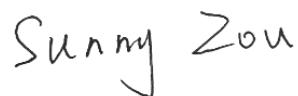


TEST REPORT


Applicant: REOLINK TECHNOLOGY PTE. LTD.
Address: 31 KAKI BUKIT ROAD 3, #06-02, TECHLINK,
SINGAPORE 417818
Equipment Type: Dock
Model Name: RLA-CD1
Brand Name: Reolink
FCC ID: 2BN5S-2504B
Test Standard: 47 CFR Part 15 Subpart C
(refer to section 3.1)
Sample Arrival Date: Mar. 17, 2025
Test Date: Apr. 30, 2025 - May 15, 2025
Date of Issue: May 26, 2025

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Li Ganming**Checked by:** Ye Hongji**Approved by:** Sunny Zou

(Technical Director)

Revision History

Version	Issue Date	Revisions
<u>Rev. 01</u>	<u>May 26, 2025</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	Test Laboratory	4
1.2	Test Location.....	4
2	PRODUCT INFORMATION.....	5
2.1	Applicant Information.....	5
2.2	Manufacturer Information	5
2.3	General Description for Equipment under Test (EUT)	5
2.4	Technical Information	5
3	SUMMARY OF TEST RESULTS.....	6
3.1	Test Standards	6
3.2	Test Verdict	6
4	GENERAL TEST CONFIGURATIONS.....	7
4.1	Test Environments	7
4.2	Test Equipment List.....	7
4.3	Measurement Uncertainty	8
4.4	Description of Test Setup	8
5	TEST ITEMS.....	12
5.1	Antenna Requirements.....	12
5.2	20 dB and 99% Bandwidth.....	13
5.3	AC Conducted Emission	14
5.4	Radiated Spurious Emission	15
5.5	Band Edge (Restricted-band band-edge).....	17
ANNEX A	TEST RESULT	18
A.1	20 dB and 99% Bandwidth.....	18

A.2	AC Conducted Emissions.....	19
A.3	Radiated Emission	21
A.4	Band Edge (Restricted-band band-edge).....	25
ANNEX B	TEST SETUP PHOTOS.....	26
ANNEX C	EUT EXTERNAL PHOTOS	26
ANNEX D	EUT INTERNAL PHOTOS	26

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.
Location	<input checked="" type="checkbox"/> Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
	<input type="checkbox"/> 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	REOLINK TECHNOLOGY PTE. LTD.
Address	31 KAKI BUKIT ROAD 3, #06-02, TECHLINK, SINGAPORE 417818

2.2 Manufacturer Information

Manufacturer	REOLINK TECHNOLOGY PTE. LTD.
Address	31 KAKI BUKIT ROAD 3, #06-02, TECHLINK, SINGAPORE 417818

2.3 General Description for Equipment under Test (EUT)

EUT Name	Dock
Model Name Under Test	RLA-CD1
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.4 Technical Information

Network and Wireless connectivity	LoRa
-----------------------------------	------

The requirement for the following technical information of the EUT was tested in this report:

Modulation Technology	FHSS
Modulation Type	GFSK
Product Type	<input checked="" type="checkbox"/> Mobile <input type="checkbox"/> Portable <input type="checkbox"/> Fix Location
Transfer Rate	1 Mbps
Frequency Range	The frequency range used is 915 MHz.
Number of Channel	1
Tested Channel	915 MHz
Antenna Type	Spring Antenna
Antenna Gain	-0.26 dBi

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Miscellaneous Wireless Communications Services
2	ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

3.2 Test Verdict

No.	Description	FCC Part No.	Test Result	Verdict	Remark
1	Antenna Requirement	15.203	--	Pass	Note
2	20 dB and 99% Bandwidth	15.215(c)	ANNEX A.1	Pass	--
3	AC Conducted Emission	15.207	ANNEX A.2	Pass	--
4	Radiated Spurious Emission	15.249(a)	ANNEX A.3	Pass	--
5	Band Edge(Restricted-band band-edge)	15.249(a)	ANNEX A.4	Pass	--

Note: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

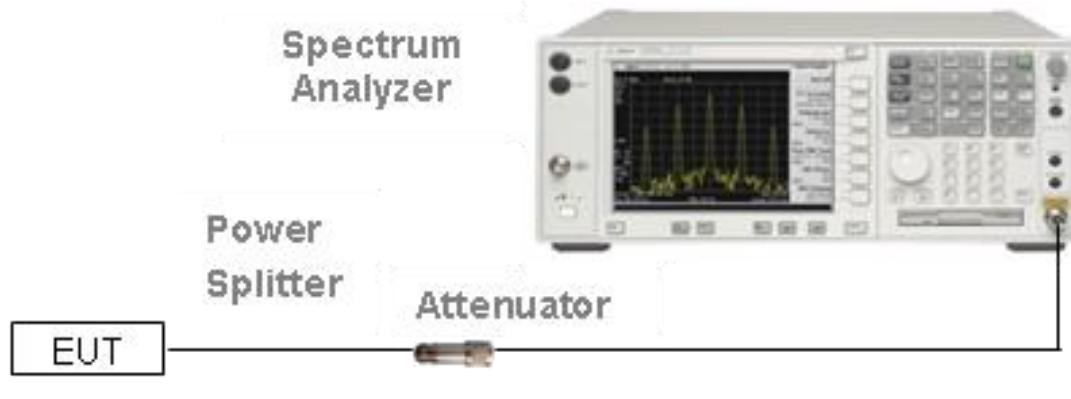
During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	40% to 59%		
Atmospheric Pressure	100 kPa to 102 kPa		
Temperature	NT (Normal Temperature)		+20.1°C to +25.2°C
Working Voltage of the EUT	NV (Normal Voltage)		5V

4.2 Test Equipment List

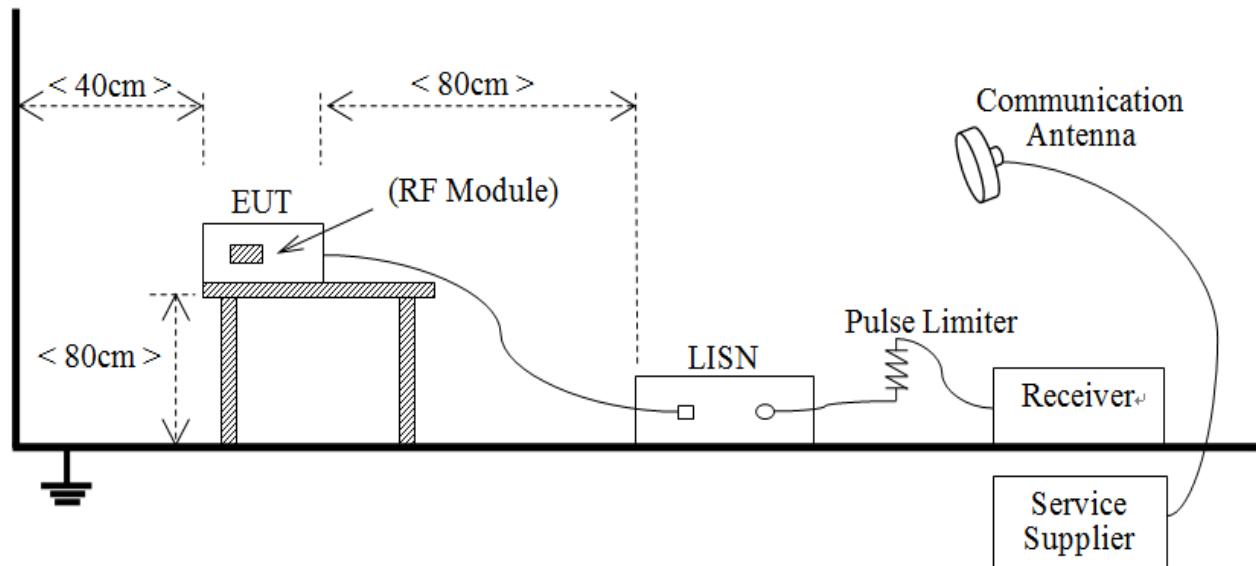
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	KEYSIGHT	N9020A	MY46471071	2024.07.04	2025.07.03
Spectrum Analyzer	KEYSIGHT	N9020A	MY52510065	2024.08.01	2025.07.31
Test Antenna-Bi-Log	SCHWARZBECK	VULB 9163	00884	2025.03.01	2028.02.29
Test Antenna-Horn	SCHWARZBECK	BBHA 9120D	01631	2025.02.22	2028.02.21
Anechoic Chamber	RAINFORD	9m*6m*6m	144	2025.01.04	2028.01.03
Amplifier	COM-MV	ZT30-1000M	18110850	2024.08.01	2025.07.31
Amplifier	COM-MV	LSCX_LNA1-12G-01	180602	2024.08.01	2025.07.31
Amplifier	COM-MV	XKu_LNA7-18G-01	180601	2024.08.01	2025.07.31
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2024.08.01	2025.07.31
Test Antenna-Bi-Log	SCHWARZBECK	VULB 9168	9168-01162	2023.08.04	2026.08.03
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2024.01.23	2027.01.22
Amplifier	COM-MV	ZT30-1000M	B2018054558	2024.11.28	2025.11.27
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60*7.35m	130	2024.07.13	2027.07.12
EMI Receiver	KEYSIGHT	N9010B	MY57110309	2024.08.01	2025.07.31
Shielded Enclosure	YiHeng Electronic Co., Ltd	3.5m*3.1m*2.8m	112	2025.02.14	2028.02.13

4.3 Measurement Uncertainty


The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

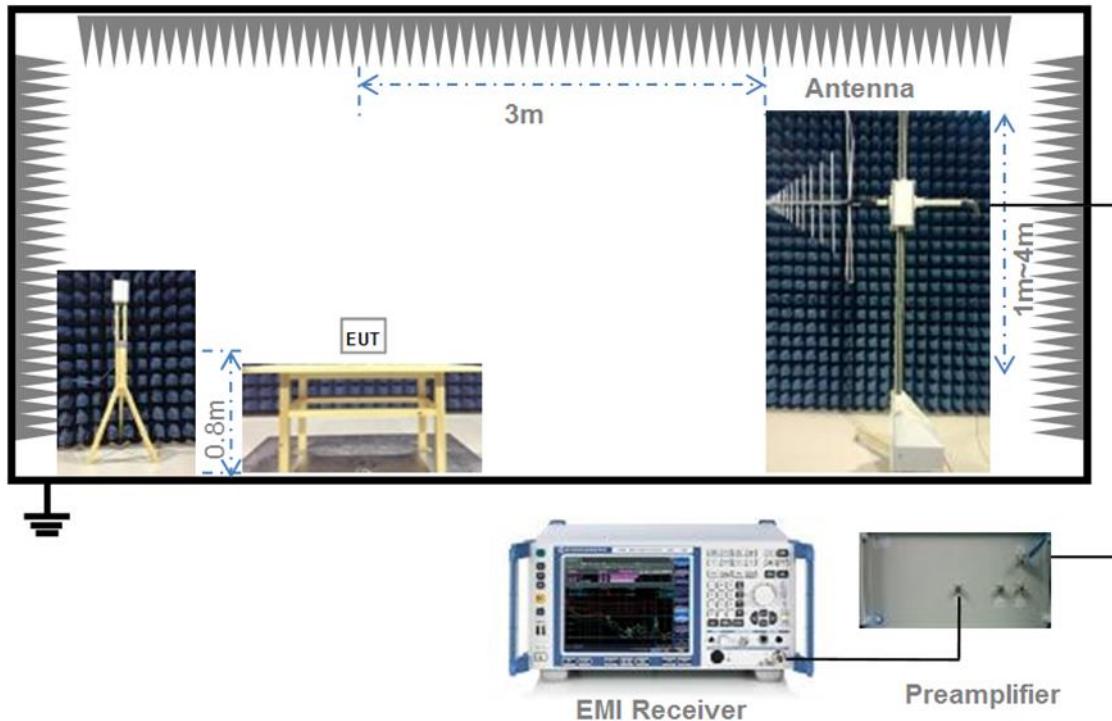
Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.8°C
Humidity	4%


4.4 Description of Test Setup

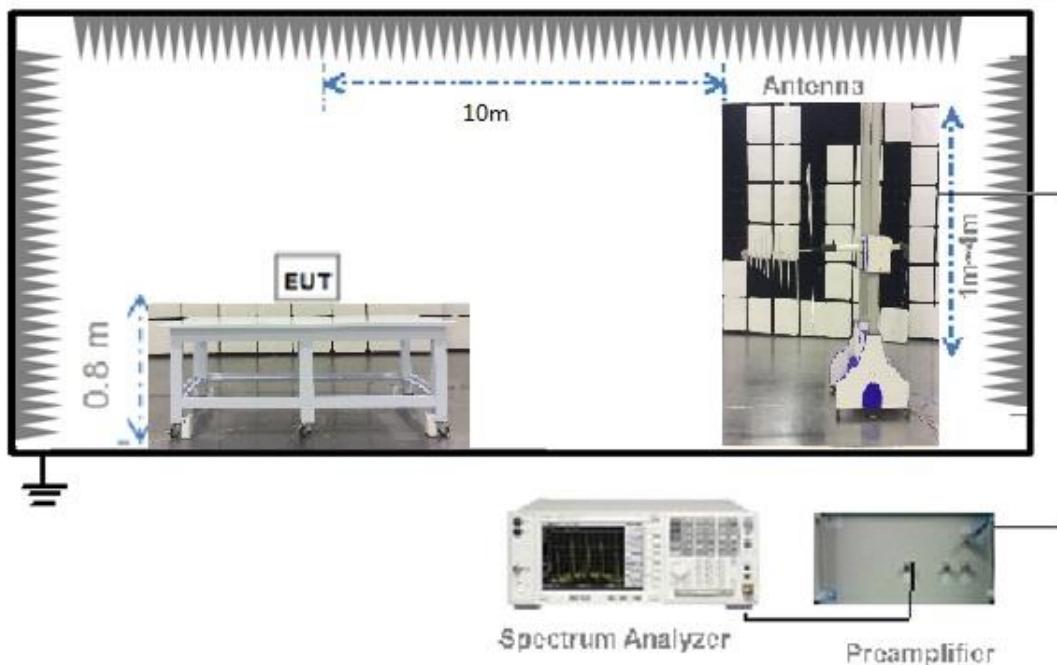
4.4.1 For Antenna Port Test

(Diagram 1)

4.4.2 For AC Power Supply Port Test

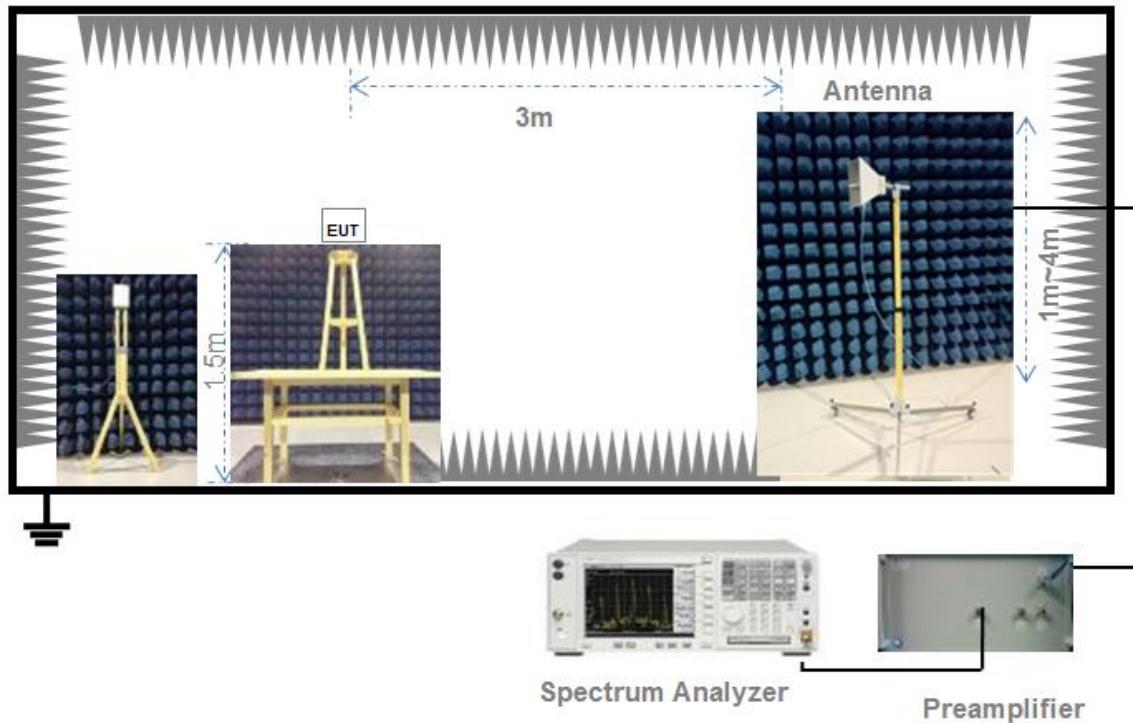

(Diagram 2)

4.4.3 For Radiated Test (Below 30 MHz)



(Diagram 3)

4.4.4 For Radiated Test (30 MHz-1 GHz)



(Diagram 4)

(Diagram 4)

4.4.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203 & 15.247(b)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5.2 20 dB and 99% Bandwidth

5.2.1 Limit

FCC §15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.2.2 Test Setups

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.2.4 Test Result

Please refer to ANNEX A.1.

5.3 AC Conducted Emission

5.3.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
0.50 - 30	60	50

5.3.2 Test Setups

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Radiated Spurious Emission

5.4.1 Limit

FCC §15.249(a)

Except as provided in paragraph (a) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency (MHz)	Field Strength of Fundamental (mV/m)	Field Strength of Harmonics (μV/m)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

1. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
2. For above 1000 MHz, limit field strength of harmonics: 54dB_{AV}/m@3m (AV) and 74dB_{PK}/m@3m (PK).

5.4.2 Test Setups

See section 4.4.2-4.4.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented. The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.4.4 Test Result

Please refer to ANNEX A.3.

5.5 Band Edge (Restricted-band band-edge)

5.5.1 Limit

FCC §15.249(a)

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

5.5.2 Test Setups

See section 4.4.3 to 4.4.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.5.4 Test Result

Please refer to ANNEX A.4.

ANNEX A TEST RESULT

A.1 20 dB and 99% Bandwidth

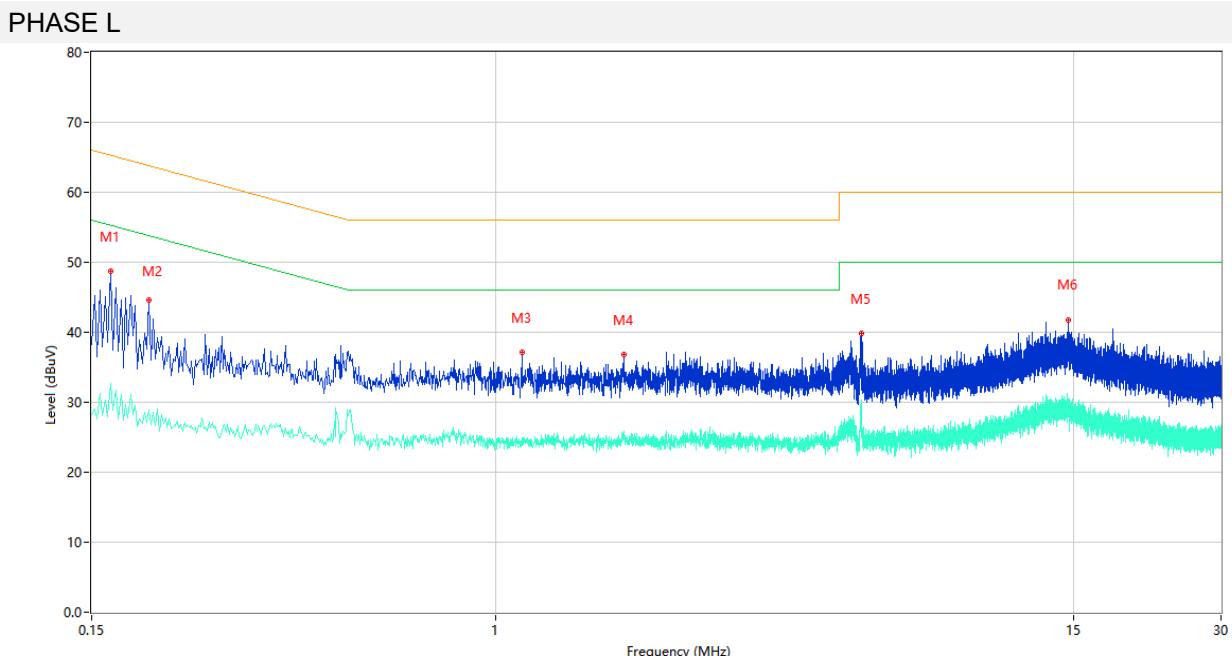
Test Data


Frequency (MHz)	20 dB Bandwidth (kHz)	99% Bandwidth (kHz)
915	55.500	53.685

Test Plots

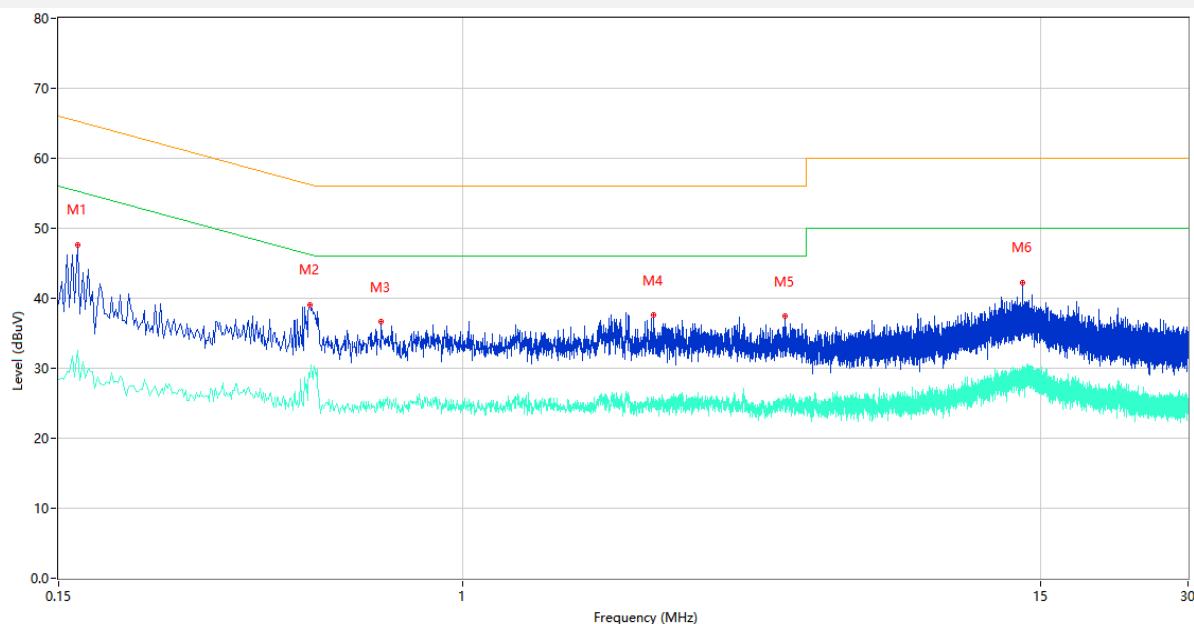
20 dB Bandwidth

99% Bandwidth


A.2 AC Conducted Emissions

Note ¹: The EUT is working in the Normal link mode. All modes have been tested and normal link mode is worst.

Note ²: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.


Note ³: Results (dBuV) = Original reading level of Spectrum Analyzer (dBuV) + Factor (dB)

Test Data and Plots

No.	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector	Line	Verdict
1	0.164	48.65	9.78	65.26	16.61	Peak	L	Pass
1**	0.164	32.68	9.78	55.26	22.58	AV	L	Pass
2	0.196	44.68	9.77	63.78	19.10	Peak	L	Pass
2**	0.196	28.94	9.77	53.78	24.84	AV	L	Pass
3	1.128	37.11	10.24	56.00	18.89	Peak	L	Pass
3**	1.128	24.97	10.24	46.00	21.03	AV	L	Pass
4	1.824	36.76	10.13	56.00	19.24	Peak	L	Pass
4**	1.824	25.88	10.13	46.00	20.12	AV	L	Pass
5	5.556	39.79	10.49	60.00	20.21	Peak	L	Pass
5**	5.556	30.25	10.49	50.00	19.75	AV	L	Pass
6	14.646	41.77	10.57	60.00	18.23	Peak	L	Pass
6**	14.646	30.15	10.57	50.00	19.85	AV	L	Pass

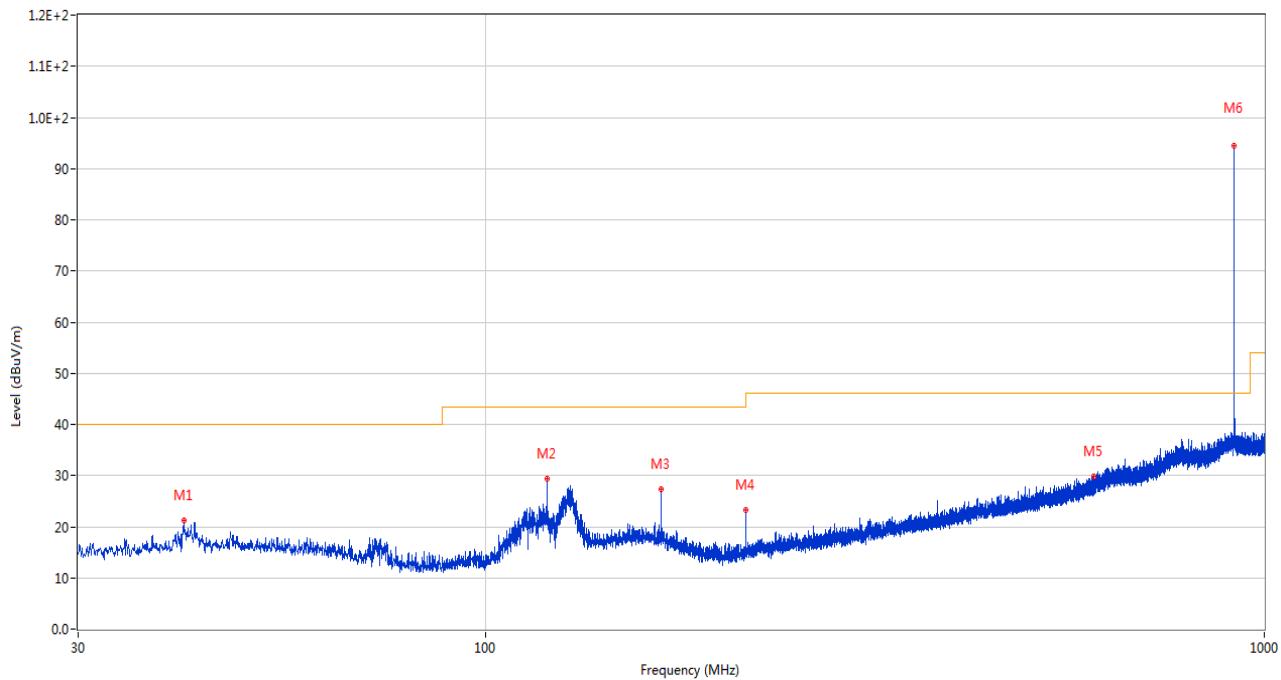
PHASE N

No.	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector	Line	Verdict
1	0.164	47.64	9.78	65.26	17.62	Peak	N	Pass
1**	0.164	32.58	9.78	55.26	22.68	AV	N	Pass
2	0.488	39.05	9.99	56.20	17.15	Peak	N	Pass
2**	0.488	28.74	9.99	46.20	17.46	AV	N	Pass
3	0.682	36.63	10.50	56.00	19.37	Peak	N	Pass
3**	0.682	25.28	10.50	46.00	20.72	AV	N	Pass
4	2.442	37.61	10.20	56.00	18.39	Peak	N	Pass
4**	2.442	25.87	10.20	46.00	20.13	AV	N	Pass
5	4.528	37.45	10.41	56.00	18.55	Peak	N	Pass
5**	4.528	25.59	10.41	46.00	20.41	AV	N	Pass
6	13.794	42.25	10.67	60.00	17.75	Peak	N	Pass
6**	13.794	29.51	10.67	50.00	20.49	AV	N	Pass

A.3 Radiated Emission

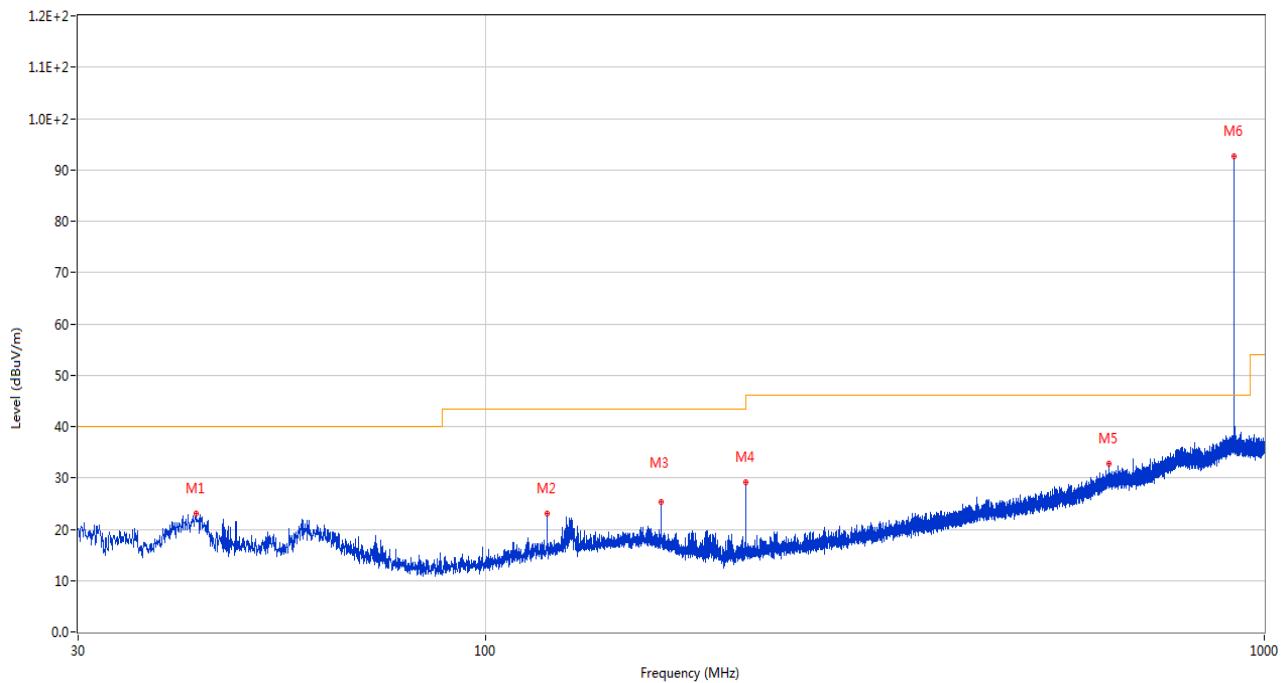
Note ¹: The symbol of “--” in the table which means not application.

Note ²: For the test data above 1 GHz, according the ANSI C63.4-2014, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.


Note ³: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Note ⁴: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and normal link mode is worst.

Note ⁵: The marked spikes near 915 MHz with circle should be ignored because they are Fundamental signal.


Test Data and Plots

30 MHz to 1 GHz, ANT H

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	41.010	21.18	40.0	18.82	Peak	264.00	150	Horizontal	Pass
2	120.016	29.33	43.5	14.17	Peak	239.00	100	Horizontal	Pass
3	168.031	27.32	43.5	16.18	Peak	188.00	200	Horizontal	Pass
4	215.998	23.35	43.5	20.15	Peak	178.00	150	Horizontal	Pass
5	603.755	29.87	46.0	16.13	Peak	302.00	100	Horizontal	Pass
6	914.980	93.87	94.0	0.13	Peak	237.00	150	Horizontal	Pass

30 MHz to 1 GHz, ANT V

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	42.513	23.01	40.0	16.99	Peak	268.00	150	Vertical	Pass
2	120.016	23.11	43.5	20.39	Peak	100.00	150	Vertical	Pass
3	167.982	25.31	43.5	18.19	Peak	64.00	100	Vertical	Pass
4	215.998	29.11	43.5	14.39	Peak	69.00	200	Vertical	Pass
5	630.915	32.73	46.0	13.27	Peak	343.00	200	Vertical	Pass
6	915.028	92.66	94.0	1.34	Peak	220.00	150	Vertical	Pass

Note: The spurious above 18G is noise only, do not show on the report.

1 GHz to 18 GHz, ANT H

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1830.100	44.43	74.0	29.57	Peak	33.00	100	Horizontal	Pass
1**	1830.100	39.13	54.0	14.87	AV	33.00	100	Horizontal	Pass
2	2968.000	49.32	74.0	24.68	Peak	250.00	100	Horizontal	Pass
2**	2968.000	40.12	54.0	13.88	AV	250.00	100	Horizontal	Pass
3	5798.600	49.97	74.0	24.03	Peak	144.00	200	Horizontal	Pass
3**	5798.600	40.93	54.0	13.07	AV	144.00	200	Horizontal	Pass
4	6994.400	52.33	74.0	21.67	Peak	82.00	100	Horizontal	Pass
4**	6994.400	43.49	54.0	10.51	AV	82.00	100	Horizontal	Pass
5	11281.162	47.60	74.0	26.40	Peak	241.00	400	Horizontal	Pass
5**	11281.162	37.36	54.0	16.64	AV	241.00	400	Horizontal	Pass
6	17433.000	52.74	74.0	21.26	Peak	64.00	400	Horizontal	Pass
6**	17433.000	42.30	54.0	11.70	AV	64.00	400	Horizontal	Pass

1 GHz to 18 GHz, ANT V

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1360.300	40.28	74.0	33.72	Peak	283.00	300	Vertical	Pass
1**	1360.300	30.78	54.0	23.22	AV	283.00	300	Vertical	Pass
2	2994.300	49.13	74.0	24.87	Peak	139.00	100	Vertical	Pass
2**	2994.300	39.72	54.0	14.28	AV	139.00	100	Vertical	Pass
3	4977.600	49.45	74.0	24.55	Peak	285.00	200	Vertical	Pass
3**	4977.600	39.84	54.0	14.16	AV	285.00	200	Vertical	Pass
4	6991.600	52.45	74.0	21.55	Peak	67.00	300	Vertical	Pass
4**	6991.600	43.88	54.0	10.12	AV	67.00	300	Vertical	Pass
5	12610.562	47.59	74.0	26.41	Peak	191.00	200	Vertical	Pass
5**	12610.562	38.72	54.0	15.28	AV	191.00	200	Vertical	Pass
6	17427.225	51.62	74.0	22.38	Peak	263.00	150	Vertical	Pass
6**	17427.225	42.30	54.0	11.70	AV	263.00	150	Vertical	Pass

A.4 Band Edge (Restricted-band band-edge)

Note ¹: The lowest and highest channels are tested to verify the band edge emissions. Please refer to the following the plots for emissions values.

Note ²: The test data all are tested in the vertical and horizontal antenna which the trace is max hold. So these plots have shown the worst case.

Note ³: According the ANSI C63.10-2013, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note ⁴: The Level (dBuV/m) has been corrected by factor.

Test Data

915 MHz

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	611.392	39.76	54.0	14.24	Peak	360.00	150	Horizontal	Pass
2	613.987	39.92	54.0	14.08	Peak	43.00	150	Horizontal	Pass

915 MHz

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	960.420	42.97	54.0	11.03	Peak	287.00	150	Horizontal	Pass
2	971.840	43.80	54.0	10.20	Peak	299.00	150	Horizontal	Pass

915 MHz

No.	Frequency (MHz)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1009.000	38.70	54.0	15.30	Peak	338.00	150	Horizontal	Pass
2	1137.160	39.05	54.0	14.95	Peak	182.00	150	Horizontal	Pass

ANNEX B TEST SETUP PHOTOS

Please refer the document “BL-SZ2531126-AR.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “BL-SZ2531126-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-SZ2531126-AI.PDF”.

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--