20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03- 20	2025-03- 19
	Er	Number of Hop Dwe nissions in non-res	Separation ping Frequencie II Time	es		C.O.
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03- 20	2025-03- 19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2024-03- 21	2025-03 20
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03 20
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2024-03- 21	2025-03 20
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2024-03- 21	2025-03 20
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2024-03- 21	2025-03 20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2024-03- 21	2025-03 20
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2024-03-	2025-03 19
9	DC Power Supply	Agilent	E3632A	MY400276 95	2024-03- 21	2025-03 20
9.5	Eŋ	Band edge emi nissions in frequen	ssions (Radiated cy bands (above			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03 19
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06 16
3	Amplifier	Agilent	8449B	3008A0112 0	2024-03- 20	2025-03 19
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2024-03- 21	2025-03 20
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03 20
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-	2025-06 16
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03- 21	2025-03 20
	Er	nissions in frequen	cy bands (below	1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03 19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06 10

Report No.: MTi241226008-03E1

Microtest

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03- 19
) La r.			atest			
		BANIC				
		(43)			6.0	

Milicrotest

						Report No.: MTi241226008-03E1			
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	rest	Conducted Emiss	ion at AC power	line					
:1C	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2025-03- 13	2026-03- 12			
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2025-03- 18	2026-03- 17			
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2025-03- 18	2026-03- 17			
		Number of Hop Dwe missions in non-res	Separation ping Frequencie II Time	es		rotes			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2025-03- 18	2026-03- 17			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2025-03- 14	2026-03- 13			
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03- 13			
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2025-03- 18	2026-03- 17			
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2025-03- 18	2026-03 17			
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2025-03- 18	2026-03 17			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2025-03- 18	2026-03 17			
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2025-03- 14	2026-03 13			
9	DC Power Supply	Agilent	E3632A	MY400276 95	2025-03- 18	2026-03 17			
s:C	Er	Band edge emi	ssions (Radiated						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03 13			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06 16			
3	Amplifier	Agilent	8449B	3008A0112 0	2025-03- 18	2026-03 17			
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2025-03- 14	2026-03 13			
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03 13			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06 16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2025-03- 19	2026-03 18			
NiC	Er	missions in frequen	cy bands (below	1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03 13			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06 10			

Report No.: MTi241226008-03E1

Microtest

No.	Equipment	Equipment Manufacturer Model		Serial No.	Cal. date	Cal. Due
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-03- 17
		(B) Mic	otest		s.(

Milicrotest

Report No.: MTi241226008-03E1

MNicrotest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

OKE-	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed
ice	to ensure that no antenna other than that furnished by the responsible
Test Requirement:	party shall be used with the device. The use of a permanently attached
rest Requirement.	antenna or of an antenna that uses a unique coupling to the intentional
	radiator shall be considered sufficient to comply with the provisions of
	this section.

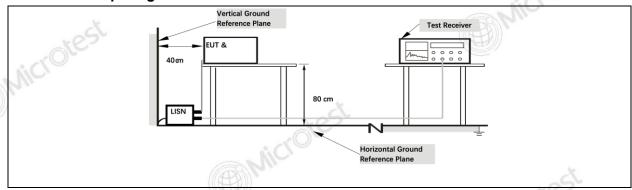
5.1.1 Conclusion:

The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

Report No.: MTi241226008-03E1

Radio Spectrum Matter Test Results (RF) 6

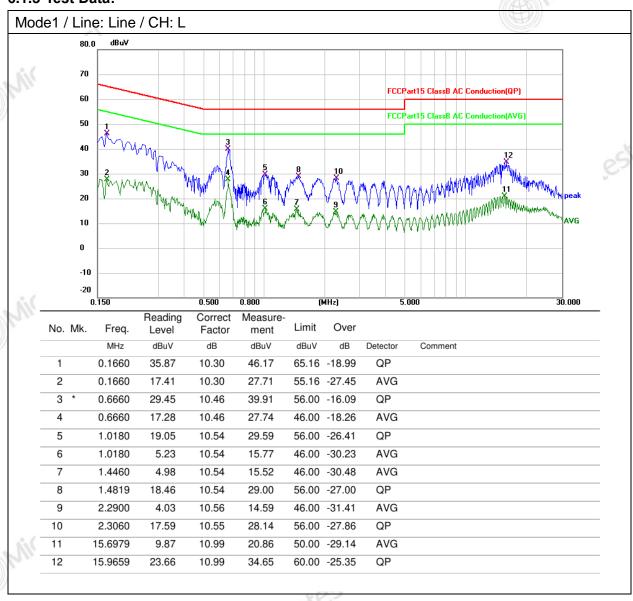

Conducted Emission at AC power line 6.1

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)		Conducted limit (dBµV)			
		Quasi-peak		Average		
	0.15-0.5	66 to 56*	(20)	56 to 46*		
	0.5-5	56		46		
	5-30	60		50		
"ast	*Decreases with the logarithm of	f the frequency.				
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
6.1.1 E.U.T. Operation	on:					

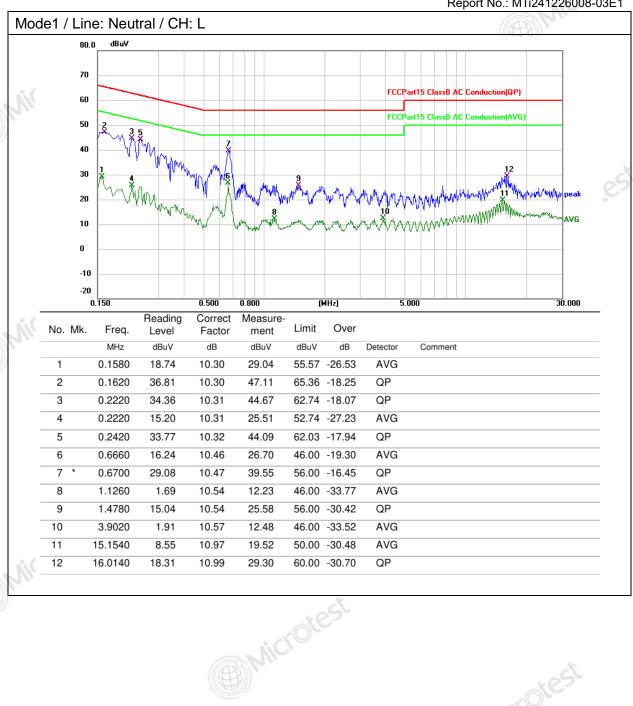
6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22 °C	Humidity:	52 %	Atmospheric Pressure:	100 kPa		
Pre test mode:		Mode1, Mode2,	Mode3				
Final test mode: All of the listed pre-test mode were tested, only the data of the womode (Mode1) is recorded in the report					a of the worst		

6.1.2 Test Setup Diagram:



Report No.: MTi241226008-03E1


Microtest

6.1.3 Test Data:

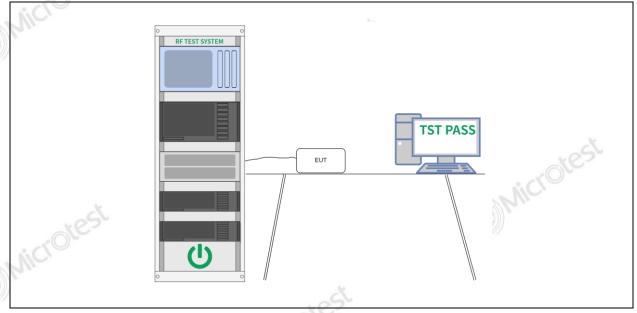
Report No.: MTi241226008-03E1

Report No.: MTi241226008-03E1

6.2 20dB Bandwidth

6.2 20dB Bandwid	-	
Test Requirement:	47 CFR 15.247(a)(1)	
Test Limit:	alternative provisions to the ge 15.217 through 15.257 and in s to ensure that the 20 dB bandw bandwidth may otherwise be so under which the equipment ope	entional radiators operating under the neral emission limits, as contained in §§ subpart E of this part, must be designed width of the emission, or whatever oecified in the specific rule section erates, is contained within the frequency ction under which the equipment is
Test Method:	ANSI C63.10-2013, section 7.8 measurements, use the proced KDB 558074 D01 15.247 Meas	lure in 6.9.2.
Procedure:	channel center frequency. The	er frequency is set to the nominal EUT span range for the EMI receiver or ween two times and five times the
Micro	b) The nominal IF filter bandwided approximately three times RBV applicable requirement. c) Set the reference level of the signal from exceeding the max operation. In general, the peak than [10 log (OBW/RBW)] below is given in 4.1.5.2. d) Steps a) through c) might respecified tolerances.	V, unless otherwise specified by the e instrument as required, keeping the imum input mixer level for linear of the spectral envelope shall be more w the reference level. Specific guidance quire iteration to adjust within the
Microtest	more than 10 dB below the target if the requirement calls for mean noise floor at the selected RBW reference value. f) Set detection mode to peak any g) Determine the reference value unmodulated carrier or modulated trace to stabilize. Set the spectal level of the displayed trace (this h) Determine the "-xx dB down xx]. Alternatively, this calculation delta function of the instrument i) If the reference value is determined in the selection of the selection of the selection of the instrument in the selection of the instrument in the selection of the selection of the instrument in the selection of the selection	ue: Set the EUT to transmit an ted signal, as applicable. Allow the rum analyzer marker to the highest is the reference value). In amplitude" using [(reference value) – In may be made by using the marker-time. It is mined by an unmodulated carrier, then
Microtest.	a new trace on the spectrum as stabilize. Otherwise, the trace f j) Place two markers, one at the highest frequency of the envelopeach marker is at or slightly be determined in step h). If a mark amplitude" value, then it shall be the occupied bandwidth is the	and either clear the existing trace or start halyzer and allow the new trace to from step g) shall be used for step j). The lowest frequency and the other at the ope of the spectral display, such that low the "-xx dB down amplitude" are is below this "-xx dB down be as close as possible to this value. If frequency difference between the two arker at the lowest frequency of the

Report No.: MTi241226008-03E1


envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

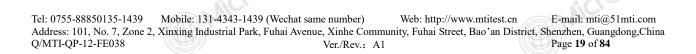
			1 / Carrier	7	
Operating Env	ironmen	t:			- NiCi
Temperature:	23 °C		Humidity:	56 %	Atmospheric Pressure: 101 kPa
Pre test mode: Mo		Mod	e1, Mode2,	Mode3	
Final test mode:		Mod	e1, Mode2,	Mode3	

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

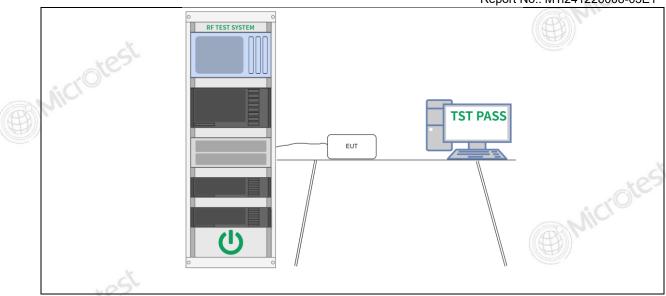
Report No.: MTi241226008-03E1


6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)	
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequence operating in the 2400-2483.5 MHz band overlapping hopping channels, and all fithe 5725-5850 MHz band: 1 watt. For a systems in the 2400-2483.5 MHz band:	d employing at least 75 non- requency hopping systems in Ill other frequency hopping
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidan	ce v05r02
Procedure:	This is an RF-conducted test to evaluate Use a direct connection between the an wireless device and the spectrum analy attenuation. The hopping shall be disable a) Use the following spectrum analyzer 1) Span: Approximately five times the 2 hopping channel. 2) RBW > 20 dB bandwidth of the emist 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to seemission. d) The indicated level is the peak output for external attenuators and cables. e) A plot of the test results and setup detection the test report. NOTE—A peak responding power metection power meter and sensor system video is occupied bandwidth of the unlicensed we spectrum analyzer.	ntenna port of the unlicensed vzer, through suitable bled for this test: settings: 20 dB bandwidth, centered on a sision being measured. et the marker to the peak of the st power, after any corrections escription shall be included in the bandwidth is greater than the

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23 °C			Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1, Mode2,	Mode3		
Final test mode:		Mod	e1, Mode2,	Mode3		Ž.


6.3.2 Test Setup Diagram:

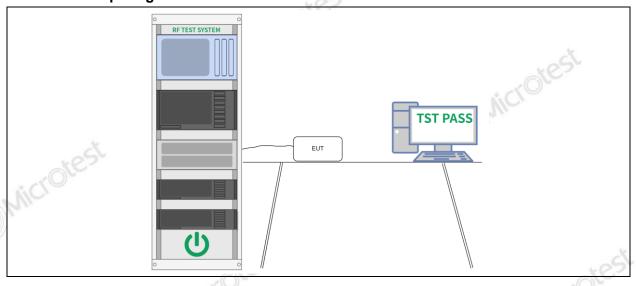
Report No.: MTi241226008-03E1

Microfest

6.3.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi241226008-03E1


6.4 Channel Separation

0.4 Onamici ocpai	
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:								
Temperature: 23 °C			Humidity:	56 %		Atmospheric Pressure:	101 kPa	
Pre test mode:		Mod	e1, Mode2,	Mode3				
Final test mode	e:	Mod	e1, Mode2,	Mode3				

6.4.2 Test Setup Diagram:

Report No.: MTi241226008-03E1

Microtest

E-mail: mti@51mti.com

6.4.3 Test Data:

Please Refer to Appendix for Details.

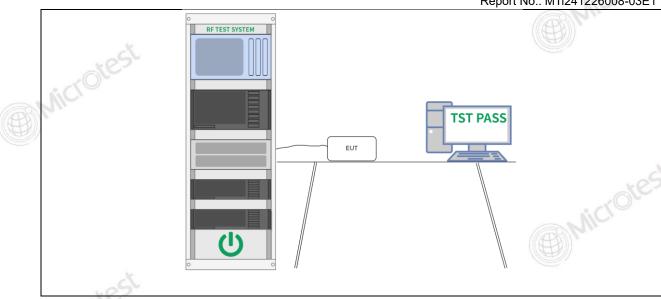
Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038 Ver./Rev.: A1 Ver./Rev.: A1

Report No.: MTi241226008-03E1

6.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)	
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fe 2400-2483.5 MHz band shall use at time of occupancy on any channel s seconds within a period of 0.4 secon hopping channels employed. Freque or suppress transmissions on a part that a minimum of 15 channels are under the control of the con	least 15 channels. The average hall not be greater than 0.4 nds multiplied by the number of ency hopping systems may avoid icular hopping frequency provided
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guid	dance v05r02
Procedure:	The EUT shall have its hopping fund spectrum analyzer settings: a) Span: The frequency band of oper of channels the device supports, it is frequency range of operation across individual channels to be clearly see b) RBW: To identify clearly the individual standard of the channel spacing whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the clearly all of the hopping frequencies appropriate regulatory limit shall be hopping channels. A plot of the data	eration. Depending on the number may be necessary to divide the smultiple spans, to allow the en. dual channels, set the RBW to ag or the 20 dB bandwidth, e span up into subranges to show s. Compliance of an EUT with the determined for the number of
-ost	hopping channels. A plot of the data report.	shall be included in the test

6.5.1 E.U.T. Operation:


1	Operating Environment:									
)))	Temperature:	23 °C		Humidity:	56 %	15	Atmospheric Pressure:	101 kPa		
	Pre test mode:	Mod	e1, Mode2,	Mode3	520					
	Final test mode	Mod	e1, Mode2,	Mode3						

6.5.2 Test Setup Diagram:

Report No.: MTi241226008-03E1

Microfest

6.5.3 Test Data:

Please Refer to Appendix for Details.

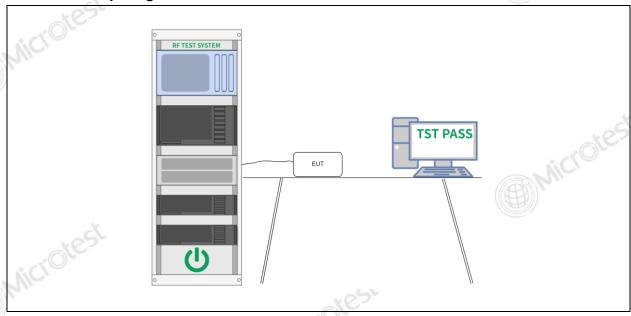
Report No.: MTi241226008-03E1

6.6 Dwell Time

o.o Dwell Time	1 47 OFD 45 O47()\4\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this
Microtest	for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be
Micro	consistent with the values described in the operational description for the EUT.

6.6.1 E.U.T. Operation:

Operating Envi	ironmeı	nt:	d			1
Temperature:	Temperature: 23 °C			56 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mo		Mod	e1, Mode2,	Mode3		· CO



Report No.: MTi241226008-03E1

Microtest

Final test mode: Mode1, Mode2, Mode3

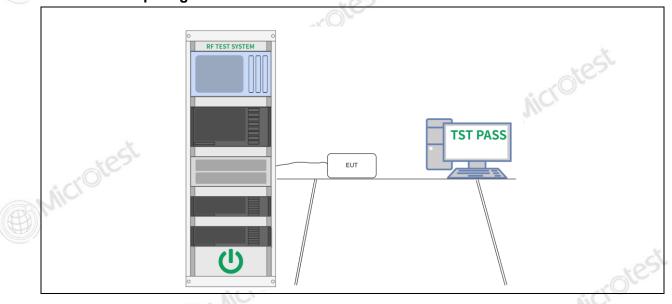
6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Please Refer to Appendix for Details.

Microfest

Report No.: MTi241226008-03E1


6.7 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

Operating Environment:								
Temperature: 23 °C			Humidity:	56 %		Atmospheric Pressure:	101 kPa	
Pre test mode:		Mod	e1, Mode2,	Mode3				
Final test mode	e:	Mod	e1, Mode2,	Mode3				

6.7.2 Test Setup Diagram:

Report No.: MTi241226008-03E1

Microtest

6.7.3 Test Data:

Please Refer to Appendix for Details.

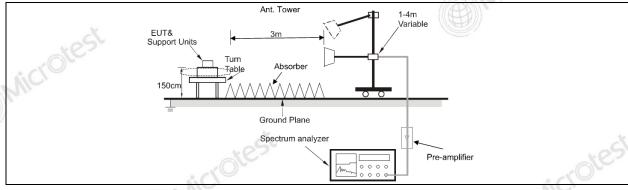
Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Milicrotest

Report No.: MTi241226008-03E1

6.8 Band edge emissions (Radiated)

Test Requirement:	in the restricted bands,	7(d), In addition, radiated emission as defined in § 15.205(a), must a fion limits specified in § 15.209(a)	also comply
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
At .	Above 960	500	3
Microtest	intentional radiators open the frequency bands 54 806 MHz. However, open permitted under other solution in the emission table at The emission limits should be measurements employing frequency bands 9–90 k Radiated emission limits	n paragraph (g), fundamental emi- erating under this section shall no e-72 MHz, 76-88 MHz, 174-216 Me eration within these frequency ba- ections of this part, e.g., §§ 15.23 bove, the tighter limit applies at the wn in the above table are based ing a CISPR quasi-peak detector kHz, 110–490 kHz and above 100 is in these three bands are based ing an average detector.	of the located in MHz or 470- nds is MHZ and 15.241. The band edges on except for the MHz.
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	tion 6.10 I7 Meas Guidance v05r02	T.Off
Procedure:	ANSI C63.10-2013 sect	tion 6.10.5.2	


6.8.1 E.U.T. Operation:

Operating Environment:										
Temperature: 26.3 °C Humidity: 55 % Atmospheric Pressure: 101 kPa										
Pre test mode:		Mod	e1, Mode2,	Mode3						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report										

Note

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.8.2 Test Setup Diagram:

Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038 Ver./Rev.: A1

Report No.: MTi241226008-03E1

6.8.3 Test Data:

Mod	e3 / P	olariz	zation: Hori:	zontal / CH:	L					
2.1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
III.			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		2310.000	48.36	-4.83	43.53	74.00	-30.47	peak	
	2		2310.000	38.37	-4.83	33.54	54.00	-20.46	AVG	_
	3		2390.000	48.08	-4.31	43.77	74.00	-30.23	peak	es
	4	*	2390.000	38.30	-4.31	33.99	54.00	-20.01	AVG	

lode3 / Polarization: Vertical / CH: L												
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector				
1		2310.000	47.75	-4.83	42.92	74.00	-31.08	peak				
2		2310.000	37.96	-4.83	33.13	54.00	-20.87	AVG				
3		2390.000	47.95	-4.31	43.64	74.00	-30.36	peak				
4	*	2390.000	38.14	-4.31	33.83	54.00	-20.17	AVG				
	No.	No. Mk.	No. Mk. Freq. MHz 1 2310.000 2 2310.000 3 2390.000	No. Mk. Freq. Reading Level MHz dBuV 1 2310.000 47.75 2 2310.000 37.96 3 2390.000 47.95	No. Mk. Freq. Reading Level Level Factor Correct Factor 1 2310.000 47.75 -4.83 2 2310.000 37.96 -4.83 3 2390.000 47.95 -4.31	No. Mk. Freq. Reading Level Correct Factor Measurement 1 2310.000 47.75 -4.83 42.92 2 2310.000 37.96 -4.83 33.13 3 2390.000 47.95 -4.31 43.64	No. Mk. Freq. Reading Level Correct Factor Measurement Limit 1 2310.000 47.75 -4.83 42.92 74.00 2 2310.000 37.96 -4.83 33.13 54.00 3 2390.000 47.95 -4.31 43.64 74.00	No. Mk. Freq. Reading Level Correct Factor Measurement Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 1 2310.000 47.75 -4.83 42.92 74.00 -31.08 2 2310.000 37.96 -4.83 33.13 54.00 -20.87 3 2390.000 47.95 -4.31 43.64 74.00 -30.36				

Report No.: MTi241226008-03E1

Mod	e3 / P	olari	zation: Hori	zontal / CH:	Н			(A)		
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	12.17.1	
34			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
Mi	1		2483.500	48.30	-4.21	44.09	74.00	-29.91	peak	
	2	*	2483.500	38.18	-4.21	33.97	54.00	-20.03	AVG	
	3		2500.000	48.41	-4.10	44.31	74.00	-29.69	peak	_
	4		2500.000	37.85	-4.10	33.75	54.00	-20.25	AVG	es

						1/2 1/2				
Mode3 / Polarization: Vertical / CH: H										
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	-
	1		2483.500	46.78	-4.21	42.57	74.00	-31.43	peak	-
	2		2483.500	37.93	-4.21	33.72	54.00	-20.28	AVG	-
	3		2500.000	46.24	-4.10	42.14	74.00	-31.86	peak	
	4	*	2500.000	37.94	-4.10	33.84	54.00	-20.16	AVG	

Report No.: MTi241226008-03E1

6.9 Radiated emissions (below 1GHz)

		11/4-	7111 2		
Test Requirement:	in the restricted bands,	7(d), In addition, radiated emission as defined in § 15.205(a), must a sion limits specified in § 15.209(a)	also comply		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
Microtesc	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.				
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	otion 6.6.4 47 Meas Guidance v05r02	Cl.Osc		
Procedure:	ANSI C63.10-2013 sed	etion 6.6.4			
407	L	THE PART OF THE PA			

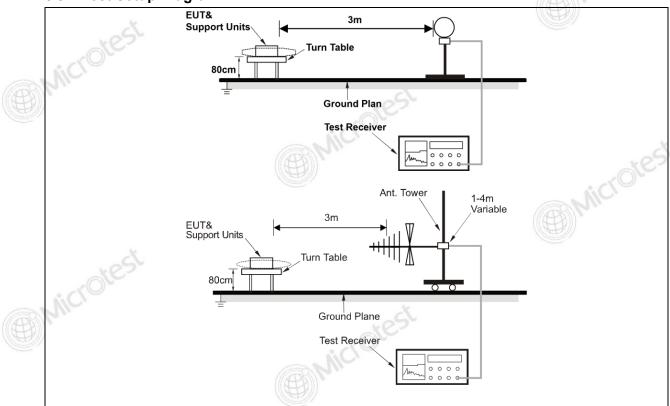
6.9.1 E.U.T. Operation:

Operating Environment:									
Temperature: 26.3 °C Humidity: 55 % Atmospheric Pressure: 101 kPa						101 kPa			
Pre test mode:		Mode1, Mode2, Mode3							
Final test mode		f the listed p e (Mode3) is		were tested, only the dat the report	a of the worst				

Note

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

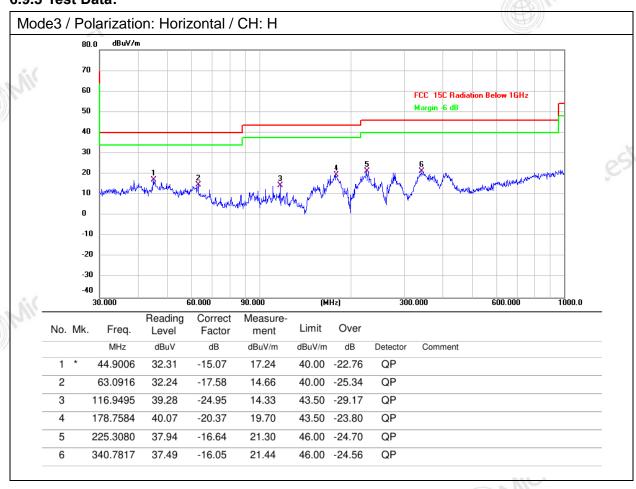


Report No.: MTi241226008-03E1

Microtest

Microfest

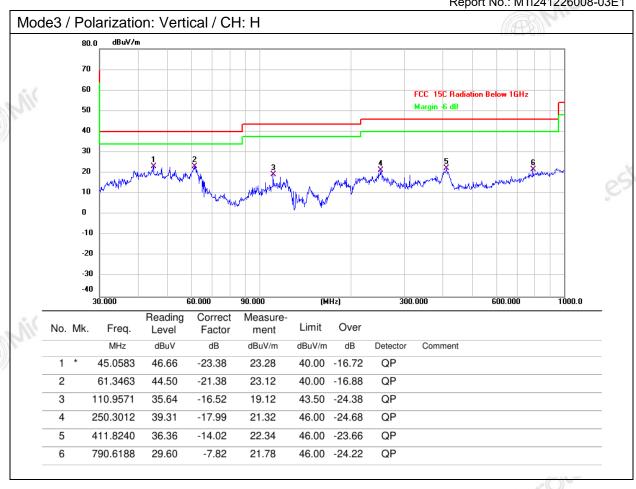
6.9.2 Test Setup Diagram:



Report No.: MTi241226008-03E1

Microtest

6.9.3 Test Data:



And Control

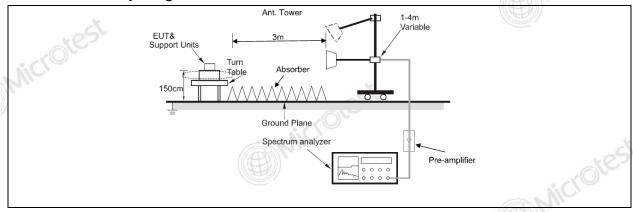
Report No.: MTi241226008-03E1

Microtest

Report No.: MTi241226008-03E1

6.10 Radiated emissions (above 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), in addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Microtess	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	Cl.Orc			
Procedure:	ANSI C63.10-2013 sec	etion 6.6.4				


6.10.1 E.U.T. Operation:

0.10.1 L.O.1. C	perau	OII.					
Operating Envi	ronmer	nt:					
Temperature:	26.3 °	Atmospheric Pressure:	101 kPa				
Pre test mode:		Mod	e1, Mode2,	Mode3			
Final test mode		f the listed p e (Mode3) is		e were tested, only the dat n the report	a of the worst		
Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported. All modes of operation of the EUT were investigated, and only the worst-case results are reported.							

Report No.: MTi241226008-03E1

6.10.2 Test Setup Diagram:

Report No.: MTi241226008-03E1

6.10.3 Test Data:

5.10.3	3 Test	Data:					(A)	3/1/21.	
Mod	e3 / Pol	arization: Hori	zontal / CH:	L					
2.0	No. N	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
γ_{II}		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	4804.000	44.30	0.53	44.83	74.00	-29.17	peak	
	2	4804.000	38.04	0.53	38.57	54.00	-15.43	AVG	
	3	7206.000	42.88	7.90	50.78	74.00	-23.22	peak	62
	4	7206.000	36.79	7.90	44.69	54.00	-9.31	AVG	
	5	9608.000	44.79	8.85	53.64	74.00	-20.36	peak	
	6 *	9608.000	38.72	8.85	47.57	54.00	-6.43	AVG	

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	43.81	0.53	44.34	74.00	-29.66	peak
	2		4804.000	37.72	0.53	38.25	54.00	-15.75	AVG
	3		7206.000	43.03	7.90	50.93	74.00	-23.07	peak
ζ.	4		7206.000	36.69	7.90	44.59	54.00	-9.41	AVG
The second	5		9608.000	44.93	8.85	53.78	74.00	-20.22	peak
	6	*	9608.000	38.72	8.85	47.57	54.00	-6.43	AVG

									TIE TIEECOOO	, 00-
Mod	e3 / P	olari	zation: Hori	zontal / CH:	М			(GA		
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	- xa 11.3	
36			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1111.	1		4882.000	43.76	0.57	44.33	74.00	-29.67	peak	
-	2		4882.000	37.69	0.57	38.26	54.00	-15.74	AVG	
-	3		7323.000	42.48	7.57	50.05	74.00	-23.95	peak	_
-	4		7323.000	36.58	7.57	44.15	54.00	-9.85	AVG	es
	5		9764.000	43.92	9.33	53.25	74.00	-20.75	peak	
	6	*	9764.000	38.26	9.33	47.59	54.00	-6.41	AVG	
-										

Mod	e3 / P	olariz	zation: Verti	cal / CH: M					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4882.000	44.80	0.57	45.37	74.00	-28.63	peak
	2		4882.000	39.05	0.57	39.62	54.00	-14.38	AVG
	3		7323.000	43.29	7.57	50.86	74.00	-23.14	peak
	4		7323.000	36.97	7.57	44.54	54.00	-9.46	AVG
1/1	5		9764.000	44.59	9.33	53.92	74.00	-20.08	peak
la.	6	*	9764.000	38.32	9.33	47.65	54.00	-6.35	AVG

									100		
	Mod	e3 / P	olari	zation: Horiz	zontal / CH:	Н			(GA		
		No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	- 12 11 1	
	6.0			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
9	Mi.	1		4960.000	43.46	0.66	44.12	74.00	-29.88	peak	
1)		2		4960.000	37.60	0.66	38.26	54.00	-15.74	AVG	_
		3		7440.000	42.65	7.94	50.59	74.00	-23.41	peak	- 4
		4		7440.000	36.63	7.94	44.57	54.00	-9.43	AVG	60
		5		9920.000	45.15	9.69	54.84	74.00	-19.16	peak	
		6	*	9920.000	38.57	9.69	48.26	54.00	-5.74	AVG	

Mod	e3 / Pola	arization: Verti	cal / CH: H					
	No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4960.000	44.44	0.66	45.10	74.00	-28.90	peak
	2	4960.000	38.90	0.66	39.56	54.00	-14.44	AVG
	3	7440.000	42.92	7.94	50.86	74.00	-23.14	peak
	4	7440.000	36.63	7.94	44.57	54.00	-9.43	AVG
Ni/	5	9920.000	43.76	9.69	53.45	74.00	-20.55	peak
4	6 *	9920.000	37.57	9.69	47.26	54.00	-6.74	AVG

Report No.: MTi241226008-03E1

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Report No.: MTi241226008-03E1

Photographs of the EUT

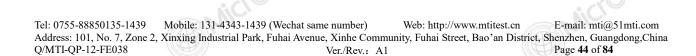
Refer to Appendix - EUT Photos

Ver./Rev.: A1

Q/MTI-QP-12-FE038

Report No.: MTi241226008-03E1

Appendix


Report No.: MTi241226008-03E1

Microtest

Appendix A: 20dB Emission Bandwidth

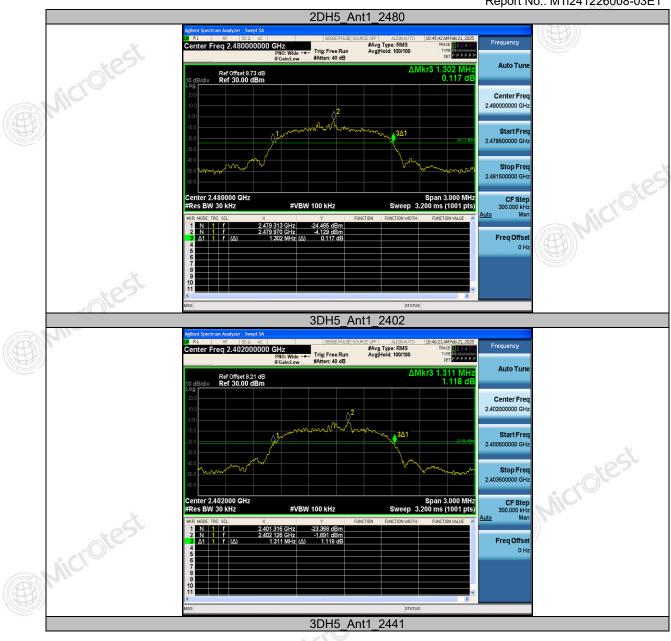
Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
100		2402	0.951
DH5	Ant1	2441	0.927
		2480	0.990
		2402	1.287
2DH5	Ant1	2441	1.293
	((A	2480	1.302
	1/13	2402	1.311
3DH5	Ant1	2441	1.314
		2480	1.302

And Control

Report No.: MTi241226008-03E1

Test Graphs



Report No.: MTi241226008-03E1

Microtest

Report No.: MTi241226008-03E1

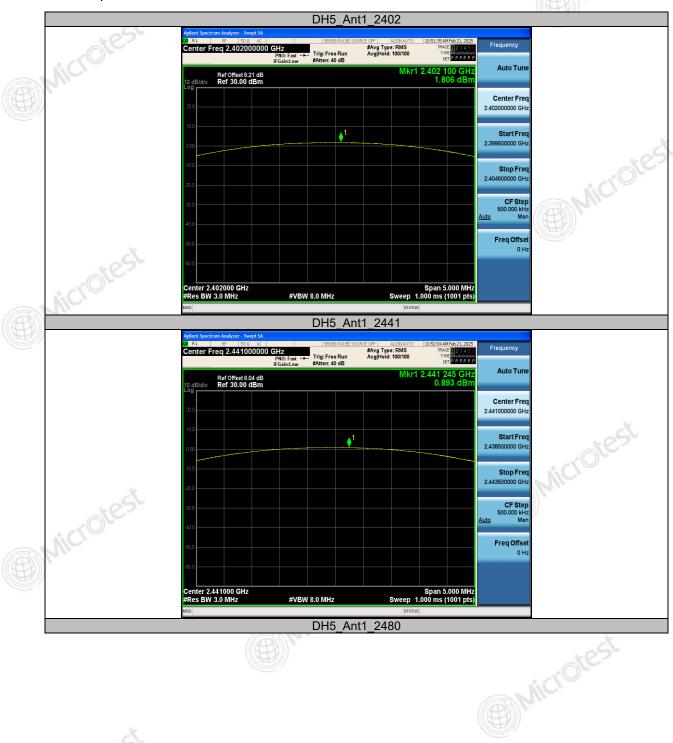
Microfest

Report No.: MTi241226008-03E1

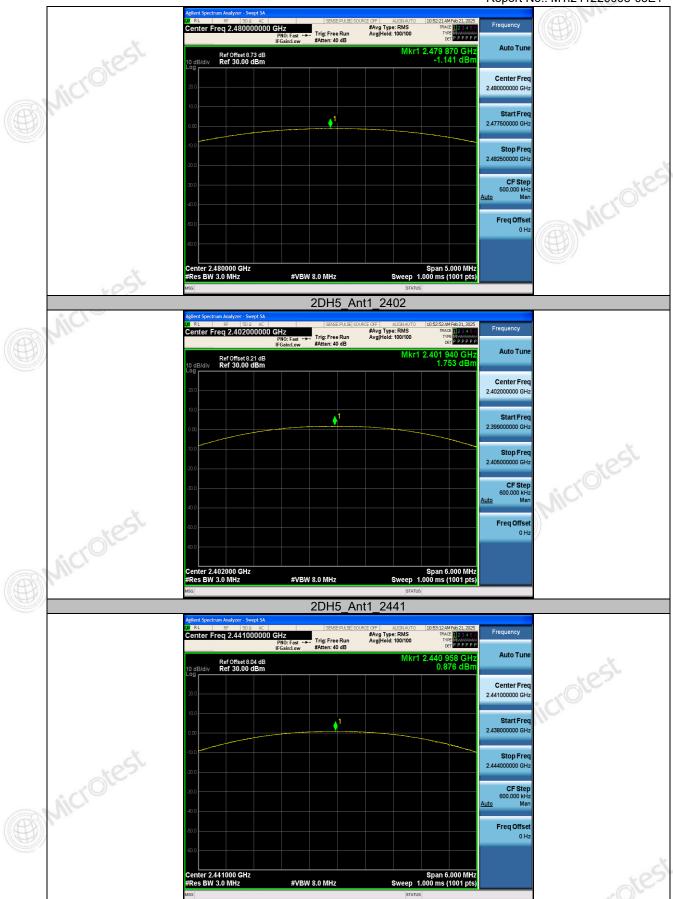
Microtest

Appendix B: Maximum conducted output power

Test Result Peak


Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	1.81	≤20.97	PASS
DH5	Ant1	2441	0.89	≤20.97	PASS
		2480	-1.14	≤20.97	PASS
		2402	1.75	≤20.97	PASS
2DH5	Ant1	2441	0.88	≤20.97	PASS
		2480	-1.15	≤20.97	PASS
		2402	2.17	≤20.97	PASS
3DH5	Ant1	2441	1.32	≤20.97	PASS
		2480	-0.72	≤20.97	PASS

Mhicrotest



Report No.: MTi241226008-03E1

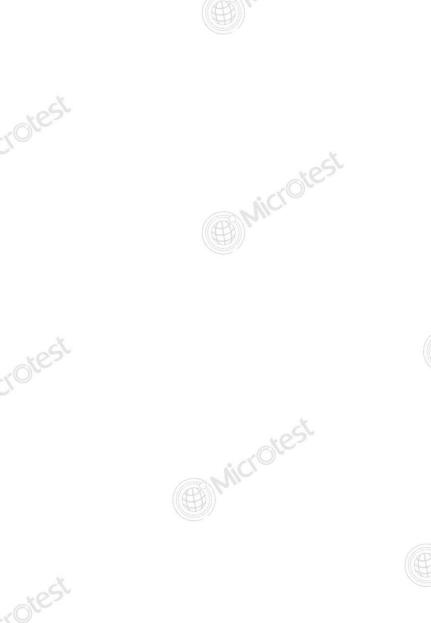
Test Graphs

Report No.: MTi241226008-03E1

Microtest

Report No.: MTi241226008-03E1

Microtest



Report No.: MTi241226008-03E1

Appendix C: Carrier frequency separation

Test Result


Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1.012	≥0.634	PASS
2DH5	Ant1	Нор	0.982	≥0.858	PASS
3DH5	Ant1	Нор	0.994	≥0.874	PASS

Report No.: MTi241226008-03E1

Test Graphs

Report No.: MTi241226008-03E1

Microlest

Mhicrotest

Report No.: MTi241226008-03E1

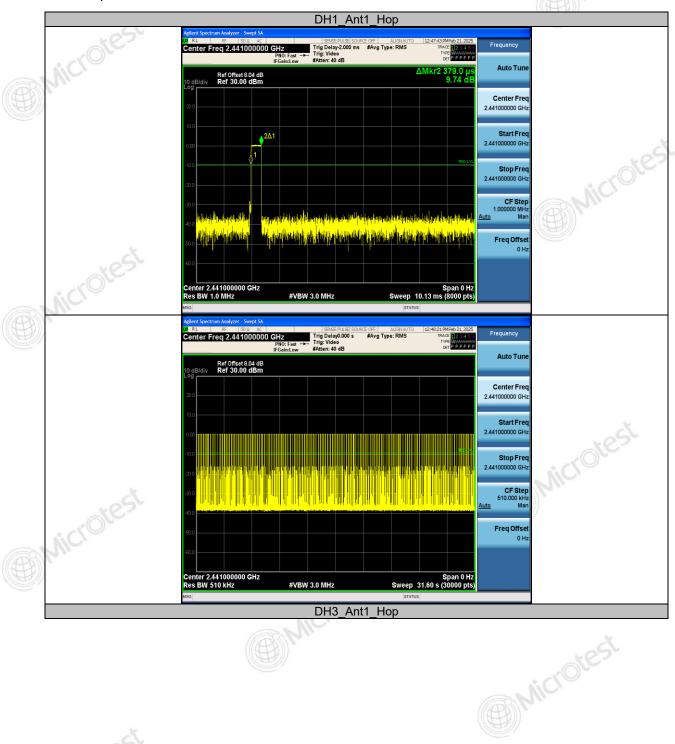
MMicrotest

Appendix D: Time of occupancy

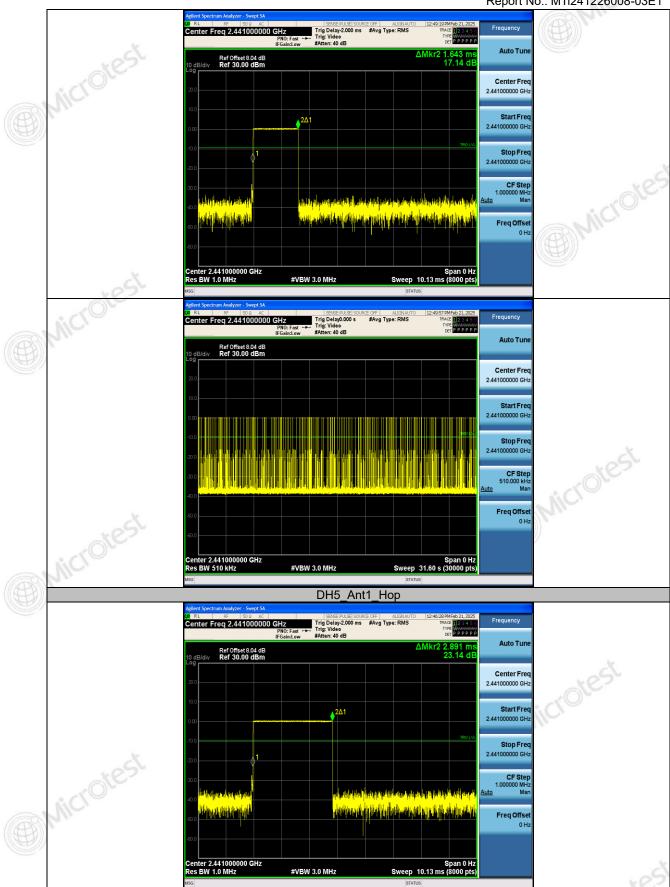
Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.379	311	0.118	≤0.4	PASS
DH3	Ant1	Нор	1.643	179	0.294	≤0.4	PASS
DH5	Ant1	Нор	2.891	98	0.283	≤0.4	PASS
2DH1	Ant1	Нор	0.386	311	0.12	≤0.4	PASS
2DH3	Ant1	Нор	1.638	177	0.29	≤0.4	PASS
2DH5	Ant1	Нор	2.887	109	0.315	≤0.4	PASS
3DH1	Ant1	Нор	0.385	311	0.12	≤0.4	PASS
3DH3	Ant1	Нор	1.635	179	0.293	≤0.4	PASS
3DH5	Ant1	Нор	2.887	105	0.303	≤0.4	PASS

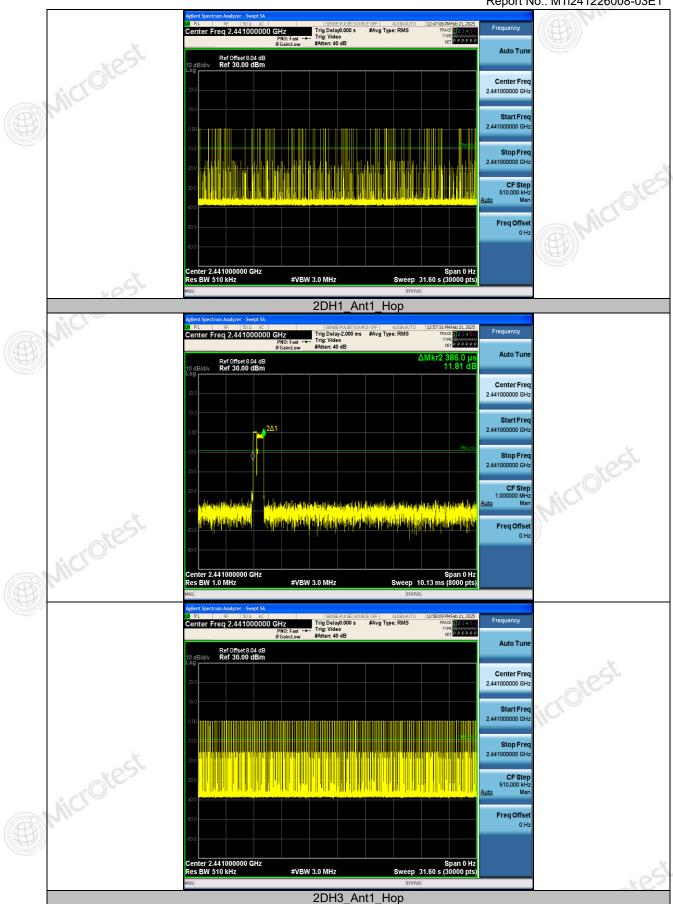
Notes:

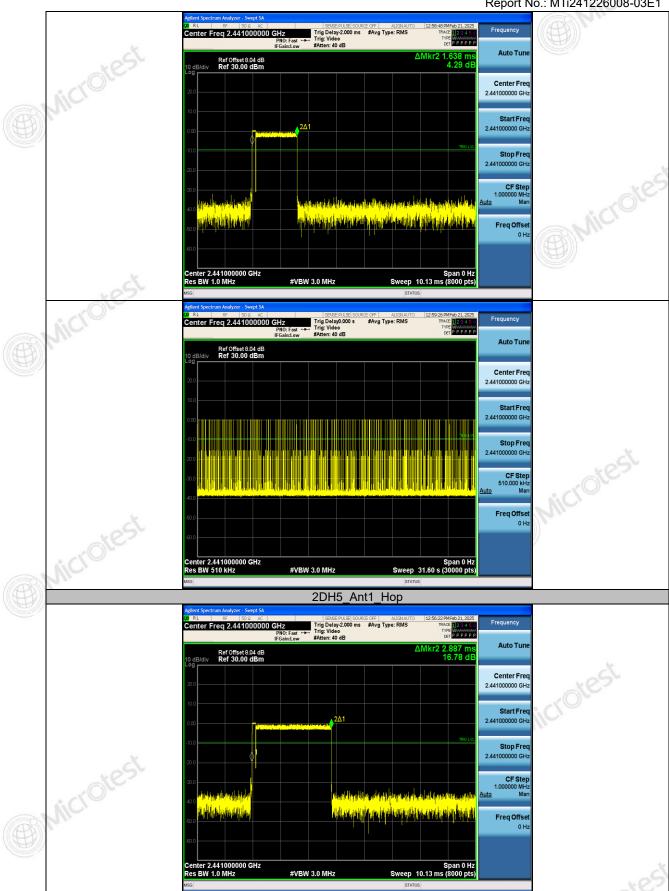

- 1. Period time = 0.4s * 79 = 31.6s
- 2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

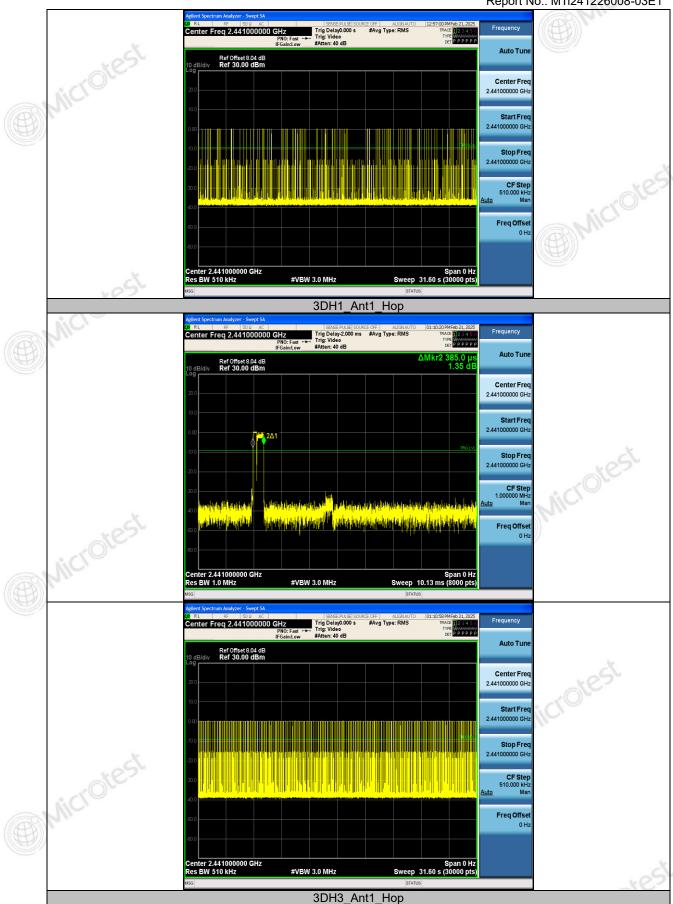
Microtest

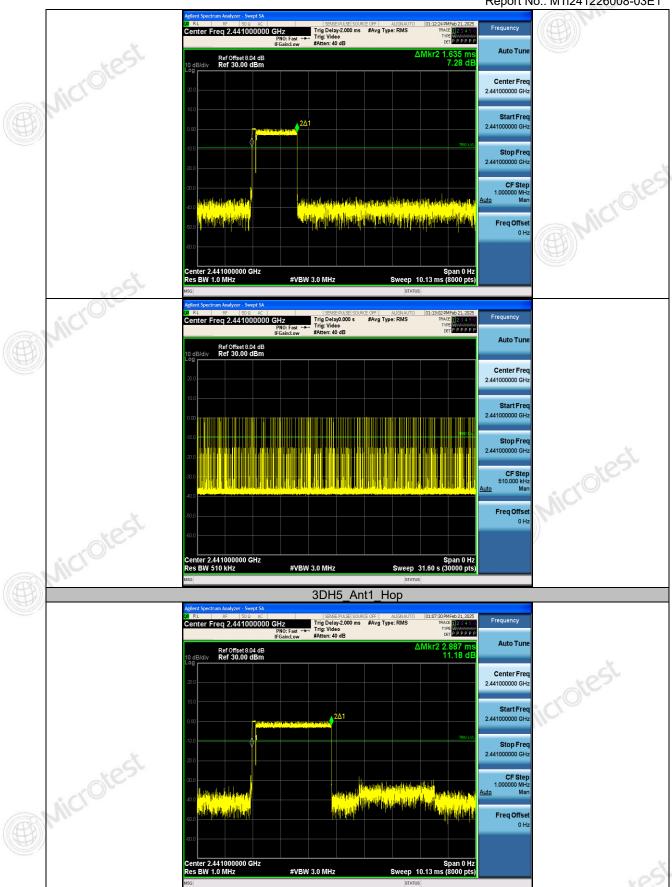


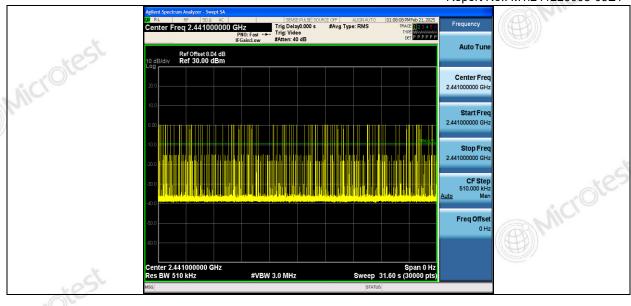
Report No.: MTi241226008-03E1


Test Graphs









Report No.: MTi241226008-03E1

Microlest

Microtest

Report No.: MTi241226008-03E1

Appendix E: Number of hopping channels

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS