



# FCC Part 15C Test Report

## FCC ID: 2BK9QFD-008

Applicant: Kaiping Futuo Sanitary Ware Co., Ltd

Address: No. L1-1, No.3 Industrial Park, Shuikou Town, Kaiping City, Guangdong Province , China

Manufacturer: Kaiping Futuo Sanitary Ware Co., Ltd

Address: No. L1-1, No.3 Industrial Park, Shuikou Town, Kaiping City, Guangdong Province , China

EUT: ELECTRIC TOWEL WARMER

Trade Mark: SAILAINUO

Model Number: FD-008, FK-015,FK-035,FK-001,FK002,FK-007,FK-008,FK-004

Date of Receipt: August. 26, 2024

Test Date: August. 26, 2024 – September. 10, 2024

Date of Report: September. 10, 2024

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Applicable Standards: FCC PART 15 C 15.247  
ANSI C63.10:2013

Test Result: Pass

Report Number: DL-240708045EA

Prepared (Test Engineer): Pxing Huang

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang



*This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.*



## 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| FCC Part15 (15.247) , Subpart C |                            |          |        |
|---------------------------------|----------------------------|----------|--------|
| Standard Section                | Test Item                  | Judgment | Remark |
| 15.207                          | Conducted Emission         | PASS     |        |
| 15.247(c)                       | Radiated Spurious Emission | PASS     |        |
| 15.205                          | Band Edge Emission         | PASS     |        |
| 15.247(b)(1)                    | Peak Output Power          | PASS     |        |
| 15.247(a)(2)                    | 6dB Bandwidth              | PASS     |        |
| 15.247(d)                       | Power Spectral Density     | PASS     |        |
| 15.203                          | Antenna Requirement        | PASS     |        |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

### 1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k=2$ , providing a level of confidence of approximately **95 %**.

| No. | Item                         | Uncertainty             |
|-----|------------------------------|-------------------------|
| 1   | Conducted Emission Test      | $\pm 2.56\text{dB}$     |
| 2   | RF power,conducted           | $\pm 0.42\text{dB}$     |
| 3   | Spurious emissions,conducted | $\pm 2.76\text{dB}$     |
| 4   | All emissions,radiated(<1G)  | $\pm 3.65\text{dB}$     |
| 5   | All emissions,radiated(>1G)  | $\pm 4.89\text{dB}$     |
| 6   | Temperature                  | $\pm 0.5^\circ\text{C}$ |
| 7   | Humidity                     | $\pm 2\%$               |



## 2. GENERAL INFORMATION

### 2.1 GENERAL DESCRIPTION OF EUT

|                        |                                                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Product Name:          | ELECTRIC TOWEL WARMER                                                                                                                |
| Trademark              | SAILAINUO                                                                                                                            |
| Model No.:             | FD-008, FK-015, FK-035, FK-001, FK-002, FK-007, FK-008, FK-004                                                                       |
| Model Difference       | PCB board, structure and internal of these model(s) are the same, So no additional models were tested.                               |
| BT Version:            | 4.2                                                                                                                                  |
| Operation Frequency:   | 2402~2480MHz                                                                                                                         |
| Channel numbers:       | 40 Channels                                                                                                                          |
| Channel separation:    | 2M                                                                                                                                   |
| Modulation technology: | GFSK                                                                                                                                 |
| Operation Frequency:   | 2412MHz~2462MHz                                                                                                                      |
| Channel numbers:       | 11 Channels for 20MHz bandwidth<br>7 Channels for 20MHz bandwidth                                                                    |
| Channel separation:    | 5M                                                                                                                                   |
| Modulation technology: | IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK); IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK); IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) |
| Antenna Type:          | Internal Antenna                                                                                                                     |
| Antenna gain:          | 0dBi                                                                                                                                 |
| Power supply:          | Input 100V~250V~, 50/60Hz                                                                                                            |

Note:

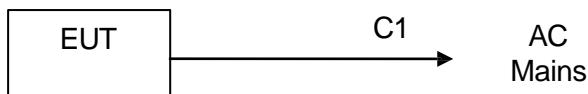
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
2. The EUT's all information provided by client.

### 2. Channel List

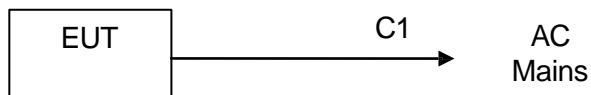
| Channel List |                 |         |                 |         |                 |
|--------------|-----------------|---------|-----------------|---------|-----------------|
| Channel      | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
| 01           | 2402            | 11      | 2422            | 23      | 2444            |
| 02           | 2404            | 12      | 2424            | 24      | 2446            |
| ~            | ~               | ~       | ~               |         |                 |
| 9            | 2418            | 20      | 2440            | 39      | 2478            |
| 10           | 2420            | 21      | 2442            | 40      | 2480            |



## 2.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode                  | Description |
|-------------------------------|-------------|
| Mode 1                        | CH01        |
| Mode 2                        | CH20        |
| Mode 3                        | CH40        |
| Mode 4                        | Link Mode   |
| <b>For Conducted Emission</b> |             |
| Final Test Mode               | Description |
| Mode 4                        | Link Mode   |
| <b>For Radiated Emission</b>  |             |
| Final Test Mode               | Description |
| Mode 1                        | CH01        |
| Mode 2                        | CH20        |
| Mode 3                        | CH40        |


Note: 1. The measurements are performed at the highest, middle, lowest available channels.

## 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test



Conducted Spurious Emission Test





## 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Model/Type No. | Series No. | Note |
|------|-----------|----------------|------------|------|
|      |           |                |            |      |
|      |           |                |            |      |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
|      |               |              |        |      |

Note:

(1) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

## 2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

| Test software Version     | cmd      |         |          |
|---------------------------|----------|---------|----------|
| Frequency                 | 2402 MHz | 2440MHz | 2480 MHz |
| Power Setting of Softwave | 10       | 10      | 10       |



## 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

| Item | Equipment                        | Manufacturer    | Type No.  | Serial No. | Last calibration | Calibrated until |
|------|----------------------------------|-----------------|-----------|------------|------------------|------------------|
| 1    | Spectrum Analyzer (9kHz-26.5GHz) | Agilent         | E4408B    | MY50140780 | Dec. 06, 2023    | Dec. 07, 2024    |
| 2    | Test Receiver (9kHz-7GHz)        | R&S             | ESRP7     | 101393     | Dec. 06, 2023    | Dec. 07, 2024    |
| 3    | Bilog Antenna (30MHz-1GHz)       | R&S             | VULB9162  | 00306      | Dec. 06, 2023    | Dec. 07, 2024    |
| 4    | Horn Antenna (1GHz-18GHz)        | Schwarzbeck     | BBHA9120D | 02139      | Dec. 06, 2023    | Dec. 07, 2024    |
| 5    | Horn Antenna (18GHz-40GHz)       | A.H. Systems    | SAS-574   | 588        | Dec. 06, 2023    | Dec. 07, 2024    |
| 6    | Amplifier (9KHz-6GHz)            | Schwarzbeck     | BBV9743B  | 00153      | Dec. 06, 2023    | Dec. 07, 2024    |
| 7    | Amplifier (1GHz-18GHz)           | EMEC            | EM01G8GA  | 00270      | Dec. 06, 2023    | Dec. 07, 2024    |
| 8    | Amplifier (18GHz-40GHz)          | Quanjuda        | DLE-161   | 97         | Dec. 06, 2023    | Dec. 07, 2024    |
| 9    | Loop Antenna (9KHz-30MHz)        | Schwarzbeck     | FMZB1519B | 00014      | Dec. 06, 2023    | Dec. 07, 2024    |
| 10   | RF cables1 (9kHz-1GHz)           | ChengYu         | 966       | 004        | Dec. 06, 2023    | Dec. 07, 2024    |
| 11   | RF cables2 (1GHz-40GHz)          | ChengYu         | 966       | 003        | Dec. 06, 2023    | Dec. 07, 2024    |
| 12   | Antenna connector                | Florida RF Labs | N/A       | RF 01#     | Dec. 06, 2023    | Dec. 07, 2024    |
| 13   | Power probe                      | KEYSIGHT        | U2021XA   | MY55210018 | Dec. 06, 2023    | Dec. 07, 2024    |
| 14   | Signal Analyzer 9kHz-26.5GHz     | Agilent         | N9020A    | MY55370280 | Dec. 06, 2023    | Dec. 07, 2024    |
| 15   | Test Receiver 20kHz-40GHz        | R&S             | ESU 40    | 100376     | Dec. 06, 2023    | Dec. 07, 2024    |
| 16   | D.C. Power Supply                | LongWei         | PS-305D   | 010964729  | Dec. 06, 2023    | Dec. 07, 2024    |
| 17   | Antenna Mast                     | HaiYue          | TPAM-4A   | 4265214    | Dec. 06, 2023    | Dec. 07, 2024    |

Conduction Test equipment

| Item | Equipment         | Manufacturer | Type No.   | Serial No. | Last calibration | Calibrated until |
|------|-------------------|--------------|------------|------------|------------------|------------------|
| 1    | 843 Shielded Room | ChengYu      | 843 Room   | 843        | Nov. 24, 2022    | Nov. 23, 2025    |
| 2    | EMI Receiver      | R&S          | ESR        | 101421     | Dec. 07, 2023    | Dec. 06, 2024    |
| 3    | LISN              | R&S          | ENV216     | 102417     | Dec. 07, 2023    | Dec. 06, 2024    |
| 4    | 843 Cable 1#      | ChengYu      | CE Cable   | 001        | Dec. 07, 2023    | Dec. 06, 2024    |
| 5    | Pulse Limiter     | R&S          | VTSD 9561F | 12561      | Dec. 07, 2023    | Dec. 06, 2024    |

Other

| Item | Name                         | Manufacturer | Model   | Software version |
|------|------------------------------|--------------|---------|------------------|
| 1    | EMC Conduction Test System   | FALA         | EZ_EMC  | EMC-CON 3A1.1    |
| 2    | EMC radiation test system    | FALA         | EZ_EMC  | FA-03A2          |
| 3    | RF test system               | MAIWEI       | MTS8310 | 2.0.0.0          |
| 4    | RF communication test system | MAIWEI       | MTS8200 | 2.0.0.0          |



### 3. EMC EMISSION TEST

#### 3.1 CONDUCTED EMISSION MEASUREMENT

##### 3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

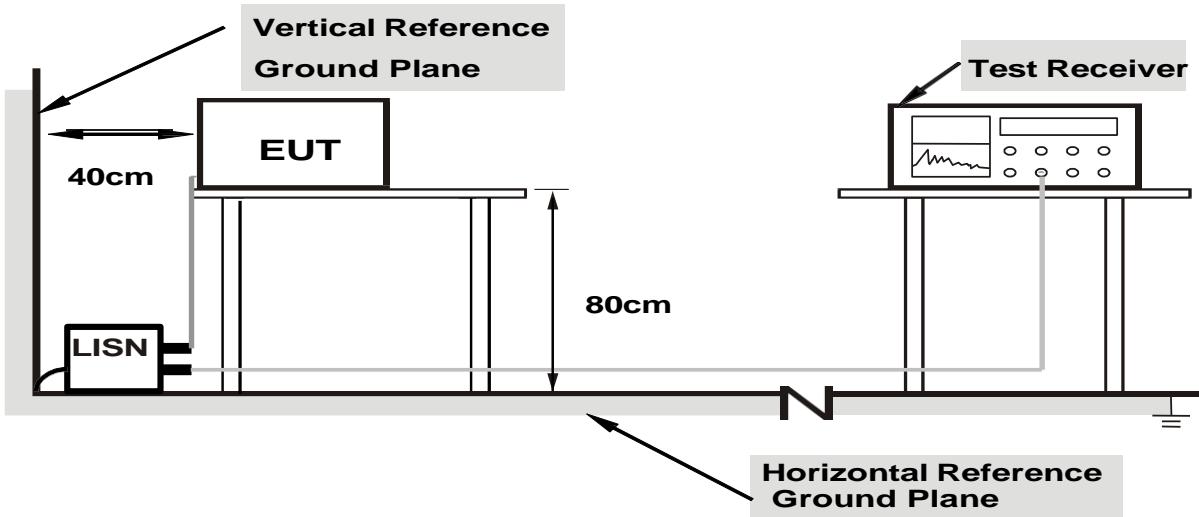
| FREQUENCY (MHz) | Limit (dBuV) |           | Standard |
|-----------------|--------------|-----------|----------|
|                 | Quasi-peak   | Average   |          |
| 0.15 -0.5       | 66 - 56 *    | 56 - 46 * | FCC      |
| 0.50 -5.0       | 56.00        | 46.00     | FCC      |
| 5.0 -30.0       | 60.00        | 50.00     | FCC      |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |


#### 3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 3.1.3 DEVIATION FROM TEST STANDARD

No deviation

### 3.1.4 TEST SETUP



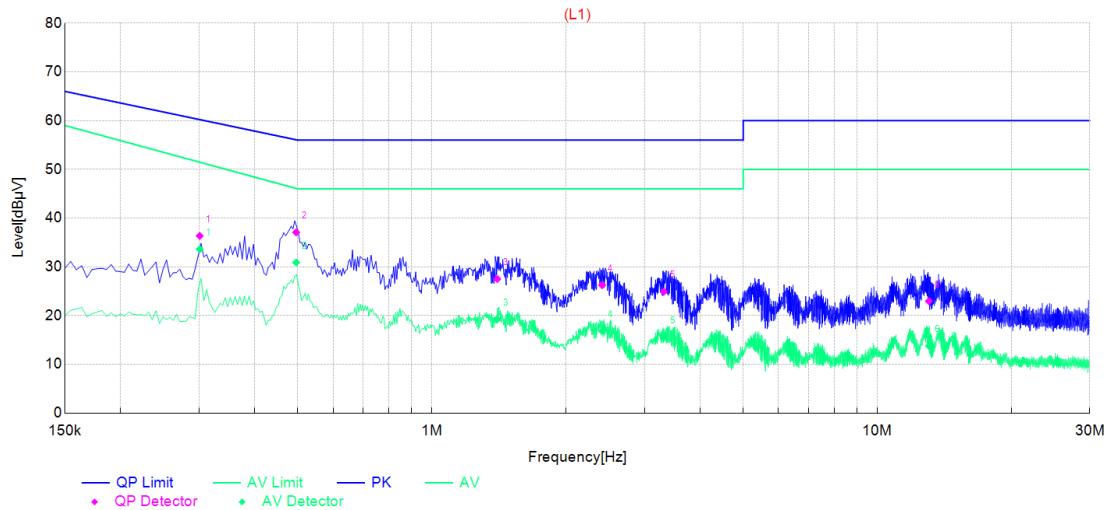
**Note:**

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

### 3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

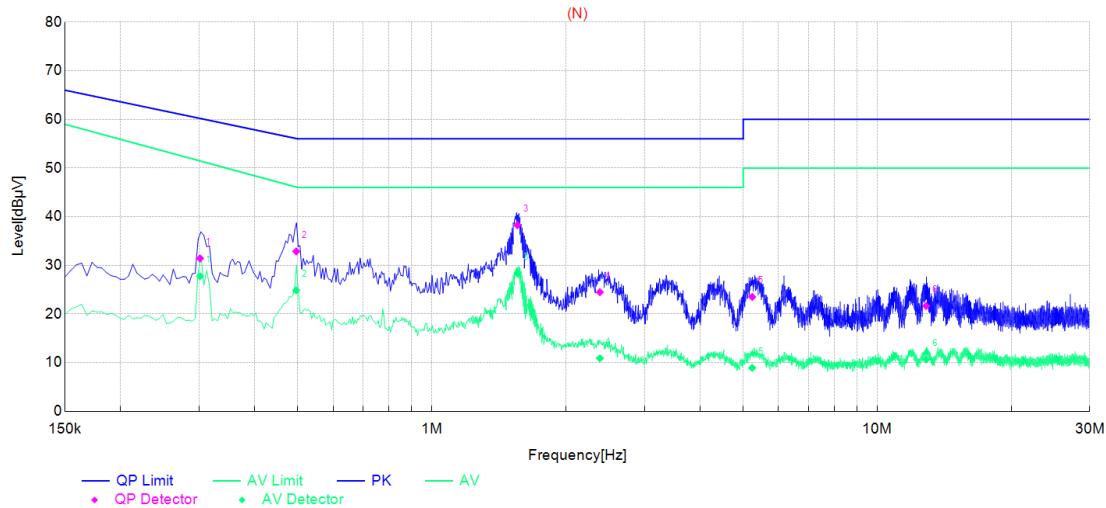
The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:


$$CD (\text{dBuV}) = RA (\text{dBuV}) + PL (\text{dB}) + CL (\text{dB})$$

|                                  |                                            |
|----------------------------------|--------------------------------------------|
| Where CD = Conducted Disturbance | CL = Cable Attenuation Factor (Cable Loss) |
| RA = Reading Amplitude           | PL = 10 dB Pulse Limiter Factor            |

### 3.1.6 TEST RESULTS




|                |              |                    |        |
|----------------|--------------|--------------------|--------|
| Temperature:   | 25 °C        | Relative Humidity: | 54%    |
| Pressure:      | 1010hPa      | Phase :            | L      |
| Test Voltage : | AC 120V/60Hz | Test Mode:         | Mode 4 |



| NO.            | Frequency            | QP<br>Reading      | AVG.<br>Reading    | Factor             | QP<br>Result       | AVG.<br>Result     | QP<br>Limit        | AVG.<br>Limit      | QP<br>Margin       | AVG.<br>Margin     | Line            |
|----------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------|
| 1 <sup>o</sup> | 0.3010 <sup>o</sup>  | 26.25 <sup>o</sup> | 23.52 <sup>o</sup> | 10.10 <sup>o</sup> | 36.35 <sup>o</sup> | 33.62 <sup>o</sup> | 60.21 <sup>o</sup> | 51.48 <sup>o</sup> | 23.86 <sup>o</sup> | 17.86 <sup>o</sup> | L1 <sup>o</sup> |
| 2 <sup>o</sup> | 0.4957 <sup>o</sup>  | 26.82 <sup>o</sup> | 20.64 <sup>o</sup> | 10.26 <sup>o</sup> | 37.08 <sup>o</sup> | 30.90 <sup>o</sup> | 56.07 <sup>o</sup> | 46.09 <sup>o</sup> | 18.99 <sup>o</sup> | 15.19 <sup>o</sup> | L1 <sup>o</sup> |
| 3 <sup>o</sup> | 1.4017 <sup>o</sup>  | 17.29 <sup>o</sup> | 9.03 <sup>o</sup>  | 10.23 <sup>o</sup> | 27.52 <sup>o</sup> | 19.26 <sup>o</sup> | 56.00 <sup>o</sup> | 46.00 <sup>o</sup> | 28.48 <sup>o</sup> | 26.74 <sup>o</sup> | L1 <sup>o</sup> |
| 4 <sup>o</sup> | 2.4110 <sup>o</sup>  | 15.95 <sup>o</sup> | 6.54 <sup>o</sup>  | 10.30 <sup>o</sup> | 26.25 <sup>o</sup> | 16.84 <sup>o</sup> | 56.00 <sup>o</sup> | 46.00 <sup>o</sup> | 29.75 <sup>o</sup> | 29.16 <sup>o</sup> | L1 <sup>o</sup> |
| 5 <sup>o</sup> | 3.3175 <sup>o</sup>  | 14.57 <sup>o</sup> | 5.27 <sup>o</sup>  | 10.35 <sup>o</sup> | 24.92 <sup>o</sup> | 15.62 <sup>o</sup> | 56.00 <sup>o</sup> | 46.00 <sup>o</sup> | 31.08 <sup>o</sup> | 30.38 <sup>o</sup> | L1 <sup>o</sup> |
| 6 <sup>o</sup> | 13.0632 <sup>o</sup> | 12.05 <sup>o</sup> | 2.88 <sup>o</sup>  | 10.91 <sup>o</sup> | 22.96 <sup>o</sup> | 13.79 <sup>o</sup> | 60.00 <sup>o</sup> | 50.00 <sup>o</sup> | 37.04 <sup>o</sup> | 36.21 <sup>o</sup> | L1 <sup>o</sup> |



|                |              |                    |        |
|----------------|--------------|--------------------|--------|
| Temperature:   | 25 °C        | Relative Humidity: | 54%    |
| Pressure:      | 1010hPa      | Phase :            | N      |
| Test Voltage : | AC 120V/60Hz | Test Mode:         | Mode 4 |



| NO.            | Frequency            | QP<br>Reading      | AVG.<br>Reading    | Factor             | QP<br>Result       | AVG.<br>Result     | QP<br>Limit        | AVG.<br>Limit      | QP<br>Margin       | AVG.<br>Margin     | Line           |
|----------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------|
| 1 <sup>o</sup> | 0.3015 <sup>o</sup>  | 21.33 <sup>o</sup> | 17.67 <sup>o</sup> | 10.10 <sup>o</sup> | 31.43 <sup>o</sup> | 27.77 <sup>o</sup> | 60.20 <sup>o</sup> | 51.46 <sup>o</sup> | 28.77 <sup>o</sup> | 23.69 <sup>o</sup> | N <sup>o</sup> |
| 2 <sup>o</sup> | 0.4958 <sup>o</sup>  | 22.60 <sup>o</sup> | 14.58 <sup>o</sup> | 10.26 <sup>o</sup> | 32.86 <sup>o</sup> | 24.84 <sup>o</sup> | 56.07 <sup>o</sup> | 46.09 <sup>o</sup> | 23.21 <sup>o</sup> | 21.25 <sup>o</sup> | N <sup>o</sup> |
| 3 <sup>o</sup> | 1.5557 <sup>o</sup>  | 28.00 <sup>o</sup> | 18.12 <sup>o</sup> | 10.24 <sup>o</sup> | 38.24 <sup>o</sup> | 28.36 <sup>o</sup> | 56.00 <sup>o</sup> | 46.00 <sup>o</sup> | 17.76 <sup>o</sup> | 17.64 <sup>o</sup> | N <sup>o</sup> |
| 4 <sup>o</sup> | 2.3828 <sup>o</sup>  | 14.19 <sup>o</sup> | 0.60 <sup>o</sup>  | 10.30 <sup>o</sup> | 24.49 <sup>o</sup> | 10.90 <sup>o</sup> | 56.00 <sup>o</sup> | 46.00 <sup>o</sup> | 31.51 <sup>o</sup> | 35.10 <sup>o</sup> | N <sup>o</sup> |
| 5 <sup>o</sup> | 5.2391 <sup>o</sup>  | 13.13 <sup>o</sup> | -1.45 <sup>o</sup> | 10.38 <sup>o</sup> | 23.51 <sup>o</sup> | 8.93 <sup>o</sup>  | 60.00 <sup>o</sup> | 50.00 <sup>o</sup> | 36.49 <sup>o</sup> | 41.07 <sup>o</sup> | N <sup>o</sup> |
| 6 <sup>o</sup> | 12.8763 <sup>o</sup> | 10.74 <sup>o</sup> | -0.23 <sup>o</sup> | 10.90 <sup>o</sup> | 21.64 <sup>o</sup> | 10.67 <sup>o</sup> | 60.00 <sup>o</sup> | 50.00 <sup>o</sup> | 38.36 <sup>o</sup> | 39.33 <sup>o</sup> | N <sup>o</sup> |

## Remark:

1. Result (dB $\mu$ V) = Reading (dB $\mu$ V) + Factor (dB).
2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).



### 3.2 RADIATED EMISSION MEASUREMENT

#### 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies (MHz) | Field Strength (micorvolts/meter) | Measurement Distance (meters) |
|-------------------|-----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                       | 300                           |
| 0.490~1.705       | 24000/F(KHz)                      | 30                            |
| 1.705~30.0        | 30                                | 30                            |
| 30~88             | 100                               | 3                             |
| 88~216            | 150                               | 3                             |
| 216~960           | 200                               | 3                             |
| Above 960         | 500                               | 3                             |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Limit (dBuV/m) (at 3M) |         |
|-----------------|------------------------|---------|
|                 | PEAK                   | AVERAGE |
| Above 1000      | 74                     | 54      |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 1000 MHz                                         |
| Stop Frequency                        | 25GHz                                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |



### 3.2.2 TEST PROCEDURE

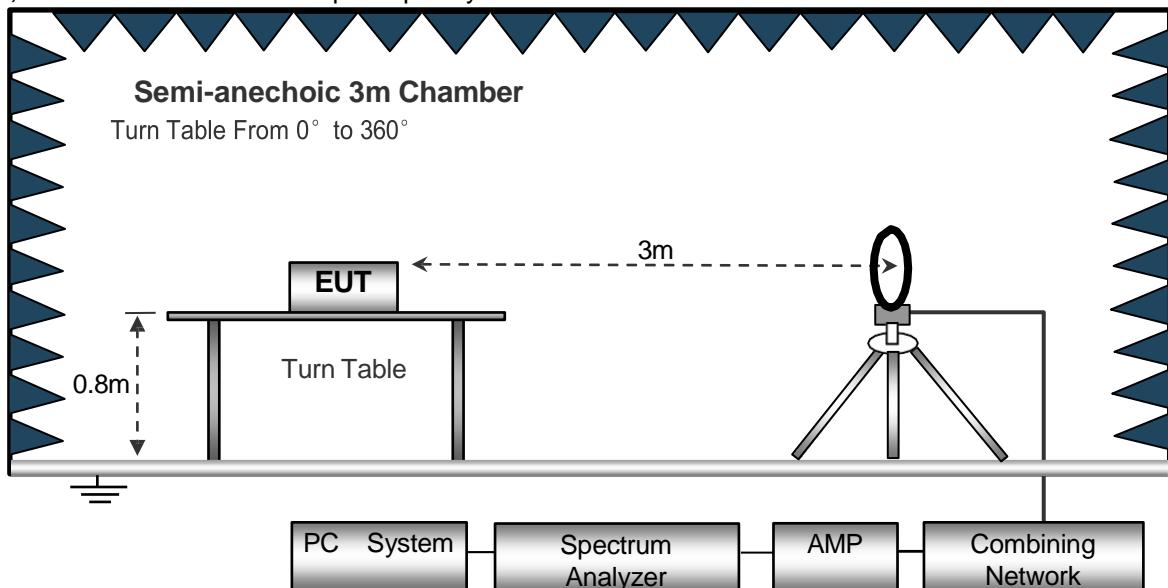
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

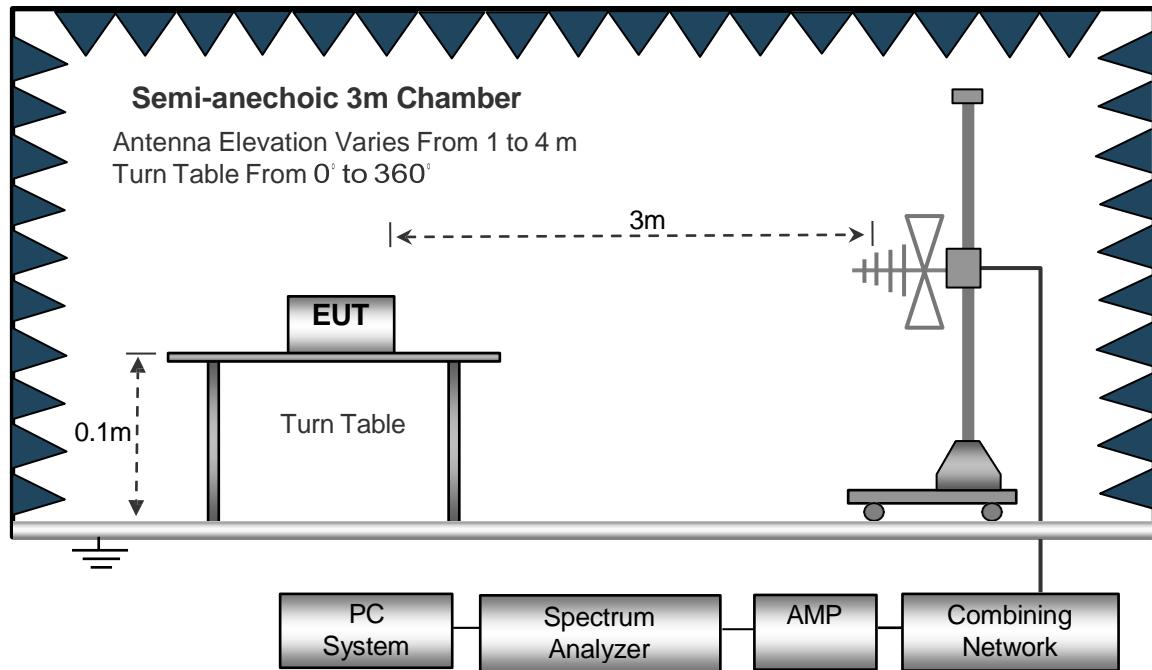
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre( Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel

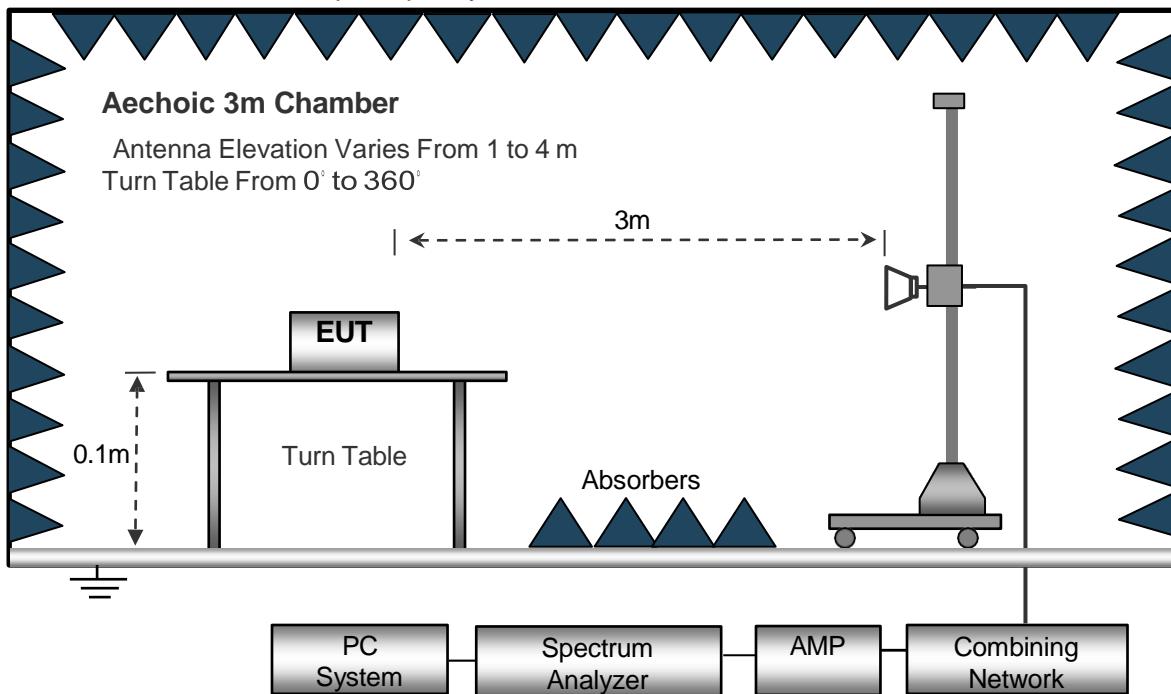
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

### 3.2.3 DEVIATION FROM TEST STANDARD


No deviation

### 3.2.4 TEST SETUP


( A ) Radiated Emission Test-Up Frequency Below 30MHz



( B ) Radiated Emission Test-Up Frequency 30MHz~1GHz



( C ) Radiated Emission Test-Up Frequency Above 1GHz



### 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



### 3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)

|              |          |                    |         |
|--------------|----------|--------------------|---------|
| Temperature: | 20°C     | Relative Humidity: | 48%     |
| Pressure:    | 1010 hPa | Test Voltage :     | AC 120V |
| Test Mode :  | Mode 4   | Polarization :     | --      |

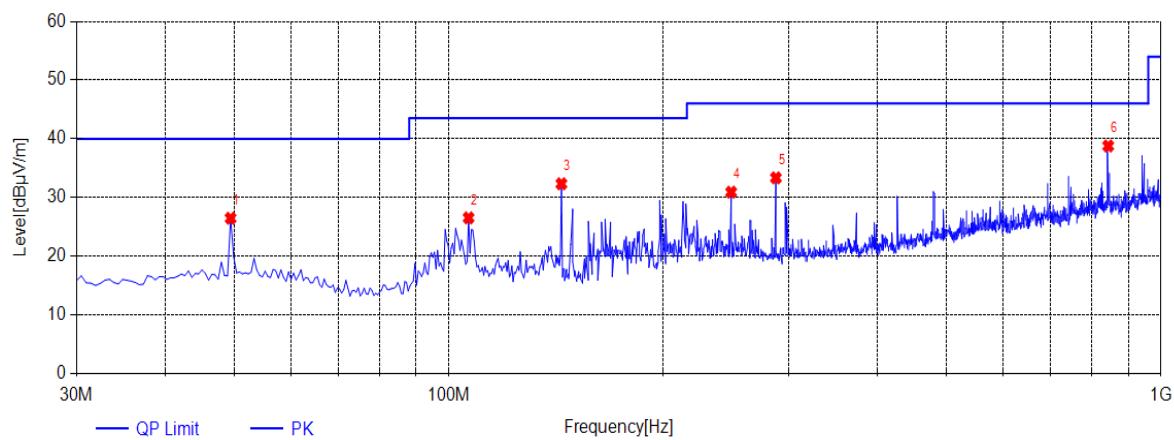
| Freq.<br>(MHz) | Reading<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | State |
|----------------|---------------------|-------------------|----------------|-------|
| --             | --                  | --                | --             | P/F   |
| --             | --                  | --                | --             | PASS  |
| --             | --                  | --                | --             | PASS  |

**NOTE:**

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =  $40 \log \left( \frac{\text{specific distance}}{\text{test distance}} \right) \text{ (dB)}$ ;

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

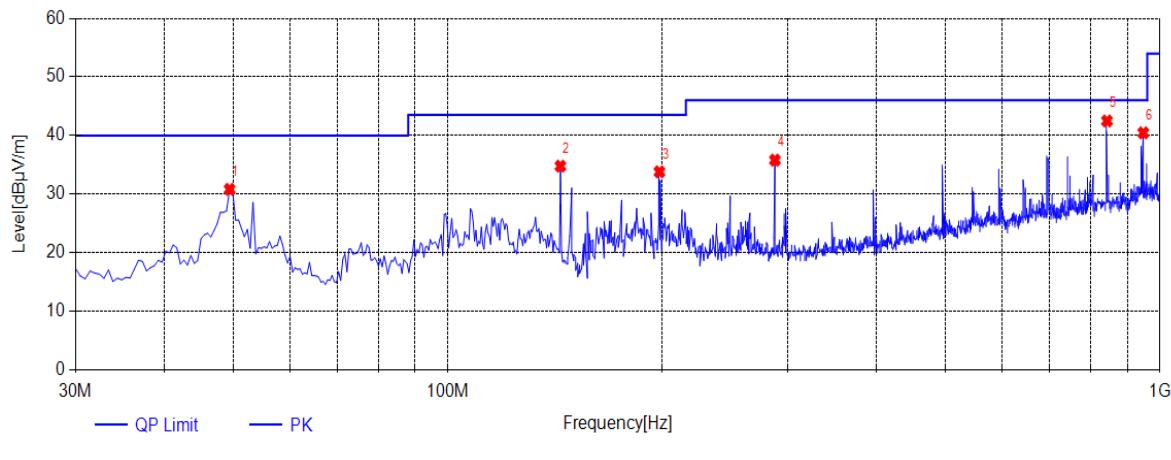

$$\text{FS (dBuV/m)} = \text{RA (dBuV)} + \text{AF (dB/m)} + \text{CL (dB)} - \text{AG (dB)}$$

|                           |                                            |
|---------------------------|--------------------------------------------|
| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |



### 3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)

|                |              |                    |            |
|----------------|--------------|--------------------|------------|
| Temperature:   | 26°C         | Relative Humidity: | 54%        |
| Pressure:      | 1010 hPa     | Polarization :     | Horizontal |
| Test Voltage : | AC 120V/60Hz |                    |            |
| Test Mode :    | Mode 4       |                    |            |




● QP Detector

| NO.            | Frequency [MHz]      | Reading [dBμV/m]   | Factor [dB]         | Result [dBμV/m]    | Limit [dBμV/m]     | Margin [dB]        | Detector        | Polarity  | Remark            |
|----------------|----------------------|--------------------|---------------------|--------------------|--------------------|--------------------|-----------------|-----------|-------------------|
| 1 <sup>①</sup> | 49.4 <sup>①</sup>    | 37.35 <sup>①</sup> | -10.91 <sup>①</sup> | 26.44 <sup>①</sup> | 40.00 <sup>①</sup> | 13.56 <sup>①</sup> | QP <sup>①</sup> | Horizonta | PASS <sup>①</sup> |
| 2 <sup>①</sup> | 106.63 <sup>①</sup>  | 37.80 <sup>①</sup> | -11.29 <sup>①</sup> | 26.51 <sup>①</sup> | 43.50 <sup>①</sup> | 16.99 <sup>①</sup> | QP <sup>①</sup> | Horizonta | PASS <sup>①</sup> |
| 3 <sup>①</sup> | 143.975 <sup>①</sup> | 46.59 <sup>①</sup> | -14.27 <sup>①</sup> | 32.32 <sup>①</sup> | 43.50 <sup>①</sup> | 11.18 <sup>①</sup> | QP <sup>①</sup> | Horizonta | PASS <sup>①</sup> |
| 4 <sup>①</sup> | 249.22 <sup>①</sup>  | 39.63 <sup>①</sup> | -8.74 <sup>①</sup>  | 30.89 <sup>①</sup> | 46.00 <sup>①</sup> | 15.11 <sup>①</sup> | QP <sup>①</sup> | Horizonta | PASS <sup>①</sup> |
| 5 <sup>①</sup> | 288.02 <sup>①</sup>  | 41.02 <sup>①</sup> | -7.69 <sup>①</sup>  | 33.33 <sup>①</sup> | 46.00 <sup>①</sup> | 12.67 <sup>①</sup> | QP <sup>①</sup> | Horizonta | PASS <sup>①</sup> |
| 6 <sup>①</sup> | 843.345 <sup>①</sup> | 37.04 <sup>①</sup> | 1.73 <sup>①</sup>   | 38.77 <sup>①</sup> | 46.00 <sup>①</sup> | 7.23 <sup>①</sup>  | QP <sup>①</sup> | Horizonta | PASS <sup>①</sup> |



|                |              |                    |          |
|----------------|--------------|--------------------|----------|
| Temperature:   | 26°C         | Relative Humidity: | 54%      |
| Pressure:      | 1010 hPa     | Polarization :     | Vertical |
| Test Voltage : | AC 120V/60Hz |                    |          |
| Test Mode :    | Mode 4       |                    |          |



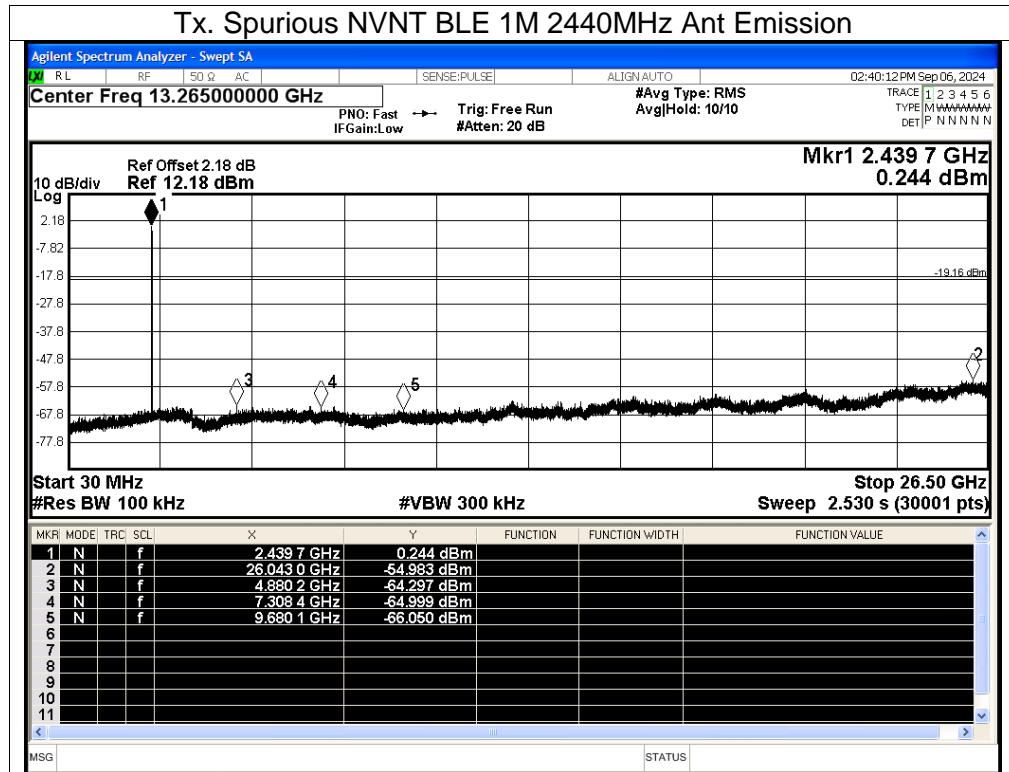
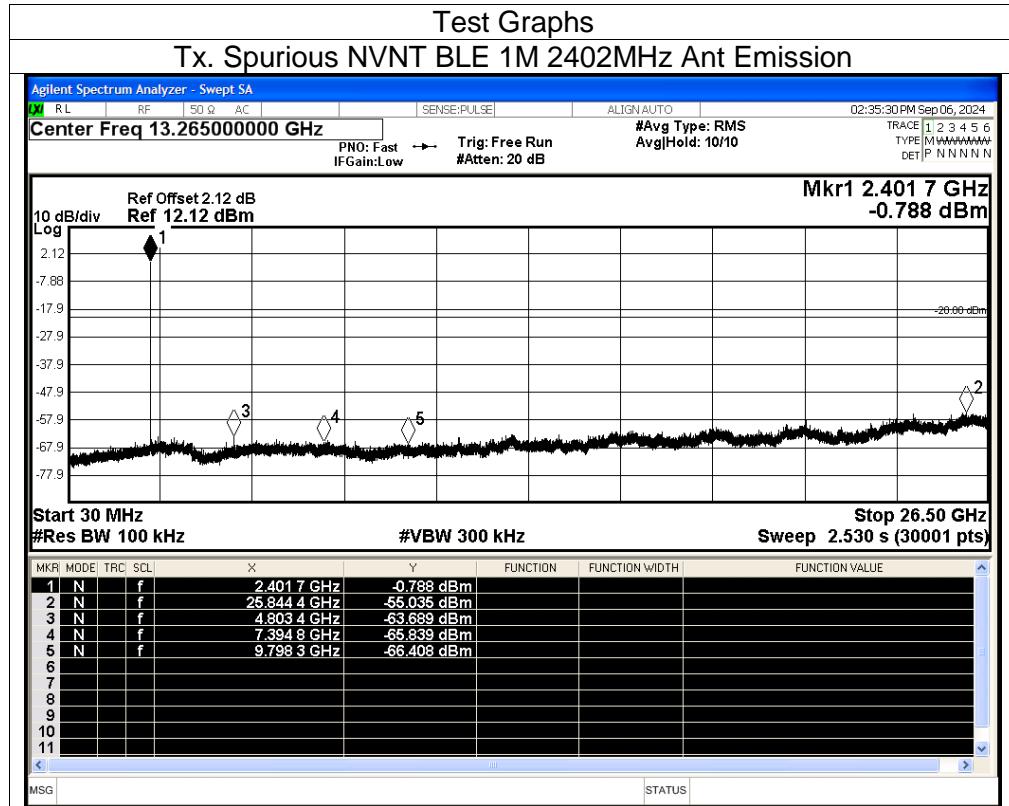
- QP Detector

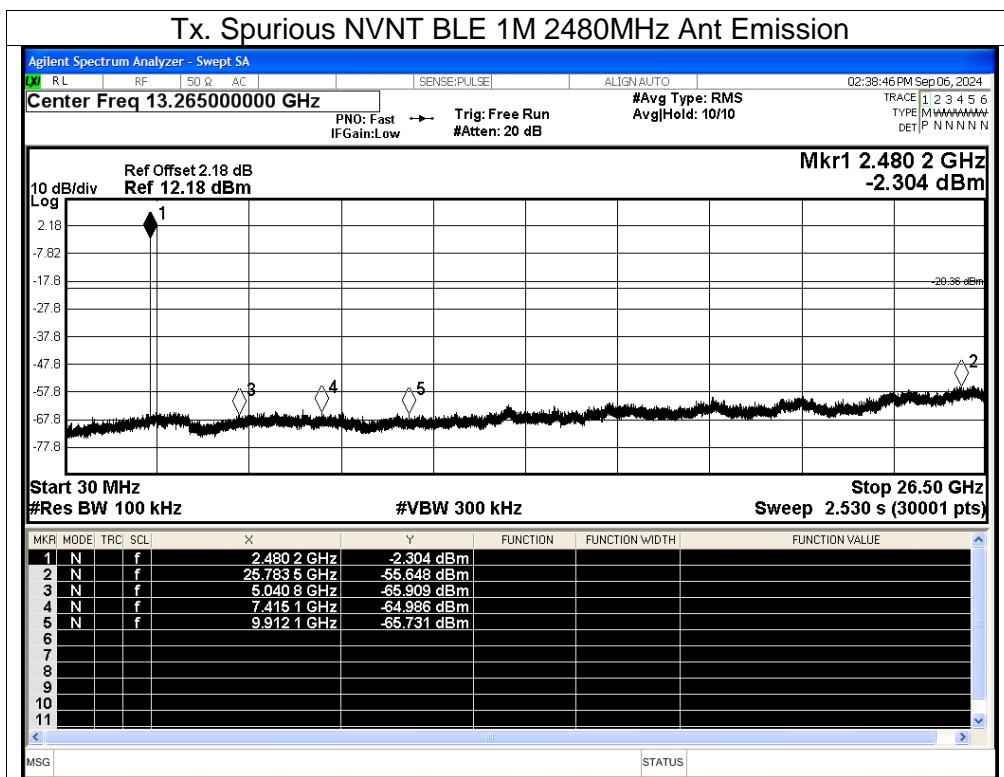
| NO.            | Frequency [MHz]      | Reading [dB $\mu$ V/m] | Factor [dB]         | Result [dB $\mu$ V/m] | Limit [dB $\mu$ V/m] | Margin [dB]        | Detector        | Polarity              | Remark            |
|----------------|----------------------|------------------------|---------------------|-----------------------|----------------------|--------------------|-----------------|-----------------------|-------------------|
| 1 <sup>+</sup> | 49.4 <sup>+</sup>    | 41.71 <sup>+</sup>     | -10.91 <sup>+</sup> | 30.80 <sup>+</sup>    | 40.00 <sup>+</sup>   | 9.20 <sup>+</sup>  | QP <sup>+</sup> | Vertical <sup>+</sup> | PASS <sup>+</sup> |
| 2 <sup>+</sup> | 143.975 <sup>+</sup> | 49.03 <sup>+</sup>     | -14.27 <sup>+</sup> | 34.76 <sup>+</sup>    | 43.50 <sup>+</sup>   | 8.74 <sup>+</sup>  | QP <sup>+</sup> | Vertical <sup>+</sup> | PASS <sup>+</sup> |
| 3 <sup>+</sup> | 198.295 <sup>+</sup> | 44.12 <sup>+</sup>     | -10.34 <sup>+</sup> | 33.78 <sup>+</sup>    | 43.50 <sup>+</sup>   | 9.72 <sup>+</sup>  | QP <sup>+</sup> | Vertical <sup>+</sup> | PASS <sup>+</sup> |
| 4 <sup>+</sup> | 288.02 <sup>+</sup>  | 43.48 <sup>+</sup>     | -7.69 <sup>+</sup>  | 35.79 <sup>+</sup>    | 46.00 <sup>+</sup>   | 10.21 <sup>+</sup> | QP <sup>+</sup> | Vertical <sup>+</sup> | PASS <sup>+</sup> |
| 5 <sup>+</sup> | 842.86 <sup>+</sup>  | 40.73 <sup>+</sup>     | 1.75 <sup>+</sup>   | 42.48 <sup>+</sup>    | 46.00 <sup>+</sup>   | 3.52 <sup>+</sup>  | QP <sup>+</sup> | Vertical <sup>+</sup> | PASS <sup>+</sup> |
| 6 <sup>+</sup> | 947.62 <sup>+</sup>  | 38.09 <sup>+</sup>     | 2.36 <sup>+</sup>   | 40.45 <sup>+</sup>    | 46.00 <sup>+</sup>   | 5.55 <sup>+</sup>  | QP <sup>+</sup> | Vertical <sup>+</sup> | PASS <sup>+</sup> |

## Remark:

- Result (dB $\mu$ V/m) = Reading(dB $\mu$ V/m) + Factor (dB) .
- Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) – Pre Amplifier gain (dB).

**3.2.8 TEST RESULTS (1GHZ~25GHZ)**



| Polar<br>(H/V)                  | Frequency | Meter<br>Reading | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector<br>Type |
|---------------------------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|----------|--------|------------------|
|                                 | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/m) | (dB)   |                  |
| <b>operation frequency:2402</b> |           |                  |                   |               |                   |                   |          |        |                  |
| V                               | 4804.00   | 67.37            | 51.74             | 3.08          | 31.25             | 49.96             | 74       | -24.04 | PK               |
| V                               | 4804.00   | 52.61            | 51.74             | 3.08          | 31.25             | 35.20             | 54       | -18.80 | AV               |
| V                               | 7206.00   | 68.04            | 49.98             | 7.16          | 36.63             | 61.85             | 74       | -12.15 | PK               |
| V                               | 7206.00   | 55.78            | 49.98             | 7.16          | 36.63             | 49.59             | 54       | -4.41  | AV               |
| V                               | 16087.00  | 42.13            | 51.53             | 11.34         | 41.52             | 43.46             | 74       | -30.54 | PK               |
| H                               | 4804.00   | 64.63            | 51.74             | 3.08          | 31.25             | 47.22             | 74       | -26.78 | PK               |
| H                               | 4804.00   | 55.71            | 51.74             | 3.08          | 31.25             | 38.30             | 54       | -15.70 | AV               |
| H                               | 7206.00   | 65.99            | 49.98             | 7.16          | 36.63             | 59.80             | 74       | -14.20 | PK               |
| H                               | 7206.00   | 54.00            | 49.98             | 7.16          | 36.63             | 47.81             | 54       | -6.19  | AV               |
| H                               | 16087.00  | 43.64            | 51.53             | 11.34         | 41.52             | 44.97             | 74       | -29.03 | PK               |
| <b>operation frequency:2440</b> |           |                  |                   |               |                   |                   |          |        |                  |
| V                               | 4880.00   | 66.42            | 51.77             | 3.03          | 31.34             | 49.02             | 74       | -24.98 | PK               |
| V                               | 4880.00   | 54.35            | 51.77             | 3.03          | 31.34             | 36.95             | 54       | -17.05 | AV               |
| V                               | 7320.00   | 65.78            | 50.02             | 7.24          | 36.63             | 59.63             | 74       | -14.37 | PK               |
| V                               | 7320.00   | 56.22            | 50.02             | 7.24          | 36.63             | 50.07             | 54       | -3.93  | AV               |
| V                               | 16087.00  | 43.87            | 51.53             | 11.34         | 41.52             | 45.20             | 74       | -28.80 | PK               |
| H                               | 4880.00   | 64.90            | 51.77             | 3.03          | 31.34             | 47.50             | 74       | -26.50 | PK               |
| H                               | 4880.00   | 54.18            | 51.77             | 3.03          | 31.34             | 36.78             | 54       | -17.22 | AV               |
| H                               | 7320.00   | 67.14            | 50.02             | 7.24          | 36.63             | 60.99             | 74       | -13.01 | PK               |
| H                               | 7320.00   | 51.35            | 50.02             | 7.24          | 36.63             | 45.20             | 54       | -8.80  | AV               |
| H                               | 16087.00  | 42.60            | 51.53             | 11.34         | 41.52             | 43.93             | 74       | -30.07 | PK               |
| <b>operation frequency:2480</b> |           |                  |                   |               |                   |                   |          |        |                  |
| V                               | 4960.00   | 67.75            | 51.69             | 3.05          | 31.39             | 50.50             | 74       | -23.50 | PK               |
| V                               | 4960.00   | 57.98            | 51.69             | 3.05          | 31.39             | 40.73             | 54       | -13.27 | AV               |
| V                               | 7440.00   | 62.91            | 50.11             | 7.25          | 36.58             | 56.63             | 74       | -17.37 | PK               |
| V                               | 7440.00   | 53.40            | 50.11             | 7.25          | 36.58             | 47.12             | 54       | -6.88  | AV               |
| V                               | 16087.00  | 47.40            | 51.53             | 11.34         | 41.52             | 48.73             | 74       | -25.27 | PK               |
| H                               | 4960.00   | 63.28            | 51.69             | 3.05          | 31.39             | 46.03             | 74       | -27.97 | PK               |
| H                               | 4960.00   | 51.60            | 51.69             | 3.05          | 31.39             | 34.35             | 54       | -19.65 | AV               |
| H                               | 7440.00   | 65.44            | 50.11             | 7.25          | 36.58             | 59.16             | 74       | -14.84 | PK               |
| H                               | 7440.00   | 55.49            | 50.11             | 7.25          | 36.58             | 49.21             | 54       | -4.79  | AV               |
| H                               | 16087.00  | 44.51            | 51.53             | 11.34         | 41.52             | 45.84             | 74       | -28.16 | PK               |


**Remark:**

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,  
Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



## For Conducted







### 3.3 RADIATED BAND EMISSION MEASUREMENT

#### 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Limit (dB <sub>u</sub> V/m) (at 3M) |         |
|-----------------|-------------------------------------|---------|
|                 | PEAK                                | AVERAGE |
| Above 1000      | 74                                  | 54      |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dB<sub>u</sub>V/m)=20log Emission level (uV/m).

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 2300MHz                                          |
| Stop Frequency                        | 2520                                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

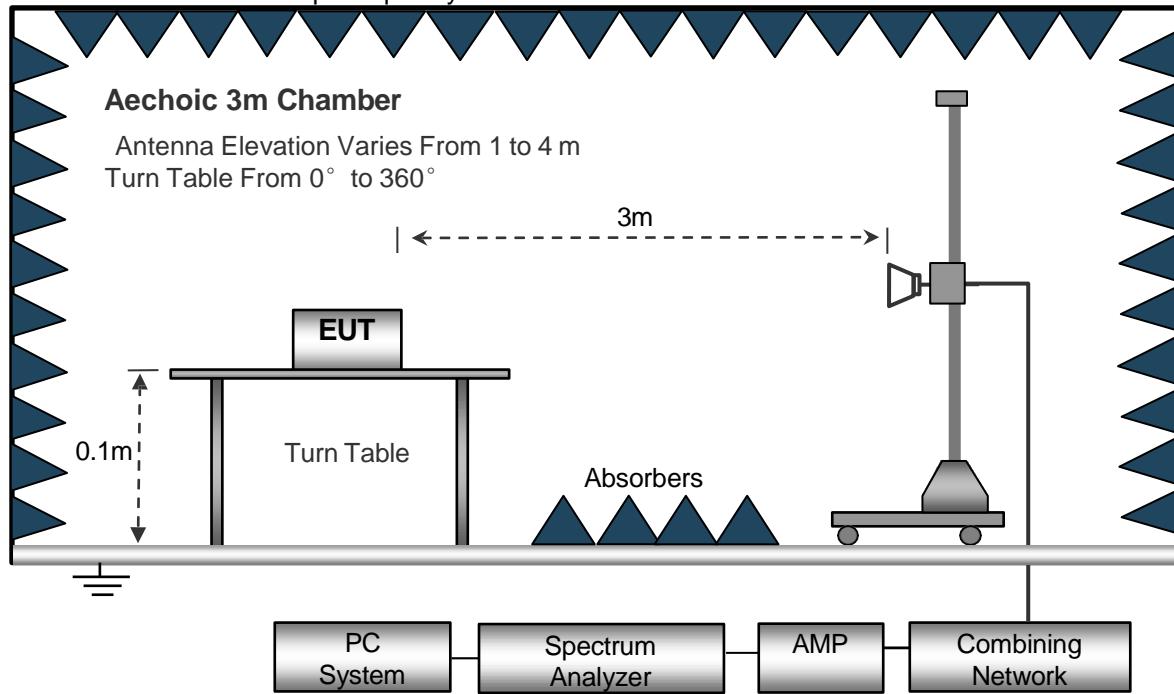
#### 3.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported




### 3.3.3 DEVIATION FROM TEST STANDARD

No deviation

### 3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz



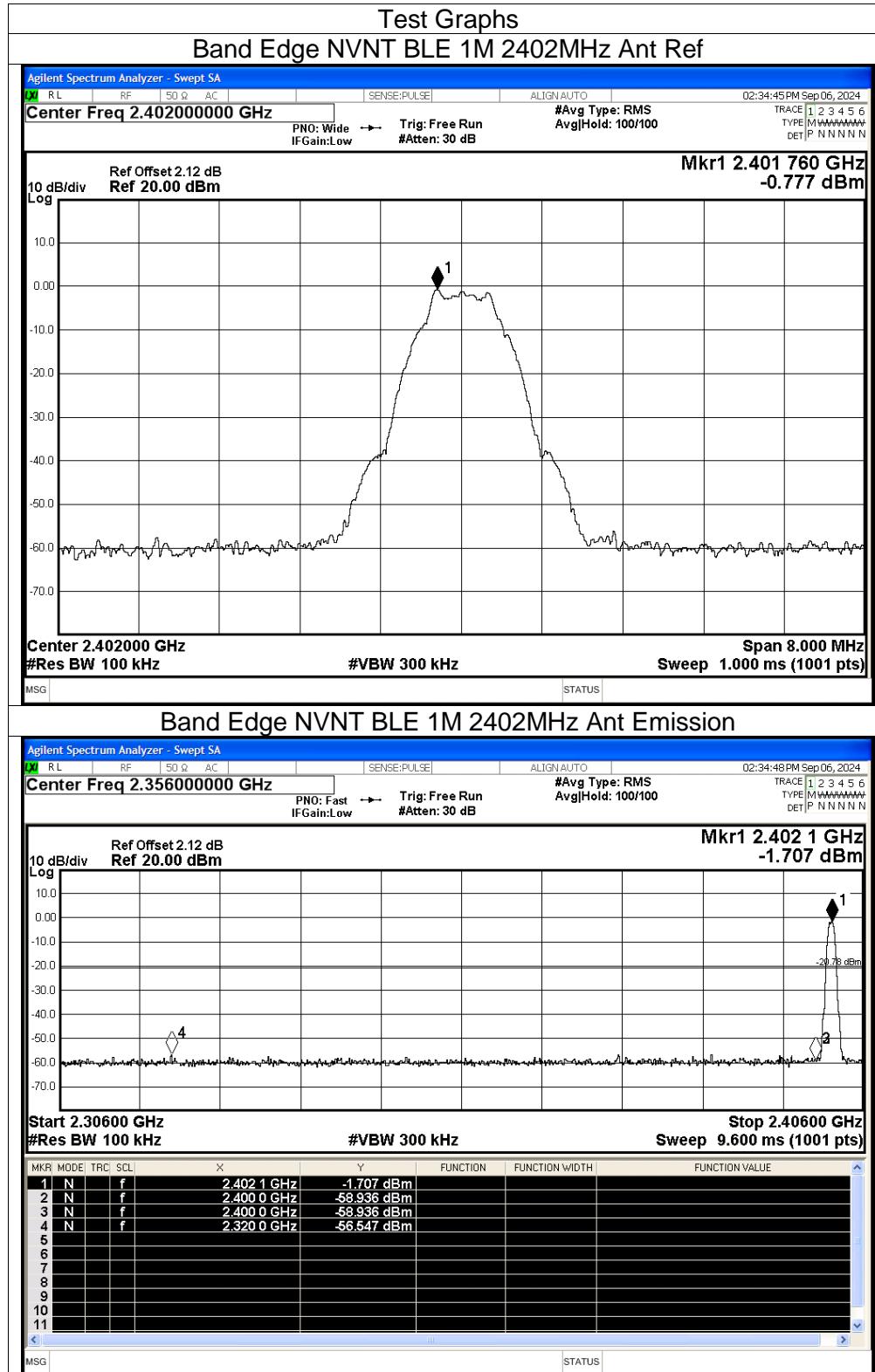
### 3.3.5 EUT OPERATING CONDITIONS

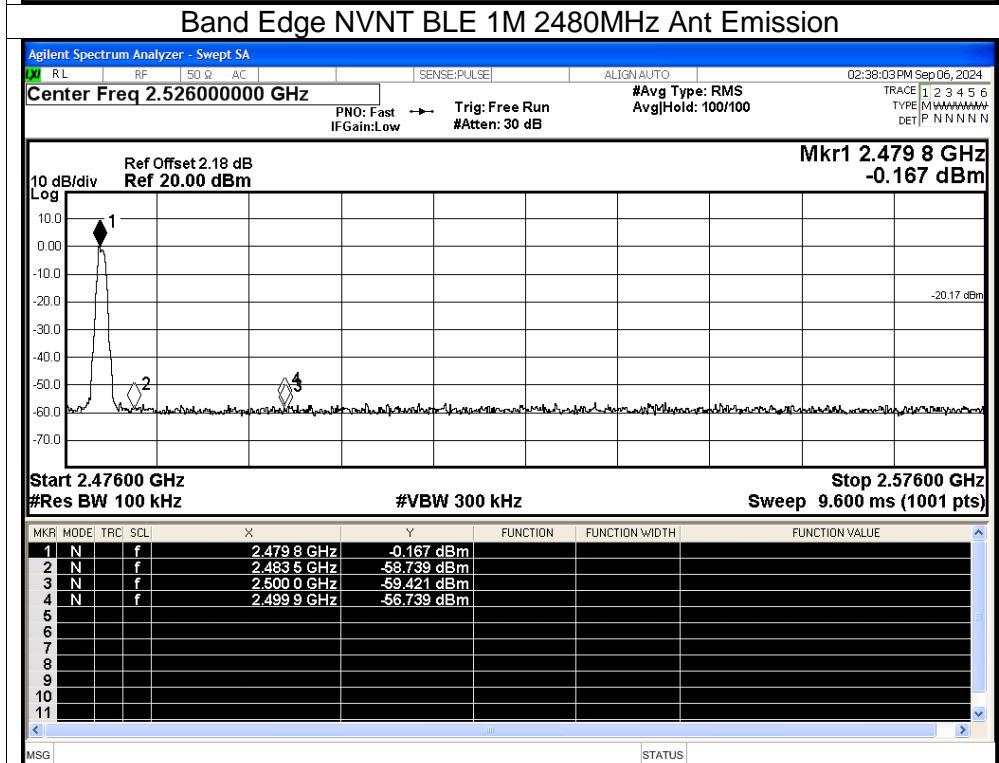
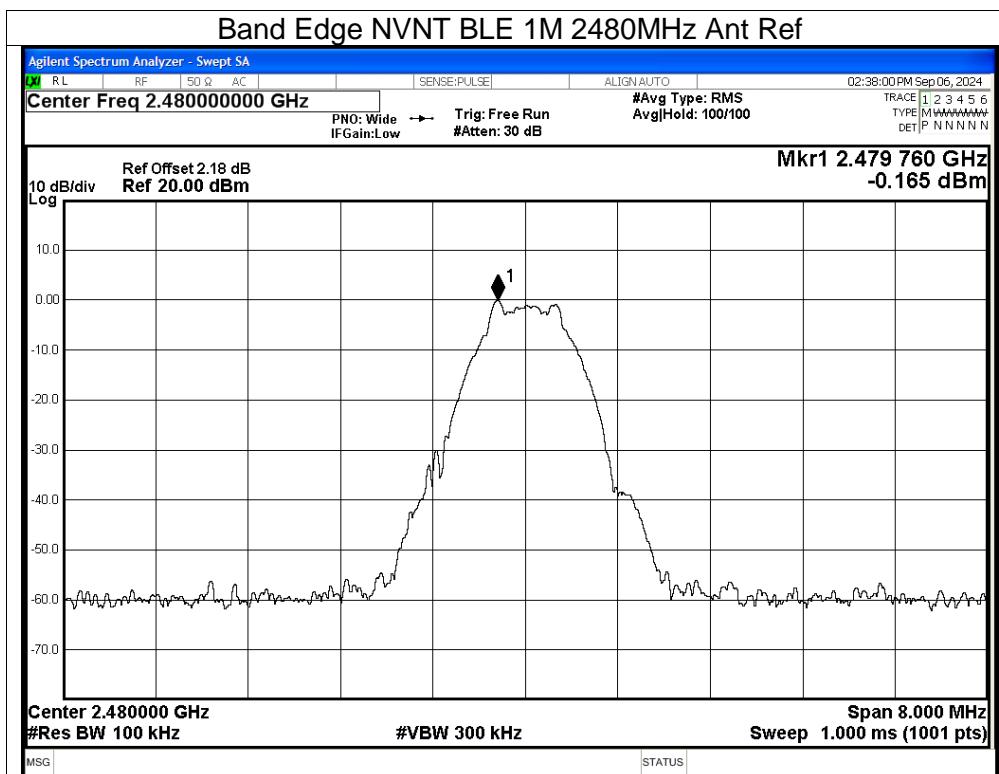
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



### 3.3.6 TEST RESULT

| Polar<br>(H/V)           | Frequency | Meter<br>Reading | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector<br>Type |
|--------------------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|----------|--------|------------------|
|                          | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/m) | (dB)   |                  |
| operation frequency:2402 |           |                  |                   |               |                   |                   |          |        |                  |
| V                        | 2390.00   | 74.30            | 52.12             | 2.73          | 27.38             | 52.29             | 74       | -21.71 | PK               |
| V                        | 2390.00   | 64.01            | 52.12             | 2.73          | 27.38             | 42.00             | 54       | -12.00 | AV               |
| V                        | 2400.00   | 76.42            | 52.16             | 2.78          | 27.41             | 54.45             | 74       | -19.55 | PK               |
| V                        | 2400.00   | 64.16            | 52.16             | 2.78          | 27.41             | 42.19             | 54       | -11.81 | AV               |
| H                        | 2390.00   | 76.05            | 52.12             | 2.73          | 27.38             | 54.04             | 74       | -19.96 | PK               |
| H                        | 2390.00   | 65.08            | 52.12             | 2.73          | 27.38             | 43.07             | 54       | -10.93 | AV               |
| H                        | 2400.00   | 74.95            | 52.16             | 2.78          | 27.41             | 52.98             | 74       | -21.02 | PK               |
| H                        | 2400.00   | 63.10            | 52.16             | 2.78          | 27.41             | 41.13             | 54       | -12.87 | AV               |


| Polar<br>(H/V)           | Frequency | Meter<br>Reading | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector<br>Type |
|--------------------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|----------|--------|------------------|
|                          | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/m) | (dB)   |                  |
| operation frequency:2480 |           |                  |                   |               |                   |                   |          |        |                  |
| V                        | 2483.50   | 76.05            | 52.12             | 2.73          | 27.38             | 54.04             | 74       | -19.96 | PK               |
| V                        | 2483.50   | 65.13            | 52.12             | 2.73          | 27.38             | 43.12             | 54       | -10.88 | AV               |
| V                        | 2500.00   | 75.39            | 52.16             | 2.78          | 27.41             | 53.42             | 74       | -20.58 | PK               |
| V                        | 2500.00   | 64.83            | 52.16             | 2.78          | 27.41             | 42.86             | 54       | -11.14 | AV               |
| H                        | 2483.50   | 74.61            | 52.12             | 2.73          | 27.38             | 52.60             | 74       | -21.40 | PK               |
| H                        | 2483.50   | 67.49            | 52.12             | 2.73          | 27.38             | 45.48             | 54       | -8.52  | AV               |
| H                        | 2500.00   | 77.00            | 52.16             | 2.78          | 27.41             | 55.03             | 74       | -18.97 | PK               |
| H                        | 2500.00   | 63.51            | 52.16             | 2.78          | 27.41             | 41.54             | 54       | -12.46 | AV               |



**Remark:**

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



## For Conducted







#### 4. PEAK OUTPUT POWER

##### 4.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247) , Subpart C |                   |                 |                       |        |
|---------------------------------|-------------------|-----------------|-----------------------|--------|
| Section                         | Test Item         | Limit           | Frequency Range (MHz) | Result |
| 15.247 (b)(3)                   | Peak Output Power | 1 watt or 30dBm | 2400-2483.5           | PASS   |

##### 4.1.1 TEST PROCEDURE

- The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- Spectrum Setting : RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel  
VBW  $\geq$  RBW

Sweep = auto

Detector function = peak

Trace = max hold

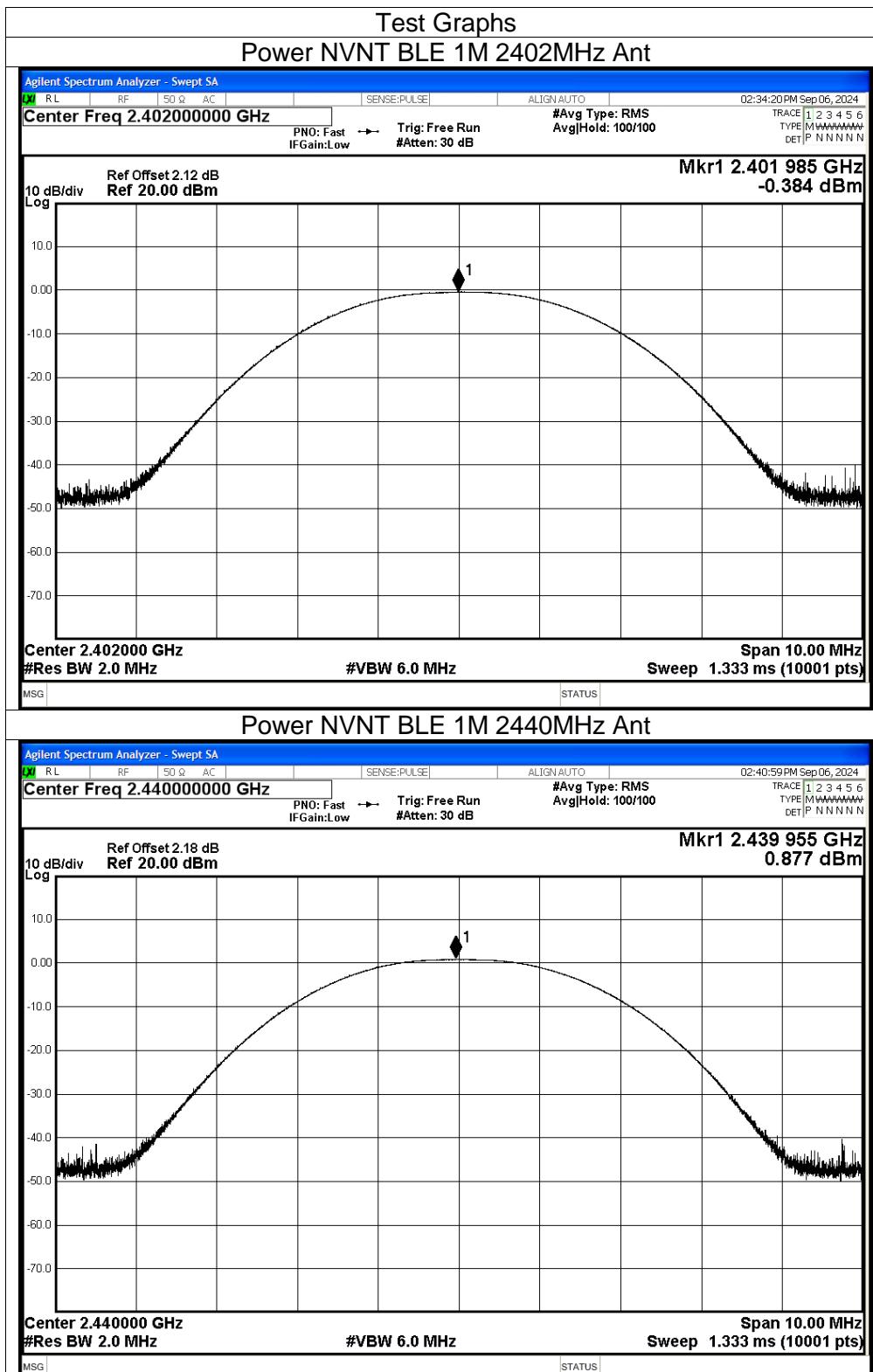
##### 4.1.2 DEVIATION FROM STANDARD

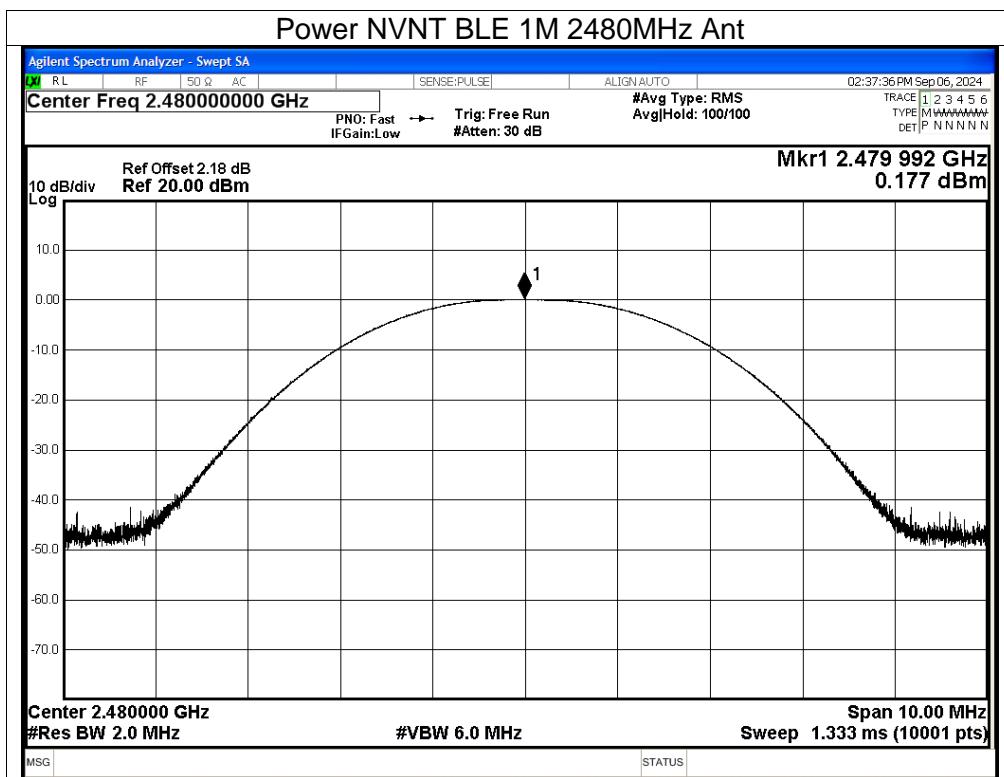
No deviation.

##### 4.1.3 TEST SETUP



##### 4.1.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.




#### 4.1.5 TEST RESULTS

|              |          |                    |         |
|--------------|----------|--------------------|---------|
| Temperature: | 25 °C    | Relative Humidity: | 60%     |
| Pressure:    | 1012 hPa | Test Voltage :     | AC 120V |

| Test Channel | Peak Output Power (dBm) | LIMIT (dBm) |
|--------------|-------------------------|-------------|
| Low          | -0.38                   | 30.00       |
| Moddle       | 0.88                    | 30.00       |
| High         | 0.18                    | 30.00       |







## 5. POWER SPECTRAL DENSITY TEST

### 5.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247) , Subpart C |                        |                        |                       |        |
|---------------------------------|------------------------|------------------------|-----------------------|--------|
| Section                         | Test Item              | Limit                  | Frequency Range (MHz) | Result |
| 15.247                          | Power Spectral Density | 8 dBm<br>(in any 3KHz) | 2400-2483.5           | PASS   |

| Spectrum Parameters | Setting                           |
|---------------------|-----------------------------------|
| Attenuation         | Auto                              |
| Span Frequency      | = the frequency band of operation |
| RB                  | $RBW \geq 3\text{kHz}$            |
| VB                  | $VBW \geq 3RBW$                   |
| Detector            | Peak                              |
| Trace               | Max Hold                          |
| Sweep Time          | Auto                              |

#### 5.1.1 TEST PROCEDURE

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

#### 5.1.2 DEVIATION FROM STANDARD

No deviation.

#### 5.1.3 TEST SETUP



#### 5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

#### 5.1.5 TEST RESULTS

| Test Channel | Reading Level (dBm) | Limit(dBm) | Result |
|--------------|---------------------|------------|--------|
| Low          | -16.91              | 8          | PASS   |
| Middle       | -15.75              | 8          | PASS   |
| High         | -16.47              | 8          | PASS   |







## 6. 6DB BANDWIDTH TEST

### 6.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 (15.247) , Subpart C |           |                              |                      |        |
|---------------------------------|-----------|------------------------------|----------------------|--------|
| Section                         | Test Item | Limit                        | Frequency Range(MHz) | Result |
| 15.247(a)(2)                    | Bandwidth | >= 500KHz<br>(6dB bandwidth) | 2400-2483.5          | PASS   |

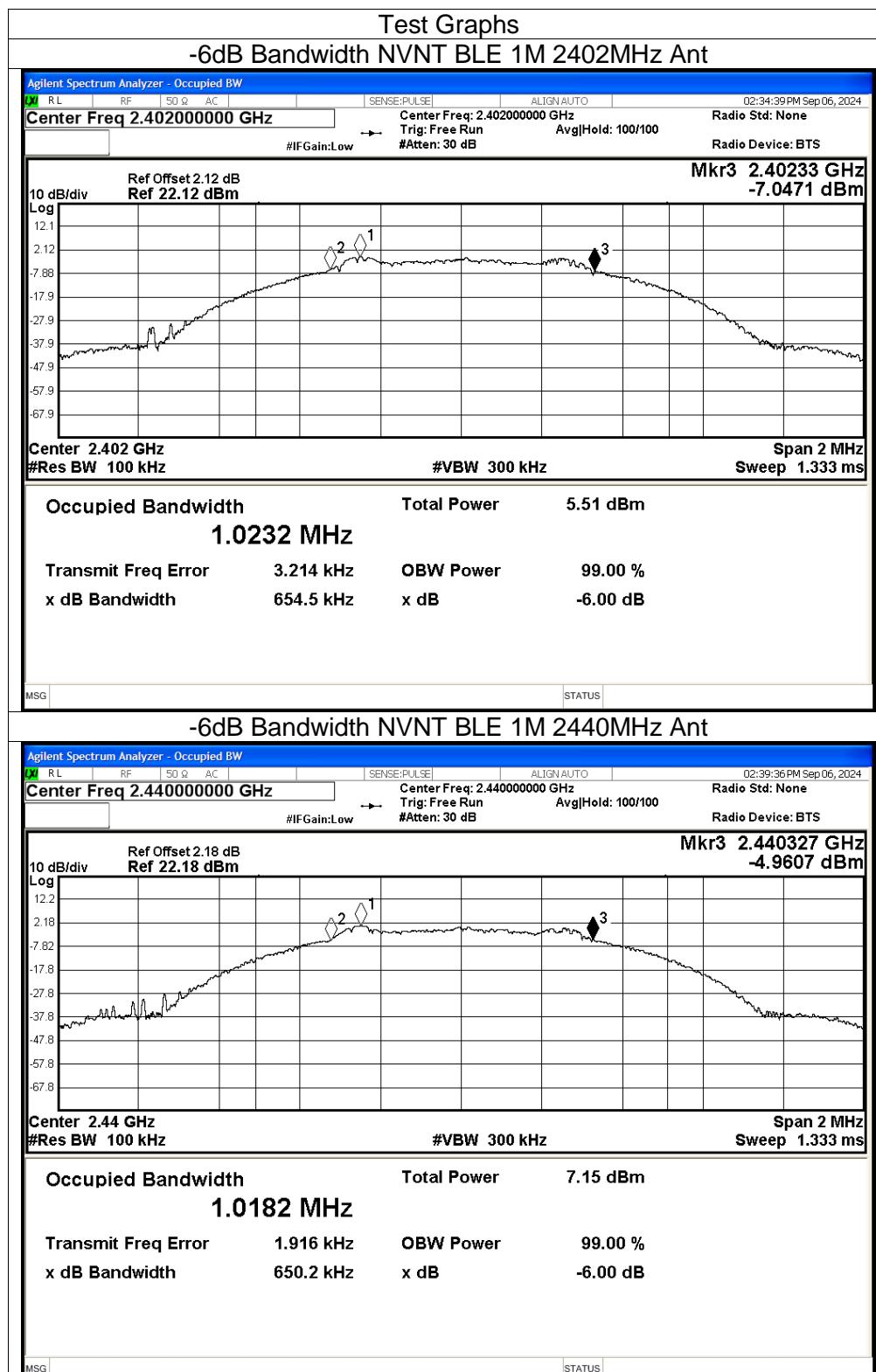
#### 6.1.1 TEST PROCEDURE

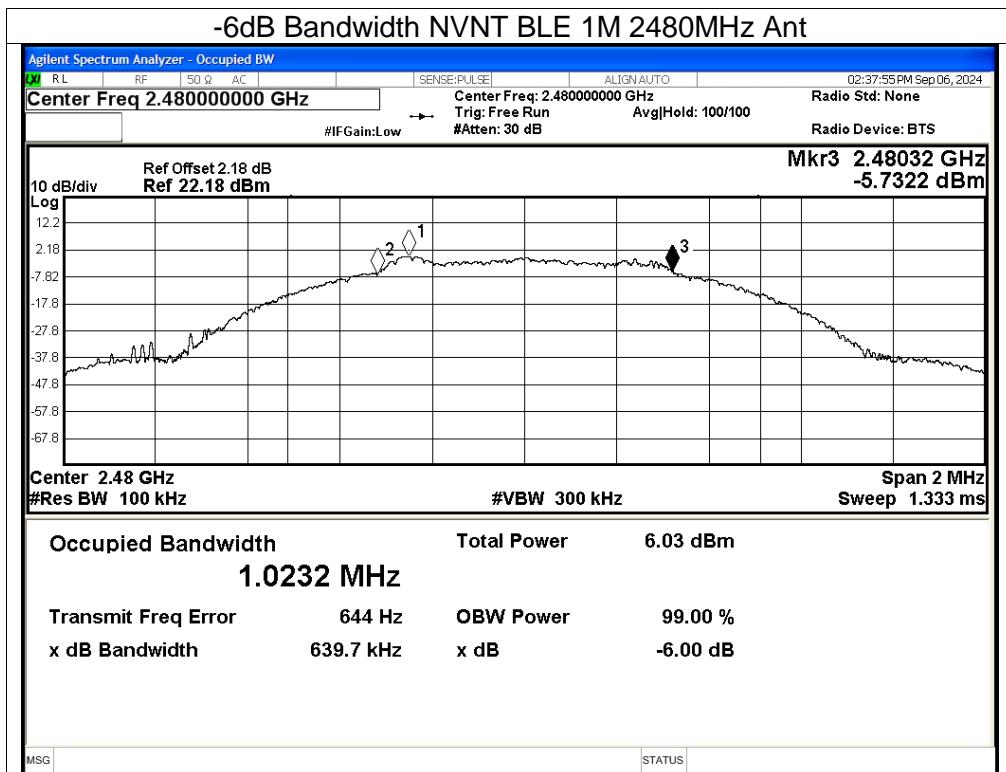
1. Set RBW = 100 kHz.
2. Set the video bandwidth (VBW)  $\geq$  RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

#### 6.1.2 DEVIATION FROM STANDARD

No deviation.

#### 6.1.3 TEST SETUP





#### 6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

#### 6.1.5 TEST RESULTS

| Test Channel | 6dB Bandwidth (MHz) | Limit (MHz) | Result |
|--------------|---------------------|-------------|--------|
| Low          | 0.654               | 0.5         | Pass   |
| Middle       | 0.65                | 0.5         | Pass   |
| High         | 0.64                | 0.5         | Pass   |







#### **6.1.6. ANTENNA REQUIREMENT**

#### **6.2 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### **6.3 EUT ANTENNA**

The EUT antenna is internal antenna,. It comply with the standard requirement.



## 7. TEST SEUUP PHOTO

**Please refer to the Test setup Photos**



## 8. EUT PHOTO

**Please refer to the External Photos and Internal Photos**

※※※※※ END OF REPORT ※※※※※