

# Test Report

Verified code: 917139

Report No.: E20240724756701-1

Customer: Shenzhen H&T Intelligent Product Co., Ltd.  
Address: 1004, 10/F, Building D, Shenzhen Academy of Aerospace Technology, No. 6  
Technology South 10th Rd., Hi-Tech Park, South Zone, Nanshan, Shenzhen City,  
Guangdong Province, P. R. China  
Sample Name: Presence Sensor S1  
Sample Model: PS-SP1  
Receive Sample Date: Jul.25,2024  
Test Date: Aug.01,2024 ~ Oct.23,2024  
Reference Document: 47 CFR, FCC Part 15 Subpart C  
RADIO FREQUENCY DEVICES:Subpart C—Intentional Radiators  
Test Result: Pass

Prepared by: Wen Wenwen      Reviewed by: Wu Haoting      Approved by: Xiao Liang  
Wen Wenwen      Wu Haoting      Xiao Liang

GRG METROLOGY & TEST GROUP CO., LTD.

Issued Date: 2024-11-05

GRG METROLOGY & TEST GROUP CO., LTD.

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China  
Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: <http://www.grgtest.com>



## Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.
2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.
3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.
4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.
5. This testing report is only for scientific research, teaching, internal quality control, etc.

—Blank space below this page—

## TABLE OF CONTENTS

|      |                                                 |    |
|------|-------------------------------------------------|----|
| 1.   | TEST RESULT SUMMARY .....                       | 6  |
| 2.   | GENERAL DESCRIPTION OF EUT .....                | 7  |
| 2.1  | APPLICANT .....                                 | 7  |
| 2.2  | MANUFACTURER .....                              | 7  |
| 2.3  | FACTORY .....                                   | 7  |
| 2.4  | BASIC DESCRIPTION OF EQUIPMENT UNDER TEST ..... | 7  |
| 2.5  | CHANNELLIST .....                               | 8  |
| 2.6  | TEST OPERATION MODE .....                       | 8  |
| 2.7  | LOCAL SUPPORTIVE .....                          | 8  |
| 2.8  | CONFIGURATION OF SYSTEM UNDER TEST .....        | 9  |
| 2.9  | DUTY CYCLE .....                                | 9  |
| 3.   | LABORATORY AND ACCREDITATIONS .....             | 10 |
| 3.1  | LABORATORY .....                                | 10 |
| 3.2  | ACCREDITATIONS .....                            | 10 |
| 4.   | MEASUREMENT UNCERTAINTY .....                   | 11 |
| 5.   | LIST OF USED TEST EQUIPMENT AT GRGT .....       | 12 |
| 6.   | CONDUCTED EMISSION MEASUREMENT .....            | 13 |
| 6.1  | LIMITS .....                                    | 13 |
| 6.2  | TEST PROCEDURES .....                           | 13 |
| 6.3  | TEST SETUP .....                                | 14 |
| 6.4  | DATA SAMPLE .....                               | 14 |
| 6.5  | TEST RESULTS .....                              | 15 |
| 7.   | RADIATED SPURIOUS EMISSIONS .....               | 17 |
| 7.1  | LIMITS .....                                    | 17 |
| 7.2  | TEST PROCEDURES .....                           | 17 |
| 7.3  | TEST SETUP .....                                | 20 |
| 7.4  | DATA SAMPLE .....                               | 21 |
| 7.5  | TEST RESULTS .....                              | 22 |
| 8.   | 6dB BANDWIDTH .....                             | 30 |
| 8.1  | LIMITS .....                                    | 30 |
| 8.2  | TEST PROCEDURES .....                           | 30 |
| 8.3  | TEST SETUP .....                                | 30 |
| 8.4  | TEST RESULTS .....                              | 31 |
| 9.   | MAXIMUM PEAK OUTPUT POWER .....                 | 33 |
| 9.1  | LIMITS .....                                    | 33 |
| 9.2  | TEST PROCEDURES .....                           | 33 |
| 9.3  | TEST SETUP .....                                | 33 |
| 9.4  | TEST RESULTS .....                              | 33 |
| 10.  | POWER SPECTRAL DENSITY .....                    | 34 |
| 10.1 | LIMITS .....                                    | 34 |
| 10.2 | TEST PROCEDURES .....                           | 34 |

|      |                                                             |    |
|------|-------------------------------------------------------------|----|
| 10.3 | TEST SETUP .....                                            | 34 |
| 10.4 | TEST RESULTS .....                                          | 35 |
| 11.  | CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS .....           | 37 |
| 11.1 | LIMITS.....                                                 | 37 |
| 10.2 | TEST PROCEDURES .....                                       | 37 |
| 10.3 | TEST SETUP .....                                            | 37 |
| 10.4 | TEST RESULTS .....                                          | 38 |
| 12.  | RESTRICTED BANDS OF OPERATION.....                          | 45 |
| 12.1 | LIMITS.....                                                 | 45 |
| 11.2 | TEST PROCEDURES .....                                       | 46 |
| 11.3 | TEST SETUP .....                                            | 46 |
| 11.4 | TEST RESULTS .....                                          | 47 |
|      | APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM ..... | 52 |
|      | APPENDIX B. PHOTOGRAPH OF THE EUT .....                     | 52 |

—Blank space below this page—

**REPORT ISSUED HISTORY**

| Report Version | Report No.        | Description    | Compile Date |
|----------------|-------------------|----------------|--------------|
| 1.0            | E20240724756701-1 | Original Issue | 2024-10-25   |

—Blank space below this page—

## 1. TEST RESULT SUMMARY

| <b>Technical Requirements</b>                                                                                 |                                            |               |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|
| 47 CFR, FCC Part 15 Subpart C 15.247<br>ANSI C63.10-2020<br>KDB 558074 D01 15.247 measurement guidance v05r02 |                                            |               |
| <b>Limit / Severity</b>                                                                                       | <b>Item</b>                                | <b>Result</b> |
| §15.203                                                                                                       | Antenna Requirement                        | Pass          |
| §15.207(a)                                                                                                    | Conducted Emission                         | Pass          |
| §15.247(d)&15.205& 15.209                                                                                     | Radiated Spurious Emission                 | Pass          |
| §15.247(b)(3)                                                                                                 | Maximum Peak Output Power                  | Pass          |
| §15.247(e)                                                                                                    | Power Spectral Density                     | Pass          |
| §15.247(a)(2)                                                                                                 | 6dB bandwidth                              | Pass          |
| §15.247(d)                                                                                                    | Conducted band edges and Spurious Emission | Pass          |
| §15.247(d)&15.205& 15.209                                                                                     | Restricted bands of operation              | Pass          |

Note: The antenna is Internal FPC antenna. The max gain of antenna is 3.24dBi, which accordance 15.203 is considered sufficient to comply with the provisions of this section.

—Blank space below this page—

## 2. GENERAL DESCRIPTION OF EUT

### 2.1 APPLICANT

Name: Shenzhen H&T Intelligent Product Co., Ltd.  
Address: 1004,10/F, Building D, Shenzhen Academy of Aerospace Technology, No. 6  
Technology South 10th Rd., Hi-Tech Park, South Zone, Nanshan, Shenzhen City,  
Guangdong Province, P. R. China

### 2.2 MANUFACTURER

Name: Shenzhen H&T Intelligent Product Co., Ltd.  
Address: 1004,10/F, Building D, Shenzhen Academy of Aerospace Technology, No. 6  
Technology South 10th Rd., Hi-Tech Park, South Zone, Nanshan, Shenzhen City,  
Guangdong Province, P. R. China

### 2.3 FACTORY

Name: Shenzhen H&T Intelligent Product Co., Ltd.  
Address: 1004,10/F, Building D, Shenzhen Academy of Aerospace Technology, No. 6  
Technology South 10th Rd., Hi-Tech Park, South Zone, Nanshan, Shenzhen City,  
Guangdong Province, P. R. China

### 2.4 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Product Name: Presence Sensor S1  
Product Model: PS-SP1  
Trade Name: /  
Power Supply: DC 5V by USB port  
FCC ID: 2BHYS888888888  
Frequency Band: 2402MHz-2480MHz  
Maximum output Power: 2.08dBm  
Modulation type: GFSK for 1Mbps  
Channel space: 2MHz  
Antenna Type: Internal FPC antenna  
Antenna Gain: 3.24dBi (Max.)  
Temperature Range: -10 °C ~ +40 °C  
Hardware Version: V01  
Software Version: 0.0.3.2  
Sample No: E20240724756701-0001, E20240724756701-0002

## Note:

The EUT antenna gain is provided by the applicant. This report is made solely on the basis of such data and/or information. We accept no responsibility for the authenticity and completeness of the above data and information and the validity of the results and/or conclusions.

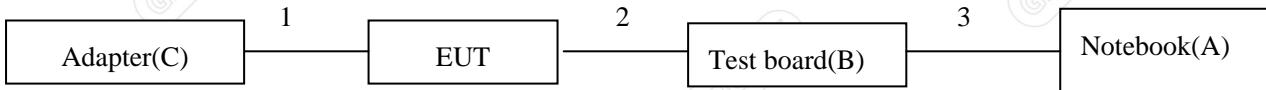
## 2.5 CHANNELLIST

| Channel    | Frequency (MHz) | Channel    | Frequency (MHz) | Channel | Frequency (MHz) | Channel    | Frequency (MHz) |
|------------|-----------------|------------|-----------------|---------|-----------------|------------|-----------------|
| <b>*00</b> | <b>2402</b>     | 10         | 2422            | 20      | 2442            | 30         | 2462            |
| 01         | 2404            | 11         | 2424            | 21      | 2444            | 31         | 2464            |
| 02         | 2406            | 12         | 2426            | 22      | 2446            | 32         | 2466            |
| 03         | 2408            | 13         | 2428            | 23      | 2448            | 33         | 2468            |
| 04         | 2410            | 14         | 2430            | 24      | 2450            | 34         | 2470            |
| 05         | 2412            | 15         | 2432            | 25      | 2452            | 35         | 2472            |
| 06         | 2414            | 16         | 2434            | 26      | 2454            | 36         | 2474            |
| 07         | 2416            | 17         | 2436            | 27      | 2456            | 37         | 2476            |
| 08         | 2418            | 18         | 2438            | 28      | 2458            | 38         | 2478            |
| 09         | 2420            | <b>*19</b> | <b>2440</b>     | 29      | 2460            | <b>*39</b> | <b>2480</b>     |

\* is the test frequency

## 2.6 TEST OPERATION MODE

| Mode No. | Description of the modes                     |
|----------|----------------------------------------------|
| 1        | Bluetooth (BLE) fixed frequency transmitting |


## 2.7 LOCAL SUPPORTIVE

| No. | Name of Equipment | Manufacturer | Model                          | Serial Number |
|-----|-------------------|--------------|--------------------------------|---------------|
| A   | Notebook          | DELL         | Latitude3400                   | 8RZFJW2       |
| B   | Test board        | /            | /                              | /             |
| C   | Adapter           | Hua wei      | HW-050450C01<br>CA36YTJBR03003 | /             |

| No. | Cable Type   | Qty. | Shielded Type | Ferrite Core(Qty.) | Length |
|-----|--------------|------|---------------|--------------------|--------|
| 1   | USB cable    | 1    | Yes           | 0                  | 1.0m   |
| 2   | Serial cable | 1    | No            | 0                  | 0.5m   |
| 3   | USB cable    | 1    | No            | 0                  | 1.0m   |

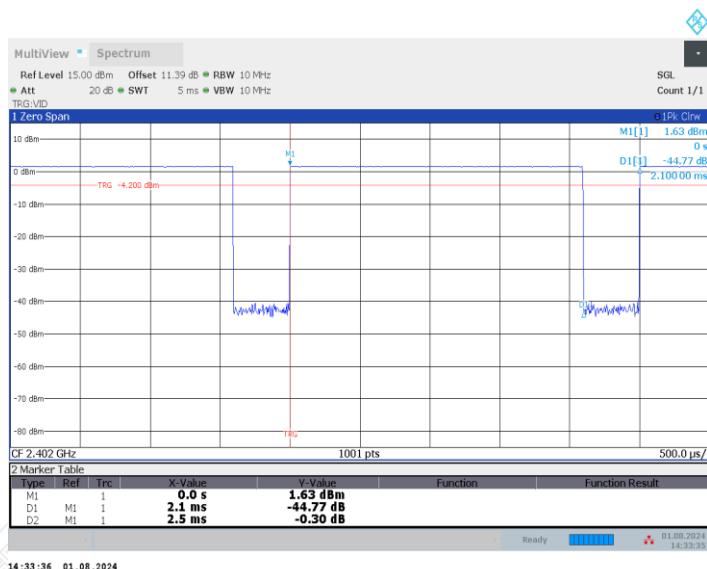
Note: The notebook is just used to produce fixed frequency transmitting.

## 2.8 CONFIGURATION OF SYSTEM UNDER TEST



### Test software:

| Software version | Test level |
|------------------|------------|
| ESP32            | 2402MHz: 4 |
|                  | 2440MHz: 4 |
|                  | 2480MHz: 4 |


## 2.9 DUTY CYCLE

Environment: 25.3 °C/59%RH/101.0kPa  
Tested By: Qin tingting

Voltage: DC 5V  
Date: 2024-08-01

| Test Mode | Antenna | Frequency [MHz] | ON Time [ms] | Period [ms] | DC [%] | T [s]  |
|-----------|---------|-----------------|--------------|-------------|--------|--------|
| BLE_1M    | Ant1    | 2402            | 2.10         | 2.50        | 84.00  | 0.0021 |

### BLE\_1M \_2402MHz



### 3. LABORATORY AND ACCREDITATIONS

#### 3.1 LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of GRG METROLOGY & TEST GROUP CO., LTD.

Add.: No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District  
Shenzhen, 518110, People's Republic of China

P.C.: 518110

Tel : 0755-61180008

Fax: 0755-61180008

#### 3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

**USA** A2LA(Certificate #2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

**Canada** ISED (Company Number: 24897, CAB identifier:CN0069)

**USA** FCC (Registration Number: 759402, Designation Number:CN1198)

Copies of granted accreditation certificates are available for downloading from our web site,  
<http://www.grgtest.com>

—Blank space below this page—

#### 4. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement       |            | Frequency      | Uncertainty         |
|-------------------|------------|----------------|---------------------|
| Radiated Emission | X          | 9kHz~30MHz     | 4.4dB <sup>1)</sup> |
|                   | Y          | 9kHz~30MHz     | 4.4dB <sup>1)</sup> |
|                   | Z          | 9kHz~30MHz     | 4.4dB <sup>1)</sup> |
|                   | Horizontal | 30MHz~200MHz   | 4.6dB <sup>1)</sup> |
|                   |            | 200MHz~1000MHz | 4.8dB <sup>1)</sup> |
|                   |            | 1GHz~18GHz     | 5.0dB <sup>1)</sup> |
|                   |            | 18GHz~26.5GHz  | 5.2dB <sup>1)</sup> |
|                   | Vertical   | 30MHz~200MHz   | 4.7dB <sup>1)</sup> |
|                   |            | 200MHz~1000MHz | 4.7dB <sup>1)</sup> |
|                   |            | 1GHz~18GHz     | 5.1dB <sup>1)</sup> |
|                   |            | 18GHz~26.5GHz  | 5.4dB <sup>1)</sup> |

| Measurement                      | Uncertainty          |
|----------------------------------|----------------------|
| RF frequency                     | $6.0 \times 10^{-6}$ |
| RF power conducted               | 0.80dB               |
| Power spectral density conducted | 0.80dB               |
| Occupied channel bandwidth       | 0.40dB               |
| Unwanted emission, conducted     | 0.70dB               |
| Humidity                         | 6.0%                 |
| Temperature                      | 2.0°C                |

Note:

<sup>1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95%.  
This uncertainty represents an expanded uncertainty factor of  $k=2$ .

## 5. LIST OF USED TEST EQUIPMENT AT GRGT

| Name of Equipment                                                                                  | Manufacturer       | Model          | Serial Number | Calibration Due |
|----------------------------------------------------------------------------------------------------|--------------------|----------------|---------------|-----------------|
| <b>Radiated Spurious Emission &amp; Restricted bands of operation</b>                              |                    |                |               |                 |
| Loop Antenna                                                                                       | Schwarzbeck        | FMZB 1513-60   | 1513-60-56    | 2025-05-07      |
| Bi-log Antenna                                                                                     | Schwarzbeck        | VULB9160       | VULB9160-3402 | 2024-10-06      |
| Horn Antenna                                                                                       | Schwarzbeck        | BBHA 9120D     | 02143         | 2025-09-07      |
| Test Receiver                                                                                      | R&S                | ESR26          | 101758        | 2025-09-10      |
| Spectrum Analyzer                                                                                  | R&S                | FSW43          | 102072        | 2025-07-19      |
| Board-Band Horn Antenna                                                                            | Schwarzbeck        | BBHA 9170      | BBHA 9170-497 | 2024-09-18      |
| Amplifier                                                                                          | SHIRONG ELECTRONIC | DLNA-30M1G-G40 | 20200928001   | 2025-01-30      |
| Amplifier                                                                                          | Tonscend           | TAP01018048    | AP20E8060075  | 2025-03-01      |
| Amplifier                                                                                          | Tonscend           | TAP184050      | AP20E806071   | 2025-03-01      |
| Amplifier                                                                                          | SHIRONG ELECTRONIC | DLNA-1G18G-G40 | 20200928005   | 2025-07-19      |
| Test S/W                                                                                           | Tonscend           | JS32-RE/5.0.0  |               |                 |
| <b>6dB Bandwidth &amp; Conducted band edges and Spurious Emission &amp; Power Spectral Density</b> |                    |                |               |                 |
| Spectrum Analyzer                                                                                  | R&S                | FSW43          | 102072        | 2025-06-14      |
| Automatic power test unit                                                                          | TONSCEND           | JS0806-2       | 21B8060365    | 2024-12-28      |
| BT/WIFI System                                                                                     | Tonscend           | JS1120-3       |               |                 |
| <b>Maximum peak output power</b>                                                                   |                    |                |               |                 |
| Pulse power sensor                                                                                 | Anristu            | MA2411B        | 1126150       | 2025-01-11      |
| Power meter                                                                                        | Anristu            | ML2495A        | 1204003       | 2025-01-11      |
| <b>Conducted Emissions</b>                                                                         |                    |                |               |                 |
| EZ-EMC                                                                                             | EZ                 | CCS-3A1-CE     | /             | /               |
| EMI Receiver                                                                                       | R&S                | ESCI           | 100783        | 2025-07-19      |
| LISN(EUT)                                                                                          | R&S                | ENV216         | 101543        | 2025-07-10      |

Note: The calibration cycle of the above instruments is 12 months.

## 6. CONDUCTED EMISSION MEASUREMENT

### 6.1 LIMITS

| Frequency range | Limits (dB $\mu$ V) |         |
|-----------------|---------------------|---------|
|                 | Quasi-peak          | Average |
| 150kHz ~ 0.5MHz | 66~56               | 56~46   |
| 0.5 MHz ~ 5 MHz | 56                  | 46      |
| 5 MHz ~ 30 MHz  | 60                  | 50      |

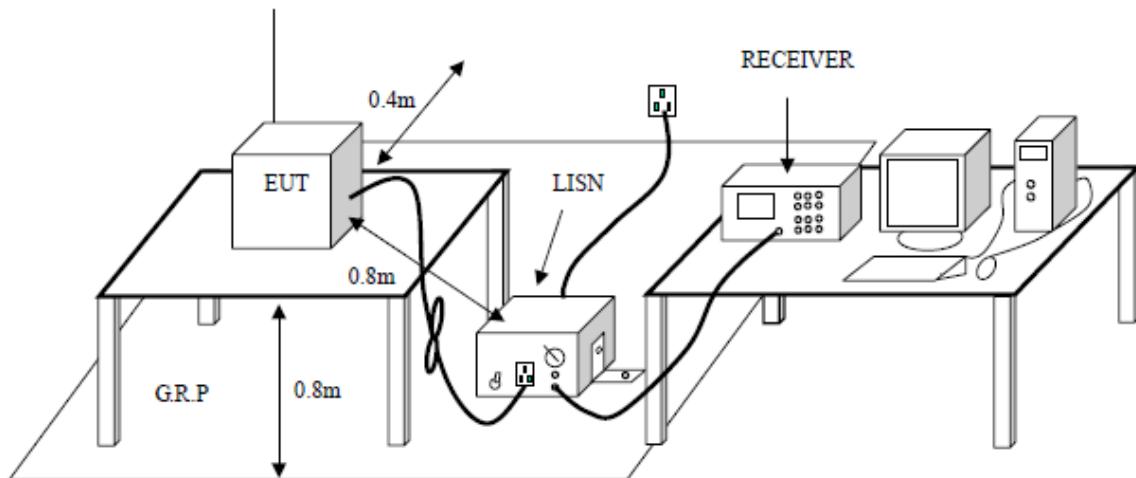
NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 150 kHz to 0.5MHz.

### 6.2 TEST PROCEDURES

#### Procedure of Preliminary Test

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:


- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:
  - 1) place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or
  - 2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;
- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;
- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.
- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.
- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.

The test mode(s) described in Item 2.6 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.6 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

#### Procedure of Final Test

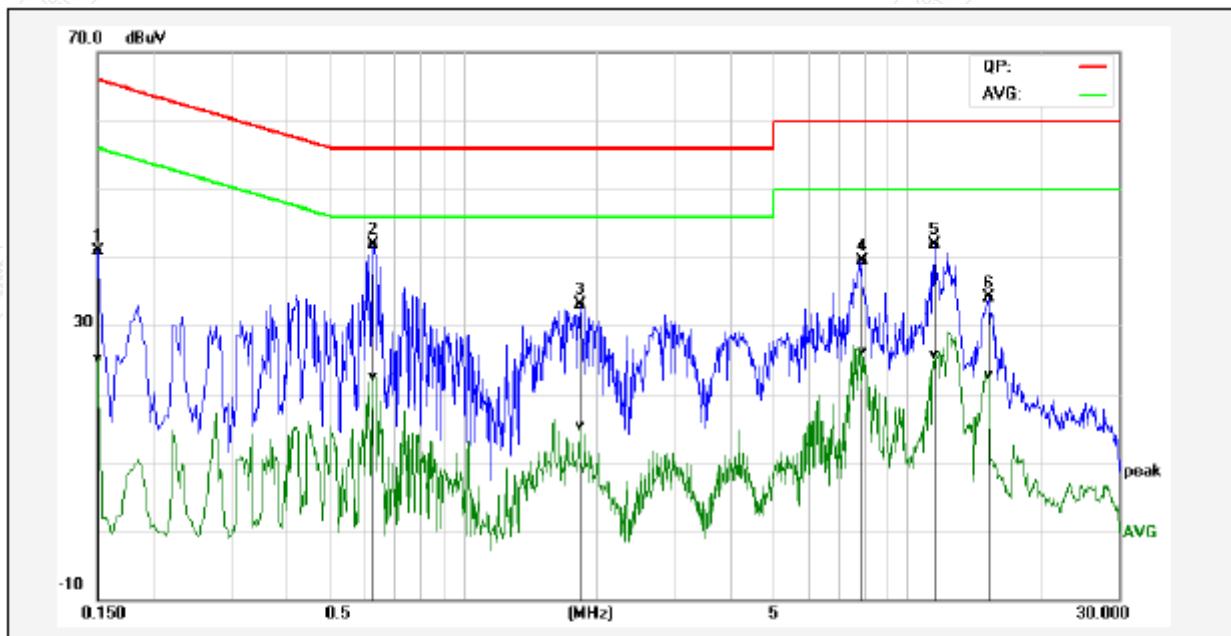
EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

### 6.3 TEST SETUP



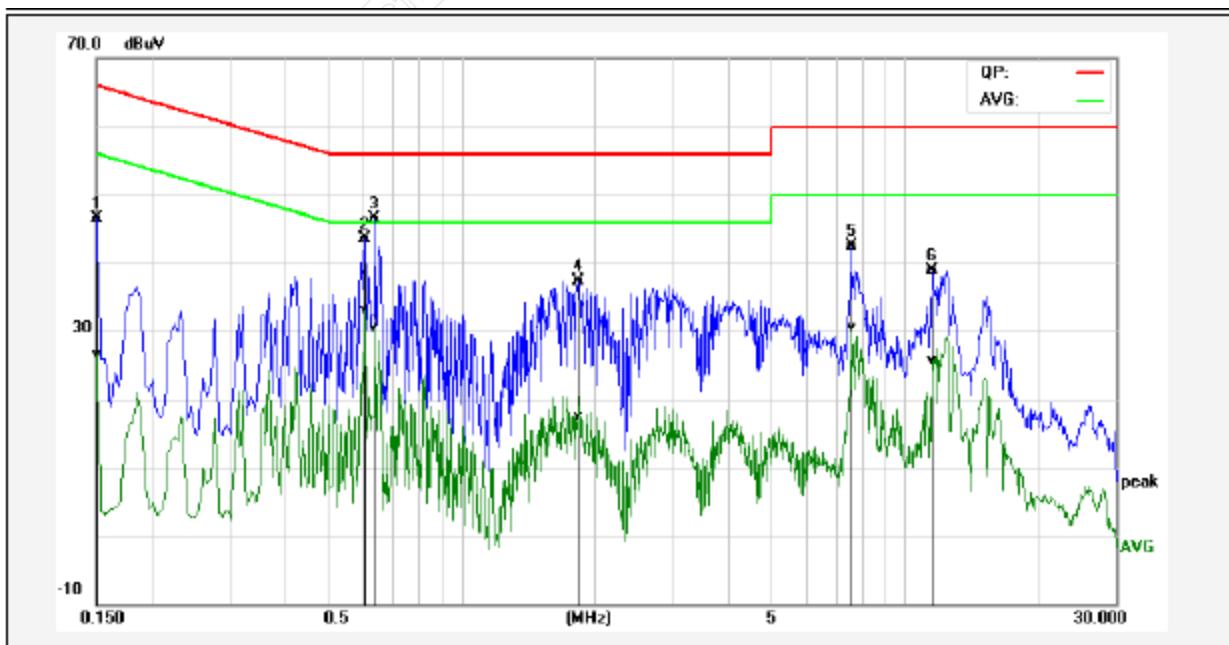
### 6.4 DATA SAMPLE

| Frequency (MHz) | QuasiPeak Reading (dBuV) | Average Reading (dBuV) | Correction Factor (dB) | QuasiPeak Result (dBuV) | Average Result (dBuV) | QuasiPeak Limit (dBuV) | Average Limit (dBuV) | QuasiPeak Margin (dB) | Average Margin (dB) | Remark (Pass/Fail) |
|-----------------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------|-----------------------|---------------------|--------------------|
| X.XXXX          | 32.69                    | 25.65                  | 11.52                  | 44.21                   | 37.17                 | 65.78                  | 55.79                | -21.57                | -18.62              | Pass               |


Factor = Insertion loss of LISN + Cable Loss  
 Result = Quasi-peak Reading/ Average Reading + Factor  
 Limit = Limit stated in standard  
 Margin = Result (dBuV) – Limit (dBuV)

— Blank space below this page —

## 6.5 TEST RESULTS


All models were pretested and only the worst modes and channels were recorded in this report. (BLE 2440MHz).

|                                 |                |                     |              |
|---------------------------------|----------------|---------------------|--------------|
| <b>Environmental Conditions</b> | 24.6 °C/60% RH | <b>Test Voltage</b> | AC 120V/60Hz |
| <b>Tested By</b>                | Wen wenwen     | <b>Line</b>         | L            |
| <b>Tested Date</b>              | 2024-09-27     | /                   | /            |



| No. | Frequency (MHz) | QuasiPeak reading (dBuV) | Average reading (dBuV) | Correction factor (dB) | QuasiPeak result (dBuV) | Average result (dBuV) | QuasiPeak limit (dBuV) | Average limit (dBuV) | QuasiPeak margin (dB) | Average margin (dB) | Remark |
|-----|-----------------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------|-----------------------|---------------------|--------|
| 1   | 0.1500          | 40.92                    | 25.03                  | 0.00                   | 40.92                   | 25.03                 | 65.99                  | 56.00                | -25.07                | -30.97              | Pass   |
| 2*  | 0.6300          | 41.83                    | 22.59                  | 0.00                   | 41.83                   | 22.59                 | 56.00                  | 46.00                | -14.17                | -23.41              | Pass   |
| 3   | 1.8300          | 33.08                    | 15.31                  | 0.00                   | 33.08                   | 15.31                 | 56.00                  | 46.00                | -22.92                | -30.69              | Pass   |
| 4   | 7.9060          | 39.49                    | 26.05                  | 0.00                   | 39.49                   | 26.05                 | 60.00                  | 50.00                | -20.51                | -23.95              | Pass   |
| 5   | 11.5420         | 41.84                    | 25.79                  | 0.00                   | 41.84                   | 25.79                 | 60.00                  | 50.00                | -18.16                | -24.21              | Pass   |
| 6   | 15.2580         | 34.02                    | 22.61                  | 0.00                   | 34.02                   | 22.61                 | 60.00                  | 50.00                | -25.98                | -27.39              | Pass   |

|                                 |              |                     |              |
|---------------------------------|--------------|---------------------|--------------|
| <b>Environmental Conditions</b> | 24.6°C/60%RH | <b>Test Voltage</b> | AC 120V/60Hz |
| <b>Tested By</b>                | Wen wenwen   | <b>Line</b>         | N            |
| <b>Tested Date</b>              | 2024-09-27   | /                   | /            |



| No. | Frequency (MHz) | QuasiPeak reading (dBuV) | Average reading (dBuV) | Correction factor (dB) | QuasiPeak result (dBuV) | Average result (dBuV) | QuasiPeak limit (dBuV) | Average limit (dBuV) | QuasiPeak margin (dB) | Average margin (dB) | Remark |
|-----|-----------------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------|-----------------------|---------------------|--------|
| 1   | 0.1500          | 46.48                    | 26.55                  | 0.00                   | 46.48                   | 26.55                 | 65.99                  | 56.00                | -19.51                | -29.45              | Pass   |
| 2   | 0.6060          | 43.56                    | 33.05                  | 0.00                   | 43.56                   | 33.05                 | 56.00                  | 46.00                | -12.44                | -12.95              | Pass   |
| 3*  | 0.6380          | 46.53                    | 30.60                  | 0.00                   | 46.53                   | 30.60                 | 56.00                  | 46.00                | -9.47                 | -15.40              | Pass   |
| 4   | 1.8460          | 37.40                    | 17.54                  | 0.00                   | 37.40                   | 17.54                 | 56.00                  | 46.00                | -18.60                | -28.46              | Pass   |
| 5   | 7.5820          | 42.43                    | 30.44                  | 0.00                   | 42.43                   | 30.44                 | 60.00                  | 50.00                | -17.57                | -19.56              | Pass   |
| 6   | 11.5380         | 38.98                    | 25.78                  | 0.00                   | 38.98                   | 25.78                 | 60.00                  | 50.00                | -21.02                | -24.22              | Pass   |

## 7. RADIATED SPURIOUS EMISSIONS

### 7.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required.

| Frequency (MHz) | Quasi-peak( $\mu$ V/m) | Measurement distance(m) | Quasi-peak(dB $\mu$ V/m)@distance 3m |
|-----------------|------------------------|-------------------------|--------------------------------------|
| 0.009-0.490     | 2400/F(kHz)            | 300                     | 128.5~93.8                           |
| 0.490-1.705     | 24000/F(kHz)           | 30                      | 73.8~63                              |
| 1.705-30.0      | 30                     | 30                      | 69.5                                 |
| 30 ~ 88         | 100                    | 3                       | 40                                   |
| 88~216          | 150                    | 3                       | 43.5                                 |
| 216 ~ 960       | 200                    | 3                       | 46                                   |
| Above 960       | 500                    | 3                       | 54                                   |

#### NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.
- (3) Above 18GHz test distance is 1m, so the Peak Limit=74+20\*log(3/1)=83.54 (dB $\mu$ V/m).  
The Avg Limit=54+20\*log(3/1)=63.54 (dB $\mu$ V/m).

### 7.2 TEST PROCEDURES

#### a) Sequence of testing 9kHz to 30MHz

##### Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- The measurement distance is 3meter.
- The EUT was set into operation.

##### Pre measurement:

- The turntable rotates from 0 ° to 360 °.
- The antenna height is 1.0 meter.
- The antenna is polarized X, Y and Z.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

##### Final measurement:

- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).

- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

### **b) Sequence of testing 30MHz to 1GHz**

#### **Setup:**

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- The measurement distance is 3 meter.
- The EUT was set into operation.

#### **Pre measurement:**

- The turntable rotates from 0 ° to 360 °.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 4 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement:**

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

### **c) Sequence of testing 1GHz to 18GHz**

#### **Setup:**

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- The measurement distance is 3 meter.
- The EUT was set into operation.

#### **Pre measurement:**

- The turntable rotates from 0 ° to 360 °.
- The antenna is polarized vertical and horizontal.

- The antenna height scan range is 1 meter to 4 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### **Final measurement:**

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

#### **d) Sequence of testing above 18GHz**

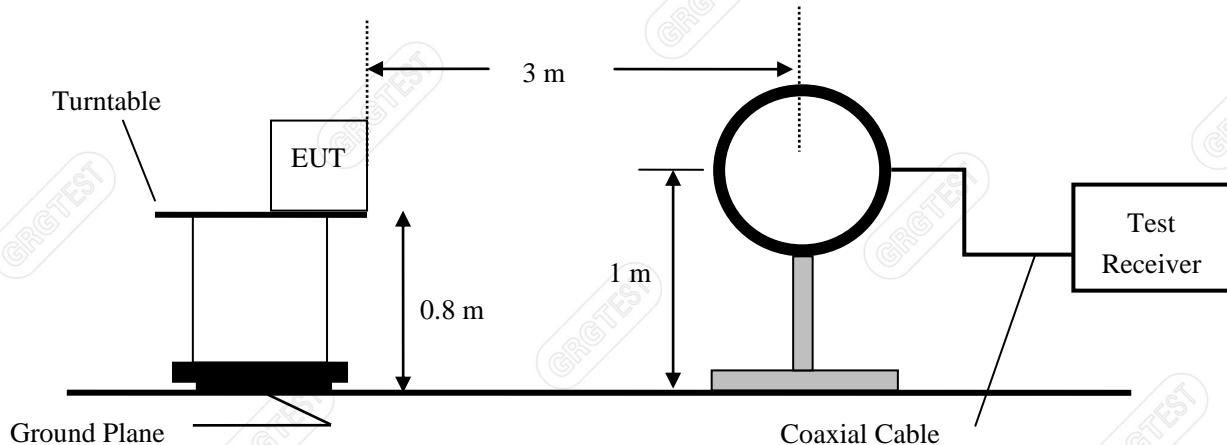
##### **Setup:**

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate fixed frequency transmitting conditions.
- The measurement distance is 1 meter.
- The EUT was set into operation.

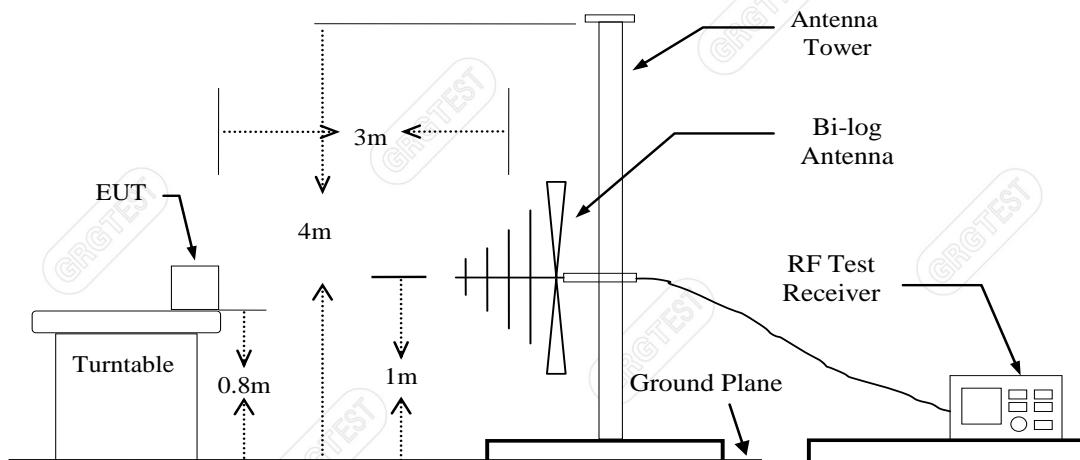
##### **Pre measurement:**

- The turntable rotates from 0 ° to 360 °.
- The antenna is polarized vertical and horizontal.
- The antenna height scan range is 1 meter to 4 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

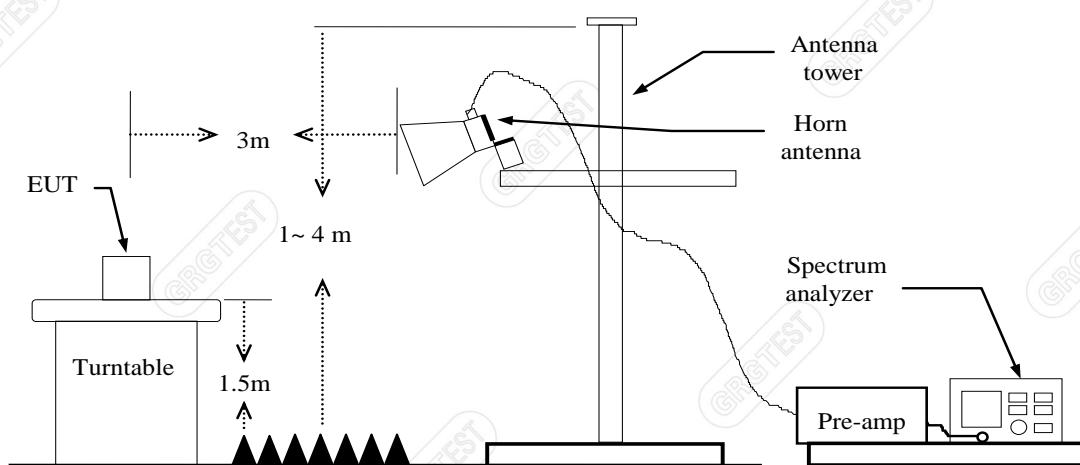
##### **Final measurement:**


- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from 0 ° to 360 ° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

##### **NOTE:**


- (1).The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), VBW=300Hz(for Peak&AVG). The frequency from 150kHz to 30MHz, Set RBW=9kHz, VBW=9kHz, (for QP Detector).
- (2).The frequency from 30MHz to 1GHz, Set RBW=120kHz, VBW=300kHz, (for QP Detector).
- (3).The frequency above 1GHz, for Peak detector: Set RBW=1MHz, VBW=3MHz.

(4). The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit with duty cycle  $\geq 98\%$ , set  $VBW \leq RBW/100$  (i.e., 10kHz) but not less than 10 Hz. If the EUT duty cycle is  $< 98\%$ , set  $VBW \geq 1/T$ , Where T is defined in section 2.9.


### 7.3 TEST SETUP



**Figure 1. 9kHz to 30MHz radiated emissions test configuration**



**Figure 2. 30MHz to 1GHz radiated emissions test configuration**



**Figure 3. 1GHz to 18GHz radiated emissions test configuration**

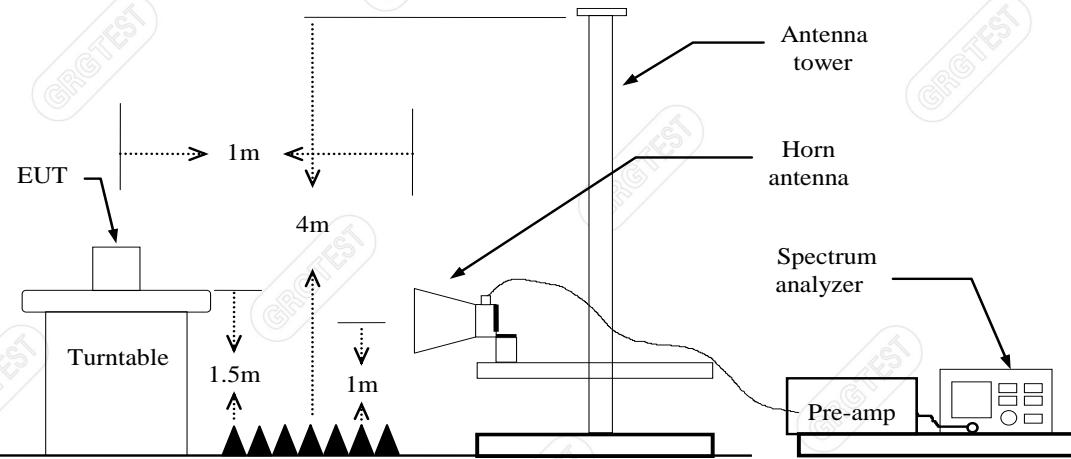



Figure 4. 18GHz to 26.5GHz radiated emissions test configuration

#### 7.4 DATA SAMPLE

##### 30MHz to 1GHz

| NO. | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Trace | Height [cm] | Angle [°] | Polarity   | Verdict |
|-----|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------|-------------|-----------|------------|---------|
| xxx | 86.5096     | 67.55                  | 33.83                | -33.72      | 40.00                | 6.17        | QP    | 200         | 118       | Horizontal | PASS    |

Frequency (MHz) = Emission frequency in MHz

Reading (dB $\mu$ V) = Uncorrected Analyzer / Receiver reading

Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Level (dB $\mu$ V/m) = Reading (dB $\mu$ V) + Factor (dB)

Limit (dB $\mu$ V/m) = Limit stated in standard

Margin (dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)

QP = Quasi-peak Reading

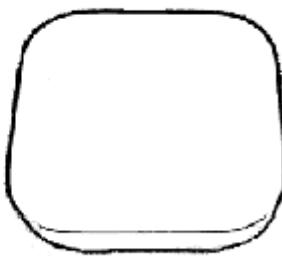
##### 1GHz-18GHz

| No. | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity   |
|-----|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|------------|
| xxx | xxxx        | 78.01                  | 55.30                | -22.71      | 74.00                | 18.70       | 100         | 50        | Horizontal |
| xxx | xxxx        | 66.37                  | 43.66                | -22.71      | 54.00                | 10.34       | 100         | 50        | Horizontal |

##### Above 18GHz

| NO. | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level for 1m [dB $\mu$ V/m] | Level for 3m [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity   |
|-----|-------------|------------------------|-----------------------------|-----------------------------|-------------|----------------------|-------------|-------------|-----------|------------|
| xxx | xxx         | 62.46                  | 45.31                       | 35.77                       | -17.15      | 74                   | 38.23       | 100         | 19        | Horizontal |

Frequency (MHz) = Emission frequency in MHz

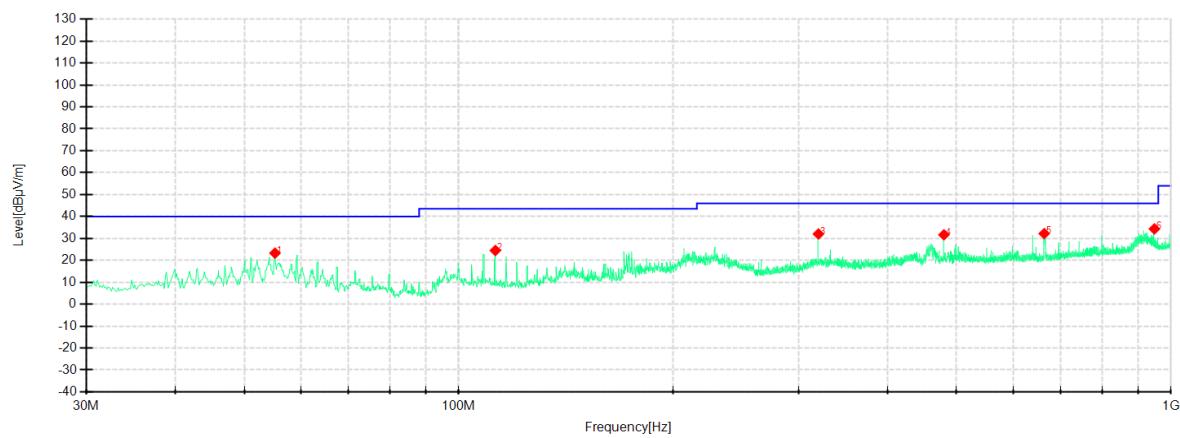

Reading (dB $\mu$ V/m) = Uncorrected Analyzer / Receiver reading

Factor (dB) = Antenna factor + Cable loss – Amplifier gain

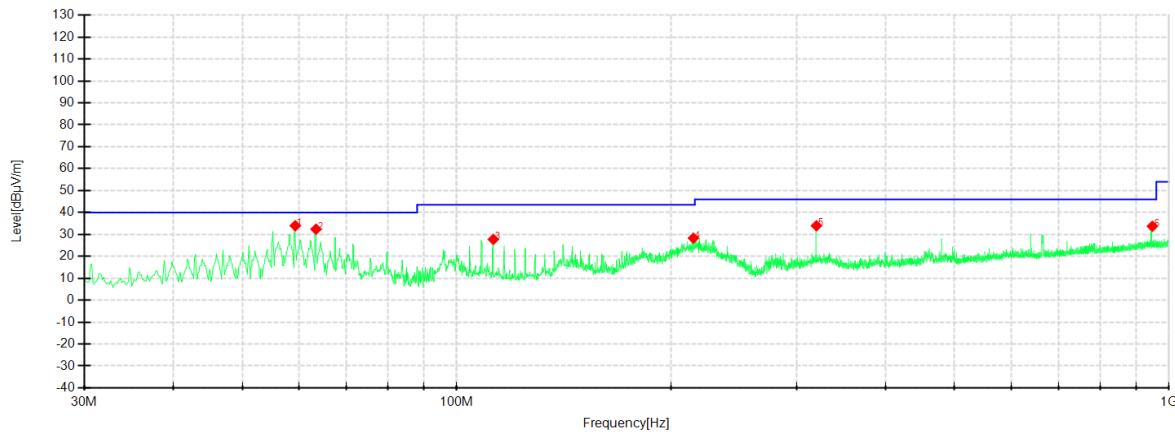
|                       |                                       |
|-----------------------|---------------------------------------|
| Level for 1m (dBuV/m) | = Reading (dBuV/m) + Factor (dB)      |
| Level for 3m (dBuV/m) | = Level for 1m (dBuV/m) + 20*log(1/3) |
| Limit (dBuV/m)        | = Limit stated in standard            |
| Margin (dB)           | = Limit (dBuV/m) – Level (dBuV/m)     |
| Polarity              | = Antenna polarization                |
| Peak                  | = Peak Reading                        |
| AVG                   | = Average Reading                     |

## 7.5 TEST RESULTS

The test are under the EUT typical placement for ceiling mounted the EUT can rotate 90 °, 180 °, 270 °etc. lying flat, standing on the table, etc. Only the worst case EUT lying flat results recorded in the report.




—Blank space below this page—


**Below 1GHz**

Note: Pre-scan all modes , only the worst case(TX\_BLE\_1M\_2402MHz) is recorded in this report.

|                |              |                           |                        |
|----------------|--------------|---------------------------|------------------------|
| Power supply:  | DC 5V        | Environmental Conditions: | 24.3 °C/64%RH/101.0kPa |
| Test Engineer: | Qin tingting | Test Date:                | 2024-08-24             |



| NO. | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Trace | Height [cm] | Angle [°] | Polarity   | Verdict |
|-----|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------|-------------|-----------|------------|---------|
| 1   | 55.2232     | 52.48                  | 23.29                | -29.19      | 40.00                | 17.21       | QP    | 100         | 240       | Horizontal | PASS    |
| 2   | 112.5816    | 54.96                  | 24.50                | -30.46      | 43.50                | 19.50       | QP    | 200         | 325       | Horizontal | PASS    |
| 3   | 319.9450    | 58.89                  | 32.03                | -26.86      | 46.00                | 14.47       | QP    | 100         | 342       | Horizontal | PASS    |
| 4   | 480.0150    | 53.45                  | 31.66                | -21.79      | 46.00                | 14.84       | QP    | 100         | 298       | Horizontal | PASS    |
| 5   | 663.7317    | 50.76                  | 32.21                | -18.55      | 46.00                | 14.29       | QP    | 100         | 314       | Horizontal | PASS    |
| 6   | 947.7347    | 49.06                  | 34.34                | -14.72      | 46.00                | 12.16       | QP    | 100         | 94        | Horizontal | PASS    |



| NO. | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Trace | Height [cm] | Angle [°] | Polarity | Verdict |
|-----|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------|-------------|-----------|----------|---------|
| 1   | 59.3462     | 63.43                  | 33.96                | -29.47      | 40.00                | 6.04        | QP    | 200         | 138       | Vertical | PASS    |
| 2   | 63.4692     | 62.44                  | 32.40                | -30.04      | 40.00                | 7.60        | QP    | 100         | 280       | Vertical | PASS    |
| 3   | 112.5816    | 58.21                  | 27.75                | -30.46      | 43.50                | 15.75       | QP    | 100         | 340       | Vertical | PASS    |
| 4   | 214.9294    | 59.52                  | 28.30                | -31.22      | 43.50                | 15.20       | QP    | 100         | 294       | Vertical | PASS    |
| 5   | 319.9450    | 60.81                  | 33.95                | -26.86      | 46.00                | 12.05       | QP    | 100         | 0         | Vertical | PASS    |
| 6   | 947.6135    | 48.45                  | 33.73                | -14.72      | 46.00                | 12.27       | QP    | 100         | 325       | Vertical | PASS    |

**Remark:**

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- 2 Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 3 The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.

**1GHz-18GHz:**

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Mode: TX/ BLE\_1M

Lowest Frequency (2402MHz)

Environment: 25.1 °C/52%RH/101.0kPa

Tested By: Qin tingting

/ Voltage: DC 5V

Date: 2024-10-23

| Suspected Data List |             |                        |                      |             |                      |             |             |           |            |
|---------------------|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|------------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                   | 1718.0000   | 65.31                  | 58.09                | -7.22       | 74.00                | 15.91       | 200         | 1         | Horizontal |
| 2                   | 1891.6000   | 55.04                  | 51.23                | -3.81       | 74.00                | 22.77       | 200         | 301       | Horizontal |
| 3                   | 2660.0000   | 51.36                  | 49.23                | -2.13       | 74.00                | 24.77       | 100         | 105       | Horizontal |
| 4                   | 3202.5000   | 62.88                  | 49.71                | -13.17      | 74.00                | 24.29       | 100         | 322       | Horizontal |
| 5                   | 7200.0000   | 53.59                  | 54.69                | 1.10        | 74.00                | 19.31       | 200         | 297       | Horizontal |
| 6                   | 15000.0000  | 39.93                  | 51.77                | 11.84       | 74.00                | 22.23       | 200         | 21        | Horizontal |

| AV Final Data List |             |             |                           |                         |                         |                |             |           |            |
|--------------------|-------------|-------------|---------------------------|-------------------------|-------------------------|----------------|-------------|-----------|------------|
| NO.                | Freq. [MHz] | Factor [dB] | AV Reading [dB $\mu$ V/m] | AV Value [dB $\mu$ V/m] | AV Limit [dB $\mu$ V/m] | AV Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                  | 1725.2600   | -7.22       | 46.66                     | 39.44                   | 54.00                   | 14.56          | 200         | 43.5      | Horizontal |
| 2                  | 1890.9160   | -3.81       | 42.43                     | 38.62                   | 54.00                   | 15.38          | 200         | 279.1     | Horizontal |
| 3                  | 2662.1560   | -2.13       | 39.13                     | 37.00                   | 54.00                   | 17.00          | 183         | 104.9     | Horizontal |
| 4                  | 3202.6855   | -13.17      | 59.90                     | 46.73                   | 54.00                   | 7.27           | 100         | 175.8     | Horizontal |
| 5                  | 7199.7900   | 1.10        | 46.64                     | 47.74                   | 54.00                   | 6.26           | 200         | 274       | Horizontal |
| 6                  | 14999.5700  | 11.84       | 35.68                     | 47.52                   | 54.00                   | 6.48           | 200         | 336.7     | Horizontal |

| Suspected Data List |             |                        |                      |             |                      |             |             |           |          |
|---------------------|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|----------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                   | 1329.2000   | 59.53                  | 51.44                | -8.09       | 74.00                | 22.56       | 200         | 23        | Vertical |
| 2                   | 1665.4000   | 58.75                  | 50.74                | -8.01       | 74.00                | 23.26       | 200         | 50        | Vertical |
| 3                   | 1892.4000   | 53.74                  | 49.88                | -3.86       | 74.00                | 24.12       | 200         | 194       | Vertical |
| 4                   | 3202.5000   | 65.21                  | 52.06                | -13.15      | 74.00                | 21.94       | 100         | 315       | Vertical |
| 5                   | 7200.0000   | 56.52                  | 57.72                | 1.20        | 74.00                | 16.28       | 200         | 348       | Vertical |
| 6                   | 15000.0000  | 42.14                  | 54.78                | 12.64       | 74.00                | 19.22       | 200         | 34        | Vertical |

| AV Final Data List |             |             |                           |                         |                         |                |             |           |          |
|--------------------|-------------|-------------|---------------------------|-------------------------|-------------------------|----------------|-------------|-----------|----------|
| NO.                | Freq. [MHz] | Factor [dB] | AV Reading [dB $\mu$ V/m] | AV Value [dB $\mu$ V/m] | AV Limit [dB $\mu$ V/m] | AV Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                  | 1327.7380   | -8.09       | 47.68                     | 39.59                   | 54.00                   | 14.41          | 127         | 21        | Vertical |
| 2                  | 1664.7970   | -8.01       | 46.05                     | 38.04                   | 54.00                   | 15.96          | 200         | 28.6      | Vertical |
| 3                  | 1897.7680   | -3.86       | 41.50                     | 37.64                   | 54.00                   | 16.36          | 181         | 171.3     | Vertical |
| 4                  | 3202.6855   | -13.15      | 64.67                     | 51.52                   | 54.00                   | 2.48           | 102         | 308.2     | Vertical |
| 5                  | 7199.7900   | 1.20        | 50.48                     | 51.68                   | 54.00                   | 2.32           | 200         | 339.4     | Vertical |
| 6                  | 14999.5700  | 12.64       | 32.13                     | 44.77                   | 54.00                   | 9.23           | 200         | 133.1     | Vertical |

Mode: TX/ BLE\_1M

Middle Frequency (2440MHz)

Environment: 25.1 °C/52%RH/101.0kPa

Tested By: Qin tingting

Voltage: DC 5V

Date: 2024-10-23

| Suspected Data List |             |                        |                      |             |                      |             |             |           |            |
|---------------------|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|------------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                   | 1939.2000   | 47.77                  | 43.95                | -3.82       | 74.00                | 30.05       | 100         | 177       | Horizontal |
| 2                   | 2502.2000   | 47.52                  | 47.04                | -0.48       | 74.00                | 26.96       | 200         | 148       | Horizontal |
| 3                   | 3252.0000   | 58.82                  | 46.28                | -12.54      | 74.00                | 23.72       | 100         | 210       | Horizontal |
| 4                   | 6207.0000   | 47.76                  | 44.73                | -3.03       | 74.00                | 29.27       | 200         | 24        | Horizontal |
| 5                   | 7200.0000   | 52.80                  | 53.90                | 1.10        | 74.00                | 20.10       | 200         | 117       | Horizontal |
| 6                   | 17652.0000  | 39.33                  | 46.88                | 7.55        | 74.00                | 27.12       | 200         | 104       | Horizontal |

| AV Final Data List |             |             |                           |                         |                         |                |             |           |            |
|--------------------|-------------|-------------|---------------------------|-------------------------|-------------------------|----------------|-------------|-----------|------------|
| NO.                | Freq. [MHz] | Factor [dB] | AV Reading [dB $\mu$ V/m] | AV Value [dB $\mu$ V/m] | AV Limit [dB $\mu$ V/m] | AV Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                  | 7199.7900   | 1.10        | 47.97                     | 49.07                   | 54.00                   | 4.93           | 200         | 162       | Horizontal |

| Suspected Data List |             |                        |                      |             |                      |             |             |           |          |
|---------------------|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|----------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                   | 1914.4000   | 47.78                  | 43.98                | -3.80       | 74.00                | 30.02       | 100         | 257       | Vertical |
| 2                   | 2500.4000   | 47.84                  | 47.45                | -0.39       | 74.00                | 26.55       | 200         | 322       | Vertical |
| 3                   | 3252.0000   | 59.05                  | 46.92                | -12.13      | 74.00                | 24.08       | 100         | 143       | Vertical |
| 4                   | 4933.5000   | 49.27                  | 42.77                | -6.50       | 74.00                | 31.23       | 200         | 249       | Vertical |
| 5                   | 7200.0000   | 56.39                  | 57.59                | 1.20        | 74.00                | 16.41       | 100         | 53        | Vertical |
| 6                   | 13572.0000  | 33.77                  | 46.61                | 12.84       | 74.00                | 27.39       | 100         | 143       | Vertical |

| AV Final Data List |             |             |                           |                         |                         |                |             |           |          |
|--------------------|-------------|-------------|---------------------------|-------------------------|-------------------------|----------------|-------------|-----------|----------|
| NO.                | Freq. [MHz] | Factor [dB] | AV Reading [dB $\mu$ V/m] | AV Value [dB $\mu$ V/m] | AV Limit [dB $\mu$ V/m] | AV Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                  | 7199.7900   | 1.20        | 51.22                     | 52.42                   | 54.00                   | 1.58           | 100         | 31.1      | Vertical |

Mode: TX/ BLE\_1M

Highest Frequency (2480MHz)

Environment: 25.1°C/52%RH/101.0kPa

Tested By: Qin tingting

Voltage: DC 5V

Date: 2024-10-23

| Suspected Data List |             |                        |                      |             |                      |             |             |           |            |
|---------------------|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|------------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                   | 1724.6000   | 64.75                  | 57.58                | -7.17       | 74.00                | 16.42       | 200         | 12        | Horizontal |
| 2                   | 2523.4000   | 50.85                  | 49.32                | -1.53       | 74.00                | 24.68       | 100         | 102       | Horizontal |
| 3                   | 2658.0000   | 51.41                  | 49.27                | -2.14       | 74.00                | 24.73       | 100         | 62        | Horizontal |
| 4                   | 3306.0000   | 59.94                  | 46.46                | -13.48      | 74.00                | 27.54       | 100         | 22        | Horizontal |
| 5                   | 7200.0000   | 53.59                  | 54.69                | 1.10        | 74.00                | 19.31       | 200         | 62        | Horizontal |
| 6                   | 15000.0000  | 39.84                  | 51.68                | 11.84       | 74.00                | 22.32       | 200         | 101       | Horizontal |

| AV Final Data List |             |             |                           |                         |                         |                |             |           |            |
|--------------------|-------------|-------------|---------------------------|-------------------------|-------------------------|----------------|-------------|-----------|------------|
| NO.                | Freq. [MHz] | Factor [dB] | AV Reading [dB $\mu$ V/m] | AV Value [dB $\mu$ V/m] | AV Limit [dB $\mu$ V/m] | AV Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                  | 1724.6000   | -7.17       | 53.12                     | 45.95                   | 54.00                   | 8.05           | 200         | 12        | Horizontal |
| 2                  | 2523.4000   | -1.53       | 46.52                     | 44.99                   | 54.00                   | 9.01           | 100         | 102       | Horizontal |
| 3                  | 2658.0000   | -2.14       | 43.85                     | 41.71                   | 54.00                   | 12.29          | 100         | 62        | Horizontal |
| 4                  | 3306.0000   | -13.48      | 47.34                     | 33.86                   | 54.00                   | 20.14          | 100         | 22        | Horizontal |
| 5                  | 7199.7900   | 1.10        | 48.01                     | 49.11                   | 54.00                   | 4.89           | 200         | 85        | Horizontal |
| 6                  | 15000.0000  | 11.84       | 35.62                     | 47.46                   | 54.00                   | 6.54           | 200         | 101       | Horizontal |

| Suspected Data List |             |                        |                      |             |                      |             |             |           |          |
|---------------------|-------------|------------------------|----------------------|-------------|----------------------|-------------|-------------|-----------|----------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                   | 1727.8000   | 65.80                  | 58.72                | -7.08       | 74.00                | 15.28       | 100         | 260       | Vertical |
| 2                   | 2519.8000   | 53.23                  | 52.04                | -1.19       | 74.00                | 21.96       | 100         | 74        | Vertical |
| 3                   | 2998.6000   | 54.84                  | 54.49                | -0.35       | 74.00                | 19.51       | 200         | 117       | Vertical |
| 4                   | 3306.0000   | 60.61                  | 47.76                | -12.85      | 74.00                | 26.24       | 100         | 74        | Vertical |
| 5                   | 7200.0000   | 56.49                  | 57.69                | 1.20        | 74.00                | 16.31       | 200         | 350       | Vertical |
| 6                   | 15000.0000  | 42.13                  | 54.77                | 12.64       | 74.00                | 19.23       | 200         | 36        | Vertical |

| AV Final Data List |             |             |                           |                         |                         |                |             |           |          |
|--------------------|-------------|-------------|---------------------------|-------------------------|-------------------------|----------------|-------------|-----------|----------|
| NO.                | Freq. [MHz] | Factor [dB] | AV Reading [dB $\mu$ V/m] | AV Value [dB $\mu$ V/m] | AV Limit [dB $\mu$ V/m] | AV Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                  | 1727.8000   | -7.08       | 52.67                     | 45.59                   | 54.00                   | 8.41           | 100         | 260       | Vertical |
| 2                  | 2519.8000   | -1.19       | 50.12                     | 48.93                   | 54.00                   | 5.07           | 100         | 74        | Vertical |
| 3                  | 2998.6000   | -0.35       | 48.74                     | 48.39                   | 54.00                   | 5.61           | 200         | 117       | Vertical |
| 4                  | 3306.0000   | -12.85      | 47.13                     | 34.28                   | 54.00                   | 19.72          | 100         | 74        | Vertical |
| 5                  | 7199.7900   | 1.20        | 50.43                     | 51.63                   | 54.00                   | 2.37           | 200         | 336.5     | Vertical |
| 6                  | 15000.0000  | 12.64       | 36.2                      | 48.84                   | 54.00                   | 5.16           | 200         | 36        | Vertical |

**Remark:**

- 1 Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency.
- 2 Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3 Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4 Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

—Blank space below this page—

**18GHz to 26.5GHz:**

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Note: Pre-scan all modes, only the worst case(TX/BLE\_1M\_2440MHz) in the worst power supply is recorded in this report.

Environment: 24.2°C/60%RH/101.0kPa

Tested By: Qin tingting

Voltage: DC 5V

Date: 2024-08-27

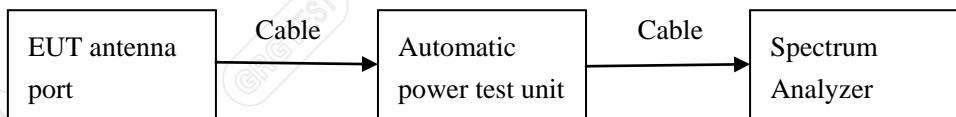
| Suspected Data List |             |                        |                             |                             |             |                      |             |             |           |            |
|---------------------|-------------|------------------------|-----------------------------|-----------------------------|-------------|----------------------|-------------|-------------|-----------|------------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level for 1m [dB $\mu$ V/m] | Level for 3m [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity   |
| 1                   | 18648.55    | 48.45                  | 32.32                       | 22.78                       | -16.13      | 74                   | 51.22       | 100         | 276       | Horizontal |
| 2                   | 19752.275   | 47.71                  | 31.89                       | 22.35                       | -15.82      | 74                   | 51.65       | 100         | 230       | Horizontal |
| 3                   | 21113.55    | 47.43                  | 32.4                        | 22.86                       | -15.03      | 74                   | 51.14       | 100         | 230       | Horizontal |
| 4                   | 22657.575   | 47.09                  | 32.45                       | 22.91                       | -14.64      | 74                   | 51.09       | 100         | 144       | Horizontal |
| 5                   | 23921.525   | 47.12                  | 33.17                       | 23.63                       | -13.95      | 74                   | 50.37       | 100         | 254       | Horizontal |
| 6                   | 25789.825   | 46.67                  | 32.69                       | 23.15                       | -13.98      | 74                   | 50.85       | 100         | 164       | Horizontal |

| Suspected Data List |             |                        |                             |                             |             |                      |             |             |           |          |
|---------------------|-------------|------------------------|-----------------------------|-----------------------------|-------------|----------------------|-------------|-------------|-----------|----------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V/m] | Level for 1m [dB $\mu$ V/m] | Level for 3m [dB $\mu$ V/m] | Factor [dB] | Limit [dB $\mu$ V/m] | Margin [dB] | Height [cm] | Angle [°] | Polarity |
| 1                   | 19032.75    | 48.31                  | 32.59                       | 23.05                       | -15.72      | 74                   | 50.95       | 100         | 35        | Vertical |
| 2                   | 19794.775   | 48.03                  | 32.67                       | 23.13                       | -15.36      | 74                   | 50.87       | 100         | 320       | Vertical |
| 3                   | 21191.325   | 47.28                  | 32.68                       | 23.14                       | -14.60      | 74                   | 50.86       | 100         | 300       | Vertical |
| 4                   | 22748.1     | 46.71                  | 32.9                        | 23.36                       | -13.81      | 74                   | 50.64       | 100         | 340       | Vertical |
| 5                   | 23647.825   | 47.62                  | 33.97                       | 24.43                       | -13.65      | 74                   | 49.57       | 100         | 148       | Vertical |
| 6                   | 25975.55    | 47.46                  | 34.14                       | 24.6                        | -13.32      | 74                   | 49.40       | 100         | 217       | Vertical |

**Remark:**

- 1 Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2 Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3 Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4 Above 18G test distance is 1m, so the Level for 3m= Level for 1m + 20\*log(1/3)

## 8. 6dB BANDWIDTH


### 8.1 LIMITS

Systems using digital modulation techniques may operate in the 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz bands. The minimum 6dB bandwidth shall be at least 500kHz.

### 8.2 TEST PROCEDURES

- a) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the Automatic power measuring unit.
- b) Set resolution bandwidth (RBW) = 100kHz. Set the video bandwidth (VBW)  $\geq 3 \times$  RBW. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize, record 6dB bandwidth value.
- c) Repeat above procedures until all frequencies measured were complete.

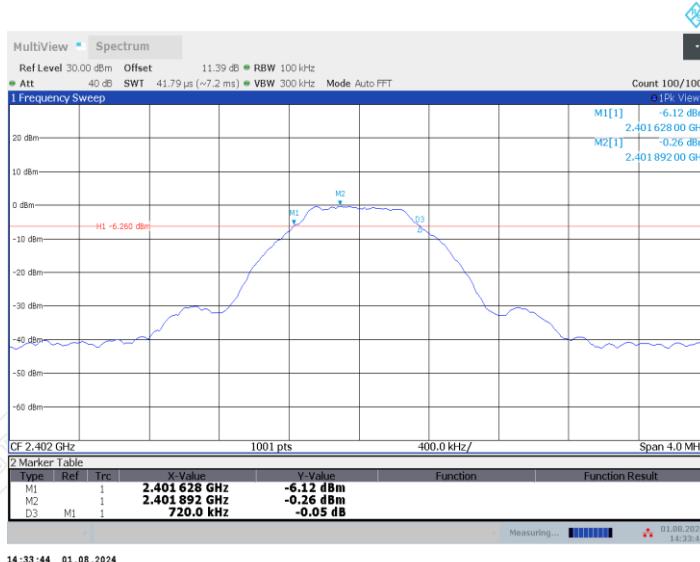
### 8.3 TEST SETUP



—Blank space below this page—

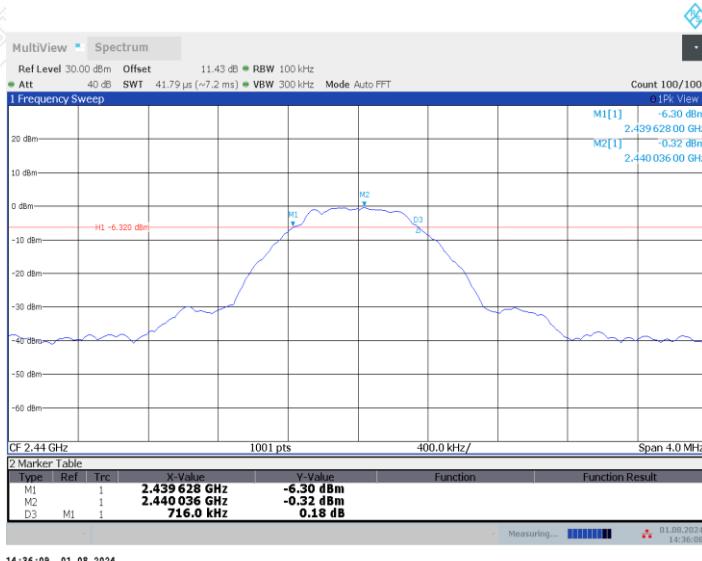
## 8.4 TEST RESULTS

Environment: 25.3 °C/59%RH/101.0kPa

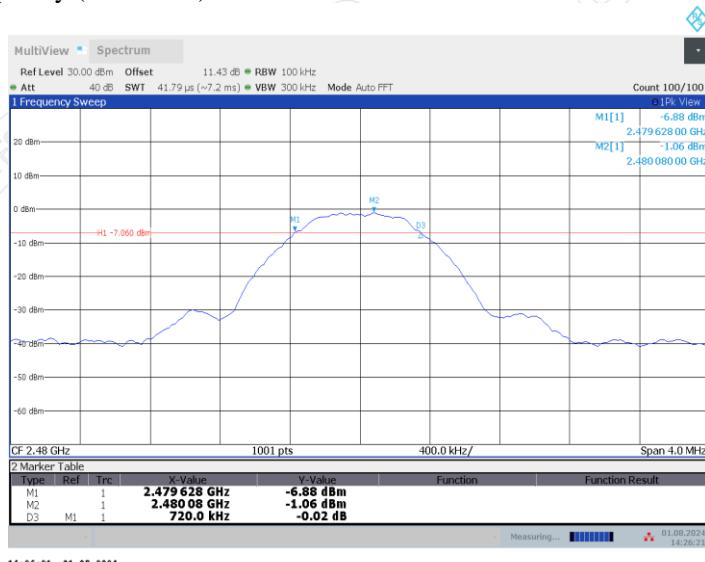

Tested By: Qin tingting

Voltage: DC 5V

Date: 2024-08-01


| Channel | Frequency (MHz) | Bandwidth (kHz) | Limit (kHz) | Test Result |
|---------|-----------------|-----------------|-------------|-------------|
| Lowest  | 2402            | 720.0           | ≥500        | PASS        |
| Middle  | 2440            | 716.0           |             | PASS        |
| Highest | 2480            | 720.0           |             | PASS        |

Lowest Frequency (2402MHz)




—Blank space below this page—

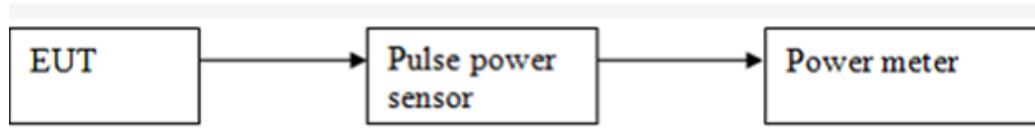
## Middle Frequency (2440 MHz)



## Highest Frequency (2480MHz)



## 9. MAXIMUM PEAK OUTPUT POWER


### 9.1 LIMITS

The maximum Peak output power measurement is 1W

### 9.2 TEST PROCEDURES

- RF output of EUT was connected to the broadband peak RF power meter by RF cable. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- Measure the conducted output power and record the results in the test report.

### 9.3 TEST SETUP



### 9.4 TEST RESULTS

Environment: 25.3 °C/59%RH/101.0kPa

Voltage: DC 5V

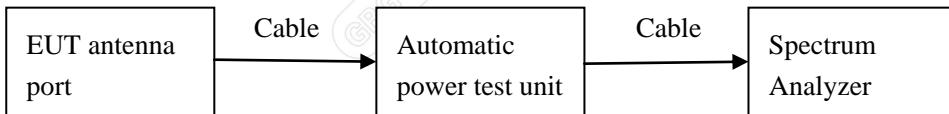
Tested By: Qin tingting

Date: 2024-08-01

| Channel | Frequency (MHz) | Maximum Power (dBm) | Limit      | Peak/Average | Result |
|---------|-----------------|---------------------|------------|--------------|--------|
| Lowest  | 2402            | 1.55                | 1W (30dBm) | Peak         | Pass   |
| Middle  | 2440            | 2.08                |            |              | Pass   |
| Highest | 2480            | 1.35                |            |              | Pass   |

—Blank space below this page—

## 10. POWER SPECTRAL DENSITY


### 10.1 LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### 10.2 TEST PROCEDURES

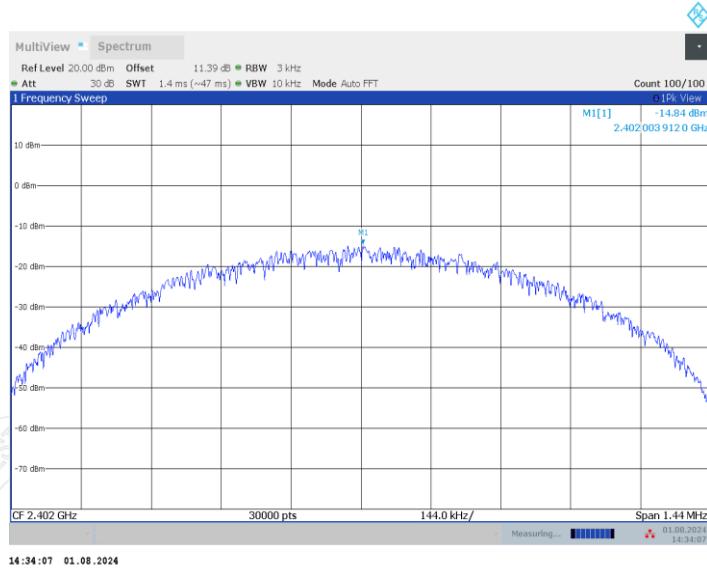
- a) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- b) Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
  - a) Set analyzer center frequency to DTS channel center frequency.
  - b) Set the span to at least 1.5 times the DTS bandwidth.
  - c) Set the RBW to  $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ .
  - d) Set the VBW  $\geq [3 \times \text{RBW}]$ .
  - e) Detector = peak
  - f) Sweep time = auto couple.
  - g) Trace mode = max hold.
  - h) Allow trace to fully stabilize.
  - i) Use the peak marker function to determine the maximum amplitude level within the RBW.
  - j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
- d) Repeat above procedures until all frequencies measured were complete.

### 10.3 TEST SETUP

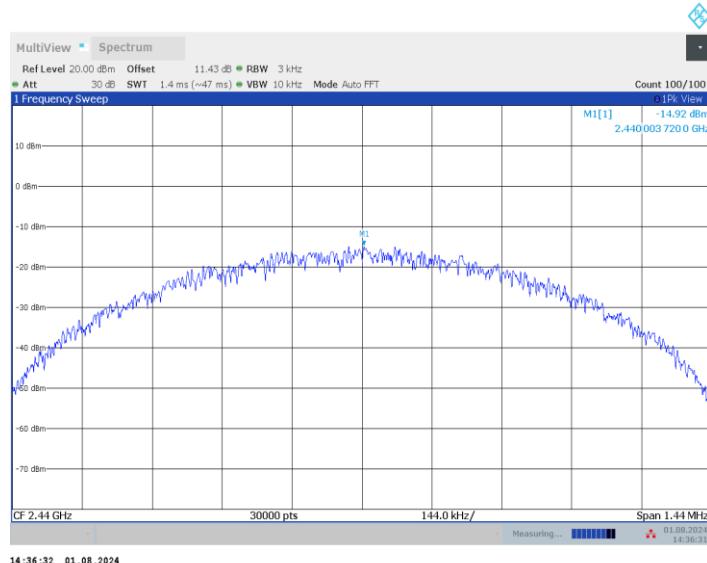


## 10.4 TEST RESULTS

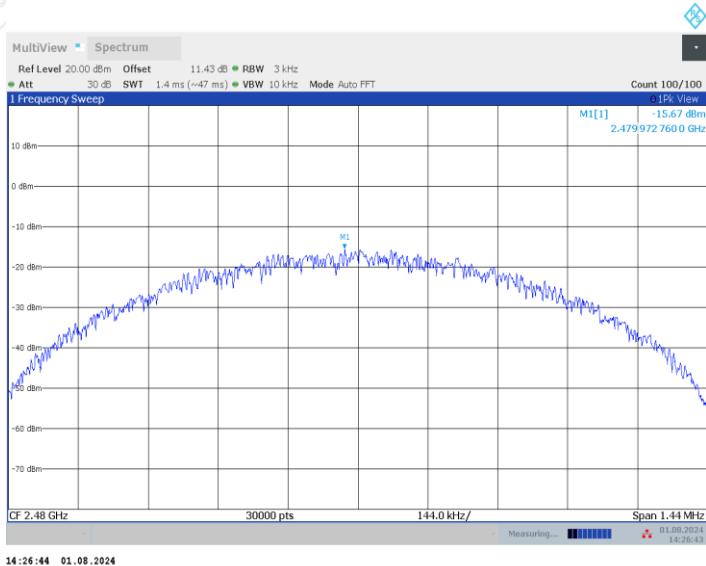
Environment: 25.3 °C/59%RH/101.0kPa


Tested By: Qin tingting

Voltage: DC 5V


Date: 2024-08-01

| Channel | Frequency (MHz) | PSD (dBm/3kHz) | Limit (dBm/3kHz) | Test Result |
|---------|-----------------|----------------|------------------|-------------|
| Lowest  | 2402            | -14.84         | 8.00             | PASS        |
| Middle  | 2440            | -14.92         |                  | PASS        |
| Highest | 2480            | -15.67         |                  | PASS        |


Lowest Frequency (2402MHz)



Middle Frequency (2440 MHz)



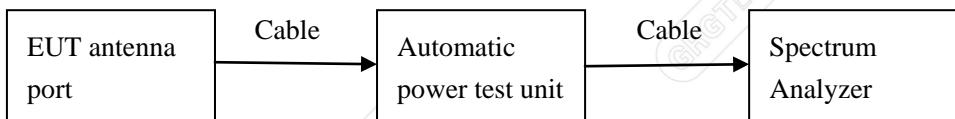
## Highest Frequency (2480MHz)



—Blank space below this page—

## 11. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

### 11.1 LIMITS


In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB.

### 10.2 TEST PROCEDURES

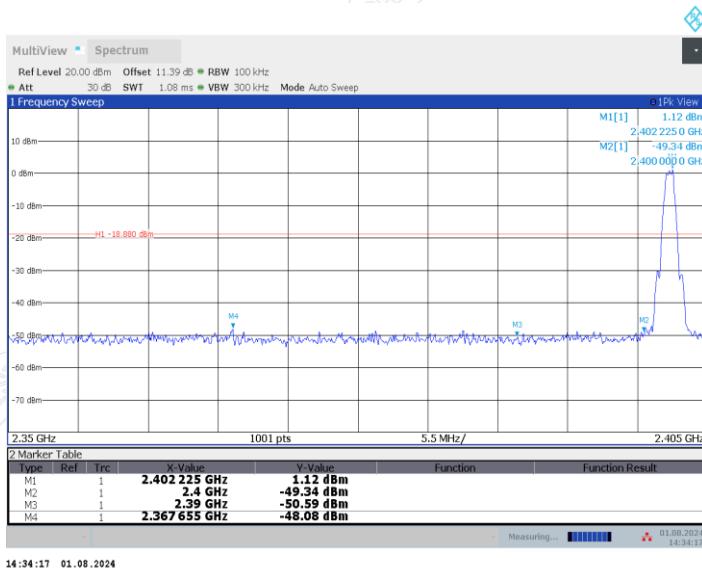
Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

- a) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- b) Set the spectrum analyzer: RBW =100kHz; VBW =300kHz, Frequency range = 30MHz to 26.5GHz; Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- c) Measure and record the results in the test report.
- d) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

### 10.3 TEST SETUP

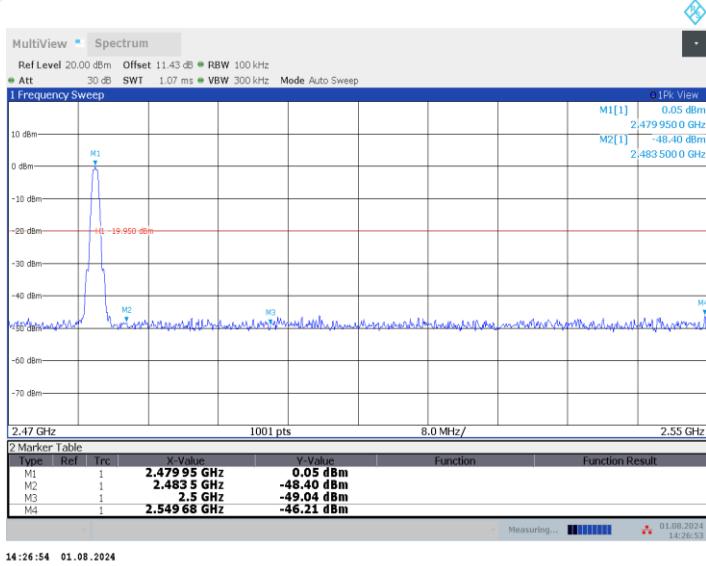


## 10.4 TEST RESULTS


Environment: 25.3°C/59%RH/101.0kPa  
Tested By: Qin tingting

Voltage: DC 5V  
Date: 2024-08-01

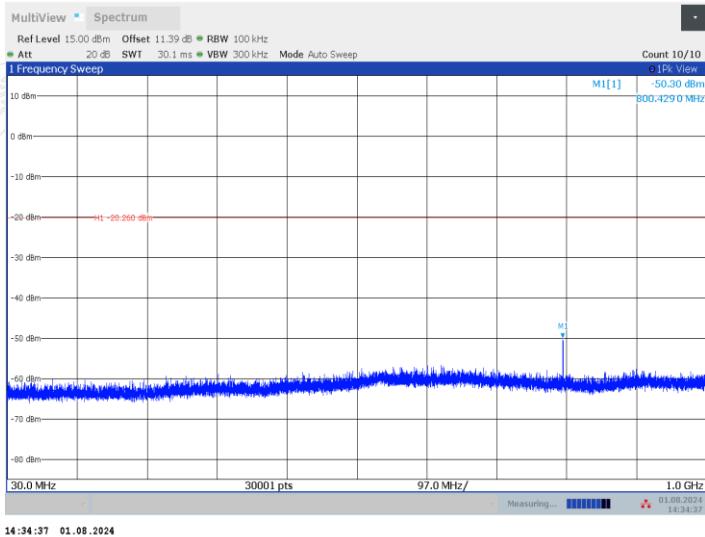
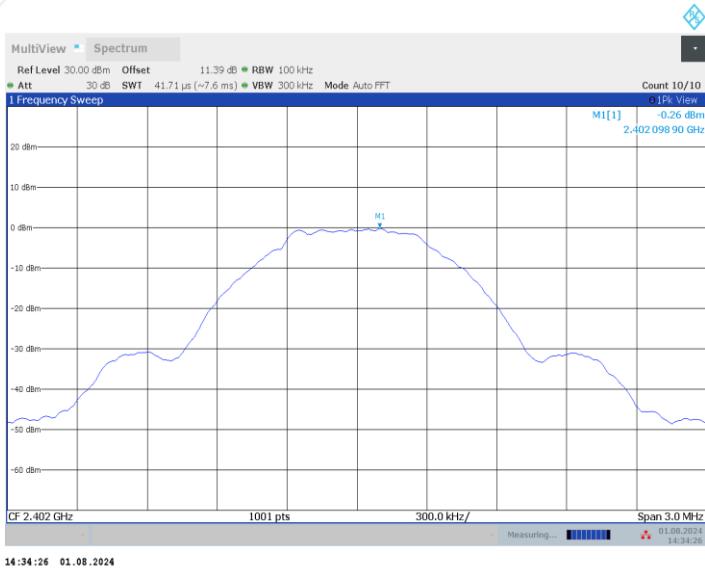
### Band edge measurements

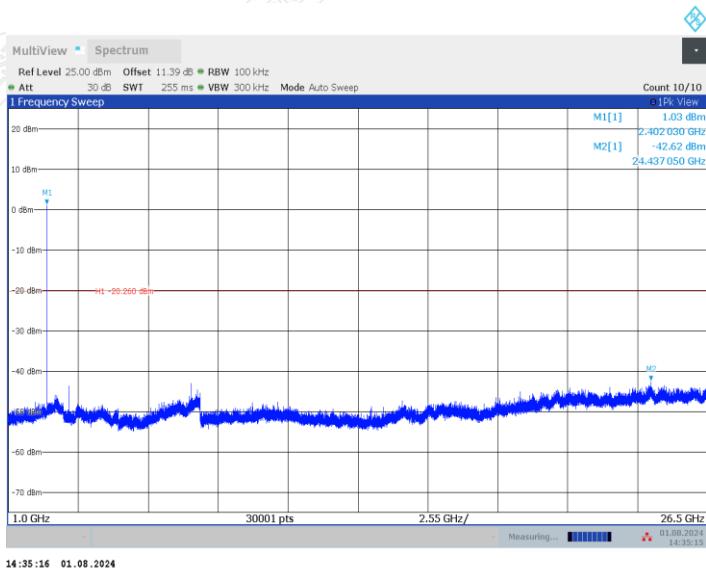

| TestMode | Antenna | ChName | Freq(MHz) | RefLevel[dBm] | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|--------|-----------|---------------|-------------|------------|---------|
| BLE_1M   | Ant1    | Low    | 2402      | 1.12          | -48.08      | ≤-18.88    | PASS    |
|          |         | High   | 2480      | 0.05          | -46.21      | ≤-19.95    | PASS    |

Lowest Frequency (2402MHz)  
2.35GHz-2.405GHz



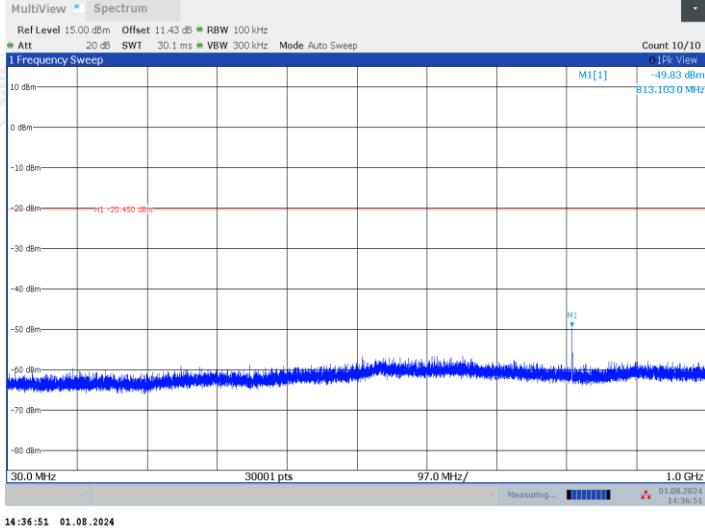
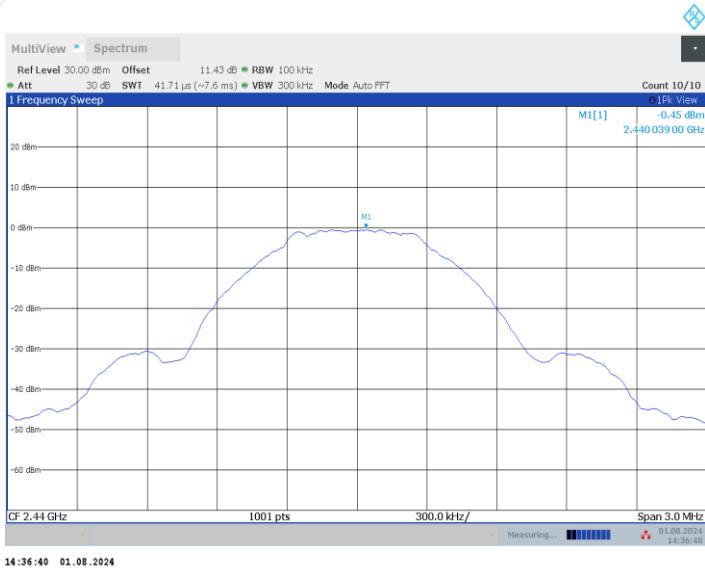
—Blank space below this page—

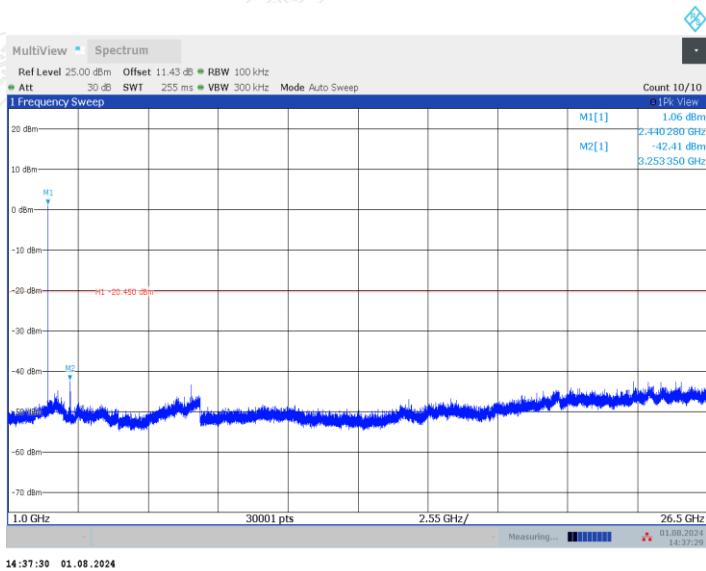


Highest Frequency (2480MHz)  
2.47GHz-2.55GHz



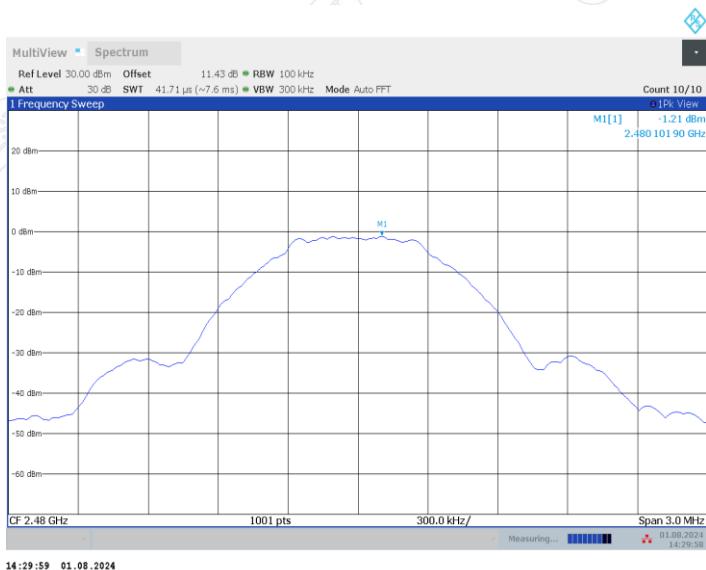

### Conducted Spurious Emission

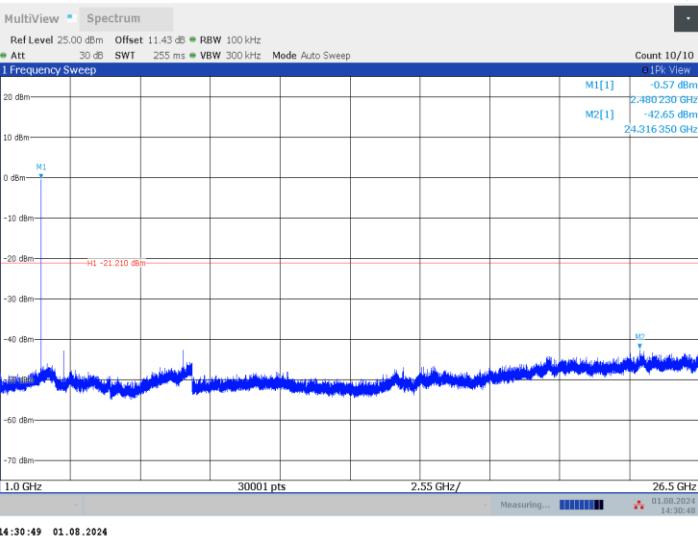
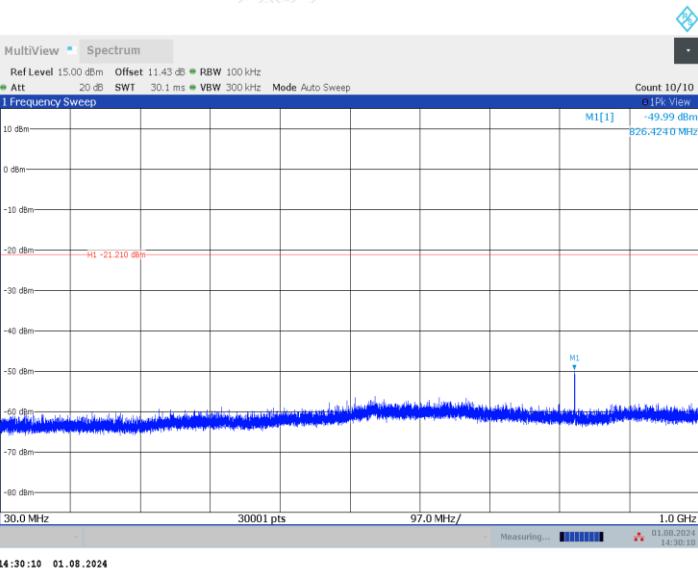
| TestMode | Antenna | Freq(MHz) | FreqRange [MHz] | RefLevel [dBm] | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|-----------|-----------------|----------------|-------------|------------|---------|
| BLE_1M   | Ant1    | 2402      | Reference       | -0.26          | -0.26       | ---        | PASS    |
|          |         |           | 30~1000         | -0.26          | -50.3       | ≤-20.26    | PASS    |
|          |         |           | 1000~26500      | -0.26          | -42.62      | ≤-20.26    | PASS    |
|          |         | 2440      | Reference       | -0.45          | -0.45       | ---        | PASS    |
|          |         |           | 30~1000         | -0.45          | -49.83      | ≤-20.45    | PASS    |
|          |         |           | 1000~26500      | -0.45          | -42.41      | ≤-20.45    | PASS    |
|          |         | 2480      | Reference       | -1.21          | -1.21       | ---        | PASS    |
|          |         |           | 30~1000         | -1.21          | -49.99      | ≤-21.21    | PASS    |
|          |         |           | 1000~26500      | -1.21          | -42.65      | ≤-21.21    | PASS    |



## Lowest Frequency (2402MHz)







—Blank space below this page—



## Middle Frequency (2440MHz)





### Highest Frequency (2480MHz)

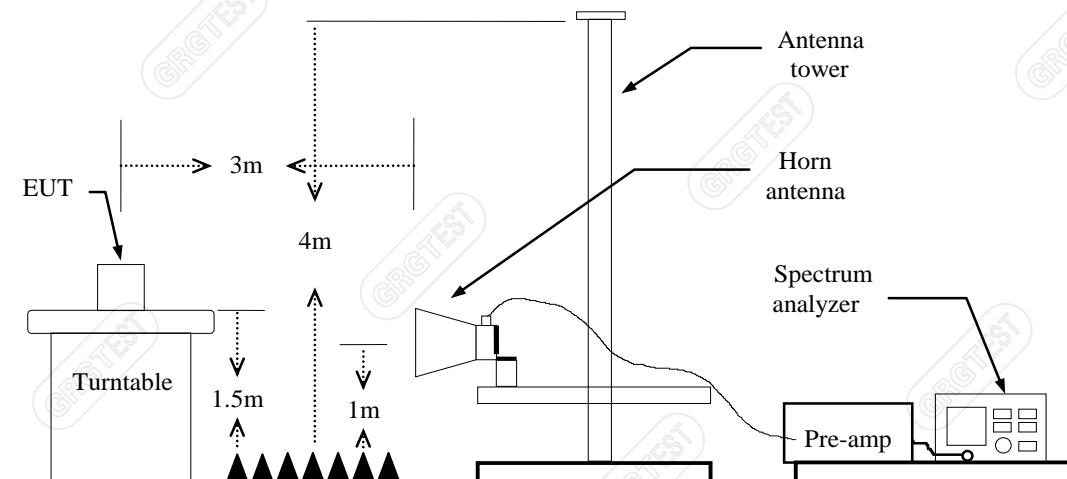




## 12. RESTRICTED BANDS OF OPERATION

### 12.1 LIMITS

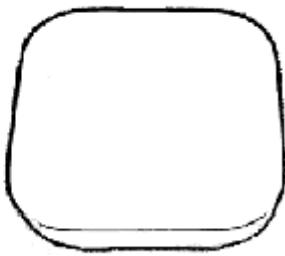
Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


| MHz                        | MHz                   | MHz             | GHz           |
|----------------------------|-----------------------|-----------------|---------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15    |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46   |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75   |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5   |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2     |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5     |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7   |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4  |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300     | 14.47 - 14.5  |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2  |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4   |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2655 - 2900     | 22.01 - 23.12 |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0   |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8   |
| 12.51975 - 12.52025        | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5  |
| 12.57675 - 12.57725        | 322 - 335.4           | 3600 - 4400     |               |
| 13.36 - 13.41              |                       |                 |               |

| Frequency (MHz) | Quasi-peak( $\mu$ V/m) | Measurement distance(m) | Quasi-peak(dB $\mu$ V/m)@distance 3m |
|-----------------|------------------------|-------------------------|--------------------------------------|
| 0.009-0.490     | 2400/F(kHz)            | 300                     | 128.5~93.8                           |
| 0.490-1.705     | 24000/F(kHz)           | 30                      | 73.8~63                              |
| 1.705-30.0      | 30                     | 30                      | 69.5                                 |
| 30 ~ 88         | 100                    | 3                       | 40                                   |
| 88~216          | 150                    | 3                       | 43.5                                 |
| 216 ~ 960       | 200                    | 3                       | 46                                   |
| Above 960       | 500                    | 3                       | 54                                   |

## 11.2 TEST PROCEDURES

- The EUT is placed on a turntable, which is 1.5m above the ground plane.
- The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO.
  - AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO.
- If the EUT is configured to transmit with duty cycle  $\geq 98\%$ , set  $\text{VBW} \leq \text{RBW}/100$  (i.e., 10kHz) but not less than 10 Hz. If the EUT duty cycle is  $< 98\%$ , set  $\text{VBW} \geq 1/T$ , Where T is defined in section 2.9.
- Repeat the procedures until all the PEAK and AVERAGE versus polarization are measured.


## 11.3 TEST SETUP



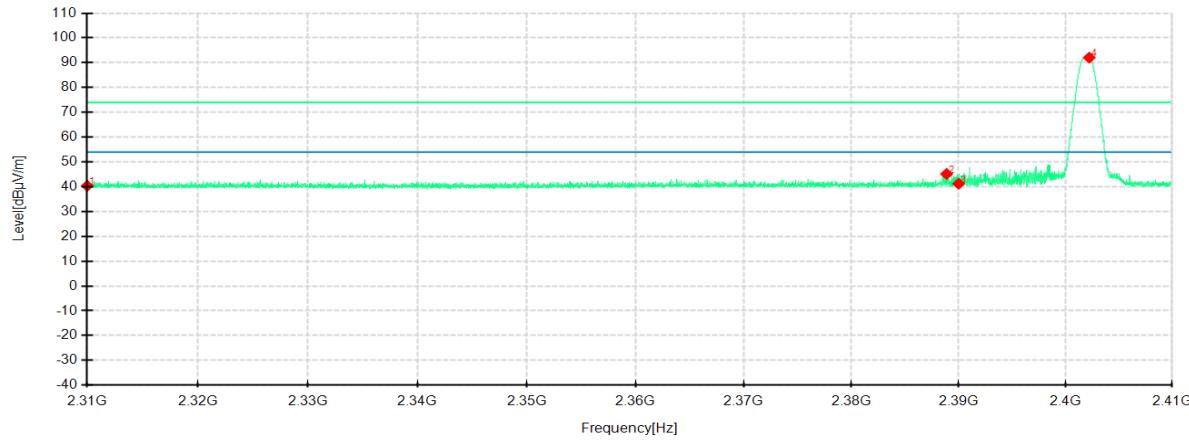
—Blank space below this page—

## 11.4 TEST RESULTS

The test are under the EUT typical placement for ceiling mounted the EUT can rotate 90 °, 180 °, 270 ° etc. lying flat, standing on the table, etc. Only the worst case EUT lying flat results recorded in the report.

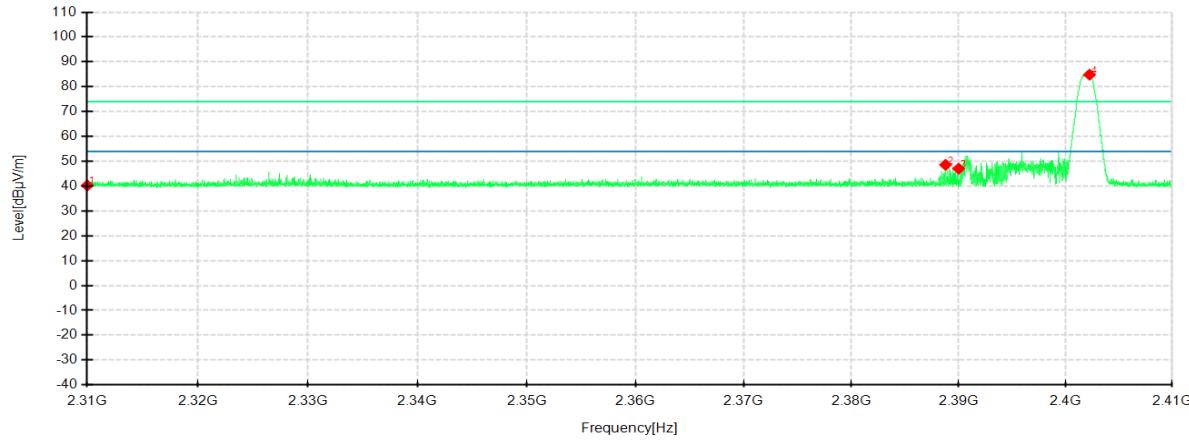


—Blank space below this page—


|               |            |                          |                       |
|---------------|------------|--------------------------|-----------------------|
| Test Voltage: | DC 5V      | Test Engineer:           | Qin tingting          |
| Test Date     | 2024-08-02 | Environmental Conditions | 24.7°C/65%RH/101.0kPa |

**Lowest Frequency**

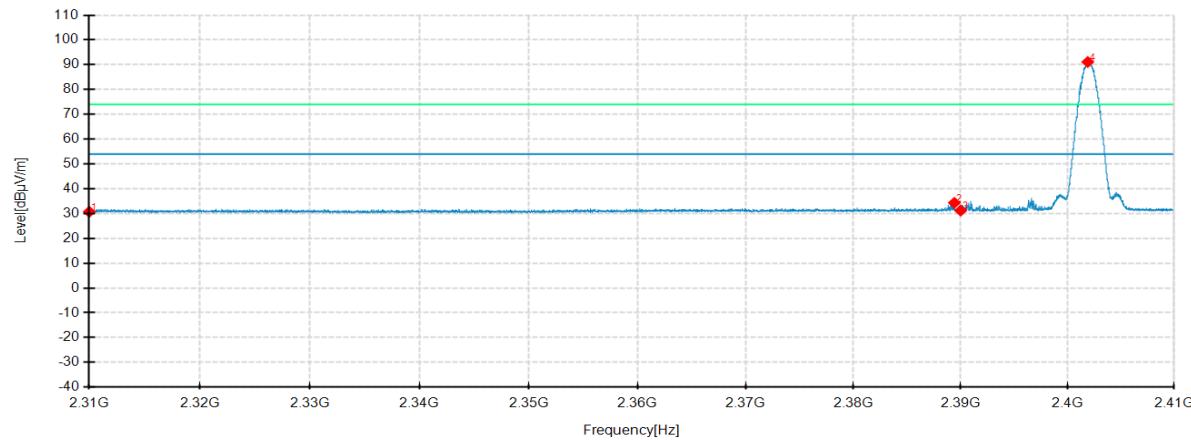
Frequency 2402MHz


Detector mode: Peak

Polarity: Horizontal

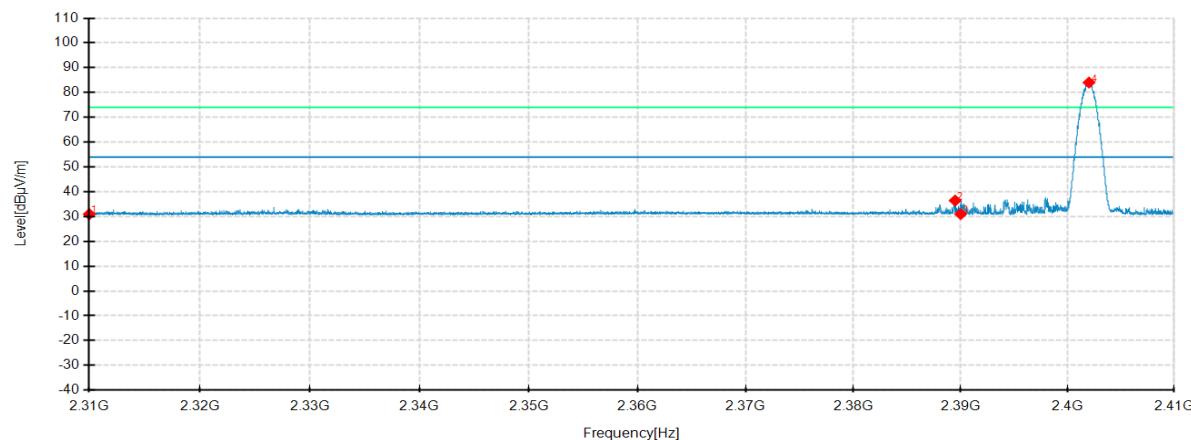


Detector mode: Peak


Polarity: Vertical



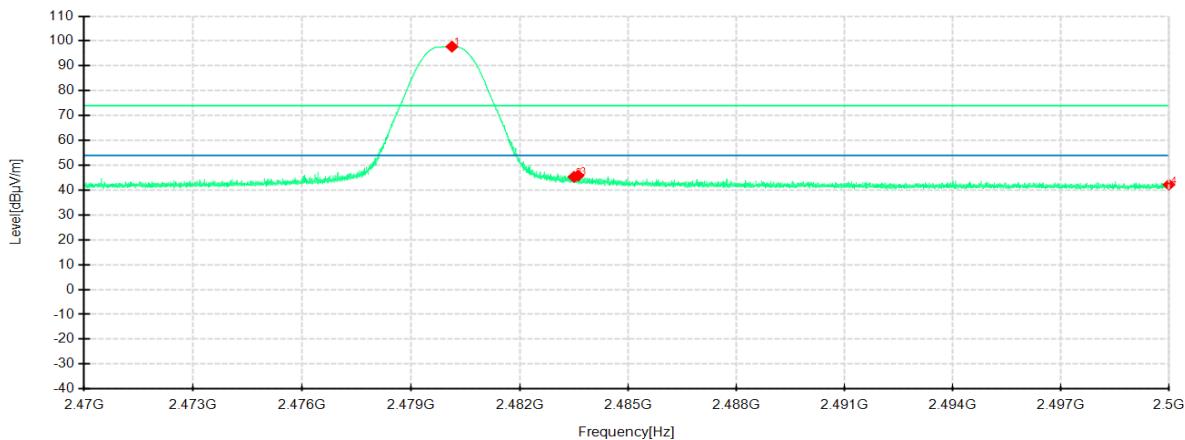
| No. | Frequency MHz | Reading dB $\mu$ V/m | Level dB $\mu$ V/m | Factor dB | Limit dB $\mu$ V/m | Margin dB | Height cm | Angle ° | Pole       | Remark   |
|-----|---------------|----------------------|--------------------|-----------|--------------------|-----------|-----------|---------|------------|----------|
| 1   | 2310.0000     | 45.85                | 40.37              | -5.48     | 74.00              | 33.63     | 200       | 50      | Horizontal | /        |
| 2   | 2388.8750     | 50.55                | 45.15              | -5.40     | 74.00              | 28.85     | 200       | 289     | Horizontal | /        |
| 3   | 2390.0000     | 46.61                | 41.22              | -5.39     | 74.00              | 32.78     | 200       | 77      | Horizontal | /        |
| 4   | 2402.2250     | 97.28                | 92.05              | -5.23     | 74.00              | -18.05    | 100       | 312     | Horizontal | No limit |
| 1   | 2310.0000     | 45.58                | 40.26              | -5.32     | 74.00              | 33.74     | 200       | 257     | Vertical   | /        |
| 2   | 2388.7750     | 54.03                | 48.56              | -5.47     | 74.00              | 25.44     | 100       | 221     | Vertical   | /        |
| 3   | 2390.0000     | 52.51                | 47.04              | -5.47     | 74.00              | 26.96     | 200       | 219     | Vertical   | /        |
| 4   | 2402.2500     | 90.31                | 84.85              | -5.46     | 74.00              | -10.85    | 200       | 21      | Vertical   | No limit |


**Lowest Frequency**  
Frequency 2402MHz  
Detector mode: Average

Polarity: Horizontal

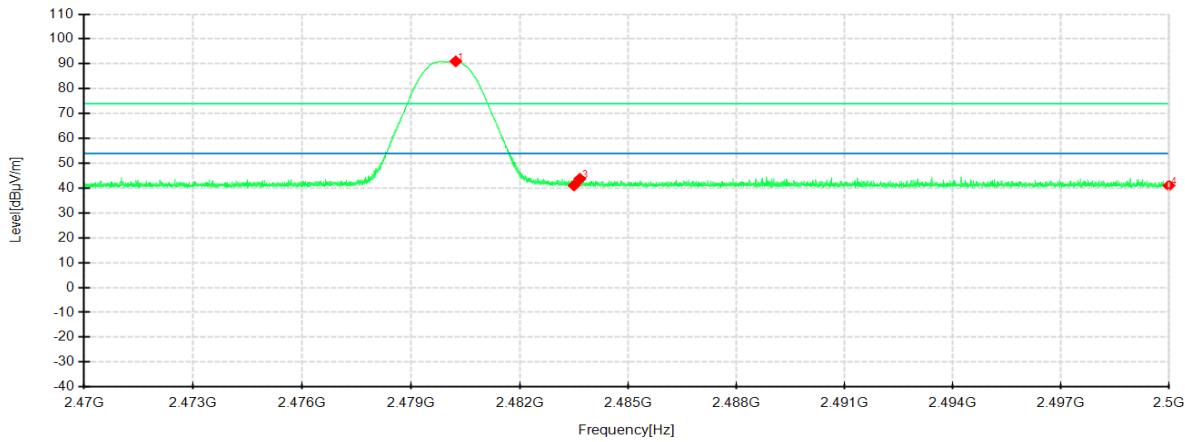


Detector mode: Average


Polarity: Vertical



| No. | Frequency MHz | Reading dB $\mu$ V/m | Level dB $\mu$ V/m | Factor dB | Limit dB $\mu$ V/m | Margin dB | Height cm | Angle ° | Pole       | Remark   |
|-----|---------------|----------------------|--------------------|-----------|--------------------|-----------|-----------|---------|------------|----------|
| 1   | 2310.0000     | 36.18                | 30.70              | -5.48     | 54.00              | 23.30     | 100       | 81      | Horizontal | /        |
| 2   | 2389.4125     | 39.73                | 34.33              | -5.40     | 54.00              | 19.67     | 200       | 307     | Horizontal | /        |
| 3   | 2390.0000     | 36.59                | 31.20              | -5.39     | 54.00              | 22.80     | 200       | 201     | Horizontal | /        |
| 4   | 2401.9000     | 96.34                | 91.10              | -5.24     | 54.00              | -37.10    | 100       | 315     | Horizontal | No limit |
| 1   | 2310.0000     | 36.27                | 30.95              | -5.32     | 54.00              | 23.05     | 100       | 288     | Vertical   | /        |
| 2   | 2389.4875     | 41.91                | 36.44              | -5.47     | 54.00              | 17.56     | 100       | 209     | Vertical   | /        |
| 3   | 2390.0000     | 36.45                | 30.98              | -5.47     | 54.00              | 23.02     | 200       | 194     | Vertical   | /        |
| 4   | 2402.0125     | 89.47                | 84.01              | -5.46     | 54.00              | -30.01    | 200       | 20      | Vertical   | No limit |


**Highest Frequency**  
Frequency 2480MHz  
Detector mode: Peak

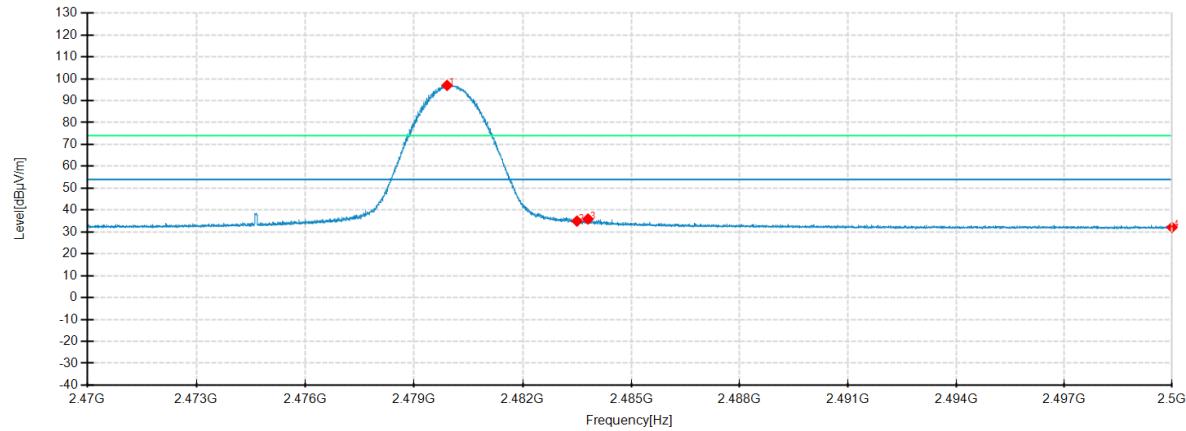
Polarity: Horizontal



Detector mode: Peak

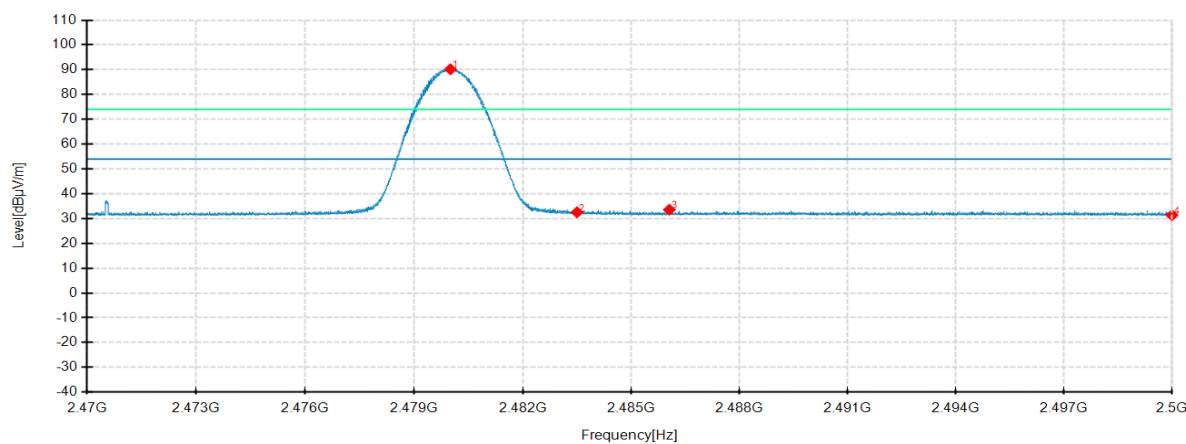
Polarity: Vertical




| No. | Frequency MHz | Reading dB $\mu$ V/m | Level dB $\mu$ V/m | Factor dB | Limit dB $\mu$ V/m | Margin dB | Height cm | Angle ° | Pole       | Remark   |
|-----|---------------|----------------------|--------------------|-----------|--------------------|-----------|-----------|---------|------------|----------|
| 1   | 2480.1288     | 102.56               | 97.75              | -4.81     | 74.00              | -23.75    | 100       | 320     | Horizontal | No limit |
| 2   | 2483.5000     | 50.16                | 45.33              | -4.83     | 74.00              | 28.67     | 100       | 48      | Horizontal | /        |
| 3   | 2483.6125     | 50.71                | 45.87              | -4.84     | 74.00              | 28.13     | 100       | 203     | Horizontal | /        |
| 4   | 2500.0000     | 47.17                | 42.18              | -4.99     | 74.00              | 31.82     | 100       | 20      | Horizontal | /        |
| 1   | 2480.2338     | 96.10                | 91.01              | -5.09     | 74.00              | -17.01    | 200       | 39      | Vertical   | No limit |
| 2   | 2483.5000     | 46.12                | 41.05              | -5.07     | 74.00              | 32.95     | 200       | 50      | Vertical   | /        |
| 3   | 2483.6613     | 48.82                | 43.75              | -5.07     | 74.00              | 30.25     | 200       | 12      | Vertical   | /        |
| 4   | 2500.0000     | 45.98                | 40.99              | -4.99     | 74.00              | 33.01     | 200       | 261     | Vertical   | /        |

**Highest Frequency**

Frequency 2480MHz


Detector mode: Average

Polarity: Horizontal



Detector mode: Average

Polarity: Vertical



| No. | Frequency MHz | Reading dB $\mu$ V/m | Level dB $\mu$ V/m | Factor dB | Limit dB $\mu$ V/m | Margin dB | Height cm | Angle ° | Pole       | Remark   |
|-----|---------------|----------------------|--------------------|-----------|--------------------|-----------|-----------|---------|------------|----------|
| 1   | 2479.9113     | 101.77               | 96.96              | -4.81     | 54.00              | -42.96    | 100       | 322     | Horizontal | No limit |
| 2   | 2483.5000     | 39.78                | 34.95              | -4.83     | 54.00              | 19.05     | 100       | 322     | Horizontal | /        |
| 3   | 2483.8038     | 40.75                | 35.91              | -4.84     | 54.00              | 18.09     | 100       | 322     | Horizontal | /        |
| 4   | 2500.0000     | 37.09                | 32.10              | -4.99     | 54.00              | 21.90     | 100       | 322     | Horizontal | /        |
| 1   | 2480.0050     | 95.26                | 90.17              | -5.09     | 54.00              | -36.17    | 200       | 25      | Vertical   | No limit |
| 2   | 2483.5000     | 37.60                | 32.53              | -5.07     | 54.00              | 21.47     | 200       | 234     | Vertical   | /        |
| 3   | 2486.0538     | 38.62                | 33.56              | -5.06     | 54.00              | 20.44     | 200       | 326     | Vertical   | /        |
| 4   | 2500.0000     | 36.33                | 31.34              | -4.99     | 54.00              | 22.66     | 200       | 116     | Vertical   | /        |

Remark: Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

## **APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM**

Please refer to the attached document E20240724756701-test setup photo-FCC+IC.

## **APPENDIX B. PHOTOGRAPH OF THE EUT**

Please refer to the attached document E20240724756701-EUT photo.

----- End of Report -----