

FCC RADIO TEST REPORT

FCC ID: 2BN6E-4DKANKAN-META

Sample: 3D Capture System

Trade Mark: 4DKanKan

Main Model: 4DKanKan Meta

Additional Model: N/A

Report No.: UNIA25021407ER-63

Prepared for

Zhuhai 4DAGE Technology Co., Ltd.

2-101-2, Building 2, Tech Bay, NO.1 Jintang Road, Tangjiawan, High-Tech Zone, Zhuhai, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

TEST RESULT CERTIFICATION

Applicant:	Zhuhai 4DAGE Technology Co., L	_td.
------------	--------------------------------	------

2-101-2, Building 2, Tech Bay, NO.1 Jintang Road, Tangjiawan,

High-Tech Zone, Zhuhai, China

Manufacturer Zhuhai 4DAGE Technology Co., Ltd.

High-Tech Zone, Zhuhai, China

Product description

Product 3D Capture System

Trade Mark 4DKanKan

Model Name...... 4DKanKan Meta

Test Methods FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

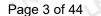
This device described above has been tested by Shenzhen United Testing Technology Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Feb. 27, 2025 ~ Mar. 26, 2025

Date of Issue...... Mar. 26, 2025


Edited by: Abe Yang Kelly Cheng Reviewed by:

Kelly Cheng

Approved by:

Tel: +86-755-8618 0996

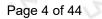


Table of Contents Page **TEST SUMMARY** 1.1 TEST PROCEDURES AND RESULTS 5 1.2 TEST FACILITY 6 1.3 MEASUREMENT UNCERTAINTY 1.4 ENVIRONMENTAL CONDITIONS **2 GENERAL INFORMATION** 8 2.1 GENERAL DESCRIPTION OF EUT 8 2.2 CARRIER FREQUENCY OF CHANNELS 9 2.3 TEST MODE 9 2.4 DESCRIPTION OF THE TEST MODES 10 2.5 TEST SETUP 10 2.6 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL 10 2.7 MEASUREMENT INSTRUMENTS LIST 12 3 CONDUCTED EMISSION 13 3.1 TEST LIMIT 13 3.2 TEST SETUP 13 3.3 TEST PROCEDURE 14 3.4 TEST RESULT 14 4 RADIATED EMISSION 17 4.1 TEST LIMIT 17 4.2 TEST SETUP 18 4.3 TEST PROCEDURE 19 4.4 TEST RESULT 20 5 OCCUPIED BANDWIDTH 36 5.1 TEST LIMIT 36 5.2 TEST PROCEDURE 36 37 5.3 TEST SET-UP 5.4 TEST RESULT 37 6 MAXIMUM CONDUCTED OUTPUT AVERAGE POWER SPECTRAL DENSITY38 6.1 TEST LIMIT 38 6.2 TEST PROCEDURE 38 6.3 TEST SET-UP 38 6.4 EQUIPMENT USED 38 6.5 TEST RESULT 38

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109)

Tel: +86-755-8618 0996

Tab	le of Contents	Page
7 AVARAGE7 OUTPUT POWER	12, 12,	39
7.1 TEST LIMIT		39
7.2 TEST PROCEDURE		39
7.3 TEST SET-UP		39
7.4 EQUIPMENT USED		39
7.5 TEST RESULT		39
8 CONDUCTED SPURIOUS EM	ISSION	40
7.6 TEST LIMIT		40
7.7 TEST SETUP		40
7.8 TEST PROCEDURE		40
7.9 TEST RESUL		40
9 ANTENNA REQUIREMENT		41
10 PHOTO OF TEST		42
11 EUT Constructional Details		44

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item	FCC Rules	Description Of Test	Result
1,3	FCC Part 15.407	6dB Bandwidth	Pass
2	FCC Part 15.407	Emission Bandwidth	Pass
3	FCC Part 15.407	Maximum conducted output power	Pass
4	FCC Part 15.407	Conducted Spurious Emission	Pass
5	FCC Part 15.407	Maximum Conducted Output Power Density	Pass
6	FCC Part 15.209	Radiated Emission	Pass
7	FCC Part 15.407	Band Edges	Pass
8	FCC Part 15.207	Line Conduction Emission	Pass
9	FCC Part 15.203	Antenna Requirement	Pass

Note:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2.EUT has two antennas and cannot transmit at the same time

Report No.: UNIA25021407ER-63 Page 6 of 44

1.2 TEST FACILITY

Shenzhen United Testing Technology Co., Ltd. Test Firm

Address D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community,

Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 31584

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

1.3 MEASUREMENT UNCERTAINTY

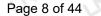
The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
UNI ANSI	ANICI	9kHz ~ 150kHz	2.96
	150kHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
17.	. 2	9kHz ~ 30MHz	2.50
UNI	ANSI	30MHz ~ 1000MHz	4.80
2 2	12	1000MHz ~ 18000MHz	4.13


C. RF Conducted Method:

Item	Measurement Uncertainty
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$

1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35 °C
Relative Humidity:	30~60 %
Air Pressure:	950~1050 hPa

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	3D Capture System
Trade Mark:	4DKanKan
Main Model:	4DKanKan Meta
Additional Model:	N/A
Model Difference:	N/A
FCC ID:	2BN6E-4DKANKAN-META
Operation Frequency:	Band 1: 5150 MHz∼5250MHz Band 4: 5725 MHz∼5850MHz
Modulation Type:	BPSK, QPSK, 16QAM, 64QAM, 128QAM, 256QAM, OFDM
Maximum Peak Conducted Output Power:	Band 1: 15.74dBm Band 4: 15.52dBm
Antenna Type:	PCB Antenna
Antenna Gain:	B1:5.57dBi,B4:5.60dBi
Battery:	DC 14.4V 5000mAh 72Wh
Adapter:	Model:GS-W4SA0954 Input:100-240V-50/60Hz, 1.2A USB-C1/C2 Output: DC 5V-3A or 9V-3A or 12V-3A or 15V-3A or 20V-2.25A Total Power: 45W Max(PPS)3.3V-16V-3A 45W Max
Power Source:	DC 14.4V from adapter or DC 14.4V from Li-battery

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

2.2 CARRIER FREQUENCY OF CHANNELS

Frequency Band	Channel Number	Frequency	Frequency Band	Channel Number	Frequency
R. C.	36	5180 MHz	5725 MHz ~ 5850MHz	149	5745 MHz
N N	38	5190 MHz		151	5755 MHz
	40	5200 MHz		153	5765 MHz
5150 MHz ~ 5250MHz	42	5210 MHz		155	5775 MHz
5250MHZ	44	5220 MHz	0000Wii 12	157	5785 MHz
3 12,	46	5230 MHz	w .	159	5795 MHz
12 12	48	5240 MHz	12 12	165	5825MHz

Note: For 20MHz bandwidth system use Channel 36, 40, 48, 149, 157, 165; For 40MHz bandwidth system use Channel 38, 46, 151, 159.

2.3 TEST MODE

Mode	Mode Available channel		Modulation	Date
				rate(Mbps)
802.11a/n20/ac20	36, 40, 44, 48, 149, 153, 157,	36, 40, 48, 149,	OFDM	6Mbps/MCS0
4 4	165	157, 165	J.	4.
802.11n40/ac40	38, 46, 151, 159;	38, 46, 151, 159	OFDM	MCS0
802.11ac80	42, 155	42, 155	OFDM	MCS0

Note:

- 1. The EUT has been set to operate continuously on tested channel individually, and the EUT is operating at its maximum duty cycle>or equal 98%.
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.

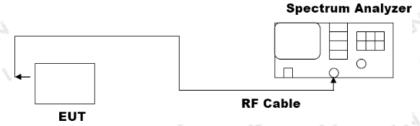
2.4 DESCRIPTION OF THE TEST MODES

During the measurement the environmental conditions were within the listed ranges:

Voltage	Normal Voltage	DC 14.4V
	High Voltage	DC 15.84V
	Low Voltage	DC 12.96V
	Normal Temperature	24°C
Other	Relative Humidity	55 %
	Air Pressure	989 hPa

Note: All modes were test at Normal Voltage, High Voltage, and Low Voltage, only the worst results of Normal Voltage was reported in the test report.

2.5 TEST SETUP


Operation of EUT during Conducted testing:

Operation of EUT during Radiation testing:

Operation of EUT during RF Conducted testing:

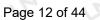
2.6 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Cable Length(m)	Note
13	3D Capture System	4DKanKan Meta	N - N	EUT

广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109)

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China


Page 11 of 44 Report No.: UNIA25021407ER-63

2	Adapter	GS-W4SA0954	1 12 12	AE

Note:

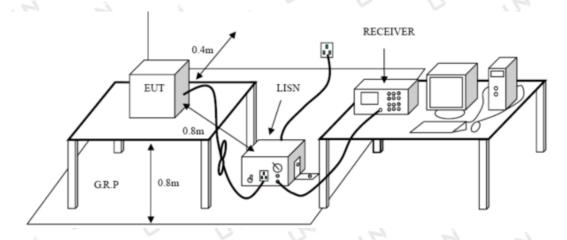
- 1. The support equipment was authorized by Declaration of Confirmation.
- All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.7 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti
	Equipmont		issions Measuremer	. 7 - 7007	Jansiatou unu
	Conducted Emission	12, 1	E E	-1 :	
1	Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2025.06.11
3	AAN	TESEQ	T8-Cat6	38888	2025.06.11
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2025.06.11
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2025.06.11
		Radiated Emis	sions Measurement	· ri	i i
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2025.07.14
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2025.07.28
4	PREAMP	HP	8449B	3008A00160	2025.06.11
5	PREAMP	HP	8447D	2944A07999	2025.06.11
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2025.06.11
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2025.06.11
8	Signal Generator	Agilent	E4421B	MY4335105	2025.06.11
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2025.06.11
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2025.06.11
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2025.06.11
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2025.06.11
13	RF power divider	Anritsu	K241B	992289	2025.06.11
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2025.06.11
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2025.06.11
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2025.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2025.07.14
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2025.07.14
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2025.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2025.09.22
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2025.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2025.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2025.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2025.09.22

www.uni-lab.hk

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

_	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLA	SS A	CLASS B			
(1411 12)	Q.P.	Ave.	Q.P.	Ave.		
0.15~0.50	79	66	66~56*	56~46*		
0.50~5.00	73	60	56	46		
5.00~30.0	73	60	60	50		

Decreasing linearly with the logarithm of the frequency. For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

3.3 TEST PROCEDURE

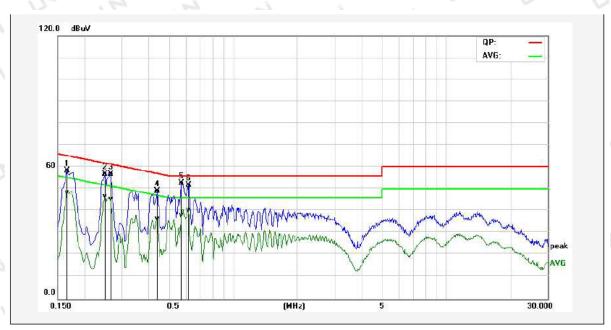
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer /
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

TEST RESULT

PASS

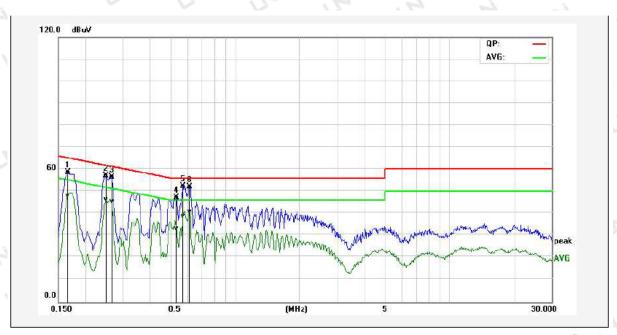
Remark:

- 1. All modes were test at Low, Middle, and High channel, only the worst result of Band 1 802.11a Low Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.



E.							
Temperature:	24℃	Relative Humidity:	48%				
Test Date:	Mar. 08, 2025	Pressure:	1010hPa				
Test Voltage:	AC 120V, 60Hz	AC 120V, 60Hz Phase: Line					
Test Mode: Transmitting mode of Band 1							

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1660	48.31	38.18	10.14	58.45	48.32	65.15	55.16	-6.70	-6.84	Pass
2P	0.2500	46.85	36.46	10.15	57.00	46.61	61.75	51.76	-4.75	-5.15	Pass
3P	0.2660	46.62	35.26	10.15	56.77	45.41	61.24	51.24	-4.47	-5.83	Pass
4P	0.4420	38.86	26.28	10.10	48.96	36.38	57.02	47.02	-8.06	-10.64	Pass
_	0.5740	42.44	27.75	10.07	52.51	37.82	56.00	46.00	-3.49	-8.18	Pass
6P	0.6180	41.73	30.27	10.07	51.80	40.34	56.00	46.00	-4.20	-5.66	Pass


Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Temperature:	24 °C	Relative Humidity:	48%		
Test Date:	Mar. 08, 2025	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral		
Test Mode: Transmitting mode of Band 1					

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	_
1P	0.1660	48.41	38.04	10.14	58.55	48.18	65.15	55.16	-6.60	-6.98	Pass
2P	0.2500	46.96	36.18	10.15	57.11	46.33	61.75	51.76	-4.64	-5.43	Pass
3P	0.2660	46.47	35.38	10.15	56.62	45.53	61.24	51.24	-4.62	-5.71	Pass
4P	0.5340	37.19	23.22	10.08	47.27	33.30	56.00	46.00	-8.73	-12.70	Pass
_	0.5740	42.34	28.70	10.07	52.41	38.77	56.00	46.00	-3.59	-7.23	Pass
6P	0.6140	42.08	30.62	10.07	52.15	40.69	56.00	46.00	-3.85	-5.31	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

RADIATED EMISSION

4.1 TEST LIMIT

For unintentional device, according to §15.209(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Alexand CITE	F00	54.0	Average	3
Above 1GHz	IGHz 500		Peak	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance
(MHz)	(dBuV/m)	(m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
, ri , i	-27(Note 2)	68.2
E70E E0E0	10(Note 2)	105.2
5725~5850	15.6(Note 2)	110.8
	27(Note 2)	122.2

NOTE:

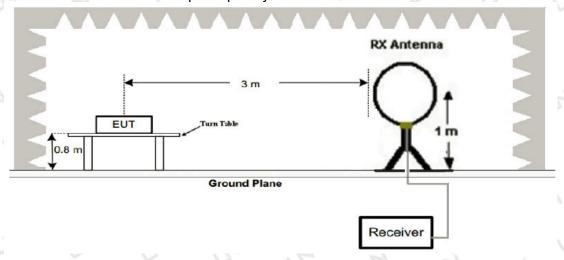
1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$1000000\sqrt{30P}$$

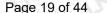
E= 3 uV/m, where P is the eirp (Watts)

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or

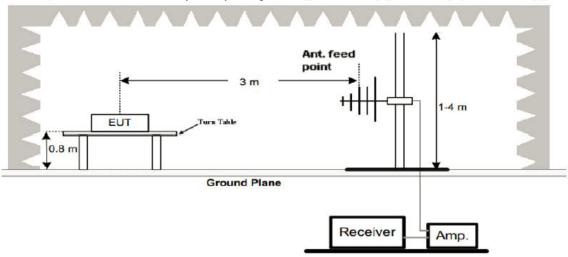
more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below

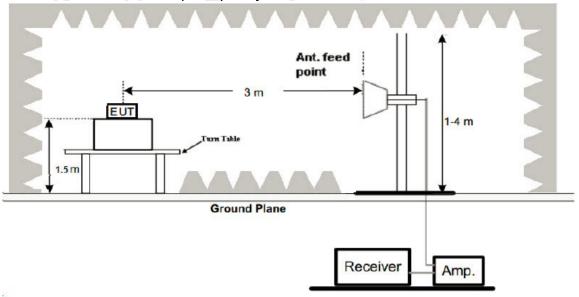

the band edge, and from 25MHz above or below the band edge increasing linearly to a level of

15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band


edge increasing linearly to a level of 27dBm/MHz at the band edge.

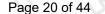
4.2 TEST SETUP


1. Radiated Emission Test-Up Frequency Below 30MHz


D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz



4.3 TEST PROCEDURE

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

Note: For battery operated equipment, the equipment tests shall be performed using a new battery.

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

4.4 TEST RESULT

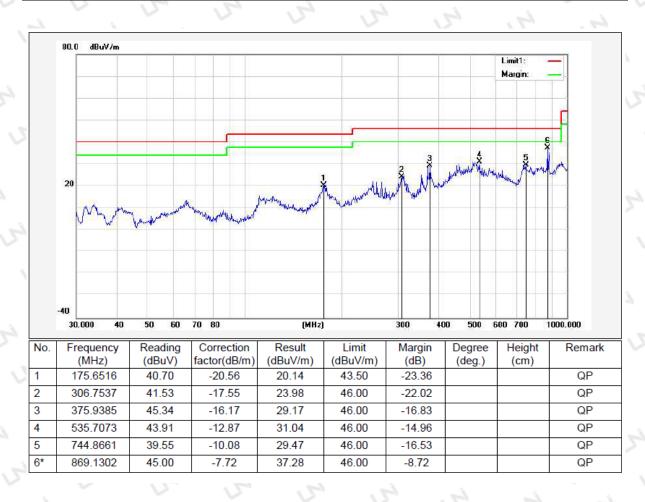
PASS

Remark:

- 1. All modes were test at Low, Middle, and High channel, only the worst result of band 1 802.11a Low Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.

Radiated emission below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

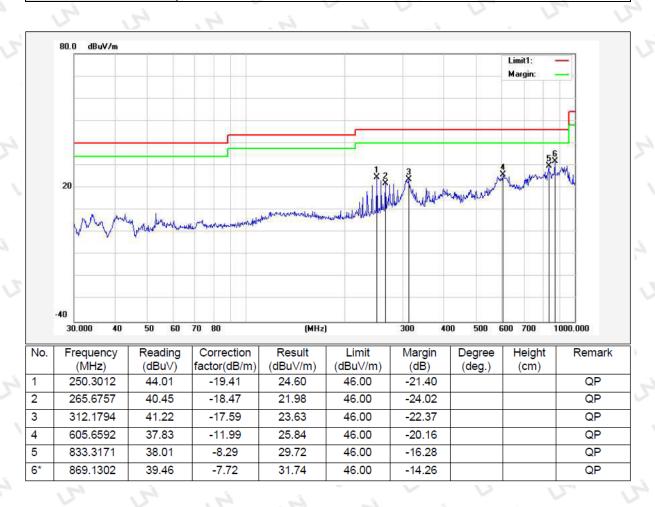


Below 1GHz Test Results:

Temperature:	24 ℃	Relative Humidity:	48%			
Test Date:	Mar. 08, 2025	Pressure:	1010hPa			
Test Voltage:	DC 14.4V	Phase:	Horizontal			
Test Mode:	Transmitting mode of band 1					

Remark: Result = Reading Level + Factor, Margin = Result– Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	24 °C	Relative Humidity:	48%		
Test Date:	Mar. 08, 2025	Pressure:	1010hPa		
Test Voltage:	DC 14.4V Phase: Vertical				
Test Mode: Transmitting mode of band 1					


Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

 $D101\&\,D401,\,No.107,\,Kaicheng\,High-Tech\,Park,\,Taoyuan\,Community,\,Dalang\,Sub-District,\,Longhua\,District,\,Shenzhen,\,Guangdong,\,China\,District,\,$

C. C			[] [m]
Temperature:	24 ℃	Relative Humidity:	48%
Test Date:	Mar. 08, 2025	Pressure:	1010hPa
Test Voltage:	DC 14.4V	Phase:	Horizontal
Test Mode:	Transmitting mode of I	oand 4	7 ,



Remark: Result = Reading Level + Factor, Margin = Result– Limit
Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	24℃	Relative Humidity:	48%
Test Date:	Mar. 08, 2025	Pressure:	1010hPa
Test Voltage:	DC 14.4V	Phase:	Vertical
Test Mode:	Transmitting mod	e of band 4	J 12 15

Remark: Result = Reading Level + Factor, Margin = Result– Limit
Factor = Ant. Factor + Cable Loss – Pre-amplifier

Radiated emission above 1GHz

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5180MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

(MHz)	(dBµV)	(dB)	(dBu\//m)	(10.1//.)	(.=)	Value Type
	(· /	(GD)	(dBµV/m)	(dBµV/m)	(dB)	
10360.047	46.88	9.14	56.02	68.20	-12.18	peak
15540.065	41.68	10.22	51.90	74.00	-22.10	peak
15540.066	42.69	10.22	52.91	54.00	-1.09	AVG

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10360.047	46.65	9.14	55.79	68.2	-12.41	peak
15540.065	41.49	10.22	51.71	74	-22.29	peak
15540.066	42.69	10.22	52.91	54	-1.09	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

25°C 60% **Relative Humidity Temperature** 960hPa Normal Voltage **Test Voltage Pressure Test Mode** 802.11a 5200MHz Horizontal/Vertical Antenna

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	─ Value Type
10400.042	46.55	9.14	55.69	68.20	-12.51	peak
15600.063	41.16	10.22	51.38	74.00	-22.62	peak
15600.063	31.29	10.22	41.51	54.00	-12.49	AVG

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/-\ T
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	− Value Type
10400.042	45.46	9.14	54.60	68.20	-13.60	peak
15600.063	41.35	10.22	51.57	74.00	-22.43	peak
15600.063	32.78	10.22	43.00	54.00	-11.00	AVG

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a 5240MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10480.042	44.55	9.27	53.82	68.20	-14.38	peak
15720.063	41.29	10.38	51.67	74.00	-22.33	peak
15720.063	33.67	10.38	44.05	54.00	-9.95	AVG
Remark:	12. 13	17, 17	. 1	-1	- 1	
Factor = Anten	na Factor + Cable	Loss – Pre-ar	mplifier.		12	12

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/-\ T
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10480.042	43.28	9.27	52.55	68.20	-15.65	peak
15720.063	41.84	10.38	52.22	74.00	-21.78	peak
15720.063	33.66	10.38	44.04	54.00	-9.96	AVG

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

and the same of th			
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n20 5180MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ–Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10360.042	46.55	9.14	55.69	68.20	-12.51	peak
15540.063	41.27	10.22	51.49	74.00	-22.51	peak
15540.063	35.64	10.22	45.86	54.00	-8.14	AVG

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10360.042	45.56	9.14	54.70	68.20	-13.50	peak
15540.063	42.54	10.22	52.76	74.00	-21.24	peak
15540.063	31.33	10.22	41.55	54.00	-12.45	AVG
Remark:	in in	1			12	121
	7.7	4 200		-		

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

 Temperature
 25°C
 Relative Humidity
 60%

 Pressure
 960hPa
 Test Voltage
 Normal Voltage

 Test Mode
 802.11n20 5200MHz
 Antenna
 Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10400.042	44.44	9.14	53.58	68.20	-14.62	peak
15600.063	41.23	10.22	51.45	74.00	-22.55	peak
15600.063	31.56	10.22	41.78	54.00	-12.22	AVG
Remark:	[7]					

Remark.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	\/alua Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	─ Value Type
10400.042	45.37	9.14	54.51	68.20	-13.69	peak
15600.063	41.11	10.22	51.33	74.00	-22.67	peak
15600.063	32.26	10.22	42.48	54.00	-11.52	AVG

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n20 5240MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Value Type
10480.042	45.59	9.27	54.86	68.20	-13.34	peak
15720.063	41.27	10.38	51.65	74.00	-22.35	peak
15720.063	32.36	10.38	42.74	54.00	-11.26	AVG

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
10480.042	45.38	9.27	54.65	68.20	-13.55	peak
15720.063	40.26	10.38	50.64	74.00	-23.36	peak
15720.063	32.39	10.38	42.77	54.00	-11.23	AVG
Remark:	12	12	17 .	i .		
Factor = Anter	nna Factor + Cabl	e Loss – Pre-a	mplifier.	12	12	(4)

25°C **Relative Humidity** 60% **Temperature Pressure** 960hPa **Test Voltage** Normal Voltage **Test Mode** 802.11a20 5745MHz Horizontal/Vertical **Antenna**

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Trees
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11490.042	46.52	9.42	55.94	74.00	-18.06	peak
11490.042	37.56	9.42	46.98	54.00	-7.02	AVG
17235.063	40.59	10.51	51.10	68.20	-17.10	peak

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency Met	ter Reading	Factor	Emission Level	Limits	Margin	
					9	Malus Tiese
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Value Type
11490.042	45.65	9.42	55.07	74.00	-18.93	peak
11490.042	36.59	9.42	46.01	54.00	-7.99	AVG
17235.063	40.55	10.51	51.06	68.20	-17.14	peak

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5785MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11570.042	46.21	9.42	55.63	74.00	-18.37	peak
11570.042	35.21	9.42	44.63	54.00	-9.37	AVG
17355.063	41.21	10.51	51.72	68.20	-16.48	peak

RADIATED EMISSION ABOVE 1GHZ-Vertical

(N.4L.L—)	The second second					
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11570.042	47.62	9.42	57.04	74.00	-16.96	peak
11570.042	37.26	9.42	46.68	54.00	-7.32	AVG
17355.063	42.35	10.51	52.86	68.20	-15.34	peak

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996 Tel: +86-755-8618 0996

25°C **Temperature Relative Humidity** 60% **Pressure** 960hPa **Test Voltage** Normal Voltage Horizontal/Vertical **Test Mode** 802.11a20 5825MHz **Antenna**

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11650.042	47.56	9.62	52.92	74.00	-21.02	peak
11650.042	38.55	9.62	45.05	54.00	-8.95	AVG
17475.063	43.46	10.75	47.61	68.20	-26.39	peak

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11650.042	47.48	9.62	53.55	74.00	-20.45	peak
11650.042	36.29	9.62	47.64	54.00	-6.36	AVG
17475.063	41.65	10.75	48.61	68.20	-25.39	peak
emark:	į.		1	1300	V	79

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

Temperature25°CRelative Humidity60%Pressure960hPaTest VoltageNormal VoltageTest Mode802.11n20 5745MHzAntennaHorizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11490.042	45.24	9.42	54.66	74.00	-19.34	peak
11490.042	37.76	9.42	47.18	54.00	-6.82	AVG
17235.063	40.65	10.51	51.16	68.20	-17.04	peak

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11490.042	46.61	9.42	56.03	74.00	-17.97	peak
11490.042	37.63	9.42	47.05	54.00	-6.95	AVG
17235.063	41.55	10.51	52.06	68.20	-16.14	peak
Remark:	12	12	. [7]	j.		
actor = Anter	na Factor + Cabl	e Loss – Pre-a	mplifier.	12	, [7]	. [7]

Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n20 5785MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11570.042	46.27	9.42	55.69	74.00	-18.31	peak
11570.042	35.23	9.42	44.65	54.00	-9.35	AVG
17355.063	41.56	10.51	52.07	68.20	-16.13	peak

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11570.042	47.65	9.42	57.07	74.00	-16.93	peak
11570.042	37.14	9.42	46.56	54.00	-7.44	AVG
17355.063	42.35	10.51	52.86	68.20	-15.34	peak

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd.

 Temperature
 25°C
 Relative Humidity
 60%

 Pressure
 960hPa
 Test Voltage
 Normal Voltage

 Test Mode
 802.11n20 5825MHz
 Antenna
 Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
11650.042	48.46	9.62	52.92	74.00	-21.02	peak
11650.042	38.67	9.62	45.05	54.00	-8.95	AVG
17475.063	43.18	10.75	47.61	68.20	-26.39	peak

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Value Type
11650.042	48.45	9.62	53.55	74.00	-20.45	peak
11650.042	36.34	9.62	47.64	54.00	-6.36	AVG
17475.063	41.45	10.75	48.61	68.20	-25.39	peak

Note: All test channels had been tested. The 802.11a is the worst case and recorded in the test report. Other frequencies radiation emission from 1GHz to 40GHz at least have 20dB margin and not recorded in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Limit-Level.

The "Factor" value can be calculated automatically by software of measurement system.

- Note: 1. All the 20MHz bandwidth modulation had been tested, the 802.11a at 5180MHz was the worst case and record in his test report.
 - 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.
 - 3. Only the data of band edge emission at the restricted band 4.5GHz-5.15GHz and 5.35GHz-5.46GHz record in the report. Other restricted band 7.25GHz-7.77GHz were considered as ambient noise. No recording in the test report.
 - 4. The sideband standard of Band 4 frequency band is not defined, the transmitted signal does not fall in the restricted band, and the edge signal is far away from the edge of other restricted bands, and it is not recorded in the report.

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

5 OCCUPIED BANDWIDTH

5.1 TEST LIMIT

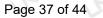
The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

F	CC Part 15 Subpart C(15.407)	
Test Item	Limit	Frequency Range(MHz)
12, 12, 12,	4 4	5150~5250
26 dB Bandwidth	N/A	5250~5350
L 12 17	12 12 12	5470~5725
6 dB Bandwidth	>500kHz	5725~5850

5.2 TEST PROCEDURE

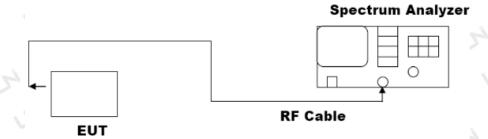
-6dB bandwidth (DTS bandwidth):

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on operation frequency individually.
- 3. Set RBW = 100kHz.
- 4. Set the VBW ≥3*RBW. Detector = Peak. Trace mode = max hold.
- 5. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.


99% occupied bandwidth:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 1.5 to 5 times the OBW, centered on a nominal channel
 The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
 bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

-26dB Bandwidth:


- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Note: The EUT was tested according to KDB 789033 for compliance to FCC 47CFR 15.407 requirements.

5.3 TEST SET-UP

5.4 TEST RESULT

PASS

Please Refer to Appendix 5G WIFI RF test data for Details

6 MAXIMUM CONDUCTED OUTPUT AVERAGE POWER SPECTRAL DENSITY

6.1 TEST LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

FCC Part 15 Subpart E(15.407)					
Test Item	Limit	Frequency Range(MHz)			
12 12 12	Other than Mobile and	4. 12. 12			
	Portable : 17dBm/MHz	E4E0 E0E0			
	Mobile and Portable :	5150~5250			
Power Spectral Density	11dBm/MHz	J. 12 12			
D. D. W.	11dBm/MHz	5250~5350			
	11dBm/MHz	5470~5725			
4, 12	30dBm/500kHz	5725~5850			

6.2 TEST PROCEDURE

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of
- (4) 5.2G Set the RBW to: 1 MHz, 5.8G Set the RBW to: 510KHz
- (5) 5.2G Set the VBW to: 3 MHz, 5.8G Set the VBW to: 3 MHz
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

6.3 TEST SET-UP

Same as 5.3.

6.4 EQUIPMENT USED

Same as Radiated Emission Measurement.

6.5 TEST RESULT

PASS

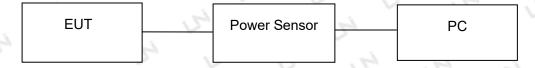
Please Refer to Appendix 5G WIFI RF test data for Details

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

7 AVARAGE7 OUTPUT POWER

7.1 TEST LIMIT

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):


FC	FCC Part 15 Subpart E(15.407)					
Test Item	Limit	Frequency Range(MHz)				
N IN IN IN	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250				
Conducted Output Power	250mW (24dBm)	5250~5350				
L 4, 12	250mW (24dBm)	5470~5725				
	1 Watt (30dBm)	5725~5850				

7.2 TEST PROCEDURE

- 1.The EUT was tested according to according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.
- 2.The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 5.Record the measurement data.

7.3 TEST SET-UP

AVERAGE POWER SETUP

7.4 EQUIPMENT USED

Same as Radiated Emission Measurement.

7.5 TEST RESULT

Please Refer to Appendix 5G WIFI RF test data for Details

8 CONDUCTED SPURIOUS EMISSION

7.6 TEST LIMIT

Applicable Limits	Channel
-27dBm/MHz	5150MHz-5250MHz
All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more a bove or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band	6706NIU- 6060NIU-
edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the	5725MHz-5850MHz
band edge.	

7.7 TEST SETUP

Same as 5.3

7.8 TEST PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

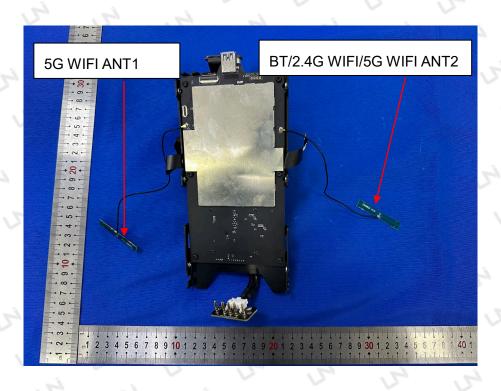
Note: The EUT was tested according to KDB 789033 for compliance to FCC 47CFR 15.407 requirements.

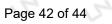
7.9 TEST RESUL

PASS

Please Refer to Appendix 5G WIFI RF test data for Details

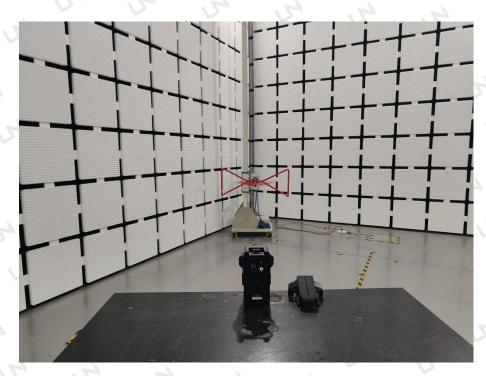
9 ANTENNA REQUIREMENT

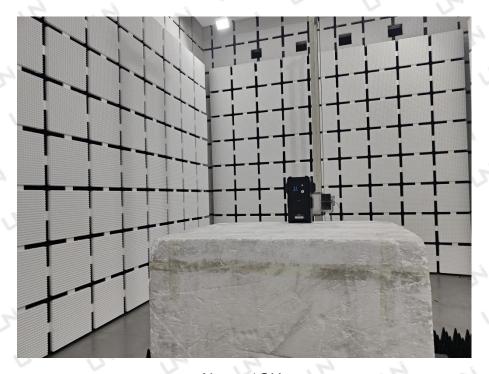

Standard Applicable:

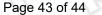

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is B1:5.57dBi,B4:5.60dBi

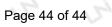

ANTENNA:




10 PHOTO OF TEST **RADIATED EMISSION**

30MHz-1000MHz

Above 1GHz



CONDUCTED EMISSION

RF CONDUCTED

11 EUT Constructional Details

Refer to the External Photos and Internal Photos for details.

*End of Report***

