

LPMS-IG1W

Hardware Manual ver. 1.0

仅限用于广州阿路比电子科技有限公司
Bitec认证，其它用途无效

LP-Research Inc.
<https://www.lp-research.com>

Version History

Date	Version	Details
2024-06-28	ver. 1.0	- Initial release

仅限用于广州阿路比电子科技有限公司 Telec认证，其它用途无效

目录

1. Introduction	- 1 -
2. System Overview	- 2 -
2.1 Sensor Structure	- 2 -
2.2 Pin Out Configuration	- 3 -
3. Coordinate System	- 4 -
4. Specification	- 5 -
4.1. Overall Parameters	- 5 -
4.2. Gyroscope Parameters	- 6 -
4.3. Accelerometer Parameters	- 7 -
4.4. Magnetometer Parameters	- 8 -
4.5. Allan Chart	- 8 -
5. Mechanical Information	- 10 -

1. Introduction

The LPMS-IG1W is a high-precision, high-stability wireless attitude sensor specially developed for the industrial IoT field. The embedded powerful processor integrates and processes data from gyroscope, accelerometer and magnetometer, and correcting and calculating according to our unique algorithm, ultimately provides the following high-precision data output:

- Raw data (acceleration, angular velocity, magnetic fields, etc.)
- Angle data (euler angles or quaternions)
- Calibration linear acceleration, angular velocity and temperature.

Specifically, the LPMS-IG1W is equipped with two gyroscopes: Gyrol for low-speed ranges and Gyroll for high-speed ranges.

Applicable scenarios:

Gyrol is suitable for situations **where high data accuracy is required and the detection range is not extensive.**

Gyroll is suitable for situations **where moderate data accuracy is acceptable and a larger detection range is needed.**

Main features:

- High precision and high stability
- Embedded wireless WIFI module and TCP/IP stack
- Wireless transmission frequency up to 250Hz
- Integrated 3-axis gyroscope, accelerometer and magnetometer sensors
- Choice of two gyroscope with different detection ranges(Gyrol, Gyroll)
- Real time output : raw data, euler angles, quaternions, linear acceleration and temperature
- Communication interface: WIFI/USB
- Supports IoT platform for data monitoring and allows setting of alarm thresholds^[1]

Applications:

- Mechanical equipment
- Unmanned
- Robotics
- IoT

Note 1: The LPIoT monitoring platform needs to be used with an industrial PC and a router.

2. System Overview

2.1 Sensor Structure

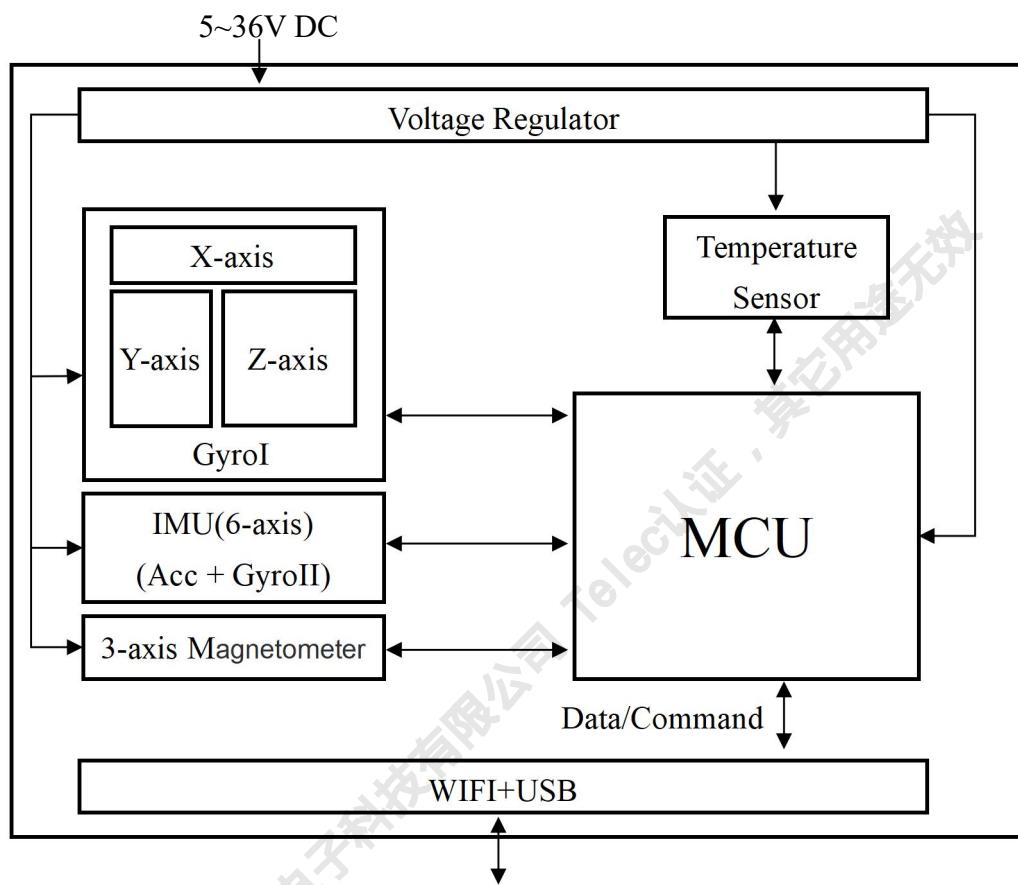


Fig.2.1. LPMS-IG1W sensor structure

2.2 Pin Out Configuration

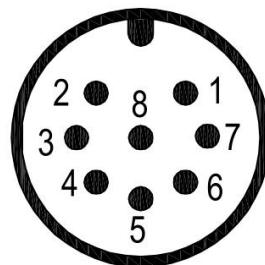


Fig.2.2. Sensor waterproof connector pin out(M12 8-pin-A-coded male connector)

Fig.2.2. LPMS-IG1W paired cables

Table 2-1. Connector pin out introduction

Pin No.	Signal	Name	Remark	Paired Cable Color
1	Power	VIN	+5V~+36V DC	White
2		GND	Ground	Brown
3		RES	-	Green
4		RES	-	Yellow
5	-	RES	-	Gray
6	USB	D-	-	Pink
7		D+	-	Blue
8	-	EN	Sensor enabled floating: enable; pulled to ground: disabled	Red

Communication setting in default:

- USB: COM mode, 921600bps, 8N1

3. Coordinate System

The interpretation of the data output by LPMS-IG1W is related to the reference coordinate system used, so an introduction and explanation of various relevant coordinate systems are needed first.

The **Sensor coordinate system (S)** refers to the coordinate system of the LPMS-IG1W sensor, which is a right-handed orthogonal coordinate system, as marked on the sticker on the metal waterproof casing of the product.

The **Object coordinate system (O)** refers to the coordinate system of the object to which the LPMS-IG1W sensor is fixed. When **(S)** and **(O)** do not completely coincide, it is possible to align these two coordinate systems through software configuration. For specific operations, please refer to the relevant software manual.

The **global reference coordinate system (G)** can be divided into two different cases. While the orientation calculation is using all acceleration, gyroscope and magnetic data (sensor filter mode set at acc+gyr+mag), **(G)** system is defined as following:

- X positive when pointing to the magnetic north
- Y positive when pointing to the magnetic west
- Z positive when pointing up (gravity points vertically down with -1g)

While the orientation calculation is using only acceleration and gyroscope data (sensor filter mode set at acc+gyr), **(G)** system is defined as following:

- X positive aligned to ground plane horizontal projection of x axis of **(S)** when sensor powered on
- Y positive based on right-handed Cartesian coordinate definition
- Z positive when pointing up (gravity points vertically down with -1g)

4. Specification

4.1. Overall Parameters

Name	Parameters	Condition	Value			Unit
			Min.	Typ.	Max.	
Performance Parameters	Wired communication frequency		5	100	500	Hz
	Euler angle range	roll	-180		+180	deg
		pitch	-90		+90	deg
		yaw	-180		+180	deg
WIFI parameters	Angle resolution			0.01		deg
	WIFI protocol			IEEE 802.11b/g/n		-
	WIFI working frequency band			2.4		GHz
	WIFI communication distance			10		m
	Wireless communication Standard	Supported protocols		TCP/IP 或 MQTT		
Hardware parameters	Wireless output frequency ^[1]		5	100	250	
	Power consumption ^[2]	LPMS-IG1W		0.85 (0.07A@12V)		W
	Power supply		5	12	36	V
	Suggested input current ^[3]		150	500	1000	mA
	Size			51 x 45 x 24		mm
	Wight		110	115	118	g

Note 1: Wireless output frequency only supports a maximum of 250Hz, if the wired output frequency exceeds this value, it must be adjusted to below 250Hz before use.

Note 2: Tests are under room temperature +25°C, and the reference values might be changed under different operation conditions.

Note 3: When using high-power regulated power supply (such as the use of 48V to 24V output of high-power regulated power supply), the power supply turn on the moment may produce an instantaneous high current, this instantaneous current may exceed the maximum value of the sensor can withstand. Therefore, it is recommended that the use of high-power regulated power supply to the sensor power supply, step by step, that is, the sensor in the stabilization of the regulated source of power on, and then power supply connection.

	Working temperature		-20	20	80	°C
	Waterproof level			IP67		
Gyro characteristics(BW=10Hz)	Bias stability	< 400 dps		4		deg/hr
		> 400 dps		6		
	ARW	< 400 dps		0.12		deg/ $\sqrt{\text{hr}}$
		> 400 dps		0.24		
	Noise density	< 400 dps		0.002		dps/ $\sqrt{\text{Hz}}$
		> 400 dps		0.004		
	Root mean square of noise	< 400 dps (BW=10Hz)		0.01		dps
		> 400 dps (BW=10Hz)		0.03		
	P-P noise	< 400 dps		0.05		dps
		> 400 dps		0.15		
	Bandwidth	< 400 dps		10		Hz
		> 400 dps	5	10	92	
Accelerometer characteristics(BW=10Hz)	Bias stability			25		ug
	VRW			0.045		m/s/ $\sqrt{\text{hr}}$
	Root mean square of noise			0.4		mg
	Noise density			100		ug / $\sqrt{\text{Hz}}$
	Bandwidth		5	10	100	Hz

Table 4-1. Overall parameters

4.2. Gyroscope Parameters

Parameters	Condition	Value			Unit
		Min.	Typ.	Max.	
Scale factor	24bit		17920		LSB/dps
Initial scale factor tolerance	+25°C	-2		+2	%
Scale factor change vs. temperature		-3		+3	%
Offset tolerance	+25°C	-1		+1	dps
Offset change vs. temperature		-1		+1	dps
Measurement range		-400		+400	dps
non-linearity	+25°C	-0.5		+0.5	%FS
Cross axis sensitivity	+25°C	-5		+5	%

Table 4-2. Gyro parameters

Parameters	Condition	Value			Unit
		Min.	Typ.	Max.	
Scale factor	± 1000 dps		32.8		LSB/dps
	± 2000 dps		16.4		
Initial scale factor tolerance	+25°C		±1		%
Scale factor change vs. temperature			±2		%
Offset tolerance	+25°C		±1		dps
Offset change vs. temperature			±0.01		dps/°C
Measurement range			±2000		dps
non-linearity	+25°C		±0.1		%
Cross axis sensitivity			±1		%

Table 4-3. Gyro parameters

4.3. Accelerometer Parameters

Parameters	Condition	Value			Unit
		Min.	Typ.	Max.	
Scale factor	16bit, ±2g		16384		LSB/g
	16bit, ±4g		8192		LSB/g
	16bit, ±8g		4096		LSB/g
	16bit, ±16g		2048		LSB/g
Initial scale factor tolerance			±1		%
Scale factor change vs. temperature			±1.5		%
Offset tolerance			±40		mg
Offset change vs. temperature	X, Y		±0.5		mg/°C
	Z		±1		mg/°C
Measurement range			±2		g
			±4		g
			±8		g
			±16		g
non-linearity	+25°C		±0.3		%
Cross axis sensitivity	+25°C		±1		%

Table 4-4. Accelerometer parameters

4.4. Magnetometer Parameters

Parameters	Condition	Value			Unit
		Min.	Typ.	Max.	
Scale factor	16bit, $\pm 2G$		12000		LSB/G
	16bit, $\pm 8G$		3000		LSB/G
Scale factor change vs. temperature			100		LSB/°C
Offset tolerance			± 10		mG
Measurement range		-2		+2	Gauss
		-8		+8	Gauss
non-linearity	$\pm 2G$		0.1		%FS
磁滞	$\pm 2G, \pm 8G$		0.3		%FS
Cross axis sensitivity	Cross field =1Gauss, $\pm 2G$		0.1		%/G
X-Y-Z orthogonality			90 ± 1		deg

Table 4-5. Magnetometer parameters

4.5. Allan Chart

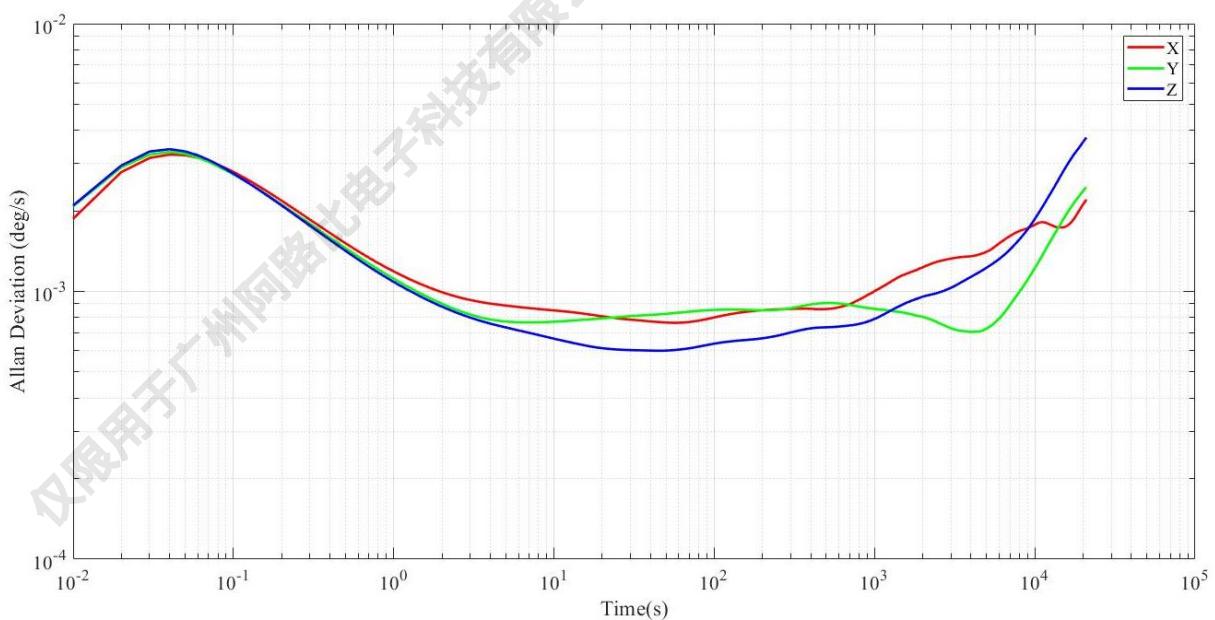


Fig.3.1. Gyro Allan parameters

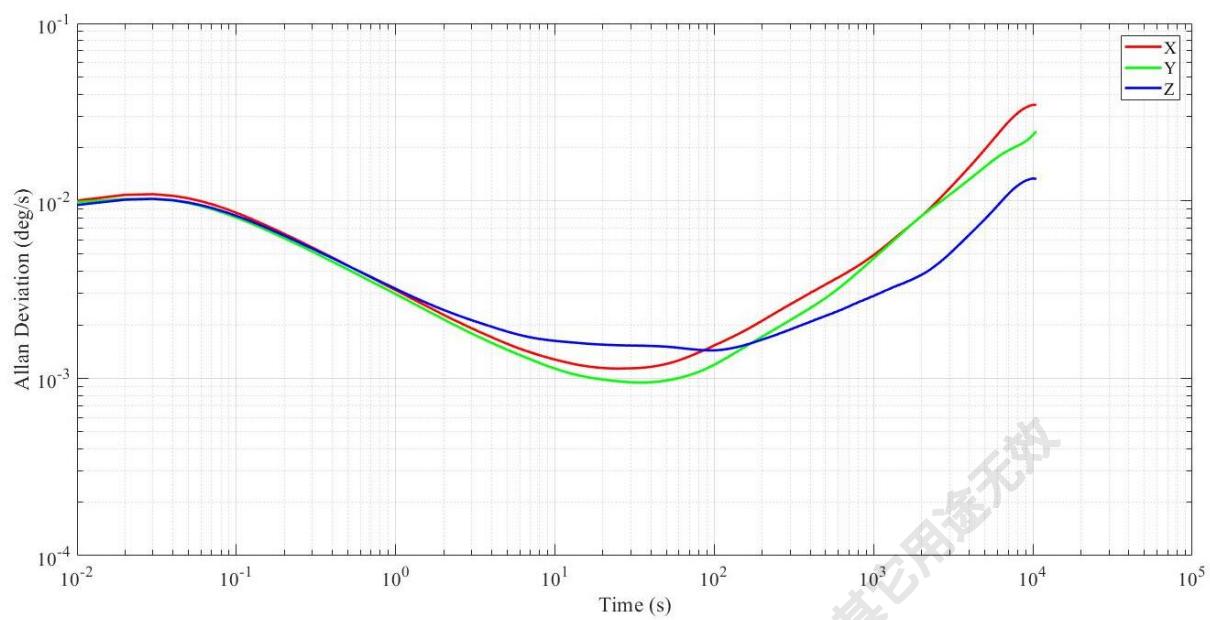


Fig.3.2. Gyro roll Allan parameters

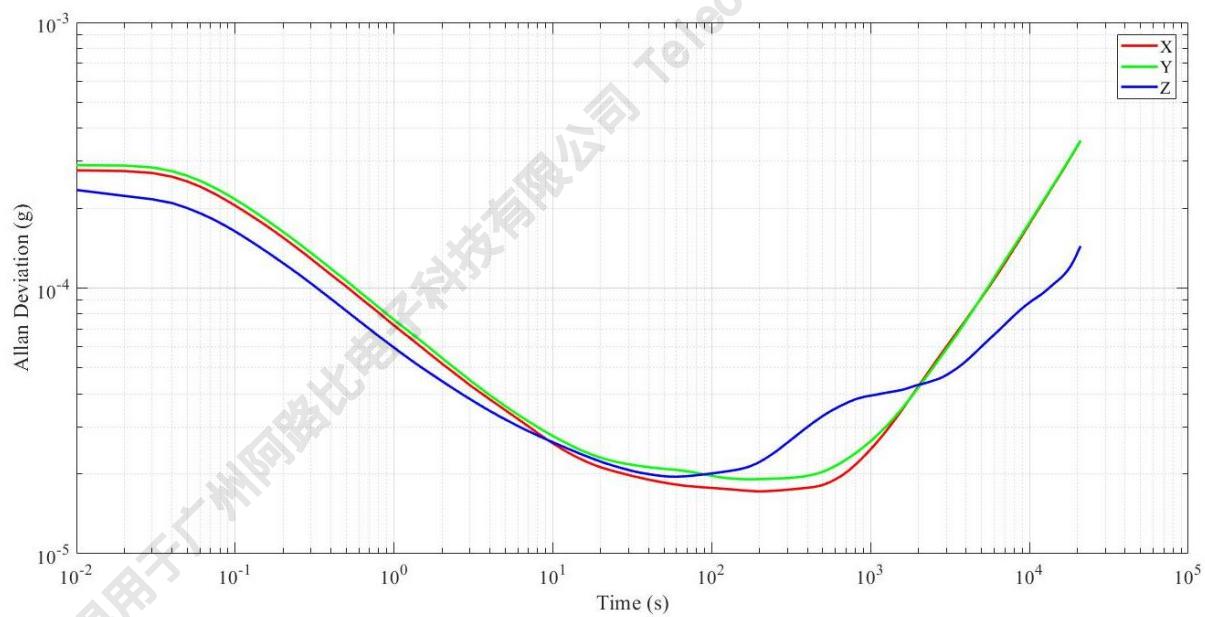


Fig.3.3. ACC Allan parameters

5. Mechanical Information

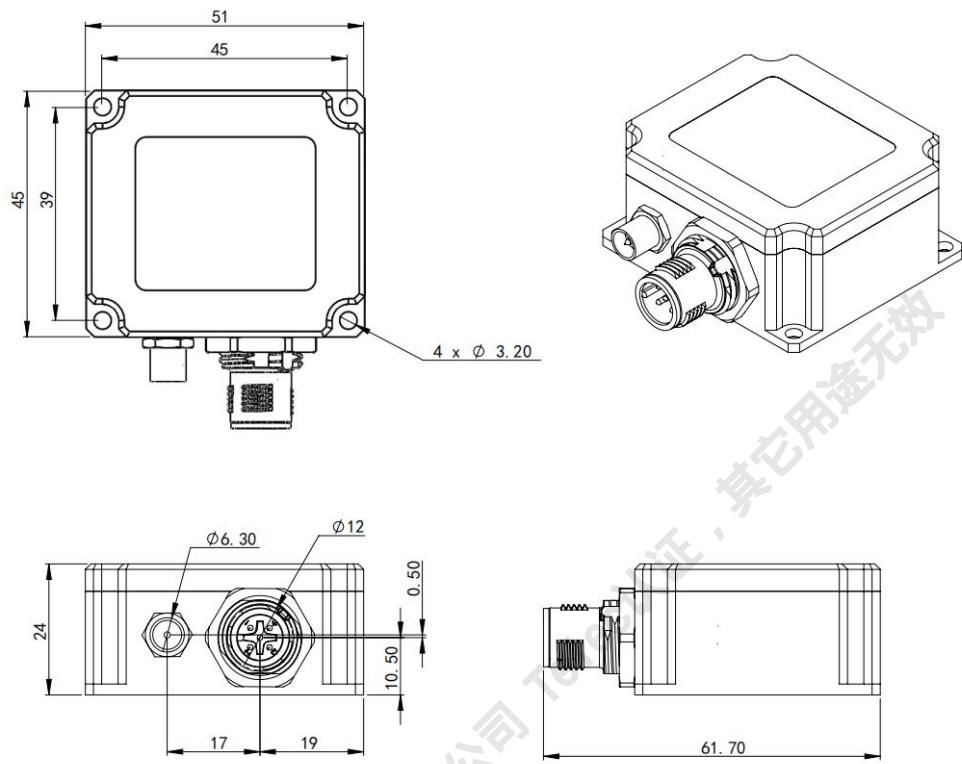


Fig.4.1. LPMS-IG1W dimension (unit:mm)

Federal Communications Commission (FCC) Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications made to this device not expressly approved by Xikaku Inc.

may void the FCC authorization to operate this device.

Note: The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment. Such modifications could void the user's authority to operate the equipment.

RF exposure statement:

The transmitter must not be colocated or operated in conjunction with any other antenna or transmitter. This equipment complies with the FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a Minimum distance of 20cm between the radiator and any part of your body.

LP-Research Inc.

<https://www.lp-research.com>