Prediction of MPE at a given distance

1. Standard Requirement Portable Device

According to §15.247(i) and §1.1307b(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See KDB 447498 D01 General RF Exposure Guidance V6, section 4.3.1.

- a) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, 16 where
- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- The result is rounded to one decimal place for comparison The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

- b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
- 1) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)-(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
- 2) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz
- c) For frequencies below 100 MHz, the following may be considered for SAR test exclusion:
- 1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by $[1 + \log(100/f(MHz))]$
- 2) For test separation distances \leq 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$
- 3) SAR measurement procedures are not established below 100 MHz. **Mobile Device**

(A) Limits for Occupational / Controlled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500	01.4	0.100	F/300	6
300-1300			17300	- 0
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	27.0	0.010	F/1500	30
30031000			171300	
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\frac{E^2}{377}$$

Power Density: Pd (W/m²) =

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Measurement Result

$$E = EIRP - 20log D + 104.8$$

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D =specified measurement distance in meters.

EIRP=E-104.8+20logD=43.36 -104.8+20log3= -51.90dbm

Channel	Max Output	Power density	Threshold Value
Frequency	power	at 20cm	(mW /cm ²)
(GHz)	(dBm)	(mW/cm ²)	
0.1356	-51.90	0.000000013	13.27
2.402	3.486	0.00055	1

NFC ANT GAIN: Internal antenna, Antenna gain 0dBi.

BLE ANT GAIN: Internal Antenna, Maximum Gain is 0.93dBi.

FCC ID: 2BL7O-D3

simultaneous MPE Result

BLE_1M MPE Ratio	NFC MPE Ratio	simultaneous MPE Ratio	MPE Limits ratio	Test result
0.00055	0.00000	0.00055	1	Pass

The SAR measurement is not necessary.